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Abstract
Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess
its variability on decadal timescales. Using the Coupled Model Intercomparison Project
Version 5 (CMIP5) multi-model ensemble dataset, we calculate time evolving SAF in mul-
tiple decades from surface albedo and temperature linear regressions. Results are mean-
ingful when temperature change exceeds 0.5K. Decadal scale SAF is strongly correlated
with century scale SAF during the 21st century. Throughout the 21st century, multi-model
ensemble mean SAF increases from 0.37 to 0.42 Wm−2K−1. These results suggest mod-
els’ mean decadal scale SAFs are good estimates of their century scale SAFs if there is at
least 0.5K temperature change. Persistent SAF into the late 21st century indicates ongoing
capacity for Arctic albedo decline despite there being less sea-ice. If the CMIP5 multi-
model ensemble results are representative of the Earth, we cannot expect decreasing Arctic
sea-ice extent to suppress SAF in the 21st century.

1 Introduction

Radiative transfer is the primary phenomenon governing energy exchange between
Earth and the surrounding vacuum. Therefore, Earth’s total energy budget is well approx-
imated by the difference in absorbed solar and emitted terrestrial radiation at the top of
the atmosphere (TOA). Simple energy balance models use the TOA approximation to
demonstrate enhanced climate sensitivity from surface albedo feedbacks. Budyko [1969]
and Sellers [1969], for example, find that relatively small changes in incident solar radia-
tion coupled with changes in planetary albedo can cause glaciation or deglaciation of the
planet in climate models, identifying snow and ice albedo feedback as a possible mech-
anism for instability in the climate state. The snow and ice albedo feedback is a posi-
tive feedback that accelerates climate change when increasing (decreasing) temperature
causes snow and ice cover to decrease (increase), reducing (enhancing) albedo and fur-
ther enhancing surface warming (cooling). Because snow and ice are often much brighter
than their underlying surfaces, the high albedo contrast potentiates snow and ice albedo
feedbacks to amplify Arctic climate change where increasing temperatures reduce sur-
face albedo and accelerate melt. Qu and Hall [2014] examine Northern Hemisphere snow
albedo feedback in Coupled Model Intercomparison Project Version 5 (CMIP5) models
and show a strong correlation between feedback in the spring time melting season and
feedback in climate change. This correlation suggests the seasonal cycle Northern Hemi-
sphere snow albedo feedback derived from remote sensing observations can constrain the
climate change feedback in models. Crook and Forster [2014], however, find discrepancies
between Northern Hemisphere surface albedo feedback (SAF) in the climate change and
seasonal cycle contexts when comparing observations to models. These results cast doubt
on the predictive capability of the seasonal cycle SAF as it relates to the climate change
feedback. Constraining SAF in climate models is important for improving the accuracy
of climate change predictions from intercomparison projects cited frequently by the Inter-
governmental Panel of Climate Change (IPCC) reports. The IPCC fifth assessment report
[Intergovernmental Panel on Climate Change, 2014; Flato et al., 2014], for example, cites
numerous studies showing drastic reductions in summer Arctic sea ice extent by 2100 in
CMIP5 models. This reduction in Arctic sea-ice impacts Earth’s total energy budget and
amplifies climate change via the SAF.

Pistone et al. [2014] and Cao et al. [2015], for example, relate the recent decline in
observed planetary albedo directly to the loss of Arctic sea-ice cover. Rapid Arctic sea-ice
loss and rising surface temperatures are characteristic of transient future climate simula-
tions under the 8.5 Wm−2 greenhouse gas radiative forcing Representative Concentration
Pathway (RCP8.5). Hall [2004] demonstrates in a coupled atmosphere-ocean model sim-
ulation that SAF enhances both polar amplification of surface temperature anomalies and
surface temperature at all latitudes in the equilibrium response to CO2 doubling. Win-
ton [2006a] and Pithan and Mauritsen [2014] find SAF to be a secondary driver of po-
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lar amplification, however, citing temperature feedbacks as the primary contributor. In a
consistent evaluation of global climate feedbacks in coupled atmosphere-ocean climate
models, Soden and Held [2006] find SAF the third strongest positive feedback in cur-
rent climate after water vapor and cloud feedbacks. Winton [2006b] reports a multi-mean
SAF of 0.3 Wm−2K−1 in the IPCC fourth assessment climate models. Other studies quan-
tify snow and SAF in global climate models [Qu and Hall, 2006, 2007; Fletcher et al.,
2012; Vial et al., 2013; Crook and Forster, 2014; Qu and Hall, 2014; Andry et al., 2017]
and from remote sensing observations [Hall and Qu, 2006; Fernandes et al., 2009; Flanner
et al., 2011; Hudson, 2011; Fletcher et al., 2012; Qu and Hall, 2014; Fletcher et al., 2015].
Andry et al. [2017] examine time dependent variations in SAF in six CMIP5 models us-
ing a moving window technique. Here, we use a similar technique to expand on previous
analyses in 36 CMIP5 models to address the following.

As Arctic sea-ice continues to melt, we expect SAF to weaken as less highly reflec-
tive snow and ice remains to allow large changes in albedo. The onset of 21st century
SAF weakening is unclear, however, as nearly all previous studies do not resolve the time-
dependency of SAF. In calculating climate change SAF on multiple decadal timescales,
we evaluate its temporal evolution and identify when and if weakening occurs. Allow-
ing SAF to vary on decadal time scales also allows for testing its predicative capability of
models’ longer, century-scale feedback. In comparing multiple models’ decadal timescale
feedbacks to their century-scale feedbacks, we can also evaluate how well remote sensing
products, limited in duration by the satellite era, may be able to constrain longer timescale
climate change SAF. In this paper, we present a new technique for calculating time evolv-
ing SAF in 36 CMIP5 models in transient historical and future climate simulations rang-
ing from 1850-2300. Contrary to our initial expectations, we discover small but signifi-
cant strengthening of SAF throughout the 21st century in most CMIP5 climate models.

2 Methods and Data

SAF is defined as the change in global mean net TOA shortwave irradiance caused
by the change in surface albedo per global mean surface temperature change. It can be ex-
pressed mathematically in the following form [Hall, 2004; Winton, 2006b; Colman, 2013;
Crook and Forster, 2014],

SAF =
∂Qnet

∂αS

∆αS
∆TS

, (1)

where ∂Qnet/∂αS is the radiative kernel and ∆αS and ∆TS are surface albedo and surface
temperature changes, respectively. Global mean temperature change is used in this study
instead of hemispheric or zonal means enabling direct comparisons to other climate feed-
backs.

SAF is calculated over separate 11, 23, 47, and 94-year time periods within the
CMIP5 multi-model ensemble simulations in transient historical and future climate under
the RCP8.5. These time periods are selected to maximize the number of samples within
the 21st century for decadal, quarter century, half century, and full century scale SAF be-
tween 2006 and 2099. The CMIP5 multi-model ensemble dataset contains monthly mean
surface upwelling and downwelling irradiance used to calculate grid-cell albedo and an-
nual global mean surface temperature [Taylor et al., 2012]. Monthly grid-cell albedo and
annual global mean temperature are used to compute 11, 23, 47, and 94-year changes in
grid-cell albedo by month and global mean temperature using least squares regressions.

Because least squares regressions are particularly sensitive to outliers, yearly grid-
cell albedo by month and global mean temperature time series are first run forwards and
backwards through a low-pass Butterworth filter using the convolution theorem. The low-
pass Butterworth filter is defined by the power gain in terms of its transfer function [Roberts
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and Roberts, 1978],

|HB( jω)|2 =

[
1 +

tan(ωT/2)
tan(ωcT/2)

]−2n

. (2)

The discrete transfer function HB gives the complex frequency domain response and is
specified by the sampling interval T , corner-frequency ωc , and order of the filter n. With
T = 1 year, n = 1 and ωc = 1/11 years−1 are selected to damp high frequency signals as-
sociated with dynamical modes in the climate system. The El Nino / La Nina Southern
Oscillation, for example, can cause short term fluctuations in both albedo and temperature
output that obscure long term trends and needlessly affect least squares regressions. After
filtering, least squares regressions are computed on filtered grid-cell albedo by month and
global mean temperature time series to give the 11, 23, 47, and 94-year changes.

Grid-cell albedo changes for each month are then multiplied by two monthly re-
solved radiative kernels to give the TOA change in net irradiance caused by the albedo
change. This method is introduced by Shell et al. [2008] and Soden et al. [2008] and en-
ables the quantification of SAF in transient climate for a fixed cloud field. Using a fixed
cloud field invariant in time is useful here as it allows for direct comparisons of SAF
across models independent of their transient atmospheric conditions and cloud feedbacks.
The two radiative kernels used in this study are calculated from the Geophysical Fluid Dy-
namics Laboratory (GFDL) Atmosphere Model (AM2) [Soden et al., 2008] and the Com-
munity Earth System Model (CESM1) Community Atmosphere Model (CAM5).

Finally, annual global means are calculated from the 11, 23, 47, and 94-year changes
in grid-cell TOA net irradiance. These changes are divided by the respective 11, 23, 47,
and 94-year changes in global mean temperature. The resulting quotients give the 11, 23,
47, and 94-year global mean SAF as defined in equation 1. SAF is calculated in this man-
ner for the 36 models listed in Table 1 using the CMIP5 multi-model ensemble output.

3 Results and Discussion

Equation 1 shows there is no limit to SAF as the change in global mean surface
temperature approaches zero. Figure 1 demonstrates the consequences of this limitless
behavior in the calculation of SAF. We scatter SAF against the change in global mean
surface temperature in 11, 23, 47, and 94-year windows across all historical and future
simulations from models listed in Table 1 using both the CAM5 and AM2 radiative ker-
nels. SAF is noisy when temperature change is less than roughly 0.5K. This temperature
change threshold exists for all window lengths, suggesting that at least 0.5K warming (or
cooling) is necessary to calculate meaningful SAF in climate change. We hereafter use the
0.5K temperature change threshold as a cutoff to remove noisy SAF calculations and re-
strict the following analysis to only meaningful SAF in climate change. Use of different
radiative kernels generally results in different scaling of the global SAF but does not re-
sult in significant relative changes between different models. Because the primary focus
of this study is on the temporal variability of SAF across the CMIP5 models, we here-
after present results using primarily the CAM5 radiative kernel. Narrowing the remaining
analysis to just one kernel minimally impacts our main findings while also reducing the
study’s dimensionality. Furthermore, because the following results are mostly independent
of window length, we present our findings from only 23-year and 94-year calculations.

Similar to the considerable spread in the strength of snow albedo feedback reported
by Qu and Hall [2014], the strength of SAF in the CMIP5 models is also highly variable,
ranging from 0.1 to 0.8 Wm−2K−1. Figure 2 shows the decadal-scale (23-year) temporal
evolution of model- and multi-model mean (black) SAF using the CAM5 radiative kernel
spanning three centuries. The temporal evolution of the multi-model mean decadal-scale
SAF is dynamic, beginning above 0.7 in historical simulations, settling around 0.4 in the
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CMIP5 21st century- and decadal- scale SAF (Wm−2K−1)

Institute ID Model Name 2006-2099 2006-2028 2075-2097 23-yr. STD

CSIRO-BOM ACCESS1.0 0.39 0.51 0.44 0.07
CSIRO-BOM ACCESS1.3 0.36 0.14 0.44 0.13
BCC BCC-CSM1.1 0.40 – 0.51 0.11
BCC BCC-CSM1.1(m) 0.29 0.27 0.48 0.12
GCESS BNU-ESM 0.61 0.60 0.48 0.09
CCCMA CanCM4∗ – – – –
CCCMA CanESM2 0.36 0.35 0.40 0.02
NCAR CCSM4 0.47 0.38 0.49 0.05
NCAR SP-CCSM4 0.45 0.35 0.45 0.07
NSF-DOE-NCAR CESM1(BGC) 0.47 0.43 0.49 0.03
NSF-DOE-NCAR CESM1(CAM5) 0.45 0.47 0.40 0.05
NSF-DOE-NCAR CESM1(WACCM) 0.43 0.37 0.48 0.06
CMCC CMCC-CESM 0.34 0.26 0.52 0.13
CMCC CMCC-CM 0.41 0.40 0.43 0.10
CMCC CMCC-CMS 0.41 0.50 0.43 0.06
CNRM-CERFACS CNRM-CM5 0.50 0.60 0.43 0.07
CSIRO-QCCCE CSIRO-Mk3.6.0 0.29 0.21 0.38 0.08
LASG-CESS FGOALS-g2 0.46 0.40 0.58 0.15
NOAA GFDL GFDL-CM3 0.44 0.30 0.50 0.11
NOAA GFDL GFDL-ESM2G 0.31 – 0.30 0.15
NOAA GFDL GFDL-ESM2M 0.30 – 0.35 0.13
NASA GISS GISS-E2-H 0.31 0.30 0.28 0.03
NASA GISS GISS-E2-R 0.23 – 0.24 0.04
INM INM-CM4 0.45 – 0.42 0.12
IPSL IPSL-CM5A-LR 0.25 0.21 0.19 0.04
IPSL IPSL-CM5A-MR 0.19 0.16 0.17 0.07
IPSL IPSL-CM5B-LR 0.23 0.13 0.14 0.07
MIROC MIROC-ESM 0.62 0.71 0.45 0.14
MIROC MIROC-ESM-CHEM 0.62 0.79 0.52 0.11
MIROC MIROC4h∗ – – – –
MIROC MIROC5 0.47 0.31 0.62 0.13
MPI-M MPI-ESM-LR 0.36 0.21 0.35 0.09
MPI-M MPI-ESM-MR 0.39 0.41 0.48 0.09
MRI MRI-CGCM3 0.44 0.24 0.58 0.15
NCC NorESM1-M 0.39 0.40 0.53 0.11
NCC NorESM1-ME 0.43 0.17 0.36 0.12

Multi-model mean (STD): 0.40 (0.10) 0.37 (0.17) 0.42 (0.12) 0.09

Table 1. Model-mean century-scale SAF from 2006-2099 and decadal-scale SAF from 2006-2028 and
2075-2097 using the CAM5 all-sky kernel. The final column shows models’ internal variability in 21st cen-
tury SAF via their standard deviation of 21st century mean 23-year SAF. Bold font highlights models showing
significant SAF increases from 2006-2028 to 2075-2097. Asterisks denote models with historical data (in-
cluded in Figure 1) but without 21st century data. Other "–" denote models that have no simulations with
more than 0.5K temperature change over the respective time period.
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Figure 1. Surface albedo feedback (SAF) vs. change in global mean surface temperature (∆Ts). SAF and
∆Ts are derived from the CMIP5 multi-model ensemble of simulations across 11, 23, 47, and 94-year win-
dows (by column) within historical and RCP8.5 experiments. Results are displayed for two all-sky radiative
kernels (by row). Different colors represent different models and conform to those assigned by the key in
Figure 2. Black lines bound data selected for further analysis (∆Ts > 0.5 K & SAF > 0 Wm−2K−1).

21st century, and finally decreasing to below 0.1 Wm−2K−1 after 2200. In the 21st cen-
tury, multi-model mean SAF increases from 0.37 to 0.42 Wm−2K−1. Using the AM2 ra-
diative kernel yields lower values, where 21st century SAF increases from 0.27 to 0.33
Wm−2K−1. SAF calculated from the CAM5 kernel is generally higher than when calcu-
lated from the AM2 kernel. This is likely due to improved cloud properties in the CAM5
resulting in reduced cloud masking over the Arctic [Kay et al., 2012]. Century-scale SAF
calculated from the AM2 kernel in the 21st century is nearly identical to estimates re-
ported by Vial et al. [2013] (0.3 Wm−2K−1) in four times CO2 experiments. Results from
historical simulations are few after applying the 0.5K temperature change cutoff, while
simulations extending beyond 2100 are fewer altogether in the CMIP5 multi-model ensem-
ble dataset. In these extended simulations, multi-model mean SAF decreases monotoni-
cally after 2150, decreasing from just under 0.4 to below 0.1 Wm−2K−1 by 2250.

The relatively large multi-model variability obscures the small but statistically signif-
icant (p-value = 0.04) increase in 21st century model-mean decadal-scale SAF. Using the
2006-2028 and 2075-2097 values from Table 1, where we show each model’s mean early
and late 21st-century decadal-scale SAF, respectively, we apply a paired difference test to
determine the significance of this apparent increase. The results reveal a statistically sig-
nificant increase in the models’ mean 21st century decadal-scale SAF of 0.07 Wm−2K−1,
about the same as the 0.06 Wm−2K−1 increase in the multi-model mean SAF over the
same period. Because of the relatively large statistical uncertainty (+/- 0.06 Wm−2K−1;
95% C.I.), however, we must only interpret these results as positive but small change and
most likely not negative change in 21st century SAF.

Finally, we regress each model’s 21st century (94-year) ensemble-mean SAF, shown
in Table 1 (2006-2099) against its corresponding 21st-century mean decadal-scale (23-
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Figure 2. Temporal evolution of surface albedo feedback (SAF) in CMIP5 models calculated using the
CESM1-CAM5 radiative kernel. Horizontal line segments mark 23-year ensemble mean SAFs in individual
models (colors) calculated from multiple ensemble members. Black (connected) horizontal line segments
mark multi-model mean 23-year SAF. Vertical error bars on individual model means represent ensemble
member standard deviations. Black vertical error bars on multi-model means represent model standard de-
viations. Data displayed are calculated only from 23-year periods with at least 0.5 K global mean surface
temperature change.
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Figure 3. 21st century 94-year model mean SAFs vs. 21st century 23-year model mean SAFs. Scattered
data are displayed with their linear regressions plotted in black. On the left, 23-year model means are calcu-
lated from all four 23-year windows within the 21st century. Horizontal error bars represent standard error
of ensemble member 23-year means. On the right, 23-year means are calculated from ensemble members
with only the 2006-2028 period. Horizontal error bars represent ensemble member standard deviations. As in
Figure 2, data displayed are calculated only from periods with at least 0.5 K global mean surface temperature
change. Colors are assigned by model accordingly to the key in Figure 2.

year) SAF in Figure 3 (left). Encouragingly, model-mean 21st century 94-year SAF is
strongly correlated (r2 = 0.90) with 21st century model-mean 23-year SAF. This strong
correlation (standard error of regression = 0.05 Wm−2K−1) demonstrates that in general,
23-year SAF calculations are well representative of their century time-scale SAF. When
we regress 23-year SAFs from only the first 23-year window (2006-2028) onto the 94-year
SAFs (Figure 3, right), however, the correlation weakens (r2 = 0.65). The weaker corre-
lation (standard error of regression = 0.07 Wm−2K−1) indicates that 23-year estimates
of SAF from any one period are not strong predictors of century-scale SAF in transient
climate. This finding is somewhat intuitive, as a single 23-year estimate of SAF cannot
predict how SAF will evolve in a changing climate. Because 21st century mean 23-year
SAF is strongly correlated with 21st century 94-year SAF, however, 23-year estimates of
SAF can accurately quantify sub-century scale SAF as long as there is at least 0.5K tem-
perature change. This is useful for examination of the temporal variability within a longer
timescale. These findings justify using 23-year SAF to quantify time evolving decadal-
scale SAF, but using a temporally limited dataset to derive accurate estimates of long-term
SAF in climate change is subject to considerable uncertainty.

With multiple decadal-scale SAF estimates in 21st century climate simulations, we
conclude that SAF does not decrease about its multi-model mean of 0.4 (+/- 0.1) Wm−2K−1

and possibly strengthens throughout the 21st century. Of the 29 models with both early
(2006-2028) and late (2075-2097) 21st century 23-year SAF in Table 1, 16 (55%) show
significant strengthening of SAF. With most CMIP5 models showing significant strength-
ening in SAF, multi-model mean SAF increasing, and a significant increase from the paired
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difference test, the CMIP5 multi-model ensemble results suggest SAF does not weaken in
the 21st century. This finding is contrary to our initial expectations in simulations where
diminishing Arctic sea-ice is common. Further investigation into the spatial distribution of
the changing TOA net irradiance reveals more rapid Arctic albedo decline in late spring
and early summer months toward the end of the 21st century. Figure 4 gives a glimpse
into this more rapid Arctic albedo decline in June, where we show the 23-year change in
TOA net irradiance in the early versus late 21st century in the CanESM2 and CESM1(WACCM)
models. We select simulations from these two models because they have increasing 21st
century SAF, relatively small 23-year standard deviations, and values similar to multi-
model means in Table 1. In both simulations, June Arctic albedo decreases more rapidly
in the late versus early 21st century. The increasing Arctic albedo decline is typical among
other models as well, suggesting that sea-ice decline is a key driver of persistent SAF
strength throughout the 21st century. Increasing Antarctic albedo decline is also evident
in Southern Hemisphere summer months.

4 Conclusions

This study examined decadal-scale variability of SAF using 36 climate models in the
CMIP5 multi-model ensemble archive. After identifying asymptotic behavior in its calcu-
lation, we removed noisy SAF contributions by selecting only estimates from time periods
exhibiting global mean temperature change of at least 0.5K for analysis. This allowed for
better interpretation of model and multi-model mean statistics from which we identified a
relatively small but significant (p-value = 0.04) 18% increase (+/- 16%; 95% confidence
interval) in SAF strength from 2017 to 2086. We regressed century-scale against decadal-
scale SAF and verified that multiple shorter time-scale estimates are good predictors of
their longer time-scale counterparts, while single 23-year estimates have limited utility.
Finally, we investigated the spatial distribution of the changing TOA net irradiance and
determined that late spring to early summer Arctic albedo declined more rapidly in late
versus early 21st century years in most models. We found evidence of dominant sea-ice
contribution to persistent SAF strength late into 21st century simulations.

The main implications of these findings follow. First, that decadal-scale SAF is
correlated with century-scale SAF provides justification for using decadal-scale estimates
to evaluate time-dependent variability of SAF. Extending SAF derived from remote sens-
ing observations, (e.g., Flanner et al. [2011], Pistone et al. [2014], Cao et al. [2015]) that
are limited in their temporal domain by the satellite era, onto longer time scales, how-
ever, is feasible but with limited accuracy. These results are of course restricted to time
periods with sufficient climate change (> 0.5 K ), and also predicated on model behavior
exhibiting similar multi-decadal characteristics as the real climate system. Second, that
CMIP5 multi-model ensemble mean SAF increases in the 21st century despite rapid sea-
sonal snow and sea-ice cover loss demonstrates a persistent capacity for global surface
albedo change extending through the end of the century. A closer look at the spatial dis-
tribution of albedo trends revealed a poleward shift in maximal albedo decline as well as
late-spring to early summer prevalence in Arctic and Antarctic sea-ice melt.
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