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SUMMARY: A critical component of longitudinal study design involves determining the sampling schedule.

Criteria for optimal design often focus on accurate estimation of the mean profile, although capturing the

between-subject variance of the longitudinal process is also important since variance patterns may be associated

with covariates of interest or predict future outcomes. Existing design approaches have limited applicability

when one wishes to optimize sampling schedules to capture between-individual variability. We propose an

approach to derive optimal sampling schedules based on functional principal component analysis (FPCA),

which separately characterizes the mean and the variability of longitudinal profiles and leads to a parsimonious

representation of the temporal pattern of the variability. Simulation studies show that the new design approach

performs equally well compared to an existing approach based on parametric mixed model (PMM) when a PMM

is adequate for the data, and outperforms the PMM-based approach otherwise. We use the methods to design

studies aiming to characterize daily salivary cortisol profiles and identify the optimal days within the menstrual

cycle when urinary progesterone should be measured.

KEY WORDS: longitudinal design, nonlinear model design, optimal design, temporal pattern
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1. Introduction

Carefully designed longitudinal studies with repeated measures can deepen our understanding of

how biological processes evolve and enhance our ability to identify predictors of change. Longitu-

dinal study design, however, is complex since it involves: 1) the number of subjects; 2) the number

of samples per subject; and, in particular, 3) the spacing between samples (i.e., sampling schedule),

while meeting budgetary and logistical constraints. In a motivating example, investigators want to

identify times during the day at which to collect salivary cortisol, a stress biomarker that follows

a nonlinear profile (Figure 1a). In another example, it is of interest to identify a small number of

days during the menstrual cycle at which to measure urinary progesterone (Figure 4a).

Methods to determine the sampling schedule of repeated measures studies have received less

attention than those for sample size and power calculations (e.g., Raudenbush and Liu, 2000;

Retout et al., 2002; Stroud et al., 2001; Basagaña and Spiegelman, 2010). Available approaches

include selecting optimal sampling schedules based on parametric nonlinear mixed models (PMM)

(Fedorov and Hackl, 1997; Stroud et al., 2001), which are advantageous when a PMM adequately

describes the longitudinal process, e.g. pharmacokinetic models for drug clearance rates. Ji and

Müller (2017) develop methods to select the sampling schedule to optimize prediction of either

individual trajectories or scalar responses that depend on functional predictors.

We propose approaches for selecting sampling schedules that help capture the between-individual

variability of a longitudinal process, a novel area. Capturing such variability is important for at least

three reasons: (a) correct variance models improve the quality of inference (Carroll, 2003); (b) the

variability of a longitudinal predictor can be directly associated with a subsequent outcome (Elliott,

2007); (c) sampling the process at the times when between-invidual variability is larger relative to

random measurement error can help identify correlates of the process.

Our methods can accomodate cases when estimating a parametric model for the population

process is needed (i.e., both mean and variance are of interest), or cases when only identifiying sam-

pling times to capture between-individual variance is desirable. We review existing methods based
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FPCA method to select sampling schedules 3

on PMMs in Section 2, and show that parsimonious approaches to accommodate a broader range

of between-subject variability patterns at the design stage is an area that needs improvement. In

Section 3, we utilize functional principal component analysis (FPCA) to characterize the variability

structure of the longitudinal process, and develop a method for identifying the optimal sampling

schedules. Section 4 contains a simulation study to evaluate our approach. We demonstrate the

methodology with two design problems in Section 5, and conclude with a discussion in Section 6.

2. Selecting Optimal Schedules Based on Parametric Mixed Models (PMM)

In this existing design approach, a parametric model is assumed for the individual profiles. Specifi-

cally, observations yi(tij) of subject i = 1, . . . , N collected at time points T = (ti1, ..., tini
) follow

yi(tij) = f(tij;ηi) + εij, ηi
iid∼ MVN(η,Σ∗), (1)

where εij ∼ N(0, σ2) are independent and identically distributed (iid) measurement errors; and

ηi is a p × 1 subject-specific vector, and f is a known parametric function. These models can be

estimated via maximum likelihood (see Web Appendix E and Pinheiro et al., 2015).

Although not needed for estimation, at the design stage it is often assumed that ni = m and

tij = tj for j = 1, ...,m. The design goal is to find an optimal schedule T ∗ = (t1, ..., tm) that min-

imizes the estimation variance of (η,Σ∗). Towards this goal, let l(η,Σ, σ2) be the log-likelihood,

where Σ is the vector of unique parameters in Σ∗ in (1); let Îη,Σ,σ2(T ) = I(T ; η̂, Σ̂, σ̂2) denote

the information matrix evaluated at schedule T using available estimates η̂, Σ̂, σ̂2; and let Îθ(T )

denote the submatrix of Îη,Σ,σ2(T ) corresponding to the subset θ ∈ {η,Σ, σ2}. Various optimiza-

tion criteria based on Îη,Σ(T ) have been developed to select the optimal sampling schedules for

(η,Σ∗) (Atkinson et al., 2007). D-optimality, i.e. maximizing |Îη,Σ(T )|, where | · | denotes the

determinant, has desirable properties: 1) it is the reciprocal of the size of the confidence region for

the MLE of η,Σ for a fixed σ2; 2) it is invariant under reparameterization of η,Σ; 3) it is convex,

allowing the use of special optimization algorithms (Retout et al., 2002; Ogungbenro et al., 2005).
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This PMM approach is useful in may applications, although three aspects can be improved. First,

the PMM approach might not always be flexible enough to characterize the temporal pattern of the

variability, given by V ar(f(t,ηi)) at time t, because both the variance of ηi and the functional form

of f(t,η) affect V ar(fi(t)). Web Figure 1 shows that PMM cannot always capture the variance

patterns even when data generating models share the same population mean. Second, the PMM

approach may not adapt to the situation where a parametric model that describes the mechanistic

process (e.g., clearance rates for a drug) is unavailable. Last, evaluating the information matrix in

PMM is often difficult since typically no closed form solution exists for the integral with respect

to ηi when f(t,η) is a general nonlinear function of η (Bazzoli et al., 2009).

3. Selecting Optimal Schedules Based on Functional Principal Component Analysis

3.1 Modeling Strategy

In constrast to PMM, we model the mean and variability structures separately, using FPCA: For

subject i at time tij , we have yi(tij) = f(tij;η) + gi(tij) + εij, where εij
iid∼ N(0, σ2) are random

errors, and functional subject-specific deviations gi are iid Gaussian processes with E(gi) = 0,

with standard conditions for the covariance structure of gi (Ramsay and Silverman, 2005).

Mean profile. Our approach to modeling the mean profile includes two cases:

case (a): a known parametric function for the population mean profile is available and it is

of interest to estimate the population mean parameters

case (b): a parametric function for the population mean is not available, or only capturing

the between-individual variance is of interest.

When there is a parametric model for f(t,η) that approximates the underlying biological process,

it will often be advantageous to use it, since the population-level (mean) parameters would have

meaningful interpretations. When a parametric model for f(t,η) is unavailable, we de-trend the

data by removing the population-level average curve, use the residuals to derive the principal
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FPCA method to select sampling schedules 5

components, and focus the design on capturing the variance only. To de-trend the data, we use

smoothers (e.g., regression splines, local regression) that the ensure the information matrix for the

model is block diagonal, which yields optimization criteria that are easier to compute (below).

Variance model. To characterize gi, we use FPCA, which consists of finding smooth functional

principal components (FPC) βk(t) k = 1, 2, 3, . . . that maximize V ar
(∫

fi(t)βk(t)dt
)

with the

orthonormal restrictions
∫
βk(t) · βk′(t)dt = 0 for k 6= k′ and

∫
βk(t) · βk(t)dt = 1. Each FPC

accounts for variance dk = V ar(
∫
fi(t)βk(t)dt). Under this framework, the subject-specific mean

is fi(t) = f(t,η) +
∑∞

k=1 αikβk(t), where αik =
∫
fi(t)βk(t)dt is the loading on the kth FPC

βk(t) for subject i. We assume the dk are in descending order, thus αik is typically negligible for

large k. Hence, the first few principal components βk(t), k = 1, . . . , r capture the majority of the

variability of the process, leading to a reduced rank model (James et al., 2000):

yi(tij) = fi(tij) + εij = f(tij,η) +
r∑

k=1

αikβk(tj) + εij. (2)

With FPCA, the variability of fi(t) can be summarized by the variance of the component scores

D = diag{d1, . . . , dr}, which is easier to handle than the p× p (unstructured) Σ∗ in the PMM (1).

Estimation: Because preliminary data may be sparsely sampled, we use regularized FPCA (Ram-

say and Silverman, 2005) to estimate the βk(t). However, ensuring orthogonality of the estimated

FPCs is critically important for design purposes, in order to maintain independence of the estimated

variance components d̂k and thus simplify the optimality criterion. Hence, we use a smoothness

penalty, λ
∫
β
′′

k (t)
2dt, on the FPCs βk(t) suggested by Zhou et al. (2008) that maintains orthogonal-

ity of the FPCs. Specifically, for fixed values of λ and r, we use the smoothing penalty from Zhou

et al. (2008) and adapt the EM algorithm by James et al. (2000) to estimate βk(t) and D. At each

iteration of the EM algorithm, we employ a singular value decomposition (SVD) to reparameterize

the FPCs. SVD improves convergence speed and enforces orthonormality of components, ensuring

D is diagonal at every iteration. See Web Appendix A for more details.

We use k-fold cross validation (CV) to select r and λ. We split the preliminary dataset into
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training and testing datasets, and define the CV score s(r, λ) as the average of marginal log

likelihoods of testing data based on the model estimated from training data (Equation (1) in Web

Appendix A). Since higher s(r, λ) suggests a better model, we choose λ∗r = argmaxλs(r, λ)

for a FPCA model with r components. To select r, we employ a rule based approach inspired

by the “scree plot” (Johnson and Wichern, 2007). Specifically, for a pre-specified threshold of

negligible improvement, b% (e.g., 1% to 5%), we select the smallest r such that the improvement

in the CV score due to adding one more component is less than b%. We use this approach because

sλ∗r(r) = s(r, λ∗r) tends to increase with r, since a model with r + 1 components is more flexible

than one with r components; thus choosing r to maximize sλ∗r(r) does not necessarily lead to a

parsimonious model that is more useful in the design stage. See Web Appendix B for more details

about computing s(r, λ) and example scree plots.

3.2 Sampling times and optimality criteria

Let S be the set of the admissible sampling times. Theoretically, our method does not place restric-

tions on S. However, it may be preferable to limit S to sampling times that can be implemented

in practice (e.g., time points separated by at least half an hour in the salivary cortisol study). Let

T = (t1, ..., tm) denote a candidate schedule where tj , j = 1, ...,m is chosen from S and tj 6= tj′

if j 6= j′. Let Sc denote the set of candidate schedules.

We focus on finding schedules for a fixed number m of samples per subject to be collected in

the full/future study, all of whom follow the same schedule. Naturally, more samples per person

will increase estimation precision (see the Simulation Section), but the number of samples will

depend on budgetary constraints. The model has either p + r (case (a)) or r (case (b)) parameters

of interest; thus, we assumem > p+r orm > r, respectively. Unlessm is large or the components

βk(t) are very smooth, it will in general be difficult to estimate individual profiles and/or βk(t) in

the full study since we assume all subjects follow the same schedule. Designs were all subjects

follow the same schedule are easier to implement in epidemiological studies that have many
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FPCA method to select sampling schedules 7

other questionnaire-based and lab components, such the cortisol study. Nevertheless, the proposed

methods identify sampling times that capture the between-individual variation as shown in the

simulations and examples.

The design goal is to select a sampling schedule T ∗ = (t1, ..., tm) ∈ Sc that optimizes the

D-optimal or Ds-optimal criterion (Atkinson et al., 2007), based on the information matrix for

model (2). Web Appendix C shows the derivation of the matrix, which has a block diagonal

structure with blocks for mean and variance parameters. We use subscripts to denote blocks of

the information matrix done in Section 2, e.g., Îη,D,σ2(T ) is the full matrix while ÎD(T ) is the

subblock of Îη,D,σ2(T ) corresponding only to parameters in D. In case (a) we are interested in

both η and D, thus we obtain T ∗ = argmaxT∈Sc |Îη,D(T )|. For case (b) we employ the Ds-

optimal criterion: T ∗ = argmaxT∈Sc |ÎD(T )|, since the mean is no longer of interest. While in

(2) V ar(fi(t)) depends on the FPCs βk(t)’s and D = diag(d1, ..., dr), we focus on the estimation

of D because between-individual heterogeneity is driven by subject-specific loadings αik (hence

captured byD) whereas the functional principal components βk(t) are shared by all subjects.

3.3 Implementation

If there are only a few time points to choose from, enumeration or a grid search works well.

However, if there are many possible choices for the time points, more sophisticated optimization

methods are needed. We implement a Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970) that is guaranteed to reach the global maximum if the Markov chain has converged.

Since |Îη,D(T )| and |ÎD(T )| are positive, we treat them as the probability function (less a constant)

of a multivariate distribution of t1, ..., tm. The maximum of the criterion function corresponds to

the mode of the probability distribution, which the Markov chain will visit with probability one.

Details about the algorithm are in Web Appendix D.

Preliminary data is assumed to exist with which estimates η̂, D̂, σ̂2 can be obtained and used to

evaluate the information matrix Îη,D,σ2 needed to form the optimization criterion. Sampling over
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the entire time interval of interest is needed in the preliminary data to reconstruct the variability

pattern. This can be achieved by densely sampling profiles for few individuals or combining data

from a larger number of individuals if they have different (sparse) sampling points.

4. Simulation study

Set up. We evaluate design methods for studies falling into case (a), where both FPCA and PMM

apply, and case (b) where PMM is no longer applicable. We consider the following scenarios:

(A) The functional form of f(t;η) is specified based on prior knowledge and designs that

capture the mean and variance are of interest. The mean is generated from f(t;η) = η0 +

η1t+ η2t exp(−η3t) (Figure 1b). Between-subject variability is induced through

(A.1): random parameters in the mean profile, namely, (η0i, η1i, η2i)
ᵀ ∼MVN [(η0, η1, η2)

ᵀ,Σ],

with Σ = diag(0.3472, 0.0362, 0.32) (ηi3 = η3 is fixed so that Iη,Σ,σ2(T ) has a closed form).

(A.2): the FPCs in Figure 1c are used withD = diag(0.82, 0.72).

(B) The functional form of the mean is not known or not of interest; designs that capture the

between-subject variance are desirable. Data are generated as:

(B.1): same data as scenario (A.2) (but the focus of the design is different)

(B.2): variability induced using the FPCs in Figure 1d with D = diag(0.72, 0.72) or D =

diag(1.42, 1.42).

In all scenarios σ2 = 0.52. This simulation set up allows us to compare FPCA vs. PMM designs

when data are from a PMM (A.1) or a reduced rank model (A.2); to see how the focus of the design

(mean and variance, or variance only) impacts the T ∗ by comparing the results of (A.2) and (B.1);

and to examine the performance of FPCA when FPCs are smoother (B.1) vs. more complex (B.2).

In all scenarios we assume S = {0, 0.5, ..., 15.5, 16}. We initially let Sc consist of schedules with

m = 7 times chosen from S. The ideal sampling schedules, T ideal which optimize the appropriate
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FPCA method to select sampling schedules 9

design criteria computed using the true model are denoted with triangles along the time axes in

Figure 2 for m = 7. We also compute T ideal for a range of m, shown in Figure 3 for scenario B.2.

To evaluate the methods in a more realistic setting, we also obtain schedules using parameters

estimated from (simulated) preliminary data instead of the true model. For each of the scenarios,

we simulate ` = 1, ..., 1000 preliminary data sets with N = 200 subjects, and each subject was

assumed to take n = 9 samples chosen randomly from {0, 0.5, . . . , 16}. Random noise τij ∼

N(0, 0.12) is added to tij to simulate noncompliance of the subjects. Given the times for each

subject, outcome data are generated according to the true models above. We also examined cases

when there were fewer subjects (N = 90) or fewer samples (m = 5).

In scenarios A.1 and A.2, we fit the PMM and FPCA assuming f(t;η) = η0+η1t+η2t exp(−η3t)

to each preliminary dataset. We use b% = 1% as the threshold for negligible improvement to

select r. In B.1 and B.2 we de-trend the data using local linear regression and only use the FPCA

design method. Since in B.1 and B.2 the PMM is not applicable, use Ji and Müller (2017)’s idea to

compare the FPCA to a ‘random design’. Here, a random design consists of m times chosen from

S at random without replacement. For all approaches, we use the Metropolis-Hastings algorithm

described in Section 3.3 to obtain T ∗` for each preliminary dataset.

We evaluate the performance of the design methods in three ways. First, we investigate whether

the T ∗` are in agreement with T ideal by tabulating the relative frequency with which each sample

time is selected. Second, we calculate the efficiency of T ∗` relative to T ideal as a numerical bench-

mark. Relative efficiency (Atkinson et al., 2007) is calculated asRE` = {|Iθ(T ∗`)|/|Iθ(T ideal)|}1/q,

where q is the number of parameters in θ, the subset of parameters for which the schedule is

optimized, and Iθ(·) is information matrix evaluated at the true parameter values. Because T ideal

maximizes |Iθ(T ideal)|, RE` 6 1, with higher values indicating better schedules. As a summary,

we calculate average relative efficiency, AvRE =
∑1000

`=1 RE`/1000.

As stated in the introduction, optimizing schedules that better capture between-individual vari-

Page 9 of 25 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

10 Biometrics, 000 XXXX

ance can help identify correlates of the longitudinal process. Hence, in the third evaluation of the

designs we examine whether sampling data at schedules T ideal, or T ∗` helps to detect associations

between the profile and other covariates not specified at the design stage. We generate 1,000 testing

datasets with the same parameters as, but otherwise independent from, the preliminary datasets. In

each testing dataset we also simulate a univariate variable wi that is correlated with the profiles via

the functional principal component scores: wi = γ1αi1+γ2αi2+δi. Then, for each of the schedules

T ∗` = (t`,1, . . . , t`,m) found using the j = 1, . . . , 1000 preliminary datasets in a given simulation

scenario, we fit the model E(wi) = κ0 + κ1yi(t`,1) + · · ·+ κmyi(t`,m) and test the significance of

the regression (H0 : κ1 = · · · = κm = 0). We calculate power as the proportion of testing datasets

where the p-value< 0.05 for this H0. There are several other ways to test the association between

the profiles and wi, with this being a straightforward approach. We apply this evaluation to the

ideal schedules as well as the random designs.

Results. The FPCA algorithm converged for all preliminary data sets in all scenarios. However,

the nlme() function for fitting the PMM only converged for 858 preliminary data sets in A.1 and

528 in A.2. For A.1 and A.2, we restrict our comparison to the simulations where both methods

converged because lack of convergence for the PMM would have triggered additional model

diagnostics and model re-specification that are not straightforward to implement in a simulation.

For scenario A.1 (Figure 2a), both FPCA and PMM provide schedules that are similar to T ideal.

There is perfect agreement between the two methods at the end points, t = 0 and t = 16, as well as

the peak time t = 1.5. Furthermore, all the schedules include at least one of t = 3.5 or 4, which are

near the inflection point of the profile (Figure 1b). The PMM approach has a slight advantage with

AvRE = 0.998 vs. 0.968 for FPCA, and are both superior to the random design (AvRE = 0.376).

For scenario A.2 (Figure 2b), T ideal includes t = 7, which captures the peak in β2(t) at t = 7

(Figure 1c). The T ∗` obtained with the FPCA method have at least one sample in the interval [6, 8]

with probability 0.70, whereas the PMM approach never includes sampling times in this interval.
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FPCA method to select sampling schedules 11

For the rest of the sampling times, FPCA and PMM have good agreement. The AvRE is better

for FPCA (0.972) vs. PMM (0.834), primarily due to FPCA’s ability to include the sampling times

near t = 7. Again, both FPCA and PMM are better than the random design (0.489). Scenario

A.2 demonstrates the FPCA approach is more applicable than the PMM in scenarios where the

temporal variability pattern is not induced by the random effects on the parametric mean profile.

Scenarios B.1 and B.2 shift the attention of the design to capture the variance only. T ideal for

scenario B.1 includes points in the [6,8] interval, as that in A.2, and times near t = 16 but not

t = 0 (Figure 2c). This is due to the fact that β2(t) is zero near t = 0, but not t = 16 (Figure 1c).

Again, the T ∗` tend to coincide with T ideal, although the degree of agreement, and consequently

the AvRE, depends on the sample size in the preliminary data since the sample size affects the

precision with which the FPCs are estimated. When the preliminary data had N = 200, n = 9, the

AvRE was 0.867; this dropped to AvRE = 0.709 when N = 50, n = 9, and to AvRE = 0.610

when N = 90, n = 5. Although the number of samples is n × N = 450 in the latter two cases,

N = 50, n = 9 has better AvRE since having more samples per person improves the estimation

of the FPCs. The random design (selecting 7 samples at random) had AvRE = 0.620.

Scenario B.2 (Figure 2d) illustrates the impact of the magnitude of the between-individual

variance to that of the within-individual or random error variance, and demonstrates that optimal

designs do not always include the end points of the sampling space. The agreement and AvRE

of the T ∗` obtained via the FPCA method depends on the magnitude of the variance of the FPCs

(dk’s) relative to the variance of the random error (σ2 = 0.52). Larger dk implies the between-

subject variability is larger (relative to the noise), and the principal components are more readily

identified. With smaller dk, the number of FPCs (below) and the shape of the FPCs not not well

estimated from the preliminary datasets, resulting in a poorer designs (less agreement with ideal

design, and lower AvRE). Nevertheless, in both cases, the FPCA yieled AvRE that was better

than the random design. The T ideal (triangles in Figure 2d) does not include the end points since

Page 11 of 25 Biometrics
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both FPCs in this scenario (Figure 1d) are zero at the endpoints (i.e., except for random noise, ε′s,

between-person variability is concentrated in the middle of the sampling space).

Scenario B.2 also illustrates a scenario when FPCs are more complex, and thus we focus on this

scenario to show schedules with varying m. Figure 3a shows T ideal for various m per subject, and

the associated criterion Ds when d1 = d2 = 0.7. Clearly, Ds increases for higher m, indicating

higher precision to estimate between-subject variance with larger m; the increase plateaus when

we normalize by m (i.e., Ds/m). For the lowest m, the samples are placed at the first peak of

component 1, and at the peak of component 2. For m = 3, the third sample is placed to capture

the second peak of component 1, i.e., the more complex component. The placement of additional

samples alternates between the timing of the peaks of the FPCs. As expected, when m increases,

so does the AvRE, for both T ∗` obtained by FPCA and for random designs.

From Figure 3a we also see that the power to detect an association between a covariate (unknown

at the design stage) and the profile increases as m increases, although it quickly reaches a plateau–

around m = 4 in this scenario. It is also clear that T ideal designs obtained by the FPCA method

have higher power than those obtained from random sampling. Average power for the schedules

T ∗` obtained when FPCA method relies on preliminary data is also higher than random designs,

although of course lower than for T ideal. Although both AvRE and power increase with m, there

is not a one-to-one correspondence between relative efficiency and power (i.e., designs with the

same RE can have different power), since the optimization criterion does not include information

on the covariate (Figure 3b). However, the key point is that optimizing the sampling schedule to

maximize |ID(T )| tends to yield designs with higher power to detect associations between the

profile and covariates, even when these were not included at design stage.

Finally, Figure 3c shows the sensitivity of the relative efficiency of individual designs to the

number of components r, which is also selected empirically when using preliminary data. Even

though in this simulation scenario the selected r is 1 in 83% of the data sets, more than 75% of the
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FPCA method to select sampling schedules 13

random designs have relative efficiency below the 50th percentile of the relative efficiency of the

designs selected by FPCA with r = 1.

5. Examples

Design for Salivary Cortisol Studies. Given its objective nature compared to self-reported ques-

tionnaires, salivary cortisol is increasingly common in epidemiological studies seeking to study

stress (Adam and Kumari, 2009). Salivary cortisol exhibits a nonlinear diurnal pattern through the

length of the day (Figure 1a). We apply the PMM and FPCA methods in the design for salivary

cortisol studies. As preliminary data for the design, we use data on 850 individuals from wave I

of the Stress Ancillary Study of the Multi-Ethnic Study of Atherosclerosis (MESA Stress) (Hajat

et al., 2010) in order to suggest possible designs for wave II of MESA Stress. In wave I, individuals

collected 6 samples for 3 days (Figure 1a).

For wave II of MESA Stress, the design goal is to identify a schedule, with 6 samples, that

maximizes the precision to estimate the mean profile and also better capture the between-subject

variability. We consider sampling times between wake up (t = 0) and 16 hours after wake up,

which are spaced by either half an hour, or 10 minutes. Spacing by half hour is much more practical,

while the 10 minute spacing allows us to examine the sensitivity of the design to the spacing

assumed. Existing studies suggest f(t;η) = η0 + η1t+ η2t · exp(η3t) is a suitable mean profile for

salivary cortisol (Stroud et al., 2004). We use this mean profile in the PMM and FPCA (case (a))

approaches. The values of r = 3 and λ = 2000 were determined by 10-fold cross validation for

the reduced rank model (2). For the half-hour spacing, we enumerate the
(

33
6

)
candidate schedules

and identify the best five schedules. For the 10 minute spacing we use the Metropolis-Hastings

algorithm described in Section 3 and Web Appendix D.

Five schedules with the best criterion values obtained from each method are given in Table 1(a)

and (b). For both methods, all schedules include four common sampling times: 0, 0.5, 1 and 16 hour
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14 Biometrics, 000 XXXX

after wake up. The difference between the two methods is revealed in the time period between 4 and

16. PMM places the remaining sample close to the ends of this time period and none in between

since in the 2-16 hrs time period the mean profile is dominated by the linear term η0 + η1t. The

linear term induces higher variability at the end points of the time period, thus sampling times

are placed there. However, FPCA detects a different temporal pattern for the variability and places

remaining sampling time at around 11 hours after wake up. This new sampling time was discovered

mainly because the FPCA approach places less restriction on the variance structure. Using the 10

minute spacing yields slightly different optimal schedules.

Urinary Progesterone Study. Urinary progesterone is an important biomarker of reproductive

health (De Souza et al., 2010). Studies with a small number of subjects, N , often collect samples

everyday during the menstrual cycle (Waller et al., 1998). Since such an intense schedule would be

difficult and costly to implement in studies with large N , it is important to find simplified sampling

schedules that adequately capture the between-subject variation of the progesterone levels. Since

no parametric form fits the mean adequately (Brumback and Rice, 2009), we only use FPCA.

As preliminary data, we use the urinary progesterone data from Brumback and Rice (2009),

which were collected as part of early pregnancy loss studies. The data set contained progesterone

profiles of 91 menstrual cycles from 51 women (Figure 3a). We randomly selected only one cycle

from each of the women who contributed data on multiple cycles to ensure independence. As is

standard practice in endocrinological research, progesterone profiles were aligned by the day of

ovulation (day=0) and then truncated at each end to present curves of equal length (24 days).

In the absence of a parametric model for the mean, we first center the data at each time point

with the mean estimated by a local polynomial smoother, and perform FPCA on the residuals. The

number of components r = 3 and the smoothing parameter λ = 1000 were determined by 10-fold

cross validation and b% = 1% as the threshold. The first component accounts for 53.2% of the

variance and can be interpreted as a constant cycle-level deviation from the mean (Figure 4b). The
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FPCA method to select sampling schedules 15

second and third components account for 36.6% and 1.4% of overall variance, and capture local

deviations at various times within the cycle.

Since r = 3 components were selected to characterize the progesterone data, we consider

sampling schedules with m = 3 sampling times. We consider each day of the menstrual cycle

as a potential time, thus S = {−8,−7, ..., 15}, and Sc consists of schedules with 3 sampling times

from S. Table 1(c) lists the 5 best schedules with 3 samples each. These schedules exhibit a clear

pattern. The earliest time point is in the interval [−7,−5]; the second sample is in the interval and

[7, 8], and the third sample is always t = 15. The choice of the sampling times can be intuitively

understood if we refer to the principal components (Figure 4b). The deviation from the mean of

the second and third components are relatively higher at days prior to day −4, around day t = 7,

and towards the end of the cycle near day t = 15.

As a ‘proof of concept’ that selecting sampling times to better capture the variability of the

profiles is important for assessing between-individual differences, we examined the performance

of the optimal schedule derived from FPCA in predicting conceptive status (whether the woman

had conceived during the cycle) the only covariate available in the data set. This complements

the simulation study where power to detect associations was illustrated. We consider the leave-

one-out prediction rate of all the schedules for predicting the conceptive status (since a replication

dataset is not available), and emphasize that conceptive status was not used to inform the design.

Since only three samples are selected in the design, prediction rates were computed by a logistic

regression model with conceptive status as the outcome and progesterone levels measured at the

days indicated by each of the derived schedules as the predictors. The leave-one-out prediction rate

of the five best sampling schedules obtained by FPCA are between 93%− 94% (the fourth column

of Table 1c), which suggests that just three progesterone values are highly predictive of conceptive

status, provided they are collected with the suggested schedules. When we rank all candidate

schedules in Sc by the leave-one-out prediction rate (as if prediction rate was the optimality
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criterion), we see that the sampling schedules we obtained perform better than 94% − 98% of

all candidate schedules (the last column of Table 1c). Given the excellent performance of just three

samples, in practice it would be difficult to argue in favor denser schedules.

6. Discussion

We propose a semiparametric approach to longitudinal study design that optimizes estimation of

the mean profile and between-subject variability. We use FPCA to model the mean and variability

of the profiles separately, and in turn obtain a parsimonious and flexible representation of the

temporal pattern of the variability. In simulations and data examples, we show that the FPCA

approach is comparable or better than existing design methods based on PMM. One key advan-

tage of the FPCA over the PMM approach is that the former does not assume that the variance

model follows the pattern specified by the mean model. Another advantage is that computing the

optimality criteria for the FPCA approach can be much faster since the information matrix can be

computed in closed form whereas PMM often requires numerical integration.

We used FPCA to identify sampling schedules that capture between-individual variability. To our

knowledge, our proposed method is the first to employ FPCA to derive optimal sampling schedules

for the estimation of the between-subject variability. Fedorov and Hackl (1997) uses an FPCA to

model correlated data and consider the design that minimizes the errors in predicting the profile.

Ji and Müller (2017) use FPCA to derive schedules to optimize prediction accuracy, and are thus

not directly comparable to our approach. Mean and variance models (Davidian et al., 1988) could

potentially be used to identify samples to capture the variance, but since the models focus on the

marginal distribution of the data they provide less insight into the between-individual variability.

There are some limitations to our approach and several possibilities for extending it. It is of

interest to extend the proposed methods to select schedules that optimize power to detect associa-

tions between the longitudinal profiles and its correlates. While Ji and Müller (2017) use predictive
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FPCA method to select sampling schedules 17

criteria for continuous outcomes to advance this area, we demonstrated that our proposed methods

have power to detect associations between the profile and correlates even though the correlate was

not specified in the design. Retout et al. (2007) evaluate the influence of designs on the power the

Wald test has to detect a treatment effect in PMM. Similar to the normality assumptions on the

random effects and residuals in the PMM-based approach, our FPCA approach relies on normality

of the component scores and normally distributed residuals. These assumptions are needed in

deriving the information matrix and thus form the optimality criteria. Defining optimality criteria

that don’t rely on the information matrix, e.g., prediction of a subsequent outcome, including non-

normal outcomes, is an interesting extension in its own right, and could also circumvent normality

assumptions. Ji and Müller (2017) have advanced this line of research by using prediction as the

optimality criteria, although components of their work rely on normality assumptions.

Our method considers only one optimal schedule in the design due to practical constraints of

large scale epidemiology studies. Future studies should consider methods where multiple sched-

ules, randomly assigned to subjects, are combined to optimally capture population-level param-

eters (e.g., Mentré and Baccar, 1997). The FPCA approach requires preliminary data with dense

sampling, and thus there are situations where it cannot be applied but the PMM approach can. In

the cortisol example, each individual collects very few samples in the preliminary data, but dense

sampling is achieved since many individuals are included. Clearly, neither approach will select

sampling points where no preliminary data were collected (e.g., functional principal components

cannot be estimated in those regions). However, those areas may be particularly interesting to

sample, and a statistical model is not needed to make such determination. Other directions include

approaches to obtain the sampling schedules for estimating βk(t), or for the sampling schedules to

incorporate multilevel sampling (e.g., repeated cycles from the same woman). Incorporating cost

into the optimality criteria may also help determine the number of samples m.
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Supplementary Materials

Web Appendices and Figures referenced in Sections 2, 3, 4, and 5 as well as R code to implement

the methods are available with this paper at the Biometrics website on Wiley Online Library.
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Bazzoli, C., Retout, S., and Mentré, F. (2009). Fisher information matrix for nonlinear mixed

effects multiple response models: Evaluation of the appropriateness of the first order lineariza-

tion using a pharmacokinetic/pharmacodynamic model. Statistics in Medicine 28, 1940–1956.

Brumback, B.A. and Rice, J.A. (1998). Smoothing spline models for the analysis of nested and

crossed samples of curves. Journal of the American Statistical Association 93, 961–976.

Carroll, R. J. (2003). Variances are not always nuisance parameters. Biometrics 59, 211–220.

Page 18 of 25Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

FPCA method to select sampling schedules 19

Davidian, M., Carroll, R. J., and Smith, W. (1988). Variance functions and the minimum detectable

concentration in assays. Biometrika 75, 549 –556.

De Souza, M., Toombs, R., Scheid, J., O’Donnell, E., West, S., and Williams, N. (2010). High

prevalence of subtle and severe menstrual disturbances in exercising women: confirmation

using daily hormone measures. Human Reproduction 25, 491 –503.

Elliott, M. R. (2007). Identifying latent clusters of variability in longitudinal data. Biostatistics 8,

756 –771.

Fedorov, V. V. and Hackl, P. (1997). Model-oriented design of experiments. Springer, New York.

Hajat, A., Diez-Roux, A., Franklin, T. G., Seeman, T., Shrager, S., Ranjit, N., et al. (2010).

Socioeconomic and race/ethnic differences in daily salivary cortisol profiles: the Multi-Ethnic

Study of Atherosclerosis. Psychoneuroendocrinology 35, 932–943.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika 57, 97–109.

James, G. M., Hastie, T. J., and Sugar, C. A. (2000). Principal component models for sparse

functional data. Biometrika 87, 587–602.

Ji, H. and Müller, H.G. (2017). Optimal designs for longitudinal and functional data. Journal of

the Royal Statistical Society-Series B xx, xx–xx (in press).

Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Pearson

Prentice Hall, Upper Saddle River, NJ.
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Figure 1: (a) Scatterplot of salivary cortisol data described in Section 5; (b) mean profile and
(c)-(d) functional principal components for the variability structure in the simulations.
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Figure 2: Frequency with which each time point is included in the optimal schedules (random
design is not shown, n/s). Higher frequencies concentrated near the ideal design T ideal demonstrate
higher level of agreement between the designs obtained after fitting the model to preliminary data
(T ∗` ) and T ideal. Legends give the average (AvRE) and standard deviation (SD) of the relative
efficiency of the designs T ∗` relative to T ideal.
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2 0.02 0.73 0.2 0.6 0.13 0.37
3 0.06 0.75 0.26 0.65 0.2 0.44
4 0.14 0.8 0.32 0.69 0.22 0.48
5 0.22 0.82 0.41 0.72 0.27 0.52
6 0.33 0.81 0.46 0.72 0.3 0.55
7 0.42 0.83 0.52 0.75 0.34 0.58
8 0.51 0.83 0.58 0.76 0.38 0.6
9 0.59 0.83 0.63 0.75 0.42 0.61
m__ Ideal schedules_________________________

Ideal
Ds_______Power_______

Est. FPCA
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Random
AvRE______ Power______

(a) Precision (Ds) and power for T ideal, and average relative efficiency (AvRE) and average power for T ∗` and random designs for
various m
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Figure 3: Additional simulation results for scenario B.2, d1=d2=0.7. Power calculations assumed
γ1 = γ2 = 1, and V ar(δi) = 6.
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Figure 4: (a) Scatter plot of log(urinary progesterone) vs. day in the menstrual cycle, including the
sample mean (thick black line) and a sample of individual’s trajectories (gray), and (b) functional
principal components of the urinary progesterone data.
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26 Biometrics, 000 XXXX

Spacing t1 t2 t3 t4 t5 t6

30min 0:00 0:30 1:00 3:00 15:30 16:00
0:00 0:30 1:00 2:30 15:30 16:00
0:00 0:30 1:00 3:30 15:30 16:00
0:00 0:30 1:00 3:00 15:00 16:00
0:00 0:30 1:00 2:30 15:00 16:00

10min 0:00 0:20 0:40 2:20 15:50 16:00

(a) Cortisol study, Schedules selected with PMM

Spacing t1 t2 t3 t4 t5 t6

30min 0:00 0:30 1:00 4:00 11:00 16:00
0:00 0:30 1:00 4:00 10:30 16:00
0:00 0:30 1:00 4:30 11:00 16:00
0:00 0:30 1:00 4:00 11:30 16:00
0:00 0:30 1:00 4:00 10:00 16:00

10min 0:00 0:20 1:00 4:00 10:50 16:00

(b) Cortisol study, Schedules selected with FPCA

Prediction
t1 t2 t3 Rate Rank

-6 8 15 93% 94%
-5 8 15 93% 94%
-7 8 15 93% 94%
-6 7 15 93% 94%
-5 7 15 94% 98%

(c) Progesterone study, schedules selected with FPCA

Table 1: Sampling schedules chosen by the (a) PMM and (b) FPCA based approaches in the
Cortisol study when samples are spaced by half an hour or 10 minutes. (c) The top five sampling
schedules for urinary progesterone chosen by the FPCA approach. In (c) the leave-one-out
prediction rate is for the prediction of conceptive status based on the progesterone measured at
the stated days. The ranking in the last column is based on the leave-one-out prediction rate.
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