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Red blood cell (RBC) transfusion is common in critically

ill, postsurgical, and posttrauma patients in whom both

systemic inflammation and immune suppression are

associated with adverse outcomes. RBC products

contain a multitude of immunomodulatory mediators that

interact with and alter immune cell function. These

interactions can lead to both proinflammatory and

immunosuppressive effects. Defining clinical outcomes

related to immunomodulatory effects of RBCs in

transfused patients remains a challenge, likely due to

complex interactions between individual blood product

characteristics and patient-specific risk factors.

Unpacking these complexities requires an in-depth

understanding of the mechanisms of immunomodulatory

effects of RBC products. In this review, we outline and

classify potential mediators of RBC transfusion-related

immunomodulation and provide suggestions for future

research directions.

I
n the United States, 11 to 16 million red blood cell

(RBC) units were administered annually during the

past decade, equating to a RBC transfusion every 2

seconds.1-5 RBC transfusion is particularly common-

place in emergency departments, intensive care units, and

operating suites, with 37% to 60% of intensive care unit

patients receiving a transfusion during hospitalization.6-12

Nonetheless, RBC transfusion may have deleterious

immunologic effects, particularly for critically ill

patients.13,14 Mounting evidence from predominantly
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observational studies demonstrate independent associa-

tions between RBC transfusion, dysregulated immunity,

and increased mortality and morbidity, mechanisms of

which are only partly understood.15-26 The following

review will summarize current literature on mechanisms

of RBC transfusion-related immunomodulation (TRIM),

classify potential mediators, and propose a research

agenda to fill critical knowledge.

RBC TRIM

Beginning in 1973, Opelz and colleagues27 provided initial

evidence for RBC TRIM with the observation that the sur-

vival rate of transplanted kidneys was significantly higher

in cadaveric renal transplant patients who received RBC

transfusion.13 These findings strongly suggested immuno-

suppressive effects of nonleukoreduced allogeneic RBC

transfusion. More recent findings suggest both proinflam-

matory and immunosuppressive effects of RBC product

exposure, including prestorage leukoreduced blood prod-

ucts. Clinically, RBC transfusion is associated with new or

worsening organ dysfunction, the development of nosoco-

mial infection, and cancer recurrence, suggesting dysregu-

lated recipient immune responses.13,14,21,28-32 The extent

to which RBC transfusion directly contributes to immuno-

logic dysregulation in transfused patients remains unclear,

although a wealth of preclinical evidence demonstrates

that RBC products can directly modulate immune cell

function. In a variety of preclinical models, RBC product

exposure results in inflammatory effects including white

blood cell (WBC) priming, enhanced neutrophil chemo-

taxis, monocyte/macrophage activation, and inflamma-

tory cytokine release.13,17,21,31,33-35 Immunosuppressive

effects include impaired natural killer (NK) cell function,

alterations in T lymphocyte ratios, defective antigen pre-

sentation, suppression of lymphocyte proliferation, and

decreased macrophage phagocytic function.14,36-40 While

evidence supporting both proinflammatory and immuno-

suppressive effects of RBC transfusion may seem contra-

dictory, given the complex nature of transfused blood

products and the multitude of potentially immunomodu-

latory mediators contained therein, mixed effects are not

surprising. Indeed, mixed immunomodulatory potential

of RBC transfusion may be particularly relevant for criti-

cally ill patients in whom both excess inflammation and

immune suppression are significantly associated with

adverse outcomes.14 Overall, defining the sum total

immunomodulatory effects of particular RBC products in

individual patients remains challenging. Future research

to determine the effects of individual blood products on

individual patients and to mitigate potential risks depends

on understanding mechanisms of RBC TRIM.

While mechanisms for RBC TRIM are not yet fully

characterized, many potential mediators have been iden-

tified. These include WBC-derived mediators, component

hemolytic contents (heme, iron release), platelet (PLT)-

derived factors, and extracellular vesicles (EVs; Fig. 1).

PROPOSED MECHANISMS

WBCs and WBC-derived mediators

The observation that prestorage leukoreduction may

mitigate TRIM suggests that either intact WBCs and/or

soluble WBC-derived mediators play a role in its develop-

ment.41-44 Leukoreduction removes most residual WBCs

from stored blood components and appears to improve

clinical outcomes. Randomized trials in surgical patients

receiving leukoreduced versus nonleukoreduced RBCs,

autologous versus allogeneic RBC transfusions, or restric-

tive versus liberal RBC transfusion thresholds demonstrate

that in each case, subjects in the leukoreduced, autolo-

gous, or restricted transfusion arms developed fewer

nosocomial infections.15,45-47 Likewise, meta-analyses

demonstrate that leukoreduction, autologous RBC trans-

fusions (which prevent exposure to allogeneic WBCs), and

restrictive transfusion thresholds (which decrease expo-

sure to residual allogeneic WBCs) are each associated with

decreased risk of postoperative infection.15,45,47 RBC unit

leukoreduction may also attenuate the systemic inflam-

matory response after cardiac surgery, with a dose-

dependent increase in survival when leukoreduced RBCs

are utilized.48 Finally, animal models demonstrate that

leukoreduction may reduce transfusion-associated cancer

metastasis and T-cell apoptosis.29,49 Taken together, these

data suggest that residual WBCs or WBC-derived media-

tors in RBC products may be harmful via immunomodu-

latory mechanisms. Although in the United States, 75% to

80% of RBC units transfused are leukoreduced before stor-

age to mitigate these risks, it is worth noting that a sub-

stantial number of residual WBCs (approx. 5000 to

approx. 5 3 106 WBCs/unit) remain despite current leu-

koreduction technologies.50-52

Residual WBCs

Antigen-presenting cells (APCs; i.e., monocytes and den-

dritic cells) carry major histocompatibility complex

(MHC) II molecules (i.e., HLA-DR) on their cell surfaces.

MHC II molecules function to present processed antigens

and activate lymphocytes. After transfusion, interactions

between donor MHC II molecules on residual WBCs and

recipient lymphocytes may result in either alloimmuniza-

tion or immune suppression.53-56 Features such as the

degree of HLA compatibility, the functionality of donor

APCs, and the inflammatory state of the recipient likely

determine whether residual allogeneic WBCs induce

immune tolerance or alloimmunization.21 In the case of

immune suppression, residual allogeneic APCs, which

engage recipient T cells without necessary secondary or

costimulatory signals, would be expected to produce
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antigen-specific T-cell anergy.21 The resulting immune tol-

erance is a proposed mechanism for allogeneic RBC

transfusion-related adaptive immune cell (T-cell) suppres-

sion.21 T-cell immune tolerance may also be responsible

for development of microchimerism in allogeneic blood

transfusion recipients, whereby donor WBCs fail to elicit

an immune response and become “accepted” by the

recipient.57 Microchimerism may be common in trauma

patients and may persist for up to 2 years after transfu-

sion.57,58 Moreover, immune tolerance and associated

microchimerism may explain the observed shift to

immunosuppressive TH2 responses after blood transfu-

sion.38,59-62 However, clear demonstration of direct causal

links between HLA molecules on residual allogeneic APCs

and posttransfusion immune suppression is currently

lacking.

In addition to residual functional allogeneic WBCs, it

is possible that apoptotic WBCs in RBC products may also

induce immune suppression.63 During collection and

storage, WBCs undergo apoptosis.64 One of the early steps

in apoptosis involves exposure of phosphatidylserine on

the outer leaflet of the cell membrane. Interaction

between immune cells and phosphatidylserine has been

shown to induce immunosuppressive signals, including

release of anti-inflammatory cytokines interleukin (IL)-10

and transforming growth factor (TGF)-b, inhibition of

proinflammatory cytokine release, inhibition of APC acti-

vation, and predominance of immunosuppressive regula-

tory T cells.63,65 The degree to which apoptotic residual

WBCs in RBC units contribute to recipient immune sup-

pression in the clinical setting remains unknown. How-

ever, it is worth noting that similar responses may also be

seen in response to phosphatidylserine-containing mem-

brane fragments or microparticles.

Soluble WBC-derived mediators

Removal of supernatant from stored RBC units by washing

reduces the inflammatory response in pediatric cardiac

surgery patients and preclinical studies suggest that RBC-

induced immunomodulation can be recapitulated using

RBC unit supernatants.24,25,66,67 Thus, it seems likely that

soluble mediators also play a role in TRIM pathogenesis.

There are multiple soluble WBC-derived factors,

including cytokines, WBC degranulation products, soluble

FAS-L, and soluble HLA molecules, which directly inhibit

the immune response.68,69 Of these, sFAS-L and the anti-

inflammatory cytokine TGF-b have the strongest evidence

suggesting that they may promote TRIM, particularly in

nonleukoreduced blood products.36,68 In vitro studies

indicate that sFAS-L and TGF-b found in blood compo-

nents may directly induce innate immune cell apoptosis,

impair neutrophil chemotaxis, and decrease NK cell

Fig. 1. Proposed mechanisms of RBC TRIM. RBC units contain multiple immunomodulatory mediators, including WBC-derived,

RBC-derived, PLT-derived, and lipid and microvesicle–derived factors. Effects of these mediators on immune cell function vary

and include both inflammatory and immunosuppressive changes. As such, the sum total immunomodulatory effects of RBC

transfusion on recipient immune function will likely vary based on individual unit and recipient characteristics. [Color figure

can be viewed at wileyonlinelibrary.com]
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activity.36,69,70 Immunosuppressive effects may not be lim-

ited to these, as TGF-b is a known anti-inflammatory cyto-

kine with broad immunosuppressive effects.

In addition to anti-inflammatory cytokines, proin-

flammatory cytokines may also accumulate in blood

products during storage.71-74 However, in some reports

prestorage leukoreduction appears to substantially

decrease the accumulation of proinflammatory cytokines

in RBC products such that levels are undetectable.72,74

When cytokines are detected, it is unclear whether their

concentrations are high enough to strongly influence

recipient immune function.73,74 In addition to cytokines,

WBC degranulation products such as histamine and

eosinophil cationic protein have been detected in RBC

components.75 Each of these mediators has immunomod-

ulatory potential. For example, histamine has been shown

to inhibit neutrophil chemotaxis and decrease T-cell pro-

liferation, while eosinophilic cationic protein may also

reduce T-cell proliferation.76,77

While WBCs and WBC-derived soluble mediators

appear to promote TRIM, such effects are likely reduced

by prestorage leukoreduction. Because evidence for TRIM

remains in the postleukoreduction era, it is likely that

non–WBC-derived factors are also involved.14

RBC storage lesion and decompartmentalized RBC

contents

Another potential mechanism for TRIM arises from the

RBC itself. As RBC units age under refrigerated conditions,

a well-described “storage lesion(s)” develops. The RBC

storage lesions are characterized by altered RBC morphol-

ogy, rheologic changes, metabolic derangements, changes

in oxygen affinity, changes in osmotic regulation, and

changes in the ability to vasoregulate.78-85 In addition,

RBC hemolysis (both during storage and after transfusion)

can lead to reduced pH, increased lactate and other meta-

bolic wastes, and release of microparticles as well as accu-

mulation of cell-free hemoglobin (Hb), heme, and

iron.26,78,86-90 Iron content can be in the form of

transferrin-bound iron, non–transferrin-bound iron

(NTBI), or labile plasma iron. Given the well-described

bioactivities of these species, RBC hemolysis can disturb

plasma redox balance and broadly disrupt normal

signaling in coagulation, vascular, and immune

systems.4,22,23,78,86,91,92

In normal physiology, plasma haptoglobin sequesters

cell-free Hb, forming a complex for removal by macro-

phages via CD163.18,22,23,93 However, in critical illness,

even moderate intravascular hemolysis may overwhelm

plasma-binding capacity resulting in unbound extracellu-

lar Hb. When extracellular Hb is unbound, it becomes oxi-

dized to methemoglobin, releasing free heme. Free heme

can then undergo the Fenton reaction to cause further

release of iron.67,93-97 Accumulation of uncomplexed

heme and iron in plasma is associated with significant tis-

sue damage, presumably by iron-catalyzed generation of

reactive oxygen species, promotion of other radical

chains, increases in WBC activation and migration, up

regulation of adhesion molecules, and subsequent delete-

rious effects to tissue barriers and to immunity.22,93,98-104

In murine models, transfusion of long-stored RBCs led to

increased iron in the form of NTBI and augmented circu-

lating proinflammatory cytokine release.22,23,105,106 How-

ever, in human healthy volunteers, while transfusion with

older versus fresher RBCs significantly increased circulat-

ing NTBI levels, a proinflammatory cytokine response was

not observed.91,105,107 The lack of observed inflammatory

response in the human studies may relate to differences

between mice and humans or relative transfusion dose, or

the inflammatory response to RBC transfusion may not be

apparent in healthy subjects (without underlying inflam-

mation). That said, in a study of 33 premature neonates,

while levels of NTBI were increased after transfusion,

NTBI levels were not associated with increases in plasma

inflammatory cytokines.108 These data suggest that proin-

flammatory effects of NTBI may be minimal.

Red blood cell transfusion may also burden the

mononuclear phagocyte system, delivering large amounts

of Hb and RBC contents to monocytes and macro-

phages.93 Phagocytosis of RBCs by macrophages (i.e.,

extravascular hemolysis) increases macrophage intracellu-

lar heme and iron to a degree that can trigger inflamma-

some activation and proinflammatory cytokine release via

NLRP3 and NF-jB signaling; this process is further exacer-

bated by generation of iron-related reactive oxygen spe-

cies.93 Conversely, macrophage exposure to high

concentrations of heme may also bias macrophage phe-

notype from the activated/inflammatory (M1) phenotype

toward an immunosuppressive (M2) profile via up regula-

tion of heme oxygenase 1 and release of the anti-

inflammatory cytokine IL-10.109 Similarly, macrophage

iron loading may promote immune suppression by inhib-

iting interferon (IFN)-c–mediated secretion of proinflam-

matory cytokines, reducing expression of MHC II and

impairing nitric oxide synthesis. Cumulatively, these

effects compromise phagocytic and microbicidal macro-

phage activity.110 Iron overload may also further promote

immune suppression by impairing proliferation and acti-

vation of T, B, and NK cells.111 Additionally, independent

of direct effects on immune cells, uncomplexed heme and

iron may directly promote bacterial growth.78,93,105

Finally, an additional compound of interest is ubiqui-

tin, an intracellular regulatory protein present in a variety

of cell types. RBCs carry large amounts of ubiquitin rela-

tive to other cell types, and extracellular ubiquitin has

been found to accumulate in RBC unit supernatants dur-

ing storage.112 Extracellular ubiquitin has varied effects on

immune cell function, including blunting lipopolysaccha-

ride (LPS)-induced tumor necrosis factor-a production
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while augmenting LPS-induced IL-8 production.112-114

Additionally, extracellular ubiquitin found in RBC units

may skew helper T-cell function toward an immunosup-

pressive Th2 phenotype, as evidenced by increased IL-4

production and decreased IFN-c production by LPS-

stimulated PBMCs exposed to 35-day-old stored RBC

supernatant or ubiquitin.112,114 The mix of proinflamma-

tory and immunosuppressive effects of extracellular ubiq-

uitin mirrors immunomodulatory effects observed in

response to RBC supernatants in vitro and may explain

mixed responses reported in vivo.

In summary, soluble mediators resulting from RBC

aging and breakdown are varied, and individual mediators

likely have pleiotropic effects on recipient immune

response. Although animal studies show worsened sur-

vival and increased inflammation from transfusion with

longer stored RBCs, these findings have not been demon-

strated in recently published human randomized con-

trolled trials.4,16,78,87,115 This may be because animal

studies can carefully delineate “fresh versus old” RBC cut-

offs (i.e., >21 days) which has proven difficult in human

randomized controlled trials, where a mean duration of

RBC storage in the United States of 17.9 days results in

comparisons between “fresh” versus “middle-age.”87,116

Additionally, storage duration effects may be more robust

if transfusion occurs in the setting of more significant

baseline inflammation, although to date this question has

not been adequately evaluated. The relative impact of

inflammatory and immunosuppressive effects of RBC-

derived mediators for individual patients, particularly in

the setting of baseline inflammation or immune suppres-

sion, remains largely unknown. It is likely that a complex

interplay between decompartmentalized RBC contents

and underlying host immune response contributes to

patient-specific immune modulation, a topic of active

ongoing research.

Residual PLTs and PLT-derived factors

While less is known about PLT-derived factors as TRIM

mediators, emerging data strongly suggest that PLTs and

PLT-derived factors have important immunomodulatory

potential.117-119 For instance, PLT-derived microparticles

are capable of inducing both immune cell suppression

and activation.120,121 PLTs themselves may play important

roles in modulating immune cell response in both health

and disease, suggesting that residual PLTs found in RBC

products likely contribute to immunomodulation. Non-

leukoreduced RBC units have been shown to accumulate

PLT-WBC aggregates over time, which correlate with

immune cell apoptosis and monocyte tissue factor expres-

sion.122 These changes are expected to be immunomodu-

latory; however, effects of PLT-WBC aggregates on

recipient immune cells were not evaluated. Likewise, the

immunomodulatory potential of residual PLTs within leu-

koreduced RBC products is unknown.

Bioactive lipids and EVs

Bioactive lipids

Bioactive lipids with proinflammatory and procoagulant

activity accumulate during storage in RBC units and may

contribute to inflammatory complications of RBC transfu-

sion, including transfusion-related acute lung injury

(TRALI).83,123 Accumulation of some bioactive lipids, such

as lysophosphatidylcholines, appears to be reduced by

leukoreduction.124 However, a variety of polyunsaturated

fatty acids, including arachidonic acid, linoleic acid, doco-

sahexaenoic acid, and their metabolites, accumulate in

RBC units despite leukoreduction.123,125 Arachidonic acid

and its oxidized metabolites, when isolated from older

stored RBC supernatants, are capable of priming neutro-

phils in vitro. Further, infusion of these bioactive lipids in

rats that are primed by LPS induces acute lung injury—

providing evidence that bioactive lipids may provide the

second-hit in the two-hit model of non–antibody-

mediated TRALI.125,126 Observational studies demonstrat-

ing the presence of lipids with neutrophil priming activity

in the plasma of TRALI patients provide additional sup-

portive evidence of the link between bioactive lipids and

non–antibody-mediated TRALI.127 The extent to which

bioactive lipids may contribute to systemic inflammation

or modulation of immune function outside of TRALI

remains unclear and is a topic deserving of further study.

EVs

EV count and profile in blood products. The term

“extracellular vesicle” broadly encompasses larger micro-

vesicles (200-1200 nm), exosomes (30-150 nm), and apo-

ptotic bodies (50-500 nm).128-130 For more than a decade,

it has been appreciated that plasma from healthy subjects

contains EVs, including exosomes, derived from WBCs,

PLTs, RBCs, and endothelial cells.131-133

EV counts in RBC products increase with storage

duration.86,134 Storage-related morphologic changes to

RBCs are accompanied by shedding and release of RBC-

derived EVs, while residual PLTs and WBCs contribute to

PLT-derived and WBC-derived EVs.135-138 Tracking EV cell

of origin reveals that RBC-derived EVs increase continu-

ously during storage, while PLT-derived EV counts peak at

3 to 4 weeks of storage.86,139 EV release and accumulation

are significantly influenced by component manufacture

processes and storage conditions such that individual

products may have very different EV profiles despite simi-

lar storage duration.140,141

In vitro evidence for EV TRIM effects. Although

once considered debris without bioactivity and dis-

counted as artifact, EVs are increasingly recognized as

playing a central role in the body’s complex network of
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intercellular signaling, both in normal physiology and in

disease.142 EVs derived from stored PLTs bind to and acti-

vate neutrophils in vitro and have anti-inflammatory or

proinflammatory effects on monocytes and macro-

phages.135,143,144 Neutrophil- and RBC-derived EVs are

also capable of suppressing inflammatory responses.130,145

Similar to the variability in effects of EVs from various cell

types, EVs isolated from plasma have dual proinflamma-

tory and immunosuppressive effects.139,146 The proposed

mechanism of action of blood-derived EVs varies, with

immunosuppressive effects potentially mediated by FasL

expression by EVs and inflammatory effects resulting

from direct activation of monocytes and other APCs after

EV uptake by these cells.139,146

In vivo evidence for EV TRIM effects. Given the

incomplete understanding of how EVs from different cells

of origin might act, it is not surprising that in vivo evi-

dence of an EV-based role in TRIM is scant. The circulat-

ing half-life of EVs appears to be fairly short, less than 15

to 20 minutes in a rat model.86 However, the biologic

activity of EVs is likely related to EV uptake by target cells

rather than plasma concentration. For example, injected

EVs are rapidly and widely distributed to the spleen, liver,

kidneys, and lungs in mice.147 Donor dendritic cell–

derived EV uptake by dendritic cells in a recipient mouse

can activate responding T cells in an antigen-specific

manner.148 This property has been exploited by several

groups as a potential vaccine delivery approach.149-151

Additionally, adoptive transfer of CD154 (CD40L)-express-

ing PLT-derived EVs is sufficient to stimulate immuno-

globulin G production and germinal center formation in

mice after adenovirus vaccination, indicating that exoge-

nous EVs can modulate a nascent immune response.152

The significance of the immunomodulatory effects of EVs

found in blood products transfusion recipients remains

an open question and an area of active research. Better

understanding EV interaction with the human immune

system would allow manipulation of this pathway, both in

the context of TRIM and in the context of immune pertur-

bation seen in many hospitalized patients.

FUTURE DIRECTIONS

Ample evidence exists that RBC products are capable of

interacting with and modulating immune cell function

through a variety of mechanisms and mediators; however,

conclusive clinical evidence of TRIM effects in transfused

patients remains elusive. Given recent clinical studies that

fail to demonstrate benefit to fresh RBC transfusion com-

pared to longer stored products, one might conclude that

RBC TRIM does not exist in the era of prestorage leukore-

duced blood products or that RBC storage duration does

not contribute to TRIM mechanisms.87,115,153,154 However,

emerging evidence suggests that the concentrations of

potentially immunomodulatory mediators vary not only

with storage duration, but also with donor characteristics,

manufacturer, storage solution, and other processing fac-

tors.88,155-158 We are only beginning to understand the

complex interplay between storage duration, processing

methods, RBC unit contents, and subsequent potential

TRIM effects. Similarly, a patient’s underlying state of

inflammation and/or immune suppression at the time of

transfusion likely influences the immunologic response to

transfusion. Critically ill patients, in particular, exhibit

both exaggerated systemic inflammation and immune

suppression that fluctuate over time.159-164 In this context,

one would expect that immunologic effects of RBC trans-

fusion might vary widely based on the underlying state of

the recipient’s immunologic response. However, most

studies to date have failed to sufficiently characterize or

account for individual differences in pretransfusion

immune function. Additionally, patients who are trans-

fused with RBCs often also receive other blood products,

which may have different or additive TRIM effects.14,165

Overall, much work remains to understand interactions

between individual blood product characteristics and

patient-specific risk factors with respect to clinical conse-

quences of TRIM.

Defining immunomodulatory mediators found within

blood products, and understanding how these mediators

may modulate recipient immunity, is essential to identify

potential TRIM effects at the bedside. A bench-to-bedside

approach must carefully attempt to define these media-

tors in context of host immune function. Next, guided by

an enhanced understanding of TRIM biology, observa-

tional studies will be necessary to determine patient-

specific risk factors for specific TRIM effects and related

clinical consequences. Moreover, delineation of the effects

of RBC donor, product processing, and storage conditions

upon accumulation of immunomodulatory mediators can

then inform future prospective and interventional trials

aimed at defining and ameliorating TRIM effects for those

patients most at risk.
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