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Objective:  We discuss how to interpret coefficients from logit models, focusing on the 

importance of the standard deviation (σ) of the error term to that interpretation.  

Study Design: We show how odds ratios are computed, how they depend on the standard 

deviation (σ) of the error term, and their sensitivity to different model specifications.  We also 

discuss alternatives to odds ratios.  

Principal Findings: There is no single odds ratio; instead, any estimated odds ratio is 

conditional on the data and the model specification.  Odds ratios should not be compared across 

different studies using different samples from different populations.  Nor should they be 

compared across models with different sets of explanatory variables. 

Conclusions: To communicate information regarding the effect of explanatory variables on 

binary {0,1} dependent variables, average marginal effects are generally preferable to odds ratios, 

unless the data are from a case control study. 
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Researchers often struggle with how to estimate a model with a binary {0,1} dependent 

variable and present the results in a meaningful way.  The choices for estimation and 

presentation approaches tend to fall along disciplinary lines.  Epidemiologists and clinical 

researchers often estimate logit models and report odds ratios. Economists might estimate logit, 

probit, or linear probability models, but they tend to report marginal effects.  There is an 

increasing recognition that model specification  particularly the inclusion or exclusion of 

additional explanatory variables — affects the interpretation of the results from non-linear 

models, even when the explanatory variables are independent of each other (e.g., Yatchew and 

Griliches, 1985; Mroz and Zayats 2008; Mood 2010).   

This is in contrast to linear regression models, where the inclusion or exclusion of truly 

independent variables affects only the standard errors of the coefficients, not their magnitude or 

marginal effects.  To be clear, throughout this paper we are referring to the inclusion or exclusion 

of additional explanatory variables that are independent of the variables already in the equation.  

If the additional variables are correlated with the previously included variables, such as 

confounders, then leaving those additional variables out of the model can create endogeneity bias, 

which is a different problem.  With endogeneity, the estimated coefficients will be biased and 

inconsistent, as will all marginal effects, odds ratios, and any other statistic derived from the 

estimated parameters. 

This paper focuses specifically on the effect of additional explanatory variables on the 

estimation and interpretation of odds ratios.  Odds ratios have some convenient properties: they 

are simple to calculate; they are applicable to both continuous and discrete explanatory variables 

of interest.  In some cases, such as case control studies, they are indispensable.  If the sign of the 

effect is what the research wants to test, then odds ratios are sufficient.  However, depending on 

the research question, the researcher may also care about the magnitude of the effect, and the 

magnitude of odds ratios are easy to misinterpret.  For example, they sometimes are 

misinterpreted as the effect of a unit change in the explanatory variable on the probability that 

the dependent variable is equal to one versus zero, yet mathematically they diverge significantly 

from risk ratios when the baseline risk exceeds about ten percentage points (Greenland 1987; 

Sackett, Deeks, Altman 1996; Altman, Deeks, Sackett 1998; Schwartz et al. 1999; Walter 2000; 

Kleinman and Norton 2009; Tajeu et al. 2012).   
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More recent critiques have identified a more serious problem with odds ratios.  Allison 

(1999) explained why odds ratios cannot be compared across samples.  Mood (2010) extended 

this work nicely to show that odds ratios cannot be interpreted as absolute effects, nor can they 

be compared across models or across groups within models.  Several authors have pointed out 

that odds ratios will change if variables are added to the model, even if those additional variables 

are independent from the other variables (Gail et al. 1984; Yatchew and Griliches, 1985; Alli son 

1999; Mood 2010).  Mroz and Zayats (2008) also discussed the effect of omitted variables on the 

interpretation of odds ratios in logit models. 

The first section of this paper derives odds ratios in a way that explicitly shows the 

importance of the standard deviation (σ) of the error term in a logit or probit model.  We then 

discuss five implications of estimating coefficients in a logit (or probit) model that are 

normalized by σ.  For any given data set and dependent variable, and any given explanatory 

variable of interest, there is no single odds ratio.  There are many odds ratios, conditional on 

what other explanatory variables are included in the estimated model.  Unless accompanied by a 

detailed description of the explanatory variables included in the model, odds ratios cannot be 

compared across different model specifications or across different study samples, for example, in 

meta-analyses.  When comparing odds ratios across models that progressively add covariates to 

test for robustness, the odds ratios are expected to increase.  In summary, these important issues 

of interpretation are in addition to concerns about the misinterpretation of odds ratios as risk 

ratios.  The final section of the paper discusses the advantages of some alternatives to odds ratios 

including marginal and incremental effects and risk ratios.   

 

LOGIT AND PROBIT MODELS 

Derivation of Odds Ratio 

 We start by deriving the odds ratio in a way that makes explicit the relationship between 

the estimated logit parameters β and the error term ��.  Suppose that a continuous latent variable ��∗ can be modeled as a linear function of K explanatory variables (covariates), ���, for � =

1, … ,� for individuals � = 1 …�.  The equation for ��∗ can be written as 

 ��∗ = �0 + �1�1� + �2�2� + ⋯+ ������ + ��     (1) 

If we allow the explanatory variables, including the constant term, to be represented by the 

vector ��′ , then equation 1 can be represented in matrix notation as 
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 ��∗ = ��′� + ��         (2) 

However, the researcher observes only the explanatory variables and a binary {0,1} 

variable ��, which indicates whether ��∗ exceeds the threshold of zero.  �� = � 1 if ��∗ > 0 

 0 otherwise
�         (3) 

To make statements about the probability that �� = 1 (or equivalently, ��∗ > 0), we need 

to express the probability in terms of an error term with a known distribution.  Substituting ��′� + �� for ��∗ allows us to write the probability that �� > 0 in terms of the probability that the 

error term takes on a range of values. 

 Pr(��∗ > 0|��) = Pr(��′� + �� > 0|��) = Pr (�� > −��′�|��)   (4) 

If the error term has mean zero and is symmetric (which is true for both the standard logistic and 

standard normal distributions) then 

 Pr(�� = 1|��) = Pr(��∗ > 0|��) = Pr(�� < ��′�|��)     (5) 

 Equation 5 holds for any arbitrary scaling of ε and β (e.g., ε/3 and β/3).  Thus, because 

the distribution of ε is unknown, the Pr(�� = 1|��) cannot be evaluated without an additional 

step (Greene and Henser, 2010).  To address that problem, the typical solution is to divide both ε 

and β by the standard deviation of ε:  ε/σ  and β/σ.  Those transformations makes Pr(�� = 1|��) 

a cumulative distribution function (CDF) of a standard logistic (logit) or normal (probit) variable, 

which is easy to calculate for logistic and normal distributions.   

For the probit model, the standard deviation of ε/σ = 1.  The cumulative distribution 

function for the probit model is 

 Pr(�� = 1|normal, ��) = Pr ���� < ��′ ��� = Φ ���′ ���     (6) 

For the logit model, the standard deviation of ε/σ = � √3⁄ .  The cumulative distribution function 

for the logit model is 

 Pr(�� = 1|logistic, ��) = Pr ���� < ��′ ��� =
11+exp �−��′���    (7) 

This derivation explicitly shows the important role of � in making any statements about 

probabilities. 

Many researchers prefer to estimate logit rather than probit models because of the odds-

ratio interpretation of the logit coefficients.  The odds for individual i are expressed as the ratio 

of the probability �� to 1 − ��, where �� = Pr(�� = 1|logistic, ��). 
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 odds =
��1−�� =

11+exp �−��′���exp �−��′���1+exp �−��′���
= exp ���′ ���      (8) 

The odds ratio is the ratio of the odds in equation 8 for two different values of an 

explanatory variable.  This is easiest to derive for a binary variable.  For example, consider a 

study in which the dependent variable is the probability that the subject dies before age 65 and 

the primary explanatory variable of interest is whether the person smoked (at all) in the years 

prior to age 65.  Let �����1� be an indicator for smoking status and ������ be the corresponding 

coefficient.  The odds of mortality by age 65 if individual i was a smoker (�����1� = 1) and the 

odds if individual i was a non-smoker (�����1� = 0) are: 

 odds for smoker = exp ��0+�����������1�+�2�2�+⋯������ �    (9) 

 odds for non-smoker = exp ��0+�2�2�+⋯������ �     (10) 

Therefore, the odds ratio is the ratio of the odds, which simplifies to the exponentiated 

coefficient. 

 OR = odds ratio =
odds for smoker

odds for non-smoker
= exp �������� �     (11) 

The log odds is the logarithm of the odds ratio, in other words, the coefficient 

(normalized by the standard error). 

 Log odds = �������� �         (12) 

Although most textbooks and published papers write the odds ratio as the exponentiated 

coefficient, in this case exp (������), we purposefully leave in �.  The crux of the issues raised 

by this paper arise because logit (and probit) models do not estimate the coefficients β, instead 

they estimate �/�.   

 

Sigma 

 Next we discuss in more detail what σ is and how the estimated �/� is affected by the 

estimated model.  In general, σ is the standard deviation of the error term.  It is a measure of the 

variation in the latent dependent variable that remains unexplained after inclusion of the 

explanatory variables (covariates).  However, σ cannot be estimated directly because the 

continuous �∗ on which an estimate of σ could be based also exists only in theory.  Only � = 1 
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and � = 0 are observed.  In logit (and probit) models only the ratio �/� is identified (although it 

is still useful to postulate a model containing these parameters to show the relationship among 

models with different parameters).   

Although this paper focuses on how σ is related to changes in model specification, there 

is another way in which σ can change without changing any explanatory variables.  Consider a 

model where the continuous underlying latent variable �∗ is continuous birth weight.  In a linear 

regression model, the magnitude of σ depends on both the scale, or unit, of �∗ (grams or ounces 

in this example) and the fraction of the variance in the dependent variable that is accounted for 

by the explanatory variables in the model.  Fortunately, changes in σ associated with changes in 

the scale of the latent dependent variable are offset by changes in estimated coefficients (β); that 

is, the interpretation and statistical significance in a linear regression model is not dependent on 

whether birth weight is measured in metric or imperial units. 

However, in a logit or probit model, the analyst observes only a binary indicator for 

whether the baby has low birth weight or not.  Therefore, in a logit or probit model, the ratio �/� 

is invariant to changes in scale of the latent dependent variable. 

As mentioned above, the logit and probit models postulate error distributions with 

different values of σ (the standard normal distribution has a variance of 1, the standard logistic 

distribution has a variance of �2 3⁄ ).  This explains why the estimated logit and probit 

coefficients are different.  The normalizations are different.  A rule of thumb is that logit 

coefficients are larger by a factor of about 1.6.  

 Changes in σ resulting from adding or removing covariates to the model are more 

problematic.  Any change in the covariates that improves the model fit makes σ smaller and �/� 

bigger.  Conversely, omitting variables that should be included in the model (because they affect 

the dependent variable) increases σ.  This is true even if the additional variables are independent 

from the explanatory variables that are already in the model.  Unlike changes in the scale of the 

latent dependent variable, changes in the covariates included in the model change �/�, meaning 

that logit (and probit) coefficient estimates are not invariant to model specification. 

In mathematical terms, the derivative of the odds ratio with respect to � is not zero.  The 

derivative of the odds ratio for variable �1 with respect to a percentage change in �, denoted �� �⁄ , is:  
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∂[OR]∂�� = −��1� � ���1� �
= −��1� �OR         (13) 

This expression always is opposite in sign to �1.  For a positive �1, an increase in � (e.g., 

due to dropping variables from the model specification) will reduce the odds ratio.  This 

expression does not depend on the values of the other covariates, and so is the same for all 

observations in the dataset.  However, it does depend on which covariates are included in the 

model specification.  This feature is both a strength and a weakness.  A strength of the odds ratio 

is its invariance with respect to the values of the other explanatory variables, but that strength 

also is a weakness because there is no averaging over observations to attenuate the effect of 

dividing the coefficients by σ as discussed in the section on Alternatives. 

 

IMPLICATIONS 

 Several implications follow from understanding that logit models estimate �/� instead of 

β.  First, there is no single odds ratio.  An odds ratio is not an absolute number, like π.  An odds 

ratio estimated from a multivariate logit model is conditional on the sample and on the model 

specification (Allison 1999; Mood 2010).  A study that aims or claims to estimate the odds ratio, 

even in a single dataset, is misguided.  The odds ratio is primarily useful to show the sign and 

statistical significance of an effect, but the same can be said about the estimated coefficient �/�.   

 Second, an estimated odds ratio does have a specific interpretation, but the correct 

interpretation is far more complex than commonly believed or reported (Mood 2010).  Unless 

accompanied by an explanation of the model specification, a statement like, “The estimated odds 

ratio is 1.5.” is factually incorrect.  A more accurate, but imprecise, statement would be “An 

estimated odds ratio is 1.5.”  A correct precise interpretation might be, “The estimated odds ratio 

is 1.5, conditional on age, gender, race, and income, but a different odds ratio would be found if 

the model included a different set of explanatory variables.  The 1.5 estimated odds ratio should 

not be compared to odds ratios estimated from other data sets with the same set of explanatory 

variables, or to odds ratios estimated from this same data set with a different set of explanatory 

variables.”  

 Third, it is not possible to compare odds ratios from different studies that use different 

data sets or even sub-populations within the same dataset, even if they have the same model 

specification (Allison 1999; Mood 2010).   Any observed differences in coefficients across data 
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sets could be due to differences in residual variation �, or to differences in effects �, or both.  

These two effects are confounded because the estimated coefficient is their ratio �/�. 

Fourth, in some studies, authors compare odds ratios from models that progressively add 

more and more explanatory variables.  The reason for making these comparisons is to see if the 

coefficient (or odds ratio) changes with the addition of more explanatory variables.  Authors 

implicitly assume that if the odds ratio remains the same, that the estimated odds ratio for a 

specific variable is robust to the inclusion of additional explanatory variables which might 

represent confounders.  However, unless the additional variables explain none of the variance in 

the dependent variable, their addition to the model will decrease � and the odds ratio will 

increase.  Therefore, even when the model is robust to different model specifications, the 

estimated odds ratios will change.  As more variables are added to the model, changes in the 

odds ratio do not isolate or identify the presence or absence of confounder variables. 

 Fifth, this understanding of the importance of � in �/� enhances the already strong 

criticism of reporting odds ratios on the basis of misunderstanding by others (Greenland 1987; 

Sackett, Deeks, Altman 1996; Altman, Deeks, Sackett 1998; Kleinman and Norton 2009; Tajeu 

et al. 2012).  Most prior arguments have focused on the difference between risk ratios and odds 

ratios, and how people mistakenly interpret odds ratios as risk ratios (Sackett, Deeks, and Altman 

(1996) also discuss other points).  However, the correct interpretation of odds ratios also requires 

an understanding of the specification of the model that produced the odds ratio.  This makes the 

correct interpretation of an odds ratio and comparability across studies even harder. 

 These five implications are not widely appreciated in the literature.  Papers frequently 

report findings of the odds ratio, as if it were an absolute number that could be estimated without 

explicit conditioning on the model and covariates.  Having made these points, we now turn to 

alternative ways of reporting and interpreting results from logit models. 

 

ALTERNATIVES 

How should researchers report and interpret results when the dependent variable is 

binary?  The answer depends on the research question.  There is no single right way for all 

studies.  Nonlinear models are inherently complicated.  Although odds ratios commonly are 

reported, the magnitude of an odds ratio depends on the sample and model specification.  
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Researchers, however, have several alternatives to odds ratios for models with binary dependent 

variables.  Mood (2010) has a comprehensive discussion of alternatives. 

One popular alternative to the odds ratio is the marginal or incremental effect (sometimes 

these are called partial effects) of an explanatory variable on the probability that  yi equals 1 

versus 0.   The marginal effect is defined as the effect of a tiny change in a single continuous 

explanatory variable x1i

 Incremental effect = Pr(�� = 1|�� , �1� = 1) − Pr(�� = 1|�� , �1� = 0)  (14) 

 on the probability that �� = 1, or ∂Pr(�� = 1|��) ∂�1�⁄ .  The 

incremental effect is defined as the effect of a discrete change from zero to one of a binary 

explanatory variable on the probability that �� = 1: 

The marginal effect is less sensitive to changes in the model specification than the odds 

ratio.  First, this has been proved rigorously for the case of independent omitted variables for the 

logit, probit, and multinomial logit models (Lee 1982; Yatchew and Griliches 1985; Wooldridge 

2010).   

Second, unlike the odds ratio, the change in the marginal effect (ME) with respect to a 

change in sigma has parts that can be either positive or negative, depending on the baseline 

probability where the change is evaluated.  These positive and negative effects may cancel out 

when computing an average marginal effect across the sample.  For the logit model the marginal 

effect of a continuous variable �1 is �������� =
∂Pr(��=1|��)∂�1� = ��1� � × �� × (1 − ��)     (15) 

The derivative of the marginal effect for observation i with respect to a percentage change in � is  ∂����������∂�� = �������� × �ln � ��1−��� (2�� − 1) − 1�     (16) 

 

which can be positive or negative, depending on the value of ��.  If �� is less than about 0.176 or 

greater than about 0.823, then the term in brackets is positive, otherwise it is negative.  Therefore, 

the average marginal effect, which is averaged over the values of pi

In contrast, because the odds ratio for x

 for all observations in a 

sample, may not be that sensitive to changes in �.  However, in specific situations one could 

have all the predicted probabilities above or below these bounds.  The same is true of 

incremental effects in the logit model.   

i is invariant with respect to the values of the other 

explanatory variables, there is no such averaging effect. 
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 The same is also true for both marginal and incremental effects in the probit model.  For 

the probit model the marginal effect of �1 is  ∂Pr���=1|��′�∂�1� = ��1� � × � ��′ ���        (17) 

where �(∙) is the normal probability density function.  The derivative of the marginal effect for 

observation i with respect to a percentage change in σ can be written either as a function of the 

probability �� or the index function. ∂�����������∂�� = ��������� ���′ ���2 − 1�      (18) 

which can be positive or negative, depending on the value of ��′ ���.  If �� is less than about 

0.159 or greater than about 0.841, then this derivative is positive, otherwise it is negative.  Again, 

because we usually care about average marginal effects, what matters is how marginal effects 

change over the whole sample.  Changes in � also have little effect on the average marginal 

effect for the probit model.    

 We can see that the response functions for logit and probit models are virtually the same, 

by graphing the cumulative distribution functions (CDF, appropriately scaled) against the linear 

index function (see Figure 1).  The logit CDF has slightly fatter tails, but the difference is small.  

The linear probability response function is similar to the logit and probit functions only in a 

narrow range, unless of course a more flexible functional form is used. 

 Third, we conducted a simulation to demonstrate how changing the model specification 

changes the odds ratio in a predictable way, but has no effect on the marginal effects for the 

linear probability model, and barely alters the average marginal effects for either logit or probit 

models.  In the simulated data set, the continuous dependent variable y is a linear function of a 

dummy variable �� and four continuous variables �1 through �4.  For these illustrative examples 

(N = 10,000), the variables of interest are the dummy variable (��) and the first two continuous 

covariates (�1 and �2).  The covariates are independent of each other.  When independent 

variables �3 and �4  are added to the simple model specification, the coefficients in the linear 

probability model remain essentially the same, as expected (see Table 1).  The corresponding 

probit and logit models show that, unlike the linear probability model, the coefficients change 

when adding variables  because σ becomes smaller, the coefficients in the full model 

specification are larger.  The corresponding marginal and incremental effects remain virtually 
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identical (see Table 1).  In contrast, the odds ratios are vastly different; they increase by orders of 

magnitude.     

 When the research question is about how a change in a continuous independent variable 

affects the probability, we recommend presenting the results in terms of the marginal or the 

average marginal effects.  Virtually all statistical software packages compute odds ratios either as 

an option or as the default output from a logit model.  Karaca-Mandic, Norton, and Dowd (2012) 

and Ai and Norton (2003) discuss the computation of marginal effects in non-linear models and 

Dowd, Greene, and Norton (2014) explain how to compute the standard errors of non-linear 

functions of estimated coefficients, including marginal effects in non-linear models 

 We want to emphasize several points about the magnitudes of odd ratios and marginal 

effects, because researchers usually care about the magnitude of a policy effect, not just its sign.  

The magnitude of the odds ratio is the same for all observations.  The same is not true for 

marginal effects, which vary across observations depending on the values of the covariates.  

Average marginal effects for subgroups can differ from each other, and this could lead to 

different policy conclusions for different groups.  This point  that marginal effects vary by 

subgroup but that odds ratios do not  is so important in the context of heterogeneous treatment 

effects and personalized medicine, that we show it with a simple example with real data. 

 We use a sample of 16,278 nonelderly adults (age 18 to 64) from the 2004 Medical 

Expenditure Panel Survey to predict whether they currently take any prescription drugs.  We 

estimate a logit model that controls for age, gender, and whether the person is uninsured.  Those 

three variables are highly statistically significant, with the probability of taking any prescription 

drugs being higher for persons who are older, female, and insured (see Table 2).  Consider how 

to report the magnitude of the effect of age.  The estimated coefficient is 0.0388, the odds ratio is 

1.04, and the overall average marginal effect is 0.0078.  However, the marginal effect of one 

additional year of age is not constant, and it varies not only by age, but also across the four types 

of persons (men and women, insured and uninsured).  The differences can be seen in Figure 2, 

which show that the variation in marginal effects is up to three-fold across the age range for 

these four types.  Even with the age coefficient constrained to be constant across all groups, there 

are still differences in marginal effects because the logit model assumes a nonlinear relationship 

between the covariates and the probability that the dependent variable equals one.  Uninsured 

men are presumably the least likely to take prescription drugs when young, and so their 
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consumption will increase fastest during adulthood.  The magnitude of the effect on the predicted 

probability corresponding to a given odds ratio is a function of both the predicted probability and 

the odds 

 This simple example illustrates that the magnitude of the marginal effect of a variable 

depends on the subgroup (the conditioning set).  Policy conclusions therefore could differ for 

different subgroups and this important interpretation never would be revealed from a standard 

discussion of odds ratios.   

ratio, with the largest effects around predicted probability 0.5. 

Another way to drive home the point that magnitudes matter is to graph how marginal 

effects depend on the log odds (�/�) and on the baseline probability (e.g., the probability of 

mortality for a non-smoker).  Marginal effects are largest when the probability is close to one-

half, and are proportional to the magnitude of the log odds (see Figure 3).  Conversely, if the 

marginal effect is known, the corresponding log odds increase as the probability moves to the 

extremes of zero and one (see Figure 4).   

The researcher should report the magnitude of the results that best answers the research 

question.  Returning to alternative ways of expressing the results, if the research question is 

about the ratio of probabilities, then risk ratios may be preferable to odds ratios for reasons of 

interpretation (Kleinman and Norton 2009; Norton et al., 2013).  While the incremental effect is 

a difference between two probabilities, the risk ratio for an explanatory variable �� is the 

probability that �� = 1 given �� = 1 divided by the probability that  �� = 1 given �� = 0.  For the 

logit model, the risk ratio for �1� is a function of all the explanatory variables: 

 risk ratio =
Pr(��=1|�1�=1)

Pr(��=1|�1�=0)
=

�1+exp �−�0+�1�1�+�2�2�+⋯+������� ��−1�1+exp �−�0+�2�2�+⋯+������� ��−1    (19) 

A linear probability model can be useful if the goal is an overall average marginal effect 

(Angrist 2001).  However, the linear probability model can produce predictions outside of the 

feasible range of [0, 1], negative variances of the error terms, and coefficient estimates that are 

heavily influenced by outliers.  If the sample size is large enough, in principle one could estimate 

a linear probability model (ordinary least squares with an index function that is linear in the 

coefficients) with a functional form that is sufficiently flexible to overcome this problem and to 

mimic the results from any other flexible probability model. 

It is worth emphasizing that there are some models where the odds ratio interpretation is 

preferred, in spite of the issues described in this paper.  In a case-control study, subjects with a 
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disease are matched to subjects without the disease in order to identify important risk factors 

(causes of effects).  However, one cannot compute marginal effects of the risk factors on the 

probability of having the disease directly from the model without imposing additional 

assumptions because the probability of having the disease in the sample does not mirror the 

probability of having the disease in the population.  The group fixed effects sweep out not only 

common factors to the group, but also any hope of measuring a baseline rate for that group 

within the model.  The researcher is left with the odds ratio interpretation, or must assume the 

baseline rate from other data sources and use that to approximate the marginal effect.      

The Chamberlain conditional fixed effects logit model is widely used in economics to 

sweep out group-level fixed effects (but also any observations with no within-group variation in 

the dependent variable).  This model also appropriately uses an odds ratio interpretation.  To 

compute predicted probabilities or marginal effects, the fixed effects logit model requires making 

additional assumptions, as with case-control studies.  Because the fixed effects soak up much of 

the otherwise unexplained variation, σ will decrease and the estimated �/� will increase.  This 

increase in �/� is consistent with its interpretation in a model that is conditional on fixed effects: 

the odds ratio for the variable of interest is the effect after holding constant many other factors, 

leaving a much more homogeneous comparison group.  A similar effect appears in random 

effects models.  One advantage of the Chamberlain conditional fixed effects logit model is not 

having to estimate the group fixed effects, also called incidental parameters, but one 

disadvantage is not being able to estimate a baseline rate. 

Finally, measures that are the ratio of estimated coefficients, such as marginal rates of 

substitution (including willingness to pay and values of time) are not affected by σ because that 

parameter drops out of the ratio (Train, 2009).  Train also discusses how one could conduct a 

meta-analysis while allowing the σ to differ in each sub-study.  The ratio of the variances would 

need to be estimated, in addition to all the β parameters, to make the appropriate adjustment (see 

Ben-Akiva and Morikawa (1990), Swait and Louviere (1993), and Train (2009) for details).  

 

CONCLUSIONS 

 Given the voluminous literature in health services research, epidemiology, clinical 

research, and other social sciences that estimates and reports odds ratios without proper 

discussion of conditioning, arbitrary normalization of parameters, or heterogeneity, there is a 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

long way to go to improve best practice and translation of results.  The correct interpretation of 

odds ratios acknowledges that the magnitude of the odds ratio is conditional on the data and the 

model specification.  When more independent variables are included in the model, the error 

variance is reduced and the odds ratio �exp(�/�)� increases.  An odds ratio estimated from one 

multivariate logit model cannot be directly compared to odds ratios estimated from another 

sample from the same data set, from other data sets, or from using a different model specification.   

There are alternatives to odds ratios that do not share the property of being as sensitive to 

inclusion of additional variables.  Average marginal or incremental effects and risk ratios are 

preferred ways of interpreting the results from logistic regression models when the model is not a 

case control or fixed effects model.  Clear communication of the meaning of the estimated 

parameters generally requires changing habits and using average marginal effects, unless 

estimating a case control model. 
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Table 1: Comparison of coefficient estimates, marginal effects, and odds ratios for the linear 

probability, logit, and probit models for two different model specifications. 

 

   LPM  Logit  Probit 

Variables   Simple Full  Simple Full  Simple Full 

           

Constant �/�  .5062 .5039  0.032     0.109    0.020     0.057   

   (.0063) (.0044)  (0.032)     (0.062)    (0.019)     (0.034)   

           �� �/�  .0478 .0485  0.244     0.827   0.145     0.468   

   (.0089) (.0064)  (0.045)     (0.087)    (0.027)     (0.048)   

 IE     0.0482     0.0459    0.0476    0.0465 

 OR     1.276 2.285      
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�1 �/�  .1081 .1037  0.551     1.8424    0.331     1.033   

   (.0043) (.0032)  (0.024)     (0.059)    (0.014)     (0.031)   

 ME     0.1085     0.1021    0.1084     0.1024  

 OR     1.734 6.312     

           �2 �/�  .1968 .2014  1.000     3.655    0.603     2.046   

   (.0037) (.0031)  (0.026)     (0.089)    (0.015)     (0.048)   

 ME     0.1972     0.2025    0.1977     0.2027   

 OR     2.719 38.66     

           �3 �/�   .0963   1.678    0.938   

    (.0032)   (0.058)     (0.031)   

           �4 �/�   .2959   5.40     3.018   

    (.0030)   (0.12)     (0.066)   

           

RMSE   0.45 0.32       �2   0.20 0.59       

Pseudo �2      0.17 0.74  0.17 0.74 

 Notes:  10,000 observations of simulated data, based on the formula for the underlying 

latent dependent variable: �∗ = 0.5�� + �1 + 2�2 + �3 + 3�4 with covariates normally 

distributed, except �� which is a dummy variable.  IE = incremental effect; ME = 

marginal effect; OR = odds ratio; RMSE = root mean squared error.  Robust standard 

errors are in parentheses. 

 

 

 

 

Table 2:  Logit model results to predict probability of taking any prescription drugs, using MEPS 

data from 2004. 
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Variables   Logit 

    

Constant �/�  −1.205 

   (0.062) 

    

Age �/�  0.0388 

   (0.0014) 

 ME  0.0078 

 OR  1.0396 

    

Female �/�  0.842 

   (0.035) 

 IE  0.170 

 OR  2.320 

    

Uninsured �/�  −1.256 

   (0.043) 

 IE  −0.253 

 OR  0.285 

    

Pseudo �2
   0.12 

Notes:  16,278 observations of Medical Expenditure Panel Survey data.  IE = incremental effect; 

ME = marginal effect; OR = odds ratio.  Robust standard errors are in parentheses. 
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Figure 2. 
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Figure 3. 
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