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• Model simulation accurately captured the seasonality of vegetation activity. 
• Net ecosystem productivity decreased under reduced summer rainfall and 

increased temperature scenarios. 
• Elevated CO2 scenarios offset the negative impacts of meteorological conditions. 
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Abstract 1 

The sensitivity of semiarid ecosystems to climate change is not well understood due to 2 

competing effects of soil and plant-mediated carbon fluxes. Limited observations of net 3 

ecosystem productivity (NEP) under rising air temperature and CO2 and altered precipitation 4 

regimes also hinder climate change assessments. A promising avenue for addressing this 5 

challenge is through the application of numerical models. In this work, we combine a 6 

mechanistic ecohydrological model and a soil carbon model to simulate soil and plant processes 7 

in a subtropical shrubland of northwest México. Due to the influence of the North American 8 

monsoon, the site exhibits net carbon losses early in the summer and net carbon gains during the 9 

photosynthetically-active season. After building confidence in the simulations through 10 

comparisons with eddy covariance flux data, we conduct a series of climate change experiments 11 

for near-future (2030-2045) scenarios that test the impact of meteorological changes and CO2 12 

fertilization relative to historical conditions (1990-2005). Results indicate that reductions in NEP 13 

arising from warmer conditions are effectively offset by gains in NEP due to the impact of higher 14 

CO2 on water use efficiency. For cases with higher summer rainfall and CO2 fertilization, climate 15 

change impacts lead to an increase of ~25% in NEP relative to historical conditions (mean of 66 16 

gC m-2). Net primary production and soil respiration derived from decomposition are shown to 17 

be important processes that interact to control NEP and, given the role of semiarid ecosystems in 18 

the global carbon budget, deserve attention in future simulation efforts of ecosystem fluxes.   19 

Keywords: ecohydrology; eddy covariance; carbon fluxes; modeling; climate change; North 20 

American monsoon. 21 
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1. Introduction 22 

Although the carbon sink strength of semiarid ecosystems is still under debate (Xiao et 23 

al., 2011), recent studies have recognized that these areas have a dominant role, stronger than 24 

other biogeographic regions, in regulating the intra- and inter-annual variability of the global 25 

carbon cycle (Ahlström et al., 2015; Poulter et al., 2014). A transition to more arid conditions 26 

(e.g. increasing temperatures and prolonged drought spells) in these regions (Pachauri et al., 27 

2014; Seager et al., 2007) will have implications on the productivity of semiarid ecosystems. 28 

This is the case for most of the North American monsoon (NAM) region, which comprises 29 

semiarid areas in the southwestern United States and northwestern México (Douglas et al., 1993; 30 

Vivoni et al., 2008). The NAM system is a pronounced increase in precipitation during the warm 31 

season (July-September) leading to increased biological activity (Flato et al., 2013; Forzieri et 32 

al., 2014). Remote sensing analyses have quantified the spatial and temporal variability of 33 

vegetation greening during the NAM (e.g. Tang et al., 2012; Watts et al., 2007). However, 34 

ecosystem processes regulating the carbon cycling are not understood well enough to anticipate 35 

the implications of climate change on the net carbon balance of these semiarid ecosystems. 36 

The eddy covariance (EC) technique has become a useful approach for measuring water, 37 

energy and carbon fluxes at the ecosystem level (Baldocchi et al., 2001), with several studies 38 

conducted in different ecosystems in the NAM region (e.g. Anderson & Vivoni, 2016; Méndez-39 

Barroso et al., 2014; Pérez-Ruiz et al., 2010; Scott et al., 2010, 2015; Yépez et al., 2007). By 40 

quantifying carbon dioxide (CO2) exchanges between ecosystems and the overlying atmosphere 41 

(Loescher et al., 2003), net ecosystem productivity (NEP) can be measured via the EC method as 42 

a degree of the metabolic activity of a terrestrial ecosystem. Furthermore, traditional flux 43 

partitioning models have been applied to estimate NEP components, gross primary productivity 44 
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(GPP) and ecosystem respiration (RECO) (Reichtein et al., 2005, Stoy et al., 2006). Since NEP 45 

consists of the difference between GPP and RECO, its response to hydrometeorological conditions 46 

has been difficult to identify (Nayak et al., 2015; Scott et al., 2015; Biederman et al., 2016). This 47 

is primarily due to the differential sensitivity of GPP and RECO to changes in temperature and 48 

precipitation (e.g. Euskirchen et al., 2014; Shi et al., 2014). As a result, semiarid ecosystem 49 

responses to climate change remain highly uncertain. On the one hand, GPP may be reduced by 50 

warming via plant heat stress (Sage & Kubien, 2007) and via stomatal closure from increased 51 

evaporative demand and reductions of soil water content (Seneviratne et al., 2010; Williams et 52 

al., 2013) affecting vegetation productivity (Novick et al., 2016). For instance, Biederman et al. 53 

(2017) found that warm temperatures have a negative effect on NEP in semiarid ecosystems of 54 

southwestern North America. Stomata respond to transpiration rates in a process known as the 55 

apparent ‘feed-forward response’, implying that transpiration strongly decreases at high vapor 56 

pressure deficit, particularly during periods of water stress (Duurmsa et al., 2014; Novick et al., 57 

2016). When stomata close in this manner, carbon assimilation and GPP decrease, thus reducing 58 

NEP. Photosynthetic enhancements due to rising CO2 atmospheric concentrations (Smith et al., 59 

2000) and the lengthening of the growing season (Kunkel, 2016), however, may increase GPP. 60 

These changes are known to affect ecosystem water use efficiency (WUE = GPP / 61 

evapotranspiration (ET)), a measure of the sensitivity of photosynthesis rates to changes in 62 

hydroclimatic conditions (Yang et al., 2016). In addition, changes in rainfall timing, intensity and 63 

distribution are also important factors affecting NEP, though the net effect or directionality are 64 

unclear (Allard et al., 2008; Gherardi & Sala, 2015; Heisler-White et al., 2008; Miranda et al., 65 

2011; Robertson et al., 2009; Rohr et al., 2013;  Ross et al., 2012; Xie et al., 2015).  66 
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Similarly, the effects of climate change on RECO in semiarid ecosystems are uncertain due 67 

to complex dynamics occurring during periods of water availability (Collins et al., 2014; Fan et 68 

al., 2012). RECO integrates plant (autotrophic) and microbial (heterotrophic) processes that are 69 

coupled (Sacks et al., 2007; Verduzco et al., 2015) and has been shown to either increase, 70 

decrease or remain unchanged under warming conditions (Arnone et al., 2008; Lenton & 71 

Huntingford, 2003; Luo et al., 2001; Zhou et al., 2007). RECO is also highly variable under 72 

different precipitation conditions (Cable et al., 2008; Harper et al., 2005; Thomey et al., 2011). 73 

Some studies have found that warming can substantially increase cellular metabolic maintenance 74 

(e.g. Amthor, 1984; Ryan, 1991), which in turn affects autotrophic respiration (Ra). Although 75 

studies have shown that plants can acclimate to increasing temperatures (Slot and Kitajima, 76 

2015), it is still unknown the degree of and time to acclimation for different plant functional 77 

types (Drake et al., 2015; Yamori et al., 2014). Furthermore, heterotrophic respiration has been 78 

observed to respond positively to temperature (Lloyd & Taylor, 1994), but its sensitivity has 79 

been related to limiting factors such as substrate availability and quality, which are coupled to 80 

primary productivity (Sponseller, 2007; Zhou et al., 2013) and soil water content (Conant et al., 81 

2004; Davidson et al., 2006; Liu et al., 2009).  82 

Given the uncertainties in quantifying the net carbon response of semiarid ecosystems to 83 

climate change, a useful approach for addressing this problem is by combining ecosystem level 84 

measurements and numerical modeling. Previous efforts have found misrepresentation in the 85 

modeling of semiarid ecosystem carbon fluxes (e.g. Huntzinger et al., 2012; Vargas et al., 2013), 86 

net carbon balance (Keenan et al., 2012), and its responses to climate change (Friedlingstein et 87 

al., 2013). While simulating water, energy and carbon fluxes remains challenging in semiarid 88 

ecosystems (Fisher et al., 2014; Li et al., 2004; Xu et al., 2013), there has been much progress on 89 
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coupled water-vegetation model representations in recent years (Fatichi et al., 2016b). Included 90 

in these advances are more accurate representations of ecosystem processes at shorter temporal 91 

scales and the simulation of longer-term phenological variations for different plant functional 92 

types (e.g. Ivanov et al., 2008a, 2008b). In addition, finer representations of event-scale and 93 

seasonal precipitation effects on vegetation dynamics have been achieved, leading to plant 94 

carbon assimilation into a number of pools that are essential for capturing vegetation dynamics 95 

(e.g. Fatichi et al., 2016b; Ivanov et al., 2008a, 2008b). Given the importance of heterotrophic 96 

respiration in semiarid ecosystems (Cable et al., 2008; Verduzco et al., 2015; Yépez et al., 2007), 97 

an appropriate representation of this process is necessary for simulating the annual cycle and 98 

interannual variability of NEP as well as identifying the impacts of different climate change 99 

drivers (e.g. rising CO2 and changing meteorological conditions).  100 

In this contribution, we combine the mechanistic ecohydrological model of Ivanov et al. 101 

(2008a) (TIN-based Real-time Integrated Basin Simulator  - Vegetation Generation Interactive 102 

Evolution, tRIBS-VEGGIE, model) with the soil carbon model (SCM) of Porporato et al. (2003) 103 

to describe ecosystem plant and soil processes (e.g. gross primary productivity, autotrophic and 104 

heterotrophic respiration) controlling NEP in a subtropical shrubland in northwestern México. In 105 

contrast to prior efforts (e.g. terrestrial biosphere models, Huntzinger et al., 2012), the combined 106 

tRIBS-VEGGIE and SCM approach tracks energy, water, temperature and substrate limitations 107 

on photosynthesis and respiration from multiple carbon pools using process-level prognostic 108 

equations that are tailored to seasonally-dry ecosystems. We use a five-year long record of EC 109 

flux and meteorological data (Méndez-Barroso et al., 2014; Villarreal et al., 2016) from a 110 

subtropical shrubland as well as remote sensing products to calibrate and test the model 111 

simulations for its ability to realistically capture water fluxes, vegetation dynamics and the 112 
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components of net ecosystem productivity (NEP = GPP - RECO). After model confirmation, we 113 

conduct a series of climate change experiments using long-term forcing generated by the 114 

stochastic downscaling of a set of climate projections from Taylor et al. (2012) that represent 115 

near-future (2030-2045) meteorological and atmospheric CO2 conditions as well as a historical 116 

forcing dataset of equivalent length (1990-2005). We selected the near-future period to avoid the 117 

potential for dramatic changes in ecosystem composition due to climate change impacts. 118 

Combining tRIBS-VEGGIE and SCM within the climate change experiments allowed us to pose 119 

the following questions: (1) What are the mechanisms through which soil-plant processses 120 

control NEP in seasonally-dry, semiarid ecosystems?, (2) What, if any, will be the impacts of 121 

climate change on NEP and its components in the subtropical shrubland?, and (3) What is the net 122 

effect of projected changes in meteorological conditions and atmospheric CO2 on NEP? As a 123 

result, this study aims to understand the potential effects of climate change on ecosystem 124 

dynamics and carbon cycling in semiarid areas experiencing strong seasonality.  125 

126 
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2. Materials and methods 127 

2.1. Site description 128 

The study site is a subtropical shrubland located ~120 km northeast of Hermosillo, 129 

Sonora, México (29.74 °N, 110.53 °W) near the rural town of Rayón at an elevation of 632 m. 130 

The local climate is semiarid (Köppen classification BSh) with hot summers and cool winters. 131 

The long-term (1961-2009) average annual temperature and precipitation (±1 standard deviation) 132 

are 21.4 ± 6.4 °C and 487 ± 181 mm yr-1, as obtained from Comisión Nacional del Agua station 133 

00026181 at Rayón, Sonora. Conditions during the study period (2008-2012) were similar to the 134 

long-term average, with a mean annual air temperature (TA) of 22.7 ± 0.6 °C and precipitation 135 

(P) of 481 ± 92.8 mm yr-1. Precipitation during the NAM season (July-September) is 136 

approximately 76% of the annual total at the site (Vivoni et al., 2010a) leading to a peak in 137 

vegetation greenness in the month of August (Méndez-Barroso et al., 2009). Site vegetation is 138 

composed of drought-deciduous trees and shrubs, including torote papelío (Jatropha cordata), 139 

tree ocotillo (Fouquieria macdougalii), acacia (Acacia cochliacantha), palo verde (Parkinsonia 140 

praecox), Mexican mimosa (Mimosa distachya) and velvet mesquite (Prosopis velutina) as well 141 

as organpipe cactus (Stenocereus thurberi). Brown (1994) described the vegetation 142 

characteristics of subtropical shrublands (or Sinaloan thornscrub) in greater detail. The site 143 

topography is relatively flat in proximity to the EC tower (Vivoni et al., 2010b), while the soils 144 

are shallow (~1 m) and classified as regosol-yermosol (INEGI, 2010) with sandy loam (0 to 30 145 

cm) and sandy clay (30 to 100 cm) texture. Prior studies further describe the site properties used 146 

here for the model application, including the soil hydraulic properties, the vegetation albedo, and 147 

structural properties (e.g. Méndez-Barroso et al., 2014; Vivoni et al., 2010a, 2010b).  148 

 149 
150 
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2.2. Site measurements 151 

Meteorological flux measurements were performed using the EC technique (Baldocchi, 152 

2003, 2008) using a three-dimensional sonic anemometer (CSAT-3, Campbell Sci.) and an open-153 

path infrared gas analyzer (LI-7500, Li-COR Inc.) placed on a 9 m tower over the tree canopy of 154 

around 6 m height and oriented with the prevailing southwest wind direction. Vivoni et al. 155 

(2010b) describes the EC installation at the site, including the characteristics of the footprint 156 

area. Water vapor and CO2 concentrations and air temperature were measured at high frequency 157 

(20 Hz), collected with a CR5000 datalogger (Campbell Sci.) and processed to 30 min averaged 158 

quantities to obtain latent (LE) and sensible heat flux (H) and net ecosystem exchange (NEE) of 159 

CO2, as described in the following section. By convention, negative NEE values indicate 160 

ecosystem carbon uptake from the atmosphere, which correspond to a positive net ecosystem 161 

productivity (i.e. -NEE = NEP). Net radiation (Rnet) was measured using a CNR Lite2 (Kipp and 162 

Zonen) radiometer, and incoming solar radiation with a CMP3 radiometer (Campbell Sci.).  163 

For use in the model, incoming solar radiation was partitioned into direct and diffuse 164 

components of the visible (VIS, 0.4-0.7 µm) and near infrared (NIR, 0.7-1.3 µm) bands 165 

following the procedures of Spitters (1986), while incoming longwave radiation was estimated as 166 

a function of air temperature (Duarte et al., 2006). A humidity and air temperature sensor 167 

(HMP45D, Vaisala) was used to obtain vapor pressure (VP) and air temperature. Volumetric soil 168 

water content (SWC) was obtained as the average of two reflectometer (CS616-L, Campbell 169 

Sci.) measurements at a 10 cm depth over the period 2008-2010 and from a soil moisture sensor 170 

(ECH2O probe, Decagon Devices) at the same depth and location for portions of 2012. No 171 

additional soil moisture sensors at larger soil depths were available. Local precipitation was 172 

measured with a tipping-bucket rain gauge (TB4, Hydrological Services). All meteorological 173 
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measurements were recorded as 30 min averages within the CR5000 datalogger and averaged to 174 

hourly inputs for the model applications. Additional information on measurements is presented 175 

by Méndez-Barroso et al. (2014), Villarreal et al. (2016) and Vivoni et al. (2010a). 176 

Several data gaps occurred during the 2008-2012 period (i.e. 15 to 26% of measurements 177 

during all years, except 2008 with 63% missing data since observations started in the summer). 178 

We followed the procedure of Robles-Morua et al. (2012) to fill in the necessary meteorological 179 

forcing. This process consisted of bias-correcting the surface meteorological data obtained from 180 

the North American Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) in the grid 181 

pixel (12 km) corresponding to the study site during periods of simultaneous ground data. Linear 182 

corrections were applied to hourly variables of atmospheric pressure, incoming solar radiation 183 

and vapor pressure, while air temperature was corrected using the adiabatic lapse rate (6.5 °C 184 

km-1) to match the site elevation. A logarithmic profile adjustment was used to modify the 10 m 185 

NLDAS wind speed to 2 m height assumed for all forcing variables in the ecohydrological model 186 

(tRIBS-VEGGIE). The use of bias-corrected NLDAS products to gap-fill the ground-based data 187 

was deemed important to create a continuous series of meteorological forcing.  188 

In addition, we utilized remotely-sensed data from the Moderate Resolution Imaging 189 

Spectroradiometer (MODIS; ORNL DAAC, 2008) to test the model representation of vegetation 190 

dynamics, following Méndez-Barroso et al. (2014). Cloud-free composites of the Normalized 191 

Difference Vegetation Index (NDVI, 16 day, 250 m, MOD13Q1) and Leaf Area Index (LAI, 8 192 

day, 1 km, MOD15A2) were linearly interpolated to a daily product for this purpose. Due to its 193 

higher temporal resolution, we report the model evaluation against LAI for assessing vegetation 194 

dynamics. Previous research in semiarid areas has been shown to find good agreement between 195 

ground-based vegetation conditions and MODIS (i.e. Fensholt et al., 2004; Jenerette et al., 2010), 196 
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but it should be noted that there are discrepancies between the site conditions and inferred 197 

variables of the remote sensing products due to different spatio-temporal resolutions and 198 

sometimes due to scattering and absorption by the atmospheric composition (Nagol et al., 2009).  199 

 200 
2.3. Flux quality control and partitioning  201 

 Conventional corrections were applied to EC measurements following Scott et al. (2004), 202 

including removal of outliers (gas concentrations greater than ±4 standard deviations, Massman, 203 

2001), a correction for density fluctuations (Webb et al., 1980) and the application of the double 204 

rotation method (Wilczak et al., 2001). In addition, friction velocity (u*) was calculated 205 

according to quantitative methods (Scott et al., 2004) and periods of time with a friction velocity 206 

less than u* = 0.20 m s-1 were filtered (Aubinet et al., 2000; Xu & Baldocchi, 2004) to reduce 207 

nighttime flux underestimation (Barr et al., 2013). The u* threshold was selected such that there 208 

is no dependence between nighttime fluxes and friction velocity. Resulting data gaps were filled 209 

in following the procedures of the Eddy Covariance Gap-Filling and Flux-Partitioning Tool 210 

available at: http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/index.php, following Reichstein 211 

et al. (2005). The surface energy balance was evaluated at the study site by Villarreal et al. 212 

(2016) over 2008-2010 (a closure of 0.89) and Méndez-Barroso et al. (2014) over summers in 213 

2006-2009 (a closure of 0.75). The partitioning of NEE into its components GPP and RECO (i.e. 214 

NEE = RECO - GPP) was carried out using the sensitivity of RECO to air temperature (Flanagan et 215 

al., 2002; Reichstein et al., 2005). This NEE partitioning approach has been shown to be 216 

consistent with other methods (Babst et al., 2014; Desai et al., 2008).  217 

 218 
 219 
 220 
 221 
 222 
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2.4. Ecohydrological and soil carbon modeling 223 

Water, energy and carbon dynamics at the subtropical shrubland were simulated using a 224 

combination of an ecohydrological model (tRIBS-VEGGIE, Ivanov et al., 2008a, 2008b) and a 225 

soil carbon model (SCM, Porporato et al., 2003) coupled through the production of litter and the 226 

soil moisture and temperature conditions (Fig. 1). Following prior efforts in semiarid regions 227 

(Bisht, 2010; Sivandran & Bras, 2012), a drought-deciduous C3 shrub was used as the plant 228 

functional type in the one-dimensional simulations using an irregular subsurface mesh (25 layers 229 

over 1 m depth). In addition to vertically-resolved soil hydrologic and thermal dynamics, tRIBS-230 

VEGGIE captures a set of biophysical and biochemical plant processes, such as photosynthesis, 231 

autotrophic respiration (Ra), carbon allocation to foliage, sapwood and fine roots, tissue turnover 232 

and vegetation phenology. This allows the estimation of gross and net (NPP = GPP - Ra) primary 233 

productivity for the plant functional type. The time-evolving plant conditions are directly 234 

affected by and provide an influence on the local energy and water budget in an interactive 235 

fashion (Ivanov et al., 2008a, 2008b). Simulated soil water content (SWC), surface energy fluxes 236 

(Rnet, H and LE), total evapotranspiration (ET) and leaf area index (LAI), among others, depend 237 

on local meteorological conditions, soil properties and plant functional traits obtained via local 238 

measurements or parameterized through a model calibration and validation procedure. Overall, 239 

tRIBS-VEGGIE simulates the dynamic feedbacks between vegetation and its surrounding 240 

environment at differing time scales, explicitly represented starting at the scale of a few minutes 241 

(e.g. resolving canopy leaf temperatures), to hourly resolution (e.g. stomatal dynamics) and up to 242 

the daily scale processes (e.g. plant phenology and leaf turnover). Ivanov et al. (2008a, 2008b) 243 

provide additional details on the model biophysics and its application in other semiarid settings. 244 
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 245 
Figure 1. Conceptual diagram of model-based estimation of ecosystem carbon fluxes 246 

using tRIBS-VEGGIE and SCM. Dotted lines depict ecohydrological model outputs into the soil 247 
carbon model, while double lines specify sources of autotrophic, heterotrophic and ecosystem 248 
respiration (RECO = Ra + Rh). Net ecosystem productivity (NEP) is obtained as GPP - RECO.  249 

 250 
As depicted in Fig. 1, tRIBS-VEGGIE does not simulate soil heterotrophic respiration 251 

(Rh), limiting its ability to represent net ecosystem productivity (NEP = GPP - Ra - Rh). To 252 

address this, we implemented a simplified version of the soil carbon model (SCM) of Porporato 253 

et al. (2003) based on three separate carbon pools (litter, humus and microbial biomass) to track 254 

soil organic matter decomposition and heterotrophic respiration (Bolker et al., 1998; Manzoni et 255 

al., 2004; Parolari & Porporato, 2016). While this approach does not track nitrogen dynamics, we 256 

accounted for C:N effects on decomposition rates through the use of a heuristic factor ϕ 257 

described in Rodríguez-Iturbe & Porporato (2007) and based values either on local data or 258 

magnitudes reported for the region (Martínez-Yrízar et al., 2007; Núñez et al., 2001). Daily 259 

carbon pool dynamics simulated in the SCM were driven by soil water content and temperature 260 

conditions and the leaf litter production derived from tRIBS-VEGGIE. As a result, the coupling 261 

of tRIBS-VEGGIE and SCM allows for the effects of vegetation phenology (i.e. leaf senescence 262 

and fall) to impact Rh and NEP when soil moisture and temperature conditions are favorable. 263 
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 264 
Figure 2. Mean daily meteorological conditions during the study period (2008-2012) 265 

consisting of precipitation (P), air temperature (TA) and vapor pressure (VP). Shaded areas 266 
represent NAM period (July-September) of each year.  267 
 268 
2.5. Model forcing, parameterization and validation 269 

Gap-filled meteorological observations over the period 2008-2012 were aggregated to 270 

hourly resolution as forcing for tRIBS-VEGGIE and consisted of atmospheric pressure, vapor 271 

pressure, air temperature, wind speed, incoming solar and longwave radiation and precipitation. 272 

In addition, direct and diffuse radiation components in the visible and near infrared bands and the 273 

average atmospheric CO2 concentration during 2008-2012 (390 ppm) were input. Fig. 2 presents 274 

an example of the meteorological forcing, illustrating the strong seasonality in precipitation and 275 

its corresponding effects on air temperature and vapor pressure during the NAM.  276 

The study period was divided into two subsets for model calibration (2008-2010, 1096 277 

days) and validation (2011-2012, 731 days) based upon matching the subset length when 278 

excluding gap-filled periods. While conditions varied to some extent among the subsets, no 279 

trends were noted that would impact model calibration and validation. A similar setup was 280 

carried out for the SCM by using leaf litterfall, soil moisture and soil temperature conditions 281 
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obtained from tRIBS-VEGGIE as inputs (Fig. 1). Following Vivoni et al. (2005), the sequence of 282 

tRIBS-VEGGIE and SCM simulations were conducted in a periodic fashion by repeating the 283 

same 5-yr meteorological forcing 6 times (i.e. total simulation length of 30 years) and retaining 284 

the two subsets in the last 5-yr period for model calibration and validation purposes. This 285 

initialization approach stabilized soil water content, soil temperature and carbon storage amounts 286 

in the vegetation (foliage, sapwood and fine roots) and soil (litter, microbial biomass and humus) 287 

pools, thus reducing transient errors in the assignment of the initial conditions.  288 

Initial model parameterization was conducted for tRIBS-VEGGIE and SCM based upon 289 

prior efforts with each model (e.g. Bisht, 2010; Ivanov et al., 2008a; Parolari & Porporato, 2016; 290 

Porporato et al., 2003; Sivandran & Bras, 2012), including applications for the subtropical 291 

shrubland (Méndez‐Barroso et al., 2014; Vivoni et al., 2010a). For instance, Table 1 presents the 292 

soil hydraulic and thermal properties used in tRIBS-VEGGIE for the sandy loam soils at the site 293 

whose initial values were obtained through manual calibration conducted by Méndez‐Barroso et 294 

al. (2014). As in that work, we simplified the modeling of site conditions by treating the soil 295 

profile as a uniform sandy loam. In contrast to Méndez‐Barroso et al. (2014), however, we 296 

applied the one-dimensional Richards equation using a finite element, backward Euler time 297 

stepping numerical approximation for infiltration into the unsaturated soil profile (irregular mesh 298 

with 25 layers over 1 m depth), as detailed in Ivanov et al. (2008a). Accordingly, modifications 299 

to the soil parameters within feasible ranges based on pedotransfer functions from Rawls et al. 300 

(1982) were required to match a larger set of observations (SWC, Rnet, H, LE and LAI) over a 301 

longer period (i.e. three continuous years in the calibration period).  302 

An invariant rooting profile extending to 1 m depth and a vegetation fraction (vf = 0.6) 303 

were estimated for the study site following Jackson et al. (1996) and Méndez‐Barroso et al.  304 
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Soil Type Sandy Loam 
Ks 55 
θs 0.45 
θr 0.02 
λo 0.47 
ψb -90 

ks,dry 0.214 
ks,sat 2.64 
Cs 1610586 

Table 1. Soil Parameters. Ks (mm hr-1), surface hydraulic conductivity; θs (-), saturated 305 
moisture content; θr (-), residual moisture content; λo (-), pore size distribution index; ψb (mm), 306 
air entry bubbling pressure; ks,dry and ks,sat (J m-1 s-1 K-1), heat conductivity for dry and saturated 307 
soils; Cs (J m-3 K-1), heat capacity of dry soils. 308 

 309 
(2014). In addition, tRIBS-VEGGIE required a larger set of model parameters to describe 310 

biochemical, biophysical, interception, phenological, carbon allocation and water uptake 311 

processes (Ivanov et al., 2008a). Table 2 lists the final parameter values for vegetation processes 312 

and indicates their sources as either from literature (L), observation (O) or calibration (C).  313 

Parameter Value Source 
Biochemical Processes 

Vmax25 50 C 
K 0.2 C 
M 9 L 
B 10000 L 
ε3,4 0.08 L 

rsapw 9.61x10-10 L 
rroot 1. 09x10-8 L 
wgrw 0.25 L 
dleaf 1 L 
dsapw 0.04 L 
droot 0.33 L 
Biophysical and Interception Processes 
χL 0.01 L 

αleaf (VIS, NIR) 0.1, 0.45 L 
αstem (VIS, NIR)  0.16, 0.39 L 
τleaf (VIS, NIR)  0.05, 0.25 L 
τstem (VIS, NIR)  0.001, 0.001 L 

Kc 0.18 L 
gc  3.9 L 
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Sla 0.011 O 
Phenology, Allocation and Uptake Processes 
γWmax 10 C 

bw 2.5 C 
γCmax 7 C 

bc 1 C 
Tcold 15 C 
eleaf 0.25 L 
esapw 0.1 L 
eroot 0.65 L 
ω 0.8 L 
εs 2 L 
ξ 1.6 L 

Tsoil  20 C 
DLH  10 L 

DTmin,Fav 6 C 
fc,init  0.025 L 
Linit 0.22 L 
ψ* -0.1 C 
ψw -5 C 

Table 2. Vegetation Parameters. Vmax25 (µmol CO2 m-2 leaf s-1) is the maximum 314 
catalytic capacity of Rubisco at 25°C; K (-) is the time-mean PAR extinction coefficient 315 
parameterizing the decay of nitrogen content in the canopy; m (-) is an empirical slope 316 
parameter; b (mmol m-2 s-1) is the minimum stomatal conductance; ε3,4 (µmol CO2 µmol-1 317 
photons) is the intrinsic quantum efficiency for CO2 uptake; rsapw and rroot (g C g C-1 s-1) are the 318 
sapwood and fine root respiration coefficients at 10°C; wgrw (-) is the fraction of canopy 319 
assimilation less maintenance respiration used for tissue growth; dleaf, dsapw and droot (yr-1) are the 320 
turnover rates for leaf, sapwood and roots; χL (-) is the departure of leaf angles from a random 321 
distribution; αleaf and αstem (-) are the leaf and stem reflectances in the VIS and NIR bands; τleaf 322 
and τstem (-) are leaf and stem transmittances in the VIS and NIR bands; Kc (mm hr-1) is the 323 
canopy drainage coefficient, gc (mm-1) is the exponential decay parameter of canopy water 324 
drainage; Sla (m2 leaf area kg C-1) is the specific leaf area; γWmax and γCmax (day-1) are maximum 325 
drought and cold-induced foliage loss rates; bW and bC (-) are the shape parameters reflecting the 326 
sensitivity of canopy to drought and cold; Tcold (°C) is the temperature threshold below which 327 
cold-induced leaf loss begins; eleaf, esapw and eroot (-) are the base allocation fractions for leaf, 328 
sapwood and roots; ω (-) is the sensitivity parameter of allocation fractions to changes in light 329 
and water availability; εs and ξ (-) are parameters controlling the relation between carbon content 330 
in the above and below ground biomass; Tsoil (°C) and DLH (hr) are the mean daily soil 331 
temperature and day length to be exceeded for the growing season start; DTmin,Fav (day) is the 332 
minimum duration for which the conditions of transition from/to the dormant season have to be 333 
continuously met; fc,init and Linit (-) are the fraction of the structural biomass and leaf area index 334 
used to initiate leaf onset; ψ* and ψ w (MPa) are the soil matric potentials at which the stomatal 335 
closure and plant wilting begins.  336 
 337 
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Parameter Value Source 
Cl 89 L 
Ch 895 L 
Cb 25 L 

C/Nlitter 23 O 
C/Nhumus 22 L 
C/Nbiomass 8 L 

rh 0.003 L/C 
rr 0.65 L 
kb 0.0000988 C 
kh 2.1x10-7 C 
kl 0.00107 C 

Table 3. Soil Decomposition Parameters. Cl, Ch and Cb (g C m-2) are initial carbon 338 
concentrations in the litter, humus and biomass pools; C/Nlitter, C/Nhumus and C/Nbiomass (-) are 339 
carbon-nitrogen ratios of litter, humus and biomass; rh and rf (-) are fractions of organic matter 340 
undergoing humification and of decomposed organic carbon that is respired; kl, kh and kb (hr-1) 341 
are first-order kinetic constants of litter, humus and biomass.  342 
 343 
 Manual calibration of vegetation parameters focused on capturing the LAI dynamics 344 

during 2008-2010 as observed from MODIS during the NAM growing season. A one-at-a-time 345 

sensitivity analysis was conducted to identify the importance of each parameter on the simulation 346 

of LAI and limit the sampling necessary for model calibration. Similarly, a manual calibration 347 

approach was used for the SCM parameters (Table 3). We used observations of SCM model 348 

parameters or initial conditions when available from the site or nearby areas (e.g. Búrquez et al., 349 

1999; Martínez-Yrízar et al., 1999; 2007; Núñez et al., 2001; Pavón et al., 2005). Though manual 350 

calibration was conducted, the combined models are amenable to automated estimation methods 351 

(e.g. Duan et al., 1993) due to the low computational demands for single site applications. The 352 

combination of tRIBS-VEGGIE and SCM allowed for simulation of RECO = Ra + Rh that was 353 

compared to RECO observations derived from the EC method during calibration and subsequently 354 

permitted a comparison of NEP between observations and simulations. We validated the model 355 

performance using a comparison between simulated and observed values of the aforementioned 356 

variables during the 2011-2012 period, which was not used in the model calibration effort.357 
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2.6. Climate change and CO2 fertilization experiments 358 

We obtained air temperature (monthly) and precipitation (3-hr) projections from the 359 

Coupled Model Intercomparison Project version 5 (CMIP5) (Taylor et al., 2012) for three 360 

General Circulation Models (GCMs) selected for their ability to represent the NAM system (Geil 361 

et al., 2013): CNRM-CM5, HadGEM2-ES and MIROC5. Single realizations from each model 362 

were selected for a near-future period (2030-2045) under the RCP8.5 emissions case (IPCC, 363 

2013), selected to match the 15-yr length of a historical forcing period (1990-2005) obtained 364 

from NLDAS (labeled as ‘HIST’). Given the hourly meteorological forcing requirements of 365 

tRIBS-VEGGIE, we implemented the stochastic downscaling method of Fatichi et al. (2013) to 366 

apply a set of factors of change derived from the individual GCMs and their averaged conditions 367 

(referred to hereafter as ‘AVE’) to the statistical properties obtained from the historical forcing. 368 

For each scenario, sets of change factors were calculated separately for the statistical properties 369 

of precipitation (e.g. mean, variance, skewness and frequency of no-precipitation at different 370 

aggregation periods (1, 6, 24, 72 hours) and mean monthly air temperature). Since GCM 371 

realizations were obtained at a 3-hr interval, we followed Fatichi et al. (2011) to extend the 372 

statistical properties to a finer hourly resolution for the full set of meteorological forcings 373 

(atmospheric pressure, wind speed, incoming solar and longwave radiation, air temperature, 374 

vapor pressure and precipitation). Since our study periods were relatively short (15-yr), we 375 

utilized the derived statistical metrics from the method of Fatichi et al. (2013) to generate 376 

synthetic (100-yr long) hourly forcings for each scenario (HIST, CNRM-CM5, HadGEM2-ES, 377 

MIROC5 and AVE). These should be considered as representative realizations of the climate 378 

system under stationary historical and near-future conditions, as simulated by these GCMs, 379 

allowing statistical sampling to be conducted. Two sets of simulations were performed for each 380 
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scenario to differentiate the effects of CO2 fertilization from meteorological changes: (1) No 381 

fertilization cases used the average of 365 ppm calculated from historical CO2 concentrations 382 

from 1990-2005 and (2) CO2 fertilization cases with a constant concentration of 482 ppm, 383 

obtained from RCP8.5 from 2030-2045 period (about a 32% increase in CO2 above historical). 384 

Since we are simulating synthetic 100-yr long scenarios, it was necessary to use a constant CO2 385 

concentration that best represent the conditions for each period (i.e., 1990-2005 and 2030-2045).  386 

 387 

3. Results and discussion  388 

3.1. Evaluation of simulated water, energy and carbon dynamics 389 

Simulated water, energy and carbon states and fluxes in the subtropical shrubland were 390 

compared to available observations over the calibration, validation and full study periods using 391 

three metrics: correlation coefficient (CC), bias (B) and mean absolute error (MAE) (Vivoni et 392 

al., 2006). Table 4 shows the metrics obtained for daily-averaged and hourly values, with a CC 393 

near one, a bias close to unity and a low MAE indicating a good match between the observed and 394 

simulated variables at both time scales and for all variables. For instance, the simulated surface 395 

energy fluxes (Rnet, H and LE) exhibit a good correspondence to observations, with high CC (> 396 

0.77), B near unity (within ± 0.16) and an MAE less than 33 W m-2 for hourly and daily values. 397 

Fig. 3 illustrates the model performance with respect to the surface energy fluxes by comparing 398 

seasonal cycles of Rnet, H and LE over the full study period. Note the dramatic change in the 399 

partitioning of Rnet into H and LE upon the onset of the NAM in July, with the arrival of summer 400 

storms increasing LE (or ET) substantially. Overall, the ecohydrological model adequately 401 

captures monthly variations in the surface energy fluxes, though a consistent underestimation of 402 

Rnet of 14.4 W m-2 is noted from December through June due to the lack of simulated vegetation 403 

(i.e. a decrease in LAI and a corresponding increase in albedo) affecting the absorption of solar  404 
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Variable      

Calibration period 
2008-2010 

Validation period 
2011-2012 

Full period 
2008-2012 

CC B MAE CC B MAE CC B MAE 

D
ai

ly
 V

al
ue

s 

SWC (m3 m-3) 0.86 0.91 0.03 0.93 0.65 0.01 0.86 0.83 0.02 
ET (mm) 0.91 0.81 0.01 0.94 0.89 0.02 0.92 0.84 0.01 
LAI (-) 0.88 1.06 0.39 0.91 1.00 0.36 0.89 1.04 0.38 
Rnet (W m-2) 0.85 0.91 19.46 0.97 0.87 15.05 0.91 0.90 17.70 
LE (W m-2) 0.91 0.81 9.22 0.94 0.89 11.2 0.92 0.84 10.01 
H (W m-2) 0.76 1.16 16.88 0.82 0.91 18.16 0.77 1.04 17.39 
GPP (g C m-2) 0.85 0.92 0.04 0.83 1.16 0.04 0.85 1.05 0.04 
RECO (g C m-2) 0.90 1.09 0.02 0.88 1.16 0.02 0.90 1.12 0.02 
NEP (g C m-2) 0.58 0.99 0.03 0.67 0.95 0.03 0.60 0.78 0.03 

H
ou

rl
y 

V
al

ue
s 

SWC (m3 m-3) 0.80 0.91 0.03 0.90 0.65 0.01 0.81 0.83 0.02 
ET (mm) 0.86 0.81 0.02 0.79 0.88 0.03 0.83 0.84 0.03 
Rnet (W m-2) 0.96 0.91 28.23 0.97 0.87 31.33 0.96 0.90 29.47 
LE (W m-2) 0.86 0.81 15.98 0.79 0.88 22.2 0.83 0.84 18.48 
H (W m-2) 0.90 1.16 24.65 0.91 0.91 45.33 0.90 1.04 32.92 
GPP (g C m-2) 0.70 1.08 0.07 0.75 1.29 0.05 0.72 1.15 0.06 
RECO (g C m-2) 0.73 1.09 0.04 0.69 1.16 0.04 0.71 1.12 0.04 
NEP (g C m-2) 0.58 0.97 0.07 0.63 0.94 0.06 0.60 0.78 0.06 

Table 4. Model Performance Metrics for Daily and Hourly Values. Correlation 405 
coefficient (CC), Bias (B) and Mean Absolute Error (MAE) are calculated for soil water content 406 
(SWC), evapotranspiration (ET), leaf area index (LAI), net radiation (Rnet), sensible heat flux 407 
(H), gross primary productivity (GPP), ecosystem respiration (RECO) and net ecosystem 408 
productivity (NEP) during calibration, validation and full periods.   409 

 410 
radiation, comparable to prior studies (Ivanov et al., 2008a). In addition, tRIBS-VEGGIE 411 

simulation tends to slightly overestimate sensible heat flux from May to August by an average of 412 

12.7 ± 3.8 W m-2, despite adequately capturing the latent heat flux, though the difference is 413 

within the monthly standard deviation (error bars) obtained across all years. Overall, monthly, 414 

daily and hourly comparisons demonstrate the robust capability of tRIBS-VEGGIE to capture 415 

surface energy fluxes, themselves tied to soil water content and vegetation conditions.  416 

Fig. 4 presents observed and simulated SWC in the top 10 cm, LAI dynamics and litterfall 417 

variations during the calibration and validation periods, and simulated soil temperature (Tsoil) 418 

derived from tRIBS-VEGGIE that are critical inputs to the SCM. Note how the summer rainy  419 
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 420 
Figure 3. Seasonal cycle of observed versus simulated surface energy fluxes over the 421 

study period (2008-2012): (a) net radiation (Rnet), (b) sensible heat flux (H) and (c) latent heat 422 
flux (LE). Symbols are monthly averages and ±1 standard deviation as error bars.  423 

 424 
season during the NAM leads to increases in SWC that were accurately captured by the model, 425 

as described in Table 4, with the tRIBS-VEGGIE model serving as an effective tool to 426 

interpolate within periods of observed data gaps. Simulated LAI captured well the primary 427 

summer growing season (CC ≥ 0.88, B within 0.06 of unity, MAE ≤ 0.39) and the differences 428 

between years. However, the model did not capture the observed (MODIS-based) LAI variations 429 

during the winter period, as noted by Bisht (2010). This is likely due to representing only the 430 

drought-deciduous component of the ecosystem (C3 shrubland) and possible issues related to the 431 

scale discrepancy between MODIS-based LAI estimates and the model application. Although 432 

this might lead to small errors in the estimation of annual biomass, the particularly strong 433 

summer season minimizes the role played by the winter in terms of physiological activity, as has 434 
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been noted with carbon fluxes in the NAM region (e.g. Huxman et al., 2004b; Pérez-Ruiz et al., 435 

2010; Scott et al., 2004; Verduzco et al., 2015). Correspondingly, model estimates of GPP were 436 

adequate at the hourly resolution as compared to derived values from the EC measurements and 437 

improved substantially at the daily resolution (Table 4), though we noted that overestimation 438 

during the NAM was typical (B = 1.23). Although LAI and the foliage carbon pool appears to 439 

have low interannual variations, the simulations of GPP that account for all carbon pools (root, 440 

stem and foliage) correspond well with observations and demonstrate higher values during wetter 441 

years, as expected. The few available data on Tsoil limited the possible tests of the model, though 442 

for 2011, tRIBS-VEGGIE matched the observations very well (CC = 0.97, B = 0.99 and MAE = 443 

1.9 °C for hourly values).  444 

 After the NAM ends, soil moisture and temperature conditions become less favorable for 445 

the drought-deciduous plants and the subtropical shrubland transitioned into dormancy (low LAI 446 

by November) after a complete foliage turnover (Fig. 4). Litterfall was simulated by tRIBS-447 

VEGGIE to account for about 30% of the GPP each year, with values ranging from 120 to 180 g 448 

C m-2 yr-1, consistent with studies in the Sonoran Desert (~157 g C m-2 yr-1) (Martínez-Yrízar et 449 

al., 1999). Along with the simulated SWC and Tsoil conditions, litterfall determined inputs to the 450 

SCM from which heterotrophic respiration (Rh) fluxes were simulated (Fig. 4b). Simulated 451 

carbon amounts in the litter and microbial biomass pools ranged from 20 to 200 g C m-2 and 452 

from 70 to 130 g C m-2, respectively, whereas the carbon amount in the humus pool remained 453 

relatively stable at 895-900 g C m-2 during the study period, similar to measured values in 454 

semiarid shrublands (e.g. Bolton et al., 1993; Cardoso et al., 2015; Cheng et al., 2015; Goberna 455 

et al., 2007). As expected, low amounts of Rh occur during the winter and spring and increase 456 

substantially after the first rainfall event during the NAM due to the available SWC and labile  457 
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 458 
Figure 4. (a) Comparison of daily observed (OBS) and simulated (SIM) soil water 459 

content (SWC) and leaf area index (LAI). Simulated Litterfall (Lit) in (a), soil temperature (Tsoil) 460 
and heterotrophic respiration (Rh) in (b) from tRIBS-VEGGIE (Litterfall, Tsoil) and SCM (Rh). 461 
 462 
substrate, consistent with Verduzco et al. (2015) and Zhang et al. (2014). Simulated litter 463 

decomposition decreased as the labile substrate amounts were depleted which leads to a 464 

reduction in the microbial biomass pool, similar to observations made in long-term incubation 465 

studies (Follett et al., 2007; Steinweg et al., 2008). As a result, the heterotrophic respiration was 466 

highly sensitive to the arrival of early storms during the NAM warm season, through its impact 467 

on SWC, and to the amount of labile substrate from the previous summer season, via the litterfall 468 

occurring at the end of the prior NAM.  469 

By capturing Rh in the SCM, the simulated ecosystem respiration (RECO = Ra + Rh) was 470 

compared to EC measurements in Fig. 5. Table 4 indicates a good correspondence between the 471 

observed and simulated RECO (CC > 0.73, B within 0.09 of unity, MAE < 0.04 g C m-2) at hourly 472 

and daily resolution. However, we noted discrepancies in the RECO for summers with high LAI, 473 

suggesting that autotrophic respiration (Ra) for plant growth and maintenance was overestimated 474 

to some extent. In addition, simulated RECO appeared flashier than the observations at the start of   475 
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 476 
Figure 5. Comparison of observed (OBS) versus simulated (SIM) of (a) gross primary 477 

productivity, (b) ecosystem respiration (RECO) along with simulated autotrophic respiration (Ra) 478 
and, (c) net ecosystem exchange. Simulated RECO was obtained by combining Ra from the 479 
ecohydrological model tRIBS-VEGGIE and Rh from the SCM. 480 

 481 
the summer season (Fig. 5b) due to rapid changes in Rh when both labile substrate and water 482 

were available and soil temperatures are high. As expected, the contribution of Rh to RECO 483 

decreased while the contribution of Ra increased during the temporal progression of the NAM 484 

season, reflecting the reduced role of microbial decomposition and the increased role of plant 485 

respiration during the growing period (e.g. Carbone et al., 2016).  486 

Fig. 5 and Table 4 also compare observed and simulated GPP, NEE and NEP, 487 

respectively, indicating a reasonable match at hourly and daily scales. Note that the positive NEE 488 

(carbon loss) occurring early in the summer would not have been possible to represent without 489 

simulating Rh in the SCM, consistent with the metabolic activity of microbial communities when 490 
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high quality litter inputs were available (Carbone et al., 2011; McCulley et al., 2004; Sponseller, 491 

2007; Thiessen et al., 2013; Unger et al., 2010). Furthermore, the negative NEE (carbon uptake) 492 

during the growing season and the stable values of NEE near zero during the dormant period 493 

were accurately captured by the models. Some issues are noted in 2010 which has an observed 494 

positive NEE in the late summer season that is not reproduced by the models. Nevertheless, 495 

similar patterns of annual NEP were found in the simulations and observations. During the study 496 

period, the subtropical shrubland acted as a net sink of carbon during most years (annual NEP 497 

from 33 to 105 g C m-2), with the exception of 2011, in which both the simulations and 498 

observations indicated a net source of carbon (NEP of -53.1 and -98.3 g C m-2). 499 

 500 
3.2. Meteorological changes in historical and climate change experiments  501 

Fig. 6 presents the outcomes of the stochastic downscaling procedure applied to historical 502 

(1990-2005, NLDAS) and near-future (2030-2045, CNRM-CM5, HadGEM2-ES, MIROC5 and 503 

AVE) periods in terms of the seasonal (monthly) cycle of air temperature and precipitation (a, b) 504 

and the probability density functions (PDFs) of summertime TA and P (c, d). These metrics were 505 

selected to show the range of meteorological changes in the experiments and summarize the 506 

model forcing tailored to the study site (i.e. a full set of hourly variables of 100-yr duration for 507 

each scenario). Due to the model performance and the nature of the seasonal dynamics, a focus is 508 

placed on the summer season (MJJAS) in the analyses, including a distinction between pre-509 

monsoon (MJ) and monsoon (JAS) periods. As expected from the RCP8.5 emissions case, a 510 

strong warming signal is present in the near-future, with increases in mean annual temperature 511 

ranging from +1.1 to +2.3 °C with respect to the HIST scenario. HadGEM2-ES exhibited the 512 

largest increase in mean summer TA (+2.6 °C), whereas CNRM-CM5 had the lowest increase 513 

(+1.0 °C) relative to HIST. When averaged over the three models, the AVE scenario indicates a 514 
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warming of +1.7 °C in mean summer TA and a shift from a range of 24.4 to 33.6 °C in HIST (±1 515 

standard deviation envelop) to 26.1 to 35.3 °C in AVE (Fig. 6a). These effects are illustrated 516 

nicely through the PDFs of summer (MJJAS) average TA, obtained from hourly values over the 517 

100-yr sample size (Fig. 6c). Note the increase in summer TA relative to HIST in the order: 518 

CNRM-CM5, MIROC5 and HadGEM2-ES. These estimates are consistent with projections for 519 

the North American monsoon (Cook & Seager, 2013; Lee & Wang, 2014; Maloney et al., 2014; 520 

Pachauri et al., 2014) suggesting a warming signal of +1.4 and 2.7°C between 2035 and 2065.  521 

A comparison of the seasonal cycle of precipitation from the scenarios (Fig. 6b) indicates 522 

that the use of factors of change in the stochastic downscaling method preserves rainfall 523 

seasonality as compared to the historical period with 60 to 80% of the annual precipitation 524 

occurring during summer (MJJAS), while leading to the differences in mean summer 525 

precipitation amounts (Fig. 6d). Among the GCMs, HadGEM2-ES had lowest mean summer 526 

precipitation in the near-future period (327 mm or -21 mm with respect to HIST), whereas 527 

MIROC5 exhibited the highest mean summer P (422 mm or +74 mm relative to HIST). When 528 

averaged over the three models, the AVE scenario had a nearly identical mean monthly variation 529 

of P as HIST (Fig. 6b), with a slightly expanded range of variability in August and October, and 530 

a similar distribution of summer total P (Fig. 6d). These comparisons are important since relative 531 

precipitation differences among GCMs (i.e. two GCMs have lower P and one has a higher P as 532 

compared to HIST) were quite larger than their temperature variations (i.e. all GCMs show rising 533 

TA). Precipitation variations in the scenarios might differ from other analysis of the CMIP5 534 

models (Cook & Seager, 2013) or other downscaling approaches applied to the NAM region 535 

(Castro et al., 2012; Cerezo-Mota et al., 2011) since the historical seasonality at a monthly  536 

This article is protected by copyright. All rights reserved.



 

28 

 537 
Figure 6. Comparison of meteorological conditions for historical (1990-2005) and 538 

climate change experiments (2030-2045) at the study site using representative realizations for 539 
HIST, CNRM-CM5, HadGEM2-ES, MIROC5 and AVE. (a, b) Monthly averages of daily air 540 
temperature (TA) and precipitation (P) with ± 1 standard deviation shown as a shaded envelope 541 
for HIST (gray) and AVE (pink). (c, d) Probability density functions (PDFs) of summer (MJJAS) 542 
average TA and total P. Numbers indicate mean values for each case.  543 

 544 
resolution was explicitly preserved, rather than allowed to evolve dynamically in the stochastic 545 

downscaling approach applied (Fatichi et al., 2013). Nevertheless, the considered scenarios 546 

captured a range of plausible near-future precipitation conditions, including increasing, 547 

decreasing or no net change in summer amounts, under a warming trend that are considered 548 

realistic for the purposes of identifying climate change impacts.  549 

 550 
3.3. Meteorological change effects on simulated water, energy and carbon dynamics 551 

Responses to meteorological variations imposed by the climate change experiments were 552 

assessed first in the absence of increases in atmospheric CO2 (365 ppm during 1990-2005). Fig.  553 
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 554 

Figure 7. Comparison of water, energy and carbon dynamics for historical (1990-2005) 555 
and climate change experiments (2030-2045) using representative realizations for HIST, CNRM-556 
CM5, HadGEM2-ES, MIROC5 and AVE. Monthly mean values and seasonal probability density 557 
functions of (a, e) soil water content (SWC), (b, f) evapotranspiration (ET), (c, g) gross primary 558 
productivity (GPP) and (d, h) net ecosystem productivity (NEP) during summer (MJJAS). 559 

 560 
7 shows the results of the various scenarios (HIST, CNRM-CM5, HadGEM2-ES, MIROC5 and 561 

AVE) in terms of the monthly-averaged SWC, ET, GPP and NEP (left panels) during the 562 

summer period (MJJAS) as well as the probability density functions of summer season values 563 

(right panels), selected to illustrate the rich set of ecohydrological outcomes. The monthly values 564 

are obtained as averages over the 100-yr periods, while the probability density functions show 565 

the full range of total summer season outcomes from each scenario and thus indicate interannual 566 

variability represented for historical and near-future conditions. The imposed air temperature and 567 

precipitation changes resulted in substantial summertime variations in the water, energy and 568 

carbon dynamics among the climate change experiments. For instance, scenarios with summer 569 
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precipitation lower than HIST (HadGEM2-ES and CNRM-CM5, Fig. 6d) exhibited decreases in 570 

SWC (Fig. 7a,e) and ET (Fig. 7b,f), whereas scenarios with summer P at or above HIST (AVE 571 

and MIROC5) showed SWC and ET that were similar to or higher than HIST. 572 

The strong correspondence between summer ET and SWC across simulations (R2 > 0.88, 573 

p < 0.05) is typical of seasonally-dry ecosystems (e.g. Scott et al., 2010; Vivoni et al., 2008). 574 

Nevertheless, air temperature differences among the climate change experiments also influenced 575 

ET through the sensitivity of plant physiological activity to warming. Specifically, stomatal 576 

conductance (gs) in the simulations was reduced with rising TA for a constant CO2 value due to 577 

increasing vapor pressure deficit and reductions on soil water content (Verduzco, 2016). As an 578 

example, the HadGEM2-ES scenario with the highest TA (Fig. 6c) exhibited increased 579 

evaporative demand, which causes complete vegetation failure leading to a reduction in ET due 580 

to elimination of the transpiration component. This is consistent with field studies in semiarid 581 

ecosystems reporting decreased stomatal conductance and carbon assimilation under warming-582 

induced stress (Hamerlynck & Knapp, 1996; Hamerlynck et al., 2000; Ogle & Reynolds, 2002; 583 

Serrat-Capdevila et al., 2011). 584 

Interestingly, differences among the climate change experiments were more pronounced 585 

when comparing carbon dynamics through the monthly evolution and summer total GPP (Fig. 586 

7c,g) and NEP (Fig. 7d,h). This can be explained through the compensating effects of rising TA 587 

and changing P on plant productivity and ecosystem respiration. For instance, MIROC5 and 588 

AVE exhibit similar values of TA that were both larger than HIST (Fig. 6c), but there is a larger 589 

summer P in MIROC5 as compared to both AVE and HIST (which have similar totals, Fig. 6d). 590 

While rising TA increases evaporative demand, higher P reduces soil moisture stress. The net 591 

result is an increase in GPP and NEP in MIROC5 relative to AVE, whereas MIROC5 and HIST 592 
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are fairly close with respect to summer season carbon fluxes. This suggests that higher summer P 593 

has the capacity to compensate for increased summer TA (MIROC5 vs. HIST), while 594 

maintaining similar precipitation under rising temperature leads to a lower GPP and NEP (AVE 595 

vs. HIST). This latter case is consistent with experimental studies where increased temperatures 596 

have been shown to unfavorably affect productivity under constant precipitation treatments (e.g. 597 

Epstein et al., 1997; Mowll et al., 2015; Wu et al., 2011). Moreover, large increases in TA along 598 

with decreases in P, like the HadGEM2-ES scenario, significantly decrease GPP in the 599 

subtropical shrubland such that there is a collapse in the simulated plant activity. As a result, 600 

increased summertime air temperatures and reduced precipitation could cause large impacts on 601 

vegetation productivity that would require further plant adaptations or variations in community 602 

composition, as suggested in prior work (Dieleman et al., 2015; Goyal, 2004; Lavee et al., 1998; 603 

Moritz & Agudo, 2013; Ponce Campos et al., 2013; Schwinning & Ehleringer, 2001).  604 

A closer inspection of the summer carbon fluxes in Fig. 8 reveals substantial variations 605 

between pre-monsoon (MJ) and monsoon (JAS) periods in the scenarios (HadGEM2-ES is 606 

omitted as GPP approached zero after 35 years of simulation) as well as the relative importance 607 

of heterotrophic (Rh) and ecosystem respiration (RECO) on net ecosystem productivity. For all 608 

scenarios, pre-monsoon magnitudes of Rh and RECO were smaller than respiration fluxes during 609 

the monsoon, consistent with the drier soil conditions and lower microbial biomass (Fig. 8a, b), 610 

as presented in other sites in the NAM region (Barron-Gafford et al., 2012). Furthermore, Rh is a 611 

larger fraction of RECO for the pre-monsoon period (Rh/RECO = 0.53, 0.52, 0.51 and 0.55 for 612 

HIST, CNRM-CM5, MIROC5 and AVE) as compared to monsoon conditions (Rh/RECO = 0.32, 613 

0.31, 0.33 and 0.34), indicating that Ra increases in importance during the summer. Variations in 614 

monsoon values of respiration fluxes across the scenarios follow patterns in gross primary 615 
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productivity (Fig. 7g), as shown in prior studies (Gómez‐Casanovas et al., 2012; Stoy et al., 616 

2009). For example, Rh was correlated well with GPP (R2 > 0.60, p < 0.05) such that scenarios 617 

with a higher GPP (HIST and MIROC5) exhibit higher Rh due to the increased availability of 618 

litterfall for decomposition (Fig. 8b,c). In contrast, pre-monsoon periods showed sensitivity to 619 

both GPP and SWC such that MIROC5 with a higher P had substantially larger Rh than those 620 

scenarios with similar TA but lower P. This is consistent with other studies indicating that 621 

productivity enhancements via water availability are more critical controls on respiration than air 622 

temperature changes in semiarid ecosystems (Janssens et al., 2001; Reichstein et al., 2003). Pre-623 

monsoon conditions also had substantially lower GPP and NEP as compared to the monsoon 624 

period (Fig. 8c,d), with more negative values of NEP indicating the relative importance of RECO 625 

as compared to GPP prior to the growing season. Furthermore, higher precipitation and rising air 626 

temperatures (MIROC5) promote a more substantial Rh that reduce NEP, whereas a lower P and 627 

higher TA (CNRM-CM5 and AVE) resulted in NEP closer to zero. As result, subtropical 628 

shrublands could become a larger net carbon source during pre-monsoon periods when warming 629 

is coupled with increased precipitation.  630 

 631 
3.4. CO2 fertilization effects on simulated water, energy and carbon dynamics 632 

 Superimposed effects of meteorological changes and increased atmospheric CO2 633 

concentrations (482 ppm over the 2030-2045 period) were assessed using a second set of 634 

simulations for each model scenario (CNRM-CM5, HadGEM2-ES, MIROC5 and AVE). Fig. 9 635 

presents the modeling outcomes for the climate change experiments (with and without CO2 636 

fertilization) relative to the HIST (1990-2005) simulation and the summer (MJJAS) averaged 637 

observations (OBS, 2008-2012). Differences between HIST and OBS were only due to the 638 

sampling of different time periods since simulations during 2008-2012 were consistent with OBS 639 
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(Table 4). For the higher CO2 scenarios, both GPP (+172.1, 188.5 and 210.5 g C m-2 for CNRM-640 

CM5, MIROC5 and AVE, respectively) and RECO (+146.9, 147.0 and 153.7 g C m-2) show 641 

increases when compared to the CO2 of 365 ppm case (Fig. 9a, b). Thus, for the same set of 642 

imposed meteorological changes, increased atmospheric CO2 enhances GPP, as seen in field and 643 

remote sensing studies (Ainsworth & Long, 2005; Donohue et al., 2013; Morgan et al., 2004; 644 

Wang et al., 2012), and that is consistent with higher observed ecosystem respiration. Larger 645 

enhancements in GPP and RECO were noted for scenarios with more precipitation during the 646 

summer (MIROC5 vs. CNRM-CM5). However, the increase in GPP due to CO2 fertilization 647 

exceeds that of RECO due to a reduction of the autotrophic respiration per unit leaf area (e.g. 648 

Drake et al., 1997). As a result, NEP from the CO2 fertilization experiments increased in terms of 649 

the median value and the range of values in all scenarios relative to simulations without a rising 650 

CO2 (Fig. 9c). Thus, CO2 fertilization offsets the meteorological impacts on NEP in the near-651 

future (2030-2045) at the expense of an increase summer interannual variability. The positive 652 

effects of fertilization on the median NEP varied across the scenarios (+34.6, 33.2 and 33.9 g C 653 

m-2) with a higher increase for AVE with the largest increase in WUE. In addition, the CO2 654 

fertilization altered NEP at the subtropical shrubland under the HadGEM2-ES scenario 655 

permitting ecosystem resilience and a positive carbon balance.   656 

The role of precipitation changes on enhancing NEP was further explored by comparing 657 

SWC for the two sets of CO2 experiments. As expected, higher GPP for scenarios with CO2 658 

fertilization was linked to a dramatic increase in LAI (+72%, 45% and 73% for CNRM-CM5, 659 

MIROC5 and AVE, respectively) relative to the cases with CO2 at 365 ppm, which resulted in a 660 

higher summertime ET (+18, 13 and 21 mm). While the higher ET under CO2 fertilization would  661 
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 662 
Figure 8. Comparison of carbon dynamics for historical (1990-2005) and climate change 663 

experiments (2030-2045) using representative realizations for HIST, CNRM-CM5, MIROC5 and 664 
AVE for pre-monsoon (MJ) and monsoon (JAS) periods. Probability density functions of (a) 665 
heterotrophic respiration (Rh), (b) ecosystem respiration (RECO), (c) gross primary productivity 666 
(GPP) and (d) net ecosystem productivity (NEP) totals during each period.  667 

 668 
be expected to deplete soil water, we found no appreciable changes in SWC of the top 10 cm of 669 

soil (+0.0013, 0.0007 and 0.0019 m3/m3), even for cases where summertime precipitation 670 

decreased or remained similar (CNRM-CM5 and AVE). These results are consistent with Fatichi 671 

et al. (2016a) who showed that increased WUE supports a higher LAI through soil water savings 672 

but leads to a more rapid consumption of SWC due to the increased vegetation. The effects of  673 
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 674 
Figure 9. Box-whisker plots of summer (MJJAS) RECO, GPP, NEP and WUE for the 675 

climate change experiments under meteorological changes and superimposed CO2 fertilization 676 
(labeled with subscript CO2) using representative realizations for HIST, CNRM-CM5, 677 
HadGEM2-ES, MIROC5 and AVE. Dashed horizontal line in each subplots represents summer 678 
averages from observations (OBS, 2008-2012).  679 

 680 
increased CO2 on gains in NEP despite a similar SWC when compared to scenarios without 681 

fertilization is attributed to ecosystem alterations in water use efficiency (WUE = GPP/ET, Fig. 682 

9d), which increased substantially (+68%, 42% and 69%) at the expense of higher summertime 683 

interannual variability. Thus, a secondary effect of CO2 fertilization is to allow more productive 684 
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summers (i.e. higher NEP), when precipitation is not limiting, through higher WUE. As a result, 685 

CO2 fertilization leads to a more efficient but variable ecosystem in terms of biomass production 686 

per amount of water consumed in most of the scenarios. Prior investigations have identified 687 

similar CO2 fertilization effects on WUE, including through experimental studies of semiarid 688 

plants (e.g. Leakey et al., 2009, Morgan et al., 2011, Xu et al., 2014) and analyses of remotely-689 

sensed data in drylands (e.g. Donohue et al., 2013, Lu et al., 2016). Nevertheless, it has been 690 

uncommon to measure WUE directly in semiarid regions with strong vegetation dynamics. As 691 

such, there is a need to conduct additional observational analyses in seasonally-dry ecosystems to 692 

compare with our model-based estimates of the CO2 fertilization effect on WUE (+40% to 70%), 693 

as have been performed in temperate forests (Kauwe et al., 2013). In our study, the increase in 694 

WUE was greater in the warmest scenario (HadGEM2-ES) since elevated CO2 allows plants to 695 

decrease stomatal conductance, while maintaining photosynthetic rates (Blumenthal et al., 2013), 696 

which resulted in positive NEP under CO2 fertilization. Similar effects have been observed under 697 

experimental CO2 fertilization (e.g. Cernusak et al., 2013; Conley et al., 2001) and more recently 698 

as a trend due to rising CO2 concentrations (e.g. Maseyk et al., 2011; Lu et al., 2016). 699 

 700 

4. Summary and conclusions 701 

In this work, we combined ecohydrological and soil carbon models to simulate water, 702 

energy and carbon dynamics in a seasonally-dry, semiarid ecosystem of northwestern México 703 

across temporal resolutions ranging from hourly to interannual variability. Compared to a set of 704 

field and remotely-sensed observations, the tRIBS-VEGGIE and SCM simulations accurately 705 

captured the seasonality of vegetation activity and carbon fluxes of subtropical shrublands 706 

(Méndez-Barroso et al., 2014; Villarreal et al., 2016; Vivoni et al., 2010a). In addition, the 707 

simulations represent the main features of net primary productivity in the region, specifically a 708 
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large respiration pulse early in the summer followed by a gradual switch to carbon fixation 709 

during the growing season (Huxman et al., 2004b; Verduzco et al., 2015; Yépez et al., 2007). 710 

This indicated that the simulation of soil (heterotrophic) respiration is an essential component for 711 

reproducing the observed carbon dynamics in this type of ecosystem. Furthermore, simulated Rh 712 

was highly sensitive to timing of the first storms during the NAM that increase soil water content 713 

and to the amount of labile substrate derived from litterfall from the previous summer. Insights 714 

gained from the ecohydrological and soil carbon model application could potentially serve to 715 

improve terrestrial biosphere models (e.g. Huntzinger et al., 2012) that have been shown to 716 

misrepresent carbon dynamics in semiarid shrublands. Nevertheless, the use of the combined 717 

models within this ecosystem could be improved by adding a plant functional type, such as 718 

winter annuals (Werk et al., 1983) or evergreen shrubs (Biederman et al., 2018), that is active 719 

from fall to spring. In this manner, the physiological activity during winters would enhance the 720 

representation of vegetation dynamics and impact the generation and decomposition of litterfall, 721 

thus affecting the respiratory efflux at the start of the following monsoon. This is consistent with 722 

Verduzco et al. (2015) and Zhang et al. (2014) who suggested the net carbon balance depends on 723 

the relative strength of the heterotrophic carbon release versus the primary productivity occurring 724 

later in the growing season. Overall, both the observed record and simulations over the studied 725 

(2008-2012) and historical (1990-2005) periods showed that the subtropical shrubland was 726 

generally a net carbon sink (positive NEP) over both growing season and annual time scales. 727 

Subsequently, we conducted a comparison of historical (1990-2005) and near-future 728 

(2030-2045) climate change scenarios obtained from the stochastic downscaling of three GCMs 729 

(Fatichi et al., 2011, 2013) tailored for input to the tRIBS-VEGGIE and SCM models. Increased 730 

near-future air temperatures reduced net ecosystem productivity, though a compensation effect 731 
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was identified for some of GCMs (e.g., MIROC5) exhibiting higher summer precipitation as 732 

compared to the historical scenario (HIST). This was attributed to higher plant stress under 733 

warmer temperatures and lower precipitation, which limited GPP. Since RECO was reduced to a 734 

lesser degree than GPP, due to warmer temperatures and short-term substrate availability, a 735 

lower NEP resulted in all scenarios, with compensation occurring when atmospheric CO2 736 

concentration was increased. When GCM projections of summer precipitation were substantially 737 

lower (HadGEM2-ES), a collapse of the simulated plant activity was observed (i.e. GPP 738 

approaching zero). It should be noted, however, that tRIBS-VEGGIE simulations do not 739 

currently account for plant thermal acclimation that can prevent ‘diebacks’ due to high 740 

temperatures (Hamerlynck et al., 2000; Salvucci & Crafts-Brandner, 2004) or for plant mortality 741 

processes induced by cavitation (Fatichi et al., 2016b; Plaut et al., 2012), and thus the collapse of 742 

plant activity under the HadGEM2-ES scenario is subject to considerable uncertainty.   743 

Our main finding was that reductions in NEP under near-future meteorological changes 744 

were significantly offset under the CO2 fertilization experiments for all considered GCMs. This 745 

was mainly attributed to an increase in WUE under elevated CO2 concentrations via an indirect 746 

effect on SWC as identified in other water-limited ecosystems (Fatichi et al., 2016b; Lu et al., 747 

2016). As a result of higher soil water content, the effects of warming-induced stress can be 748 

offset, leading to increases in NEP in the near-future for all GCMs relative to the historical 749 

period. Increases in WUE under CO2 fertilization help to explain how seasonally-dry ecosystems 750 

can recover as a net carbon sink with a strength similar to the historical conditions under the 751 

superimposed climate change effects. For the scenario with higher summer precipitation 752 

(MIROC5), near-future NEP is larger than HIST, whereas for the case with the highest summer 753 

temperature (HadGEM2-ES), CO2 fertilization prevents the collapse of the simulated plant 754 
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activity. Nevertheless, these projected changes are also subject to uncertainty since 755 

photosynthetic acclimation to elevated CO2 (Newingham et al., 2013; Mueller et al., 2016; Sage 756 

et al., 1989) is not currently considered. 757 

Given the important role of semiarid regions in the terrestrial carbon budget (Ahlström et 758 

al., 2015; Poulter et al., 2014), the effects of meteorological changes and CO2 fertilization on 759 

carbon dynamics in seasonally-dry ecosystems could have regional to global consequences. 760 

Under warming conditions, lower precipitation and increased atmospheric CO2, our study 761 

suggests that semiarid ecosystems under the influence of the North American monsoon would 762 

maintain a similar to actual net carbon balance by mid 21st century. The offsetting of impacts 763 

from meteorological changes in temperature and precipitation and those arising from CO2 764 

fertilization is an outcome of opposing controls on soil and plant-mediated carbon dynamics. 765 

However, changes in the timing, intensity and distribution of precipitation during the growing 766 

season (e.g. Cook & Seager, 2013; Geil et al., 2013), in particular an increase in monsoon 767 

rainfall (e.g. Hawkins et al., 2015; Robles-Morua et al., 2015), could lead to ecosystems acting as 768 

larger net carbon sinks, due to an increase in water use efficiency under higher CO2 769 

concentrations, with implications on the global carbon budget. This outcome is consistent with 770 

observed biomass trends indicating more efficient productivity in semiarid ecosystems (Donahue 771 

et al., 2013), including those in the NAM region (Forzieri et al., 2014). While additional research 772 

is necessary to confirm the findings of this study and their implications for terrestrial biosphere 773 

models used to capture feedbacks to the climate system (Huntzinger et al., 2012), the combined 774 

use of dynamic ecosystem level measurements and numerical modeling is a promising avenue 775 

for deciphering the net effect of climate change on the water, energy and carbon dynamics of 776 

seasonally-dry, semiarid ecosystems.  777 
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