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Summary: Survival data collected from a prevalent cohort are subject to left truncation and the analysis is

challenging. Conditional approaches for left-truncated data could be inefficient as they ignore the information in the

marginal likelihood of the truncation times. Length-biased sampling methods may improve the estimation efficiency

but only when the underlying truncation time is uniform; otherwise, they may generate biased estimates. We propose

a semiparametric method for left-truncated data under the Cox model with no parametric distributional assumption

about the truncation times. Our approach is to make inference based on the conditional likelihood augmented with

a pairwise likelihood, which eliminates the truncation distribution, yet retains the information about the regression

coefficients and the baseline hazard function in the marginal likelihood. An iterative algorithm is provided to solve

for the regression coefficients and the baseline hazard function simultaneously. By empirical process and U -process

theories, it has been shown that the proposed estimator is consistent and asymptotically normal with a closed-

form consistent variance estimator. Simulation studies show substantial efficiency gain of our estimator in both the

regression coefficients and the cumulative baseline hazard function over the conditional approach estimator. When

the uniform truncation assumption holds, our estimator enjoys smaller biases and efficiency comparable to that of the

full maximum likelihood estimator. An application to the analysis of a chronic kidney disease cohort study illustrates

the utility of the method.

Key words: Chronic kidney disease; Composite likelihood; Empirical process; Self-consistency; U -Process.
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PLAC Estimator 1

1. Introduction

Survival data collected from a prevalent cohort that includes patients who already have

the disease at the study enrollment are subject to left truncation. This is because those

who died with the disease before the enrollment would have no chances to be selected,

whereas the selected patients, having survived until the enrollment, are healthier on average.

To avoid overestimating the survival, conventional approaches make inferences conditional

on truncation times (Kalbfleisch and Lawless, 1991; Wang et al., 1993). These approaches

disregard the information about the regression coefficients in the marginal likelihood of the

truncation times, and hence loss of efficiency is expected when additional knowledge on the

underlying truncation distribution is available (Huang and Qin, 2012).

If the underlying truncation time is uniformly distributed, left truncation reduces to length-

biased sampling (Vardi, 1989), that is, the probability of selecting a subject is proportional

to the length of his or her underlying failure time; see a comprehensive review by Shen et al.

(2017). Among the newly developed regression methods for length-biased data, many show

considerable improvement of efficiency in estimation compared with the conditional approach

by incorporating information from the observed truncation times (Qin and Shen, 2010; Qin

et al., 2011; Huang et al., 2012; Huang and Qin, 2012; Ning et al., 2014). Nevertheless,

when the uniform truncation assumption is violated, these methods may yield inconsistent

estimates (Huang and Qin, 2012).

The motivating study is a prevalent cohort study of patients with chronic kidney disease

(CKD), sponsored by the Renal Research Institute (Perlman et al., 2003). Following the

diagnosis, in general, CKD patients are referred to nephrologists to receive special care and

treatments. The investigators were interested in whether the patient characteristics at referral

were associated with the disease progression to end-stage renal disease (ESRD) or death. At

the study recruitment from June 2000 to January 2006, subjects with glomerular filtration

Page 3 of 25 Biometrics
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2 Biometrics, Xxxx 201x

rate (GFR) less than or equal to 50 ml/min/1.73 m2 were invited to participate. The dataset

is of a moderate sample size, so improving the estimation efficiency is important. However,

statistical assessment in Section 4 indicated deviation of the motivating data from the

uniform truncation assumption, which prompted us to seek an efficiency-improving method

with consistent estimates.

Recently, Huang and Qin (2013) proposed a more efficient estimator for the additive

hazards model under general left truncation. They used a pairwise likelihood of the trun-

cation times to eliminate the unspecified truncation distribution (Liang and Qin, 2000). In

practice, however, the Cox model is more commonly used than the additive hazards model,

and its interpretation is more familiar to practitioners (Cox, 1972). Yet the challenge of

applying the same approach to the Cox model lies in the complicated way that the pairwise

likelihood involves the cumulative baseline hazard function, causing serious theoretical and

computational difficulties.

In this paper, we propose to augment the conditional likelihood with a pairwise likelihood

constructed from the marginal likelihood of the truncation times to improve the efficiency in

estimation for the Cox model. We have achieved several important improvements. First, we

design an nonparametric maximum likelihood estimating (NPMLE) procedure to estimate

the cumulative baseline hazard function along with the regression coefficients. Second, with

the asymptotic results proven by empirical process and U -process theories, we provide a

closed-form consistent sandwich variance estimator. Finally, we provide an iterative algo-

rithm that explores the self-consistency of the nonparametric estimator and guarantees a

computationally efficient implementation. Our simulations show that efficiency of both the

regression coefficients and the cumulative baseline hazard function, especially the former,

can be improved using the proposed method. Moreover, even when the uniform truncation

assumption holds, the proposed estimator of the regression coefficients has efficiency com-
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Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

PLAC Estimator 3

parable to that of the full maximum likelihood estimator by Qin et al. (2011), and enjoys

smaller biases. Thus, we believe the proposed estimator provides a promising alternative to

improve the estimation efficiency for left-truncated survival data.

2. Proposed Method

2.1 Preliminaries

Suppose the time origin is the onset of disease. For a patient from the target population, let

T ∗ denote the underlying failure time, i.e., the time to the event of interest, and A∗ denote the

underlying truncation time, i.e., the time to the study enrollment. We use f and S to denote

the density and survival functions of T ∗, and the distribution function of A∗ is denoted as

G. Let Z∗ be a p×1 vector of covariates. We assume A∗ and T ∗ are independent conditional

on Z∗. A commonly used model that links the hazard function of T ∗ to the covariates Z∗ is

the Cox proportional hazards model (Cox, 1972):

λ(t | Z∗; β) = λ(t) exp(βTZ∗),

where β is a p× 1 vector of regression coefficients, and λ(·) is an unspecified baseline hazard

function. The cumulative baseline hazard function is defined as Λ(t) =
∫ t

0
λ(s) ds. Data

collected from a prevalent cohort only consist of patients with A∗ 6 T ∗. The same notations

without asterisks, such as A, T , and Z, will be used to denote the observed random variables

conditional on A∗ 6 T ∗, i.e., (A, T, Z) ≡ (A∗, T ∗, Z∗) | (A∗ 6 T ∗), throughout the paper.

Usually, the failure time is also subject to potential right censoring by C starting from

the enrollment. Thus, what we observe are X = min(A + C, T ) and ∆ = I(T 6 A + C),

where I(·) is the indicator function. Suppose we have independent and identically distributed

observations {Ai, Xi,∆i, Zi; i = 1, . . . , n} on n individuals sampled from a prevalent cohort.

The full likelihood of the observed data is proportional to

n∏
i=1

pr(A∗i , T
∗
i , Ci | A∗i 6 T ∗i , Z

∗
i ) ∝

n∏
i=1

f(Xi | Zi)∆iS(Xi | Zi)1−∆idG(Ai)∫∞
0
S(a | Zi)dG(a)

≡ Ln.

Page 5 of 25 Biometrics
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4 Biometrics, Xxxx 201x

We assume C is independent of (A∗, T ∗) given A∗ 6 T ∗ and Z∗, and that A∗ does not depend

on Z∗, i.e., the patient recruitment process does not depend on covariates. Note that the

latter assumption does not imply independence between the observed A and Z, since the

biased sampling scheme may induce correlations between them as well as between A and T

given Z. The full likelihood can be further decomposed into two parts:

Ln =
n∏
i=1

f(Xi | Zi)∆iS(Xi | Zi)1−∆i

S(Ai | Zi)
×

n∏
i=1

S(Ai | Zi)dG(Ai)∫∞
0
S(a | Zi)dG(a)

≡ LCn × LMn , (1)

where LCn is the conditional likelihood of (Xi,∆i) given (Ai, Zi), i = 1, . . . , n, and LMn is the

marginal likelihood of Ai given Zi, i = 1, . . . , n.

2.2 Pairwise Likelihood Augmented Cox (PLAC) Estimator

In the presence of truncation, inference based on LCn only, using the Cox’s partial likelihood

(Cox, 1975) with the at-risk indicator Yi(t) = I(Ai 6 t 6 Xi), has been proposed by

Kalbfleisch and Lawless (1991) and Wang et al. (1993). The conditional approaches yield

consistent estimates, but they may be inefficient, since they completely ignore the information

about the parameters contained in LMn . Taking advantage of the fully specified uniform

truncation distribution, regression methods for length-biased data generally result in more

efficient estimators. Among them, the maximum likelihood estimator by Qin et al. (2011)

is asymptotically efficient for the Cox model. More recently, Liu et al. (2016) extended the

expectation-maximization algorithm in Qin et al. (2011) to general biased-sampling cases,

where G is known up to some unspecified finite-dimensional parameters, and estimation effi-

ciency of the Cox model parameters can be improved while jointly estimating the parameters

in G.

Deviating from existing methods for left-truncated data, our method does not impose any

parametric assumption on the underlying truncation distribution or on the baseline hazard

function. Our approach to improving efficiency is to supplement LCn with major information

in LMn that depends only on β and Λ. Specifically, we first apply the pairwise likelihood

Page 6 of 25Biometrics
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PLAC Estimator 5

method by Liang and Qin (2000) to LMn in order to eliminate the truncation distribution

function, and then estimate β and Λ based on a composite likelihood consisting of LCn and

LPn , where the pairwise likelihood LPn is derived as follows.

Suppose a sample {(Ai, Zi), (Aj, Zj); 1 6 i < j 6 n} is available. A pseudo-likelihood of

the pair (Ai, Aj), conditional on the order statistic of (Ai, Aj) and (Zi, Zj), is given by

S(Ai|Zi)dG(Ai)∫∞
0 S(a|Zi)dG(a)

× S(Aj |Zj)dG(Aj)∫∞
0 S(a|Zj)dG(a)

S(Ai|Zi)dG(Ai)∫∞
0 S(a|Zi)dG(a)

× S(Aj |Zj)dG(Aj)∫∞
0 S(a|Zj)dG(a)

+
S(Ai|Zj)dG(Ai)∫∞
0 S(a|Zj)dG(a)

× S(Aj |Zi)dG(Aj)∫∞
0 S(a|Zi)dG(a)

=
1

1 +Rij(β,Λ)
,

where

Rij(β,Λ) =
S(Ai | Zj)S(Aj | Zi)
S(Ai | Zi)S(Aj | Zj)

= exp
[
(eβ

TZi − eβTZj){Λ(Ai)− Λ(Aj)}
]

denotes the generalized odds ratio under the Cox model. The pairwise likelihood LPn of all

pairs is then given by

LPn =
∏
i<j

{1 +Rij(β,Λ)}−1.

It is worth noting that, by canceling out the terms involving G, LPn is a function of (β,

Λ) only, whereas LMn is a function of (β, Λ, G). Simulation studies (Qin and Liang, 1999;

Liang and Qin, 2000) show that the pairwise likelihood can usually retain the majority of the

information in the likelihood from which it is derived, and that the efficiency loss may not

be substantial, depending on the model as well as the values of the parameters. Therefore,

to estimate β and Λ, we propose using LPn as a reasonably good surrogate for LMn in the full

likelihood approach. An analogous idea has been exploited in the additive hazards model by

Huang and Qin (2013); however, the additive hazards model is less commonly used. Applying

the pairwise likelihood augmentation method to the Cox model will greatly promote more

practical use due to ease of interpretation to practitioners.

To account for the different magnitudes of logLCn and logLPn (there are n terms in logLCn

Page 7 of 25 Biometrics
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6 Biometrics, Xxxx 201x

and n(n− 1)/2 terms in logLPn ), we maximize the following composite log-likelihood:

1

n

n∑
i=1

[
∆i {log λ(Xi) + βTZi} − exp(βTZi)

∫ ∞
0

Yi(t)λ(t)dt

]
− 2

n(n− 1)

∑
i<j

log{1 +Rij(β,Λ)},

over the domain of (β,Λ). Using the nonparametric maximum likelihood estimation, we treat

Λ(·) as a nondecreasing step function such that Λ (0) = 0, and has jumps, denoted by Λ{·},

only at the time points where events are observed (see Murphy et al., 1997; Zeng and Lin,

2006, among others). Let w1 < · · · < wm (m 6 n) be the ordered distinct observed failure

times, and λ1 ≡ Λ{w1}, . . . , λm ≡ Λ{wm} be the corresponding positive jumps of Λ. We

denote by λ ≡ (λ1, . . . , λm)T the vector of all positive jumps. For k = 0, 1, 2, we define the

following functions which appear in logLPn and its derivatives:

Q
(k)
ij (t; β) =

(
Z⊗ ki eβ

TZi − Z⊗ kj eβ
TZj
)
{I(t 6 Ai)− I(t 6 Aj)} ,

where Z⊗ 0 = 1, Z⊗ 1 = Z, and Z⊗ 2 = ZZT. Below we may suppress the dependence on model

parameters, using Rij and Q
(k)
ij (t) to denote Rij(β,Λ) and Q

(k)
ij (t; β) when the meanings of

the notations are clear from the context. Replacing λ(t) with Λ{t}, we modify the composite

log-likelihood as a function of β and λ:

`cn(β,λ) =
1

n

n∑
i=1

{
∆i (log Λ{Xi}+ βTZi)− exp(βTZi)

m∑
k=1

λkYi(wk)

}
− 2

n(n− 1)

∑
i<j

log{1 +Rij(β,λ)}, (2)

where Rij(β,λ) = exp{
∑m

k=1 λkQ
(0)
ij (wk)}. We refer to the maximizer (β̂, λ̂), or (β̂, Λ̂), of the

composite log-likelihood as the pairwise likelihood augmented Cox (PLAC) estimator, where

Λ at a fixed time t is estimated by Λ̂(t) =
∑m

k=1 λ̂k I(wk 6 t). Specifically, differentiating (2)

with respect to (β,λ) yields the composite score functions (the dependence on n is suppressed

Page 8 of 25Biometrics
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PLAC Estimator 7

in the notations):

Uβ(β,λ) =
1

n

n∑
i=1

Zi

{
∆i − eβ

TZi

m∑
k=1

λkYi(wk)

}
− 1

n(n− 1)

∑
i 6=j

∑m
k=1 λkQ

(1)
ij (wk)

1 +R−1
ij

,

Uλk(β,λ) =
1

n

n∑
i=1

I(Xi = wk)

{
∆i

λk
− Yi(wk) eβ

TZi

}
− 1

n(n− 1)

∑
i 6=j

Q
(0)
ij (wk)

1 +R−1
ij

.

Let UT
λ = (Uλ1 , . . . , Uλm), then the PLAC estimator (β̂, λ̂) is the solution to

U(β,λ) = (UT

β , U
T

λ)T(β,λ) = 0, (3)

which can be obtained numerically using the following algorithm, for example.

Unlike the conditional approach, directly solving the nonlinear system (3) is difficult due

to the computational complexity brought by the pairwise structure. Therefore, we propose

to solve for β̂ and λ̂k (k = 1, . . . ,m) iteratively:

Step 1. Start with initial values β(0) and λ(0).

Step 2. At the r-th iteration, update each λ
(r)
k using

λ
(r)
k =

n−1
∑n

i=1 ∆iI(Xi = wk)

n−1
∑n

i=1 Yi(wk)e
ZT
i β

(r−1)
+ {n(n− 1)}−1

∑
i 6=j

Q
(0)
ij (wk;β(r−1))

1+1/Rij(β(r−1),λ(r−1))

. (4)

Step 3. Update β(r) by one step of Newton-Raphson iteration:

β(r) = β(r−1) −
{
U̇ββ(β(r−1),λ(r))

}−1 {
Uβ(β(r−1),λ(r))

}
,

where U̇ββ(β(r−1),λ(r)) = ∂Uβ(β,λ)/∂βT|β=β(r−1),λ=λ(r) .

Step 4. Repeat Steps 2 and 3 until convergence.

Initial values for the parameters in Step 1 can be set as β(0) = 0 and λ(0) = (1/m, . . . , 1/m)

or the estimates from the conditional approach. In our simulation studies, it is demonstrated

that the algorithm is robust to the choice of initial values. In Step 2, updating λk using the

self-consistent solution (4) is the crucial step which makes the computation of the PLAC

estimator tractable. The above algorithm is implemented in the R package plac.

Page 9 of 25 Biometrics
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8 Biometrics, Xxxx 201x

2.3 Asymptotic Properties

We establish consistency and asymptotic normality of the PLAC estimator (β̂, Λ̂) under the

regularity conditions in the Appendix, utilizing techniques from empirical process (van der

Vaart and Wellner, 1996) and U -process theories (De la Peña and Giné, 1999). Detailed

proofs are provided in the Web Supplementary, Section A.1. To ensure the NPMLE Λ̂ exists,

we prove its asymptotic properties on [0, τ ], where τ > 0 is a constant. In practice, τ is

often chosen to be the maximum of X = min(A+C, T ) (Huang and Qin, 2012). Denote the

normalized score functions corresponding to LCn and LPn as UC(β,λ) = n−1
∑n

i=1 U
C
i (β,Λ)

and UP (β,λ) = 2{n(n− 1)}−1
∑

i<j U
P
ij (β,λ), respectively, where

UC
i (β,λ) =



∆iZi − Zieβ
TZi
∑m

k=1 λkYi(wk)

I(Xi = w1){∆i/λ1 − Yi(w1) eβ
TZi}

...

I(Xi = wm){∆i/λm − Yi(wm) eβ
TZi}


, (5)

and

UP
ij (β,λ) = − 1

1 +R−1
ij



∑m
k=1 λkQ

(1)
ij (wk)

Q
(0)
ij (w1)

...

Q
(0)
ij (wm)


. (6)

Theorem 1 (Consistency). Under Conditions (C1)-(C3),

β̂ → β0 and
∥∥∥Λ̂− Λ0

∥∥∥
L∞[0,τ ]

→ 0 almost surely as n→∞,

where (β0, Λ0) are the true parameters, and ‖·‖L∞[0,τ ] is the supreme norm on [0, τ ].

The proof of Theorem 1 consists of three major steps. First, we show the parameters of

interest are identifiable. Second, by the nature of the pairwise construction, UP
ij (β, Λ) is

permutation symmetric in the observed data; thus, the pairwise score function UP (β, Λ)

and its derivatives are U -processes of order two. We construct upper bounds for bracketing

Page 10 of 25Biometrics
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PLAC Estimator 9

numbers of the related function classes by combining the bracketing entropy results of uni-

formly bounded monotone functions with the preservation theorems for Lipschitz functions

(see van der Vaart and Wellner, 1996, Chapter 2.7). The law of large numbers of these classes

then follows from Corollary 3.2.5 of De la Peña and Giné (1999). In addition, we can show

E{UP (β0,Λ0)} = 0 by the fact that UP
ij (β,Λ) is exactly the score function corresponding

to the pseudo-likelihood of the pair (Ai, Aj), conditional on the order statistic of (Ai, Aj)

and (Zi, Zj). In the last step, the strong consistency of the PLAC estimator can be proven

through the likelihood equation argument similar to that given by Murphy et al. (1997),

along with the composite Kullback-Leibler divergence (Varin and Vidoni, 2005) and the

identifiability of the parameters.

For the weak convergence, we first establish the uniform
√
n-convergence rate and the

asymptotic normality of the log-generalized odds ratio using the Hájek projection of U -

processes (van der Vaart, 2000). The asymptotic normality of the PLAC estimator can be

proved using Theorem 3.3.1 of van der Vaart and Wellner (1996). Noting that
√
nU(β0,Λ0) =

√
nUC(β0,Λ0) +

√
nUP (β0,Λ0), the asymptotic normality of

√
nU(β0,Λ0) is obtained by

the separate contributions of
√
nUC(β0,Λ0) and

√
nUP (β0,Λ0), which are asymptotically

independent (van der Vaart and Wellner, 1996, Example 1.4.6). The asymptotic normal-

ity of
√
nUC(β0,Λ0) follows from the martingale theory (Andersen and Gill, 1982; Wang

et al., 1993), and our innovative contribution is to identify the limiting distribution of

√
nUP (β0,Λ0). The normality of the function classes involved in UP (β0, Λ0) and its deriva-

tive is shown through the results on the Vapnik-Chervonenkis subgraph classes, the normality

of the log-generalized odds ratio, and the preservation theorems for Lipschitz functions

(van der Vaart and Wellner, 1996, Chapter 2.10). Finally, the Fréchet differentiability of

E{U(β0, Λ0)} and the invertibility of its derivative can be shown by Condition (C4) and the

Page 11 of 25 Biometrics
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10 Biometrics, Xxxx 201x

Fredholm theory, following arguments similar to those in Zeng and Lin (2006). The weak

convergence results are summarized in the following theorem.

Theorem 2 (Asymptotic normality). Under Conditions (C1)-(C4),
√
n (β̂−β0, Λ̂(t)−Λ0(t))

converges weakly to a mean-zero Gaussian process in Rp × BV[0, τ ], where BV[0, τ ] denotes

the space of all functions with bounded total variation on [0, τ ].

One of the appealing features of our approach is that the covariance of the limiting process

of the PLAC estimator can be consistently estimated by a closed-form sandwich estimator.

Let

V̂ C =
1

n

n∑
i=1

UC
i (β̂, λ̂)⊗2,

ĴC = − 1

n

n∑
i=1

∂UC
i (β,λ)

∂(βT,λT)

∣∣∣∣
β=β̂,λ=λ̂

,

V̂ P =
4

n− 1

n∑
i=1

{
1

n− 1

∑
i 6=j

UP
ij (β̂, λ̂)

}⊗2

,

ĴP = − 1

n(n− 1)

∑
i 6=j

∂UP
ij (β,λ)

∂(βT,λT)

∣∣∣∣∣
β=β̂,λ=λ̂

,

where the exact expressions of ∂UC
i (β,λ)/∂(βT,λT) and ∂UP

ij (β,λ)/∂(βT,λT) are given in

the Web Supplementary. To define the asymptotic covariance, consider a linear functional

√
n

[
bT1 (β̂ − β0) +

∫ τ

0

h(t) d
{

Λ̂(t)− Λ0(t)
}]

, (7)

where b1 ∈ Rp, and h(t) is an arbitrary function with bounded total variation on [0, τ ].

Let b2 be the m × 1 vector (h(w1), . . . , h(wm))T, and b = (bT1 , b
T
2 )T. For example, when βk

(k = 1, . . . , p) is the parameter of interest, we can set b1 = ek and b2 as the m × 1 vector

of zeros, where ek is a unit vector with 1 at the k-th element and 0 otherwise. In another

example where Λ(t) at a fixed time t is the parameter of interest as in our simulation, b1 = 0

and b2 = (I(w1 6 t), . . . , I(wm 6 t))T. As in Zeng and Lin (2006), we can treat β and λ

in (2) as if they are finite-dimensional parameters since the PLAC estimator of Λ converges

at a parametric rate. Then by the asymptotic properties of U -statistics (Sen, 1960) and the
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PLAC Estimator 11

composite likelihood theory, the linear functional (7) converges in distribution to a mean-zero

Gaussian random variable with variance that can be consistently estimated by bTΣ̂b, where

Σ̂ = (ĴC + ĴP )−1(V̂ C + V̂ P )(ĴC + ĴP )−1 (8)

is the observed inverse Godambe information (Varin et al., 2011). Naturally, the sandwich

estimator (8) has the following partition:

Σ̂ =

Σ̂ββ Σ̂βλ

Σ̂λβ Σ̂λλ

 ,

where the sub-matrices are estimated asymptotic covariance matrices of the corresponding

parameter estimates. The result of (8) is important, as we can directly apply the delta

method to get the asymptotic variances of quantities of interest other than β and λ. For

instance, the asymptotic variance of Λ̂(t) at a fixed time t can be estimated by

Σ̂Λ̂(t) =
m∑
k=1

m∑
l=1

I(wk 6 t, wl 6 t)σ̂
(λλ)
kl ,

where σ̂
(λλ)
kl is the covariance (variance) estimate corresponding to λ̂k and λ̂l in Σ̂λλ.

3. Simulation

We conducted extensive simulation studies to evaluate the finite-sample performance of the

proposed PLAC estimator, and compared it with those of the conditional approach estimator

(Kalbfleisch and Lawless, 1991; Wang et al., 1993) and the maximum likelihood estimator

for length-biased data (LBML) proposed by Qin et al. (2011). The underlying failure time

T ∗ was associated with two independent covariates in the following Cox model:

λ(t | Z1, Z2) = λ(t) exp(β1Z1 + β2Z2), (9)

where Z1 ∼ Bernoulli(0.5), Z2 ∼ uniform(−1, 1), and the true values β1 = β2 = 1. The

baseline hazard function λ(t) = 2t. For the underlying truncation time, we considered two

cases: (1) length-biased data, and (2) non-length-biased data with A∗ ∼ exponential(1). To

generate samples in Case 1, we used the property that the truncation distribution is uniform,

Page 13 of 25 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

12 Biometrics, Xxxx 201x

which led to the observed failure time T having the density function tf(t|Z)/
∫∞

0
tf(t|Z)dt,

where f(t|Z) is the density corresponds to the Cox model (9). That is, we first generated

observed failure time T from its density and then drew the corresponding observed truncation

time A from uniform(0, T ), as suggested by (Mandel and Betensky, 2007). In Case 2, the

underlying failure times T ∗ were generated from (9), and the underlying truncation times

A∗ were independently generated from exponential(1); yet only the pairs satisfying A∗ 6 T ∗

were kept. Repeat the data generation process until the desired sample size was reached.

The censoring times C were generated independently from uniform(0, Cmax), where Cmax

was chosen to designate censoring rates of approximately 50% and 80%. The event indicator

for subject i was obtained by calculating ∆i = I(Ti 6 Ai +Ci). Sample sizes of 200, 400 and

800 were considered, and we generated 1000 datasets under each scenario.

For each dataset, we estimated β1, β2, and Λ(t) at two fixed times t = (τ30, τ60), where τ30

and τ60 were the 30% and 60% percentiles of the observed survival times, X = min(T,A+C),

under each scenario. Summary statistics for datasets with sample sizes of 400 and 800,

including the average of the estimates minus the true value, the empirical standard error of

the estimates, the average of the standard error estimates, the 95% coverage probability, and

the relative efficiency to the conditional estimator (as the ratio between the mean squared

errors), are provided in Table 1.

[Table 1 about here.]

The empirical biases of the PLAC estimates, like the conditional approach estimates, are

close to zero under all scenarios. When data are length-biased (Case 1), the LBML estimates

also have biases that are small yet larger than those of the other two estimators. The

moderate biases in LBML estimates have been consistently observed by Liu et al. (2016). In

contrast, the LBML estimates in Case 2 are severely biased, and the biases remain at similar

magnitudes even when the sample size increases to 800.
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PLAC Estimator 13

The proposed method yields considerable efficiency gains compared with the conditional

approach estimator under different sample sizes and censoring rates. The efficiency gains in

β̂1 and β̂2 range from 49% to 173% in Case 1 and 36% to 97% in Case 2. The efficiency

gains in Λ̂τ30 and Λ̂τ60 are not as large, but improvement over the conditional approach

has been clearly shown, i.e., all relative efficiencies are greater than one. For the length-

biased data (Case 1), although the proposed estimator of the regression coefficients has

larger standard errors than the LBML estimator, the difference between the two is smaller

than the improvement of PLAC estimator achieves over the conditional estimator. Due to

smaller biases, the mean squared errors of the PLAC estimator are comparable to those of

the LBML estimator. The relative efficiency gains of our estimator increase as the censoring

rate increases, because the augmenting pairwise likelihood is not subject to censoring. These

higher gains when censoring rate increases are also observed in the LBML estimates, but

they are undermined by the simultaneously inflated biases. We also performed additional

simulations with the baseline hazard function λ(t) = 1. The results were as good as those in

Table 1 or even better with slightly increased efficiency gains and thus are omitted. Taking

the biases and the variances altogether, the mean squared errors of our estimator are either

the smallest or comparable to the best performer.

Comparing the empirical and estimated standard errors of the proposed estimator, we

demonstrate that the variance of the proposed estimator is consistently estimated by the

sandwich variance estimator (8). We notice that the standard errors for the PLAC estimates

under n = 200 (Web Supplementary, Table B.1) are approximately twice of those under

n = 800, which confirms the
√
n-convergence rate as proven in Section 2.3. In the scenarios

with n = 400 and 80% censoring, the 95% coverage probabilities for the proposed estimator

are close to the nominal level, except for Λ̂τ30 and Λ̂τ60 . This is because of the small numbers

of observed events which attenuate the normal approximation not only in our approach, but
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14 Biometrics, Xxxx 201x

also in the competitors. For example, the corresponding coverage probabilities for Λ̂τ30 and

Λ̂τ60 using the conditional approach are 92% and 92%, both of which are also below the

nominal level. When the sample size increases to 800, all coverage probabilities of the PLAC

estimator get closer to the nominal level.

In summary, the proposed estimator performs well under finite sample sizes. It has small

empirical biases, and enjoys substantial gains in efficiency in both the regression coefficients

and the cumulative baseline hazard function. The performance of our estimator is robust

to violation of the uniform truncation assumption as well as high censoring rates. The

proposed sandwich estimator results in good variance estimates for all parameters, and yields

reasonable confidence intervals with close-to-nominal coverage.

4. Data Application

We applied the proposed method to the RRI-CKD study. Investigators were interested in

the risk of ESRD progression associated with the patient’s characteristics at referral. In

this study, the failure time was measured from the referral to the composite renal outcome

defined as either death, long-term dialysis or kidney transplantation, whichever came first.

The truncation time was measured from the referral to the study enrollment. The failure

time was also subject to right censoring by non-participating physicians, consent withdraw,

lost to follow up, protocol deviation, or the end of study. The baseline patient characteristics

included age group (45 to 65 and older than 65), gender, race (white and non-white), the

presence of diabetes, the presence of hypertension, and advanced-stage CKD (defined by

estimated GFR less than 30 ml/min/1.73 m2). Patients without referral information or

important covariates were excluded. A total of 545 patients were included in our analysis,

of which 256 experienced the composite renal outcome during the study follow-up. The

censoring rate was 53%.
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PLAC Estimator 15

We first assessed the uniform truncation assumption. When it holds, the observed trunca-

tion time A follows the same distribution as the residual survival time, V = X −A (Mandel

and Betensky, 2007). We conducted a paired log-rank test for A and V (Jung, 1999), and the

null hypothesis of the same distribution was rejected (p < 0.001). Moreover, the estimated

survival functions for A and V deviated from each other with non-overlapping point-wise

confidence intervals (Web Supplementary, Figure C.1). Therefore, the uniform truncation

assumption did not hold in the RRI-CKD data, and hence regression methods for length-

biased data might yield invalid inference. The violation of the uniform truncation assumption

may be explained by the absence of general guidelines for when to refer to a nephrologist in

practice; patients can be referred at either early or late stages of the disease.

Table 2 gives the regression coefficient estimates and their standard errors from the RRI-

CKD data using the conditional approach and the proposed PLAC estimator. Comparing

to the conditional approach, we observed consistently smaller standard error estimates and

narrower confidence intervals (Web Supplementary, Figure C.2) for all regression coefficients

in the analysis. The variance ratio of the conditional approach estimate to the corresponding

PLAC estimate is 1.30 or greater. This implies that the conditional approach requires at least

30% more CKD patients to achieve the same estimating precision as the PLAC estimator.

It is worth noting that the estimated coefficient for Non-white using the proposed estimator

indicates a significant survival difference between the white and the non-white (estimated

hazard ratio is 1.30, p = 0.045), whereas the conditional approach estimate does not suggest

such a significant difference (estimated hazard ratio is 1.24, p = 0.185).

[Table 2 about here.]

To illustrate the use of the closed-form variance estimator (8), we estimated the survival

curves of the patients with and without diabetes at referral, and constructed the correspond-
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16 Biometrics, Xxxx 201x

ing 95% point-wise confidence intervals (Figure 1). The estimated median survival times and

the corresponding confidence intervals are also displayed in Figure 1.

[Figure 1 about here.]

5. Discussion

We have proposed a semiparametric estimation method for the Cox model with the issue of

general left truncation. By constructing a pairwise likelihood from the marginal likelihood

of the truncation times, we have eliminated the unknown truncation distribution from the

full likelihood. Based on our simulation studies, the proposed estimator has been shown to

be robust to heavy censoring and violation of the uniform truncation assumption, where the

robustness means consistency and efficiency gain over the conditional approach estimator

across all scenarios considered. On the contrary, efficiency improvement of length-biased

sampling methods relies on the uniform truncation assumption that is required for consistent

estimates.

We have utilized a nonparametric maximum likelihood approach to estimate the cumulative

baseline hazard function along with the regression coefficients. Under regularity conditions,

the consistency and asymptotic normality of (β̂, Λ̂) have been rigorously proved, which results

in a closed-form consistent sandwich variance estimator. We avoid estimating the truncation

distribution G, deemed as a nuisance parameter in our application, because eliminating

it in the likelihood may simplify inference. The convenience, however, may come at the

expense of some efficiency loss. Alternatively, one can estimate G directly and plug the

estimate into the full likelihood. However, several drawbacks may present. First, if G is

estimated nonparametrically, the numerical instability might undermine the estimation of β

and Λ. Second, the inference with plug-in type estimators is challenging. Often the variance

estimator is so complicated that a resampling-based method should be used (Huang et al.,
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PLAC Estimator 17

2012). Nevertheless, a full likelihood approach that incorporates additional information in G

may yield a more efficient estimator, and further research is warranted.

Even though we relax the uniform truncation assumption, our proposed method, as well as

all existing regression methods for length-biased data, still requires independence assumption

between A∗ and Z∗. Our sensitivity analysis (not shown) indicated the proposed method

would yield biased estimates under covariate-dependent truncation. However, under weak

dependent cases, we still observed smaller mean squared errors (with 12% biases) compared

with the conditional approach estimator. To apply the PLAC estimator, a rigorous model

checking tool for the independence assumption between A∗ and Z∗ is worth pursuing in the

future. For our RRI-CKD example, a graphical inspection tool has been illustrated in Web

Supplementary, Figure C.3, where we plot and compare the estimated Ĝ for each level of

the covariate of interest. There is no apparent deviation between the estimated curves for

the demographics and hypertension status. As for the CKD stage and diabetes status, the

estimated Ĝ’s have overlapping confidence intervals. Thus, we conclude that there was no

obvious violation of the independence assumption in the RRI-CKD data, which is further

supported by the similar point estimates as shown in Table 2 and Figure C.2.

The gain in efficiency is the greatest advantage of the proposed method. For length-biased

data, the PLAC estimator is less efficient than the full maximum likelihood estimator of

Qin et al. (2011), because the latter is based on the correctly specified uniform truncation

distribution. However, the loss of efficiency is not substantial, and the proposed estimator has

smaller biases. For non-length-biased data, if the truncation distribution is known, we can

apply the monotone transformation G(·) to both A and X and apply the regression methods

for length-biased data to the transformed data as suggested by Huang and Qin (2012).

In additional simulations with A∗ ∼ exponential(1), the transformation approach only out-

performed PLAC when the censoring rate was small to moderate (Web Supplementary, Table
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18 Biometrics, Xxxx 201x

B.2). When the censoring rate increased, the transformation approach suffered from large

biases and its mean squared errors would be larger than those of the PLAC estimator.

When we combined LCn and LPn in the composite log-likelihood, we used the weights

proportional to the reciprocals of their magnitudes (number of terms), which may not be

optimal, and further investigation is needed. In the context of additive hazards model, Huang

and Qin (2013) studied the optimal weights with which the resulting estimator would have the

smallest variance. Their simulation showed that the estimator using the optimal weights was

less efficient compared to the estimator using the reciprocals of the magnitudes as weights.

They discussed it was because that the optimal weights involves estimation of the variances

of the scores, which requires larger sample sizes to obtain the benefit.

Lastly, while the proposed estimator focuses on handling time-independent covariates,

the extension to time-dependent covariates is promising based on our preliminary work. We

expect to derive asymptotic properties and devote more effort to reducing computation time,

which is magnified by the need of expanding the dataset with the time-dependent covariates.

6. Supplementary Materials

Web Appendices, Tables and Figures referenced in Sections 2–5, and an R package to

implement the PLAC method are available with this paper at the Biometrics website on

Wiley Online Library.
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Appendix

The asymptotic properties of the PLAC estimator are proved under the following regularity

conditions.

(C1) The true regression coefficient vector β0 lies in the interior of a compact set B ⊂ Rp.

The true cumulative baseline hazard function Λ0(t) is continuously differentiable and

strictly increasing on [0, τ ], and satisfies Λ0(0) = 0.

(C2) The vector Z is bounded almost surely. If there exist a deterministic function γ0(t) and

γ ∈ Rp, such that γ0(t) + γTZ = 0 with probability one, then γ0(t) = 0 and γ = 0.

(C3) With probability one, there exists a constant δ1 > 0 such that pr(A∗ 6 T ∗ | Z∗) > δ1,

pr(A + C > τ | Z) > δ1, and pr(Ȳ (τ) = 1 | Z) > δ1, where Ȳ (τ) = 1 implies Y (t) = 1

for all t ∈ [A, τ ].

(C4) Let b ∈ Rp, and h be a function with bounded total variation on [0, τ ], then the

information operator corresponding to the conditional likelihood evaluated at (β0, Λ0),

JC0 (b, h) =
(

limn→∞ ∂U
C(β,Λ)/∂(β,Λ)

∣∣
β=β0,Λ=Λ0

)
(b, h), is invertible.

If pr(T ∗ < A∗ | Z∗) > δ2 > 0, then LPn is non-degenerate, so that we can attain efficiency

gain beyond the conditional approach. When this condition does not hold, LPn is zero, and

thus the PLAC estimator becomes identical to the conditional approach estimator.
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w/   Diabetes: 2.48 (1.48, 3.52)
w/o Diabetes: 3.73 (2.57, 5.17)
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Figure 1. Estimated survival curves of patients with diabetes (solid) or without diabetes
(dashed) at referral using the proposed method (PLAC). 95% point-wise confidence intervals
are shown as shaded areas. The estimated median survival times for both groups are displayed
with the corresponding 95% confidence intervals. The other covariates are set to their
reference levels. (This figure appears in color in the electronic version of this article.)
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PLAC Estimator 23

Table 1
Summary from 1000 simulated datasets. PC: censoring percentage; True: true values; Bias, SE, SEE and CP:

empirical bias (×103), standard error (×103), standard error estimate (×103) and 95% coverage probability; RE:
relative efficiency with respect to the conditional approach estimator (ratio of the mean squared errors). The

estimate of Λ̂ (t) is evaluated at the 30% and 60% percentiles (τ30 and τ60) of the observed survival times.

n PC
Conditional LBML PLAC

True Bias SE Bias SE RE Bias SE SEE CP RE

Case 1: length-biased sampling

400 50 β̂1 1 5 169 −46 115 1.85 10 129 125 94 1.71

β̂2 1 5 150 −49 109 1.60 9 118 113 94 1.60

Λ̂τ30 0.212 1 45 18 40 1.07 −1 41 39 92 1.18

Λ̂τ60 0.546 2 91 42 78 1.04 −1 84 79 93 1.17

80 β̂1 1 24 265 −61 141 2.99 30 169 166 95 2.39

β̂2 1 23 241 −67 133 2.63 30 162 152 94 2.15

Λ̂τ30 0.103 0 37 30 35 0.62 −2 32 30 91 1.31

Λ̂τ60 0.329 −2 92 49 71 1.14 −7 79 76 92 1.37

800 50 β̂1 1 8 116 -35 82 1.71 6 89 88 95 1.71

β̂2 1 0 99 -38 75 1.41 4 81 80 94 1.49

Λ̂τ30 0.212 1 30 18 30 0.75 0 28 28 95 1.18

Λ̂τ60 0.546 1 62 36 54 0.90 1 56 56 94 1.22

80 β̂1 1 10 194 -49 101 3.00 14 121 116 94 2.54

β̂2 1 12 203 -48 101 3.31 16 122 116 94 2.73

Λ̂τ30 0.103 −1 31 43 39 0.28 −1 30 30 93 1.08

Λ̂τ60 0.329 −4 62 51 62 0.60 −4 58 58 94 1.15

Case 2: non-length-biased sampling

400 50 β̂1 1 3 150 −243 103 0.32 3 128 129 94 1.38

β̂2 1 13 157 −232 105 0.38 18 134 129 94 1.36

Λ̂τ30 0.207 −2 40 105 51 0.11 −2 39 38 94 1.02

Λ̂τ60 0.538 −2 65 233 77 0.07 −3 64 64 94 1.01

80 β̂1 1 11 262 −359 117 0.48 27 185 181 95 1.97

β̂2 1 11 260 −364 122 0.46 19 194 181 93 1.78

Λ̂τ30 0.099 −2 34 106 56 0.08 −3 33 31 91 1.04

Λ̂τ60 0.270 −4 61 221 85 0.07 −5 59 58 93 1.05

800 50 β̂1 1 −1 107 −227 72 0.20 2 90 91 95 1.44

β̂2 1 2 107 −227 73 0.20 3 92 91 96 1.36

Λ̂τ30 0.207 −1 28 110 40 0.06 −1 27 27 96 1.04

Λ̂τ60 0.538 −1 46 230 56 0.04 −1 45 45 95 1.04

80 β̂1 1 7 176 −347 89 0.24 15 136 130 93 1.66

β̂2 1 −1 179 −348 88 0.25 13 135 129 93 1.75

Λ̂τ30 0.099 −1 25 112 55 0.04 −1 24 23 93 1.02

Λ̂τ60 0.270 −1 44 233 71 0.03 −3 43 42 93 1.02
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Table 2
Coefficient estimates from the RRI-CKD data

using the conditional approach and the proposed method.
LHR: log hazards ratio (β); SE: standard error; p: p-value.

Conditional PLAC

LHR SE p LHR SE p

Older than 65 0.093 0.129 0.473 0.113 0.111 0.311
Male 0.517 0.131 <.001 0.422 0.113 <.001

Non-white 0.213 0.161 0.185 0.262 0.130 0.045
Diabetes 0.424 0.130 0.001 0.507 0.110 <.001

Hypertension 0.168 0.225 0.455 0.075 0.189 0.693
Late-Stage 0.950 0.146 <.001 1.020 0.128 <.001
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