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A Proofs

In this appendix, we find the limiting distribution of T = max(x̄/ȳ, ȳ/x̄) and T = |x̄ − ȳ|
within each partition, and note the corresponding trend in p-values across the partitions. In

the process, we prove the results discussed in Section 3. We structure this appendix around

the statistic T = max(x̄/ȳ, ȳ/x̄) to help to motivate our discussion, and then extend our

results to the statistic T = |x̄− ȳ|.
As before, we denote the total sample size as N , and we require that N ≥ 2 to allow for

at least one observation in each sample. Let {mN}∞N=2, {nNx }∞N=2, and {nNy }∞N=2 be sequences

such that mN/N → τ and nNx /N → λ as N →∞, and for all N , nNy = N − nNx . We require

that for all N , 0 < mN ≤ nNx ≤ nNy < N , and similarly, 0 < τ ≤ λ ≤ 1− λ < 1. We denote

the observed data as xN and yN , which are nNx × 1 and nNy × 1 vectors, respectively.

Let δm
N

x = (δm
N

x,1 , . . . , δ
mN

x,nN
x

)′ and δm
N

y = (δm
N

y,1 , . . . , δ
mN

y,nN
y

)′ be nNx × 1 and nNy × 1 indicator

vectors, respectively, with 1’s corresponding to indices of xN and yN that are exchanged for

a particular permutation π and zero elsewhere. To be specific, for a permutation π ∈ Π(mN),

we define δm
N

x,i and δm
N

y,j as

δm
N

x,i =

1 if π(i) > nNx

0 if π(i) ≤ nNx

i = 1, . . . , nNx

δm
N

y,j =

1 if π(nNx + j) ≤ nNx

0 if π(nNx + j) > nNx

j = 1, . . . , nNy .
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For completeness, we note that for fixed m and i 6= j, and dropping dependence on N ,

E[δmx,i] = m/nx E[δmy,i] = m/ny

Var(δmx,i) =
m

nx

(
1− m

nx

)
Var(δmy,i) =

m

ny

(
1− m

ny

)
Cov(δmx,i, δ

m
x,j) =

−m(nx −m)

n2
x(nx − 1)

Cov(δmy,i, δ
m
y,j) =

−m(ny −m)

n2
y(ny − 1)

We denote the ratio of means as R = x̄/ȳ. With the permutation test, for each permu-

tation π in partition mN , we calculate the statistic (ignoring for now the max function used

earlier)

R(mN) =

1
nN
x

[(1− δmN

x )′xN + δm
N

y

′
yN ]

1
nN
y

[δmN

x
′
xN + (1− δmN

y )′yN ]
.

As for all permutation tests, R(mN) is conditional on the data. The random quantities

are (δm
N

x , δm
N

y ), which indexed by N , form a triangular array of identically distributed,

dependent random variables. We can rewrite R(mN) as

R(mN) =
nNy
nNx

nNx x̄+
(∑nN

y

j=1 δ
mN

y,j y
N
j −

∑nN
x
i=1 δ

mN

x,i x
N
i

)
nNy ȳ −

(∑nN
y

j=1 δ
mN

y,j y
N
j −

∑nN
x
i=1 δ

mN

x,i x
N
i

)


= g

 nN
y∑

j=1

δm
N

y,j y
N
j −

nN
x∑

i=1

δm
N

x,i x
N
i︸ ︷︷ ︸


W (mN )

. (1)

Writing R(mN) as a function of W (mN) will make it straightforward to generalize our

results. We note that conditional on the observed data xN and yN , all terms in R(mN) are

constant except for W (mN).

We can further split W (mN) into

W (mN) =

nN
y∑

j=1

δm
N

y,j y
N
j︸ ︷︷ ︸

Wy(mN )

−
nN
x∑

i=1

δm
N

x,i x
N
i︸ ︷︷ ︸

Wx(mN )

(2)

Following Theorem 2.8.2 in Lehmann (1999, p. 116), restated in Theorem 1 below, under

certain conditions both Wy(m
N) and Wx(m

N) in (2) converge to normal random variables,

in which case W (mN) also converges to a normal random variable.

We make a few observations before stating Theorem 1. The following statements focus
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on Wy(m
N), but equivalent statements apply to Wx(m

N). First, we note that conditional

on yN , Wy(m
N) is the sum of a random sample without replacement of mN elements from a

finite population yN = (yN1 , . . . , y
N
nN
y

)′. We consider a sequence of populations of increasing

size, yN , N = 2, 3, . . ., and random samples vN = (vN1 , . . . , v
N
mN )′ from each yN . To be

specific, for fixed δm
N

y , let K = {j : δm
N

y,j = 1} be the set of indices corresponding to the

selected elements of yN . Then writing K = {k1, . . . , kmN}, we have vN = (yNk1 , . . . , y
N
k
mN

)′.

Let v̄mN = (1/mN)
∑mN

k=1 v
N
k , and ȳnN

y
= (1/nNy )

∑nN
y

j=1 y
N
j . Then as shown by Lehmann

(1999, p. 116-117),

E[v̄mN |yN ] = ȳnN
y

Var(v̄mN |yN) =
nNy −mN

mN(nNy − 1)

1

nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2.

We can now state Theorem 1.

Theorem 1 (Theorem 2.8.2, Lehmann (1999)).

v̄mN − E[v̄mN |yN ]√
Var(v̄mN |yN)

→ N(0, 1)

provided that mN → ∞ and nNy − mN → ∞ as N → ∞, and either of the following two

conditions is satisfied:

i) mN/nNy is bounded away from 0 and 1 as N →∞, and

max(yNj − ȳnN
y

)2∑
j(y

N
j − ȳnN

y
)2
→ 0

or

ii)
max(yNj − ȳnN

y
)2∑

j(y
N
j − ȳnN

y
)2/nNy

remains bounded as N →∞.

For a proof, please see Lehmann (1999) and references therein, particularly the corollary

to Lemma 4.1 in Hájek (1961), and Example 4.1 and Section 5 in Hájek (1961). Our con-

straints on mN , nNx , and nNy imply that mN → ∞ and nNy − mN → ∞ as N → ∞. The

other conditions in Theorem 1 require that the contribution of each deviance to the sum of

deviances becomes negligible as the sample size becomes large. This excludes data coming

from distributions with a non-finite variance, such as the Cauchy distribution.
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Applying Theorem 1 to W (mN) we get Corollary 1.

Corollary 1. Conditional on xN and yN , and assuming the conditions in Theorem 1 hold,

W (mN)− µ(mN)√
V (mN)

→ N(0, 1),

where µ(mN) = µy(m
N)− µx(mN) and V (mN) = Vy(m

N) + Vx(m
N), with

µy(m
N) = E[Wy(m

N)|yN ] = mN ȳnN
y

µx(m
N) = E[Wx(m

N)|xN ] = mN x̄nN
x

and

Vy(m
N) = Var(Wy(m

N)|yN) = mN
nNy −mN(
nNy − 1

)
nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2

Vx(m
N) = Var(Wx(m

N)|xN) = mN nNx −mN

(nNx − 1)nNx

nN
x∑

i=1

(xNi − x̄nN
x

)2.

Before proving Corollary 1, we state Lemma 1.

Lemma 1. For all m and N , Cov
(
Wx(m

N),Wy(m
N)|x,y

)
= 0.

Proof of Lemma 1. First note that for all m,N, i, and j, δm
N

x,i ⊥ δm
N

y,j . This is a direct

consequence of the sampling procedure implied by the permutation, in which we condition

on the number of elements to exchange (m), and then randomly select m elements of x and

m elements of y. Therefore, dropping dependence on N ,

E [Wx(m)Wy(m)|x,y] = E

[(∑
i

δmx,ixi

)(∑
j

δmy,jyj

)
|x,y

]

= E

[∑
i

∑
j

δmx,ixiδ
m
y,jyj|x,y

]
=
∑
i

∑
j

xiyjE
[
δmx,iδ

m
y,j

]
=
∑
i

xiE
[
δmx,i
]∑

j

yjE
[
δmy,j
]

(δmx,i ⊥ δmy,j)

= E [Wx(m)|x]E [Wy(m)|y] .
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Therefore,

Cov
(
Wx(m

N),Wy(m
N)|x,y

)
= E

[
Wx(m

N)Wy(m
N)|x,y

]
− E

[
Wx(m

N)|x
]
E
[
Wy(m

N)|y
]

= 0

which proves the lemma.

Now we prove Corollary 1.

Proof of Corollary 1. Working with the first term in (2), we have

Wy(m
N) =

nN
y∑

j=1

δm
N

y,j y
N
j = mN v̄mN

Therefore, as shown by Lehmann (1999, p. 116-117),

µy(m
N) = E[Wy(m

N)|yN ] = mN ȳnN
y

and

Vy(m
N) = Var(Wy(m

N)|yN) =
(
mN
)2 nNy −mN

mN(nNy − 1)

1

nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2.

= mN
nNy −mN

(nNy − 1)

1

nNy

nN
y∑

j=1

(yNj − ȳnN
y

)2.

Similarly, working with the second term in (2),

µx(m
N) = E[Wx(m

N)|xN ] = mN x̄nN
x

Vx(m
N) = mN n

N
x −mN

(nNx − 1)

1

nNx

nN
x∑

i=1

(xNi − x̄nN
x

)2.

Applying Theorem 1, we have

Wy(m
N)− µy(mN)√
Vy(mN)

=
v̄mN − E[v̄mN |yN ]√

Var(v̄mN |yN)
→ N(0, 1).
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Similarly, we have

Wx(m
N)− µx(mN)√
Vx(mN)

→ N(0, 1).

By Lemma 1, we have

Var
(
Wy(m

N)−Wx(m
N)
∣∣x,y) = Vy(m

N) + Vx(m
N).

Since uncorrelated normal random variables are independent, for N sufficiently large we also

have Wy(m
N) ⊥ Wx(m

N). Then since the sum of independent normal random variables is

also normal, for N sufficiently large we have

W (mN) = Wy(m
N)−Wx(m

N) ∼ N
(
µy(m

N)− µx(mN), Vy(m
N) + Vx(m

N)
)
.

Equivalently, we have
W (mN)− µ(mN)√

V (mN)
→ N(0, 1)

which proves the corollary.

In the rest of this appendix, we assume that N is sufficiently large for asymptotic nor-

mality to hold for any given partition m, so we drop N from the notation.

In Corollary 2 below, we apply the delta method to show that for sufficiently large N ,

the permutation distribution of the statistic R(m) is normal within each partition.

Corollary 2. Let R = g(W ), and suppose that g′(µ(m)) > 0 exists. Also, suppose the condi-

tions in Theorem 1 hold. Then conditional on the observed data x,y, and for N sufficiently

large, R(m) ∼ N(ν(m), σ2(m)), where the mean ν(m) and variance σ2(m) are functions of

the partition m.

Proof of Corollary 2. By Corollary 1, W is normal for N sufficiently large. Then by the

delta method, g(W ) also converges to a normal distribution, which proves the corollary.

The result in Corollary 2 for the one-sided statistic R(m) leads directly to the following

result for its two-sided counterpart T (m), given in Corollary 3 below. However, we first

define a new function gconj, the conjugate of g.

Definition 1 (Conjugate gconj). Let g(W ) be a function of W , in which the only other terms

are the constants nx, ny, x̄ and ȳ. The conjugate gconj is formed by switching the place of nx

with ny, and x̄ with ȳ, and reversing the sign on each occurrence of W .
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For example, for R = x̄/ȳ, we have

g =
ny
nx

(
nxx̄+W

nyȳ −W

)
gconj =

nx
ny

(
nyȳ −W
nxx̄+W

)
and for R = x̄− ȳ, as shown below, we have

g = x̄− ȳ +

(
1

nx
+

1

ny

)
W gconj = ȳ − x̄−

(
1

ny
+

1

nx

)
W.

We note that (gconj)conj = g.

Corollary 3. Let T (m) = max (g(W (m)), gconj(W (m))). Under the conditions of Theorem

1, and assuming g′(µ(m)) > 0 and (gconj)′(µ(m)) > 0 exist, then for N sufficiently large,

Pr (T (m) ≥ t|x,y) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[
ξconj (min {m, 2mmax −m})

]
,

(3)

where Φ is the standard normal CDF, mmax = arg max f(m), and

ξ(m) =
t− g (µ(m))

g′ (µ(m))
√
V (m)

, ξconj(m) =
t− gconj (µ(m))

(gconj)′ (µ(m))
√
V (m)

.

Proof of Corollary 3. For m = 1, . . . ,mmax,

Pr(T (m) > t|x,y) = Pr (g(W (m)) > t) + Pr
(
gconj(W (m)) > t

)
= Pr

(
Z >

t− g (µ(m))

g′ (µ(m))
√
V (m)

)
+ Pr

(
Z >

t− gconj (µ(m))

(gconj)′ (µ(m))
√
V (m)

)
(4)

≈ 1− Φ (ξ(m)) + 1− Φ
(
ξconj(m)

)
(5)

where Z is a standard normal random variable and µ(m) and V (m) are given in Corollary

1. Line (4) follows from the delta method, and line (5) follows from Corollary 2 for N

sufficiently large.

Furthermore, since the partition-specific p-values are approximately symmetric about

mmax (the p-values are exactly symmetric for equal sample sizes, and the symmetry worsens

as the sample sizes become more imbalanced), we can get the asymptotic p-value for any

8



partition m = 1, . . . ,min(ny, nx) as

Pr (T (m) ≥ t|x,y) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[
ξconj (min {m, 2mmax −m})

]
.

(6)

This proves the corollary.

We also note that when nx = ny, the approximation in (3) is equally accurate for parti-

tions both smaller and larger than mmax. However, for unequal sample size, the approxima-

tion is less accurate for partitions larger than mmax.

In summary, and to be explicit with all quantities, for the statistic T = max(x̄/ȳ, ȳ/x̄),

we have

Pr (T (m) ≥ t|x,y) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[
ξconj (min {m, 2mmax −m})

]
where Φ is the standard normal CDF, mmax = arg maxm f(m), f(m) =

(
N
nmin

)−1(nx

m

)(
ny

m

)
,

nmin = min(nx, ny), and 1

ξ(m) =
t− g (µ(m))

g′ (µ(m))
√
V (m)

ξconj(m) =
t− gconj (µ(m))

(gconj)′ (µ(m))
√
V (m)

g(µ(m)) =
ny
nx

(
nxx̄+ µ(m)

nyȳ − µ(m)

)
gconj(µ(m)) =

nx
ny

(
nyȳ − µ(m)

nxx̄+ µ(m)

)
g′ (µ(m)) =

ny
nx

(
nyȳ + nxx̄

(nyȳ − µ(m))2

)
(gconj)′ (µ(m)) = −ny

nx

(
nxx̄+ nyȳ

(nxx̄+ µ(m))2

)

where

µ(m) = m(ȳ − x̄)

V (m) = m

[
ny −m

ny(ny − 1)

ny∑
j=1

(yj − ȳ)2 +
nx −m

nx(nx − 1)

nx∑
i=1

(xi − x̄)2

]
.

To get the expected trend shown Figure 1 of Section 3, we set t = x̄/ȳ (the observed

test statistic), and substituted expected values for the sample quantities. For example, if we

generated the elements of x as iid realizations of a random variable X, then we substituted

E[X] for x̄, and Var(X) for (nx − 1)−1
∑nx

i=1(xi − x̄)2.

We note that we get similar results for T = |x̄−ȳ|. In this case we can write R(m) = x̄−ȳ
1Implementation note: In the fastPerm package, we use the same function to compute ξ and ξconj,

reversing the order of the arguments related to x and y.
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Figure S1: Trend in p-values across the partitions for T = |x̄− ȳ| with nx = ny =
100, µx = 4, µy = 2, and σ2

x = σ2
y = 1.

as

R(m) =
1

nx
[(1− δx)′x+ δ′yy]− 1

ny
[δx
′x+ (1− δy)′y]

= x̄− ȳ +

(
1

nx
+

1

ny

)
W (m)

Therefore, (3) still holds, but with g(µ(m)) = x̄ − ȳ +
(
n−1
x + n−1

y

)
µ(m) and g′(µ(m)) =(

n−1
x + n−1

y

)
, with the corresponding results for gconj and (gconj)′. All other formula are the

same as those given for the ratio of means. The resulting trend for T = |x̄− ȳ| is shown in

Figure S1 with nx = ny = 100, µx = 4, µy = 2, and σ2
x = σ2

y = 1.

While this appendix shows that the nearly log linear trend holds for both T = |x̄ − ȳ|
and T = max(x̄/ȳ, ȳ/x̄), we speculate that the trend might be similar for other statistics

that are smooth functions of the means. The results for R = x̄/ȳ and R = x̄ − ȳ above

suggest a general formulation of permutation statistics in terms of W , which might help

with this effort. This general formulation is presented in Proposition 1, in which R could be

any statistic of the sample means, and not necessarily the ratio or difference of means.

Proposition 1. Let R(m) = R(x̄∗(m), ȳ∗(m)|x,y) be any statistic of the permuted sample

means conditional on observed data x,y, where x̄∗(m) and ȳ∗(m) are the means of a permuted

dataset (x∗′,y∗′)′ corresponding to a permutation π ∈ Π(m). Then we can always write

R(m) = g(W (m)) for some function g that is conditional on the observed data x,y.

Proof of Proposition 1. Noting that x̄∗(m) = x̄+(1/nx)W (m) and ȳ∗(m) = ȳ−(1/ny)W (m),
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we have

R (x̄∗(m), ȳ∗(m)|x,y) = R (x̄+ (1/nx)W (m), ȳ − (1/ny)W (m)|x,y)

= g (W (m))

where the last line follows, because x̄, ȳ, nx, and ny are constant conditional on x and y,

and can be absorbed into the functional form of R. This proves the proposition.

Then for any one-sided statistic R = g(W ), in order for asymptotic normality to hold

within each partition for the corresponding two-sided statistic T , we must check the con-

ditions in Theorem 1 and Corollary 3. However, it remains to be shown what additional

properties are required to ensure a log concave trend in p-values across the partitions, so we

must currently check new statistics on a case-by-base basis.

B Parametric p-values for ratios and differences of gamma

random variables

The results in this appendix are used in our simulations of exponential and gamma random

variables to obtain parametric approximations to the permutation p-value.

B.1 Ratio of means

Let F be the beta prime CDF (also called a Pearson type VI distribution (Johnson et al.,

1995, p. 248)), and let f be the corresponding pdf. Following the form given by Becker and

Klößner (2016), for Z ∼ F ,

fZ(z;α1, α2, s, q) =

(
z−q
s

)α1−1 (
1 + z−q

s

)−α1−α2

sB(α1, α2)

where B is the beta function. As we show in this section, if Xi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy),

then X̄/Ȳ and Ȳ /X̄ follow scaled beta prime distributions. This allows us to approximate

the permutation p-value for the ratio statistic with the p-value from a beta prime. We

note that the beta prime p-value is not conditional on the data, so is not the same as the

permutation p-value, but simulation results suggest it is a reasonable approximation.

As in Section 5.2, let xi, i = 1, . . . , nx, and yj, j = 1, . . . , ny, be realizations of the

respective random variables Xi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy). We consider the quantity

T = max
(
X̄/Ȳ , Ȳ /X̄

)
, and denote the observed statistic as t = max (x̄/ȳ, ȳ/x̄). Then

11



under the null hypothesis that λx = λy, the p-value from the beta prime distribution is

pβ = Pr(T ≥ t)

= Pr
(
max(X̄/Ȳ , Ȳ /X̄) ≥ t

)
= Pr

({
X̄/Ȳ ≥ t

}
∪
{
Ȳ /X̄ ≥ t

})
= Pr

(
X̄/Ȳ ≥ t

)
+ Pr

(
Ȳ /X̄ ≥ t

)
(disjoint) (7)

= Pr

(
ny
nx

∑
iXi∑
j Yj
≥ t

)
+ Pr

(
nx
ny

∑
j Yj∑
iXi

≥ t

)
(8)

= 1− F (t;α1 = nx, α2 = ny, s = ny/nx, q = 0) (9)

+ 1− F (t;α1 = ny, α2 = nx, s = nx/ny, q = 0) .

The equality in (7) follows because X̄/Ȳ ≥ t if and only if Ȳ /X̄ < t (assuming t 6= 1, which

occurs with probability one). Line 9 follows from well known properties, which we outline

below.

Let U1 ∼ Gamma(α1, λ1) and U2 ∼ Gamma(α2, λ2), U1 ⊥ U2. Also, let V1 = h1(U1, U2) =

U1/U2 and V2 = h2(U1, U2) = U2 with respective inverse transformations U1 = h−1(V1, V2) =

V1V2 and U2 = h−1(V1, V2) = V2. Noting that the Jacobian of the transformation is

J =

∣∣∣∣∣∂u1/∂v1 ∂u1/∂v2

∂u2/∂v1 ∂u2/∂v2

∣∣∣∣∣ =

∣∣∣∣∣v2 v1

0 1

∣∣∣∣∣ = v2,

we have

fV1,V2(v1, v2) = fU1,U2

(
h−1

1 (v1, v2), h−1
2 (v1, v2)

)
|J |

=
λα1

1

Γ(α1)
(v1v2)α1−1e−λ1v1v2

λα2
2

Γ(α2)
vα2−1

2 e−λ2v2v2

=
λα1

1 λ
α2
2

Γ(α1)Γ(α2)
vα1−1

1 vα1+α2−1
2 e−(λ1v1+λ2)v2 .
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Therefore,

fV1(v1) =

∫ ∞
0

fV1,V2(v1, v2)dv2

=
λα1

1 λ
α2
2

Γ(α1)Γ(α2)
vα1−1

1

∫ ∞
0

vα1+α2−1
2 e−(λ1v1+λ2)v2dv2

=
λα1

1 λ
α2
2

Γ(α1)Γ(α2)
vα1−1

1

Γ(α1 + α2)

(λ1v1 + λ2)α1+α2

=

(
v1

λ2/λ1

)α1−1 (
1 + v1

λ2/λ1

)−α1−α2

(λ2/λ1)B(α1, α2)
,

which is a generalized beta prime distribution with shape parameters α1 and α2, location

parameter q = 0, and scale parameter s = λ2/λ1. In the case where λ1 = λ2, this simplifies

to the standard beta prime distribution with shape parameters α1 and α2. This shows

that whenever U1 ∼ Gamma(α1, λ), U2 ∼ Gamma(α2, λ), and U1 ⊥ U2, we have U1/U2 ∼
F (α1, α2, 1, 0). We note that some sources report that for U1 ∼ Gamma(α1, λ1), U2 ∼
Gamma(α2, λ2), and U1 ⊥ U2, we have U1/U2 ∼ F (α1, α2, 1, 0) if λ1 = λ2 = 1 (e.g., Leemis

and McQueston, 2008). However, as shown above, this also holds when λ1 = λ2 6= 1.

Now let Z = (
∑nx

i=1 Xi) /
(∑ny

j=1 Yi
)
. Since Xi

iid∼ Exp(λx) and Yj
iid∼ Exp(λy), it follows

that
∑nx

i=1Xi ∼ Gamma(nx, λx) and
∑ny

j=1 Yj ∼ Gamma(ny, λy). Then under the null of

λx = λy, the results above give Z ∼ F (nx, ny, 1, 0) and 1/Z ∼ F (ny, nx, 1, 0).

Now let W = sZ. Then by a change of variable, we have

fW (w) =

(
w
s

)nx−1 (
1 + w

s

)−nx−ny

sB(nx, ny)

Applying this result to (8), we have

ny
nx

∑nx

i=1Xi∑ny

j=1 Yj
∼ F (·;nx, ny, ny/nx, 0)

and similarly,

nx
ny

∑ny

j=1 Yj∑nx

i=1Xi

∼ F (·;ny, nx, nx/ny, 0)

Then (9) follows directly from (8).

To compute the CDF values for the scaled beta prime, we used the PearsonDS package

for R (Becker and Klößner, 2016).

Similarly, for gamma random variables Xi
iid∼ Gamma(αx, λx) and Yj

iid∼ Gamma(αy, λy),

13



∑nx

i=1Xi ∼ Gamma(nxαx, λx) and
∑ny

j=1 Yj ∼ Gamma(nyαy, λy). Then letting

Z = (
∑nx

i=1Xi) /
(∑ny

j=1 Yj
)
, under the null of H0 : λx = λy, αx = αy = α, we have Z ∼

F (·;nxα, nyα, 1, 0) and 1/Z ∼ F (·;nyα, nxα, 1, 0), so (ny/nx)Z ∼ F (·;nxα, nyα, ny/nx, 0)

and (nx/ny)Z ∼ F (·;nyα, nxα, nx/ny, 0). Therefore,

pβ = Pr(T ≥ t) = 1− F (t;nxα, nyα, ny/nx, 0)

+ 1− F (t;nyα, nxα, nx/ny, 0) .

In our simulations, we generated data under the alternative H1 : λx 6= λy, αx = αy = α

for various values of α. While we would ideally also simulate under the alternatives H1 :

λx 6= λy, αx 6= αy and H1 : λx = λy, αx 6= αy, in these scenarios it is not possible to compute

pβ under H0 : αx = αy, λx = λy, because α does not disappear in the beta prime density.

Consequently, we would have to compute pβ under H0 : αx = αy = c, λx = λy for a specified

constant c. This is more restrictive than the null hypothesis for the permutation test, and

consequently, it would not be clear how to compute the parametric p-value to use as an

approximation for the true permutation p-value.

B.2 Difference in means

Let MX(t) be the moment generating function (MGF) for random variable X. Then for Xi
iid∼

Gamma(α, λ), i = 1, . . . , n, M 1
n

∑n
i=1Xi

(t) = M∑n
i=1Xi

(t/n) =
∏n

i=1MXi
(t/n) =

(
1− 1

nλ
t
)−nα

,

which is the MGF for a Gamma distribution with shape parameter nα and rate parameter

nλ. Therefore, X̄ ∼ Gamma(nα, nλ).

Then for Xi
iid∼ Gamma(α, λ), i = 1, . . . , nx and Yj

iid∼ Gamma(α, λ), j = 1, . . . , ny, the

distribution of X̄ − Ȳ , which we denote as G, is (Klar, 2015)

G(z) = Pr(X̄ − Ȳ ≤ z) = C

∫ ∞
max{0,−z}

vnyα−1e−nyλvγ (nxα, nxλ(v + z)) dv︸ ︷︷ ︸
A(z)

, (10)

where γ(a, b) =
∫ b

0
sa−1e−sds is the lower incomplete gamma function, and

C = (nyλ)nyα/ (Γ(nxα)Γ(nyα)) is the normalizing constant. Klar (2015) also gives the

density for X̄ − Ȳ , which was derived by Mathai (1993).

However, in our simulations we found that several scenarios led to numerical problems in

computing (10) due to large gamma and incomplete gamma function values. These were not

solved by computing G(z) = exp{nyα log(nyλ)− log Γ(nxα)− log Γ(nyα) +log(A(z))} where

log Γ is the log gamma function. As an alternative, we used a saddlepoint approximation
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for (10). As described below, the saddlepoint approximation is accurate and did not pose

computational difficulties.

To compute the saddlepoint approximation, note that under H0 : λx = λy = λ, αx =

αy = α, the MGF of X̄ − Ȳ is

MX̄−Ȳ (t) =

(
1− 1

nxλ
t

)−nxα(
1 +

1

nyλ
t

)−nyα

t ∈ (−nyλ, nxλ),

and the cumulant generating function is

K(t) = log (MX̄−Ȳ (t)) = −nxα log

(
1− t

nxλ

)
− nyα log

(
1 +

t

nyλ

)
.

After some algebra, we get the derivatives

K ′(t) =
α(nx + ny)t

(nxλ− t)(nyλ+ t)

K ′′(t) = α(nx + ny)
t2 + nxnyλ

2

[(nxλ− t)(nyλ+ t)]2
.

Let t̂ = t̂(z) ∈ (−nyλ, nxλ) be the solution to K ′(t̂) = z. Then as Butler (2007) describes,

the saddlepoint approximation of the cumulative distribution for z 6= E[X̄ − Ȳ ] = 0 is

(Lugannani and Rice, 1980)

Ĝ(z) = Φ(ŵ) + φ(ŵ)

(
1

ŵ
− 1

û

)
, (11)

where ŵ = sgn(t̂)
√

2
[
t̂z −K(t̂)

]
, û = t̂

√
K ′′(t̂), and Φ and φ are the standard normal

distribution and density, respectively. The two-sided p-value is then psaddle = Pr(T ≥ t) =

1− Ĝ(t;nx, ny, λ, α) + Ĝ(−t;nx, ny, λ, α).

Figure S2 compares the true distribution (10) and saddlepoint approximation (11) for

nx = ny = 100, α = 1, and λ = 4. Figure S2 shows agreement between the true distribution

and saddlepoint approximation far into the tail. The trend is similar for other parameter

values (not shown), and appears to be reliable up to quantile values of around 10−200. We also

note that through simulations, we found that both the true distribution and the saddlepoint

approximation agreed with the empirical distribution for a variety of parameter values.
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Figure S2: Comparison of true (G) and saddlepoint approximation (Ĝ) distribu-
tions of the difference of gamma random variables. The diagonal dashed line has
slope of 1 and an intercept of 0, and indicates agreement. This figure appears in
color in the electronic version of this article.

Both the true distribution (10) and saddlepoint approximation (11) are functions of α

and λ. Neither parameter disappears under the null of H0 : αx = αy = α, λx = λy = λ,

so we must set α and λ to fixed values to compute p-values. To do this in the simulations,

we pooled the generated data, computed the maximum likelihood estimates (MLEs), and

plugged the MLEs into (11). In the simulations, we found that allowing both α and λ to

vary led to less reliable p-values from the saddlepoint approximation than allowing just one

parameter to vary. To be consistent with our simulations for the ratio of gamma means, we

fixed α and used the MLE estimate for λ in the simulations.

We note that this procedure for obtaining a parametric approximation to the permu-

tation p-value involves three approximations: 1) approximating the permutation p-value

(conditional on the data) with a parametric distribution (not conditional on the data), 2)

approximating the parametric distribution with a saddlepoint approximation, and 3) ap-

proximating the general null H0 : λx = λy with the more restrictive null H0 : λx = λy = λ̂,

where λ̂ is the MLE from the pooled data.

To obtain the MLE estimates, let z = (x′,y′)′ be the pooled data, N = nx + ny be the

total sample size, and z̄ = N−1
∑N

i=1 zi, s
2 = (N − 1)−1

∑
i(zi− z̄)2 be the sample mean and
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variance, respectively. Then assuming iid observations, the joint log likelihood is

` = Nα log(λ)−N log (Γ(α)) + (α− 1)
∑
i

log(zi)−Nλz̄.

Taking the derivative with respect to λ and setting to zero, we get λ = α/z̄. Then taking

∂`/∂α and substituting in λ = α/z̄, we get

`′(α) = N log
(α
z̄

)
−NΨ(α) +

∑
i

log(xi)

`′′(α) =
N

α
−NΨ′(α),

where Ψ(α) = d log(Γ(α))/dα is the digamma function, and Ψ′(α) = dΨ(α)/dα is the

trigamma function. We used Newton-Raphson until convergence of `(α) to get the MLE α̂,

where each update is given by αk+1 = αk − `′
(
αk
)
/`′′
(
αk
)
, and then set λ̂ = α̂z̄. To get

initial values for α, we used the method of moments and set α0 = z̄2/s2.

C Additional simulations

In this section, we present simulation results under additional scenarios.

C.1 Difference in means with normal data

In this subsection, we use the statistic T = |x̄ − ȳ| with data generated as normal random

variables.

C.1.1 Small sample sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ N(µx, 1) and Yj

iid∼ N(µy, 1). For equal sample sizes, we set n = nx =

ny = 20, 40, 60, and for unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For both

equal and unequal sample sizes and for each each n or nx, we set µx = 2 or 3, and µy = 0,

and simulated 100 datasets for each combination of parameters. We used the p-value from

a t-test with equal variance, denoted as pt, as an approximation for the true permutation

p-value.

Results for equal and unequal sample size are shown in Figures S3 and S4, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, SAMC is the SAMC algorithm, and pt is a two-sided t-test with
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(a) p-values (b) Number of resamples in Alg 1

Figure S3: Simulation results using the statistic T = |x̄ − ȳ| with normal data,
µx = 2 or 3, µy = 0, and equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1
is our resampling algorithm with Bpred = 103 resamples in each partition, Asym
is our asymptotic approximation, SAMC is the SAMC algorithm, and pt is a
two-sided t-test with equal variance. The diagonal dashed line has slope of 1 and
intercept of 0, and indicates agreement between methods. The horizontal line in
S3b shows the number of iterations used in the SAMC algorithm (set in advance
and independent of p-value). This figure appears in color in the electronic version
of this article.

equal variance. The number of resamples used by our algorithm is shown in Figures S3b

and S4b. We note that the bias shown in Figures S3a and S4a are similar to that obtained

with moment-corrected correlation (MCC) (Zhou and Wright, 2015), shown in Figure S20

of Web Appendix D.

C.1.2 Under the null hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ N(0, 1) and Yj

iid∼ N(0, 1). For equal sample sizes, we set n = nx =

ny = 20, 40, 60, and for unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For

both equal and unequal sample sizes and for each each n or nx, we simulated 1,000 datasets

(we used 1,000 datasets instead of 100 to better investigate the type I error rate). We used

the p-value from simple Monte Carlo resampling with 105 resamples, denoted as p̃, as an

approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures S5 and S6, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is

our asymptotic approximation, t-test shows the p-value from a two-sided t-test with equal

variance, and p̃ is from simple Monte Carlo resampling with 105 resamples. We compare
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(a) p-values (b) Number of resamples in Alg 1

Figure S4: Simulation results using the statistic T = |x̄ − ȳ| with normal data,
µx = 2 or 3, µy = 0, and unequal sample sizes, where ny = 100 and nx = 20, 40, 60.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, SAMC is the SAMC algorithm, and pt is
a two-sided t-test with equal variance. The diagonal dashed line has slope of 1 and
intercept of 0, and indicates agreement between methods. The horizontal line in
S4b shows the number of iterations used in the SAMC algorithm (set in advance
and independent of p-value). This figure appears in color in the electronic version
of this article.

p-values from the t-test against p̃, which shows close agreement. We do not show results

from the SAMC algorithm, because the EXPERT package (Yu et al., 2011) does not provide

results for p-values > 10−3.

Tables S1 and S2 show the Type I error rates under the null H0 : Px = Py for the equal

and unequal sample size simulations, respectively. MC is the unadjusted p-value from simple

Monte Carlo resampling with 105 resamples, t-test is a two-sided t-test with equal variance,

Alg 1 is our resampling algorithm, and Asymptotic is our asymptotic approximation.

C.2 Ratio of means with exponential data

In this subsection, we use the statistic T = max(x̄/ȳ, ȳ/x̄) with data generated as exponential

random variables.

C.2.1 Small sample sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Exp(λx) and Yj

iid∼ Exp(λy). For equal sample sizes, we set n = nx =

ny = 20, 40, 60, and for unequal sample sizes, we set nx = 20, 40, 60 and ny = 100. For each

n or nx, we set λy = 5 or 10, and λx = 1. For both equal and unequal sample sizes, we
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Figure S5: Simulation results using the statistic T = |x̄ − ȳ| with normal data
under the null Px = Py with equal sample sizes of n = nx = ny = 20, 40, 60.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, t-test shows the p-value from a two-
sided t-test with equal variance, and p̃ is from simple Monte Carlo resampling
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods. This figure appears in color in the
electronic version of this article.

Figure S6: Simulation results using the statistic T = |x̄ − ȳ| with normal data
under the null Px = Py with unequal sample sizes of nx = 20, 40, 60 and ny = 100.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, t-test shows the p-value from a two-
sided t-test with equal variance, and p̃ is from simple Monte Carlo resampling
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods. This figure appears in color in the
electronic version of this article.
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Table S1: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
normal data and equal sample sizes n = nx = ny. MC is the unadjusted p-value
from simple Monte Carlo resampling with 105 resamples, t-test is a two-sided
t-test with equal variance, Alg 1 is our resampling algorithm, and Asymptotic is
our asymptotic approximation.

signif level n MC t-test Alg 1 Asymptotic

0.01
20 0.010 0.010 0.015 0.010
40 0.013 0.013 0.015 0.013
60 0.010 0.010 0.011 0.010

0.05
20 0.048 0.050 0.064 0.050
40 0.055 0.055 0.075 0.056
60 0.049 0.050 0.061 0.050

0.1
20 0.098 0.098 0.14 0.11
40 0.11 0.11 0.14 0.11
60 0.10 0.10 0.12 0.10

Table S2: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
normal data and unequal sample sizes nx 6= ny (nx shown and ny = 100). MC is
the unadjusted p-value from simple Monte Carlo resampling with 105 resamples,
t-test is a two-sided t-test with equal variance, Alg 1 is our resampling algorithm,
and Asymptotic is our asymptotic approximation.

signif level nx MC t-test Alg 1 Asymptotic

0.01
20 0.013 0.013 0.018 0.013
40 0.016 0.016 0.018 0.016
60 0.010 0.010 0.013 0.010

0.05
20 0.049 0.049 0.075 0.049
40 0.047 0.047 0.066 0.047
60 0.044 0.044 0.057 0.044

0.1
20 0.090 0.090 0.14 0.092
40 0.10 0.10 0.14 0.11
60 0.090 0.090 0.13 0.090
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(a) p-values (b) Number of resamples in Alg 1

Figure S7: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data, n = nx = ny = 20, 40, 60, and rates λy = 5, 10 and λx = 1. Alg 1 is
our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Delta is the delta method, SAMC is the SAMC
algorithm, and pβ is the two-sided p-value from the beta prime distribution. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. The horizontal line in S7b shows the number of iterations
used in the SAMC algorithm (set in advance, and independent of p-value). The
SAMC algorithm did not produce values for 15 tests (points missing). This figure
appears in color in the electronic version of this article.

simulated 100 datasets for each combination of parameters. We used the p-value from the

beta prime distribution, denoted as pβ (see Web Appendix B), as an approximation to the

true permutation p-value.

Results for equal and unequal sample size are shown in Figures S7 and S8, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, Delta is the delta method, SAMC is the SAMC algorithm, and

pβ is the two-sided p-value from the beta prime distribution. The number of resamples used

by our resampling algorithm is shown in Figures S7b and S8b.

C.2.2 Under the null hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Exp(1) and Yj

iid∼ Exp(1). For equal sample sizes, we set n =

nx = ny = 20, 40, 60. For unequal sample sizes, we set nx = 20, 40, 60 and ny = 100. For

both equal and unequal sample sizes, we simulated 1,000 datasets for each combination of

parameters (we used 1,000 datasets instead of 100 to better investigate the type I error rate).

We used the p-value from simple Monte Carlo resampling with 105 resamples, denoted as p̃,
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(a) p-values (b) Number of resamples in Alg 1

Figure S8: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data, nx = 20, 40, 60, ny = 100, and rates λy = 5, 10 and λx = 1. Alg 1 is
our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Delta is the delta method, SAMC is the SAMC
algorithm, and pβ is the two-sided p-value from the beta prime distribution. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. The horizontal line in S8b shows the number of iterations used
in the SAMC algorithm (set in advance, and independent of p-value). This figure
appears in color in the electronic version of this article.

as an approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures S9 and S10, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, Delta is the delta method, Beta prime gives the p-value from the

beta prime distribution, and p̃ is from simple Monte Carlo resampling with 105 resamples.

Given the large p-values, using 105 Monte Carlo resamples should be sufficient to obtain

reliable estimates of the true permutation p-value. Therefore, this comparison demonstrates

that the permutation p-value is not exactly the same as the p-value from the beta prime

distribution. However, it appears reasonably close, so we use it as an approximation to the

truth in other simulations in which the p-values are much smaller and simple Monte Carlo

methods are not feasible.

We do not show results from the SAMC algorithm, because as noted above, the EXPERT

package (Yu et al., 2011) does not provide results for p-values > 10−3.

Tables S3 and S4 show the Type I error rates under the null H0 : Px = Py for the

equal and unequal sample size simulations, respectively. MC is the unadjusted p-value from

simple Monte Carlo resampling and 105 resamples, Beta prime is the p-value from the beta

prime distribution, Alg 1 is our resampling algorithm, and Asymptotic is our asymptotic

approximation.
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Figure S9: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data under the null of Px = Py with equal sample sizes of n = nx = ny =
20, 40, 60. Alg 1 is our resampling algorithm with Bpred = 103 resamples in each
partition, Asym is our asymptotic approximation, Delta is the delta method, Beta
prime gives the p-value from the beta prime distribution, and p̃ is from simple
Monte Carlo resampling with 105 resamples. The diagonal dashed line has slope
of 1 and intercept of 0, and indicates agreement between methods. This figure
appears in color in the electronic version of this article.

Figure S10: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with expo-
nential data under the null of Px = Py with unequal sample sizes of nx = 20, 40,
60 and ny = 100. Alg 1 is our resampling algorithm with Bpred = 103 resam-
ples in each partition, Asym is our asymptotic approximation, Delta is the delta
method, Beta prime gives the p-value from the beta prime distribution, and p̃ is
from simple Monte Carlo resampling with 105 resamples. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.
This figure appears in color in the electronic version of this article.
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Table S3: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with exponential data and equal sample sizes n = nx = ny. MC is simple
Monte Carlo resampling with 105 resamples, Alg 1 is our resampling algorithm,
Asymptotic is our asymptotic approximation, Delta is the delta method, and Beta
prime is the the beta prime distribution.

signif level n MC Alg 1 Asymptotic Delta Beta prime

0.01
20 0.010 0.016 0.066 0.003 0.009
40 0.010 0.018 0.050 0.002 0.008
60 0.013 0.013 0.031 0.006 0.015

0.05
20 0.064 0.084 0.14 0.045 0.058
40 0.061 0.079 0.11 0.054 0.061
60 0.051 0.063 0.091 0.050 0.047

0.10
20 0.11 0.15 0.21 0.12 0.11
40 0.11 0.14 0.17 0.11 0.11
60 0.093 0.11 0.14 0.095 0.092

Table S4: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with exponential data and unequal sample sizes nx 6= ny (nx shown, and ny =
100). MC is simple Monte Carlo resampling with 105 resamples, Alg 1 is our
resampling algorithm, Asymptotic is our asymptotic approximation, Delta is the
delta method with, and Beta prime is the beta prime distribution.

signif level n MC Alg 1 Asymptotic Delta Beta prime

0.01
20 0.011 0.016 0.054 0.008 0.012
40 0.008 0.012 0.033 0.004 0.006
60 0.012 0.016 0.035 0.007 0.014

0.05
20 0.061 0.082 0.127 0.065 0.056
40 0.048 0.062 0.097 0.047 0.050
60 0.047 0.065 0.083 0.044 0.051

0.10
20 0.12 0.16 0.19 0.14 0.12
40 0.10 0.14 0.17 0.11 0.10
60 0.091 0.12 0.14 0.093 0.088
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C.3 Difference in means with gamma data

In this subsection, we use the statistic T = |x̄ − ȳ| with data generated as gamma random

variables.

C.3.1 Small sample sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, λx) and Yj

iid∼ Gamma(α, λy), where α = 0.5, 3, 5, λx = 1,

and λ is the rate parameter. For equal sample sizes, we set n = nx = ny = 20, 40, 60, and for

unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For α = 0.5, we set λy = 2.5, 3 for

all n or nx. For α = 3, we set λy = 1.5, 1.75 for all n or nx. For α = 5, we set λy = 1.25, 1.5

for all n or nx. For both equal and unequal sample sizes, we simulated 100 datasets for each

combination of parameters.

Results for equal and unequal sample size are shown in Figures S11 and S12, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is

our asymptotic approximation, t-test is a t-test with unequal variance, and Saddle is the

saddlepoint approximation (see Web Appendix B). SAMC results are not shown, as the

EXPERT package does not provide p-values larger than 10−3. We use the p-values from simple

Monte Carlo resampling, denoted as p̃, with 105 resamples as a basis of comparison, and

only show values for which p̃ > 10−3 to ensure that the p̃ are reliable (1,023 values shown in

Figure S11, and 573 values shown in Figure S12).

We use a t-test with unequal variance because we anticipate that this is the test that

would be used in practice, though we note that it tests a more general null hypothesis

(H0 : µx = µy) than the permutation test (H0 : Px = Py). This puts our methods at a

disadvantage.

Overall, Figures S11 and S12 suggest that our methods work well in this setting, though

our resampling algorithm might be liberal for equal sample sizes and α = 0.5. The t-test

performs well in some scenarios, but tends to be too conservative, particularly for unequal

sample sizes. Overall, the Saddlepoint approximation with fixed α and the MLE λ̂ from

the pooled data appears to have more variance than the other methods. Comparison with

Figures S22 and S23 in Web Appendix D suggests that our resampling algorithm might be

more reliable in this setting than moment corrected correlation (MCC) (Zhou and Wright,

2015) under the alternative and for unequal sample sizes.
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Figure S11: Simulation results using the statistic T = |x̄ − ȳ| with gamma data
and equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymp-
totic approximation, t-test is a t-test with unequal variance, and Saddle is the
saddlepoint approximation (see Web Appendix B). p̃ is the p-values from simple
Monte Carlo resampling with 105 resamples. SAMC results are not shown, as the
EXPERT package does not produce p-values larger than 10−3. Only simulations
with p̃ > 10−3 shown (1,023 values shown). The diagonal dashed line has slope
of 1 and intercept of 0, and indicates agreement between methods. This figure
appears in color in the electronic version of this article.
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Figure S12: Simulation results using the statistic T = |x̄ − ȳ| with gamma data
and unequal sample sizes of nx = 20, 40, 60 and ny = 100. Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, SAMC is the SAMC algorithm, and pt is a two-sided t-test with
equal variance. SAMC results are not shown, as the EXPERT package does
not produce p-values larger than 10−3. Only simulations with p̃ > 10−3 shown
(573 values shown). The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods. This figure appears in color in the
electronic version of this article.
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C.3.2 Under the null hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, λ) and Yj

iid∼ Gamma(α, λ) for α = 0.5, 3, 5 and λ = 1, 5,

where λ is the rate parameter. For equal sample sizes, we set n = nx = ny = 20, 40, 60, and

for unequal sample sizes we set nx = 20, 40, 60 and ny = 100. For both equal and unequal

sample sizes, and for each each n or nx and combination of α and λ, we simulated 1,000

datasets (we used 1,000 datasets instead of 100 to better investigate the type I error rate).

We used the p-value from simple Monte Carlo resampling with 105 resamples, denoted as p̃,

as an approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures S13 and S14, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is

our asymptotic approximation, Saddle is the saddlepoint approximation described in Web

Appendix B, t-test shows the p-value from a two-sided t-test with unequal variance, and p̃ is

from simple Monte Carlo resampling with 105 resamples. We do not show results from the

SAMC algorithm, because the EXPERT package (Yu et al., 2011) does not provide results for

p-values > 10−3.

Figures S13 and S14 suggest that our methods work well in this setting, and have less

variability than both the t-test and saddlepoint approximation (using fixed α fixed and the

MLE λ̂ from the pooled data).

Tables S5 and S6 show the Type I error rates under the null H0 : Px = Py for the

equal and unequal sample size simulations, respectively. MC is the unadjusted p-value from

simple Monte Carlo resampling and 105 resamples, Saddle is the saddlepoint approximation

described in Web Appendix B, Alg 1 is our resampling algorithm with Bpred = 103 resamples

in each partition, Asym is our asymptotic approximation, and t-test shows the p-value from

a two-sided t-test with equal variance.

C.4 Ratio of means with gamma data

In this subsection, we use the statistic T = max(x̄/ȳ, ȳ/x̄) with data generated as gamma

random variables.

C.4.1 Small sample sizes

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, λx) and Yj

iid∼ Gamma(α, λy), where λ is the rate param-

eter, and α = 0.5, 3, 5. For equal sample sizes, we set n = nx = ny = 20, 40, 60, and for

unequal sample sizes, we set nx = 20, 40, 60 and ny = 100. For all simulations, we set λx = 1.
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Figure S13: Simulation results using the statistic T = |x̄ − ȳ| with gamma data
under the null Px = Py with equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1
is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is
our asymptotic approximation, Saddle is the saddlepoint approximation described
in Web Appendix B, t-test shows the p-value from a two-sided t-test with unequal
variance, and p̃ is from simple Monte Carlo resampling with 105 resamples. The
diagonal dashed line has slope of 1 and intercept of 0, and indicates agreement
between methods. This figure appears in color in the electronic version of this
article.
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Figure S14: Simulation results using the statistic T = |x̄ − ȳ| with gamma data
under the null Px = Py with unequal sample sizes of nx = 20, 40, 60 and ny = 100.
Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition,
Asym is our asymptotic approximation, Saddle is the saddlepoint approximation
described in Web Appendix B, t-test shows the p-value from a two-sided t-test
with unequal variance, and p̃ is from simple Monte Carlo resampling with 105

resamples. The diagonal dashed line has slope of 1 and intercept of 0, and indi-
cates agreement between methods. This figure appears in color in the electronic
version of this article.
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Table S5: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
gamma data and equal sample sizes n = nx = ny. MC is the unadjusted p-
value from simple Monte Carlo resampling with 105 resamples, Saddle is the
saddlepoint approximation described in Web Appendix B, Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, and t-test is a two-sided t-test with equal variance.

α signif level nx MC Saddle Alg 1 Asym t-test

0.5

0.01
20 0.0110 0.0100 0.0165 0.0060 0.0045
40 0.0125 0.0110 0.0150 0.0090 0.0085
60 0.0115 0.0085 0.0140 0.0105 0.0105

0.05
20 0.0495 0.0560 0.0665 0.0460 0.0410
40 0.0515 0.0490 0.0660 0.0520 0.0485
60 0.0455 0.0450 0.0595 0.0435 0.0425

0.1
20 0.1000 0.1020 0.1280 0.1020 0.0945
40 0.0995 0.0950 0.1260 0.1020 0.0975
60 0.0980 0.0950 0.1230 0.0990 0.0965

3

0.01
20 0.0115 0.0070 0.0165 0.0095 0.0095
40 0.0120 0.0115 0.0150 0.0120 0.0120
60 0.0075 0.0075 0.0080 0.0070 0.0070

0.05
20 0.0510 0.0465 0.0715 0.0515 0.0495
40 0.0545 0.0575 0.0680 0.0560 0.0525
60 0.0470 0.0475 0.0665 0.0480 0.0475

0.1
20 0.0940 0.0990 0.1280 0.0980 0.0940
40 0.0990 0.1000 0.1320 0.0990 0.0980
60 0.0980 0.0985 0.1230 0.0980 0.0980

5

0.01
20 0.0115 0.0095 0.0175 0.0115 0.0115
40 0.0090 0.0065 0.0130 0.0080 0.0080
60 0.0045 0.0055 0.0085 0.0040 0.0040

0.05
20 0.0525 0.0525 0.0675 0.0525 0.0505
40 0.0525 0.0545 0.0715 0.0535 0.0520
60 0.0460 0.0445 0.0580 0.0470 0.0470

0.1
20 0.0965 0.0960 0.1220 0.0980 0.0955
40 0.1070 0.1060 0.1370 0.1080 0.1080
60 0.0925 0.0905 0.1300 0.0940 0.0915
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Table S6: Type I error rates Pr(p-value ≤ signif level|H0) for T = |x̄ − ȳ| with
gamma data and unequal sample sizes nx 6= ny (nx shown and ny = 100). α
is the shape parameter in the gamma distribution, MC is the unadjusted p-
value from simple Monte Carlo resampling with 105 resamples, Saddle is the
saddlepoint approximation described in Web Appendix B, Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, and t-test is a two-sided t-test with equal variance.

α signif level nx MC Saddle Alg 1 Asym t-test

0.5

0.01
20 0.0095 0.0095 0.0105 0.0085 0.0245
40 0.0090 0.0060 0.0105 0.0070 0.0140
60 0.0130 0.0160 0.0170 0.0105 0.0135

0.05
20 0.0460 0.0465 0.0675 0.0440 0.0740
40 0.0455 0.0470 0.0620 0.0445 0.0540
60 0.0505 0.0500 0.0670 0.0495 0.0530

0.1
20 0.0915 0.0930 0.1260 0.0845 0.1220
40 0.0980 0.0945 0.1280 0.0960 0.1040
60 0.1100 0.1080 0.1410 0.1100 0.1080

3

0.01
20 0.0085 0.0095 0.0155 0.0085 0.0135
40 0.0135 0.0120 0.0185 0.0135 0.0140
60 0.0070 0.0055 0.0090 0.0070 0.0070

0.05
20 0.0440 0.0440 0.0665 0.0435 0.0480
40 0.0480 0.0555 0.0695 0.0485 0.0530
60 0.0470 0.0495 0.0635 0.0485 0.0460

0.1
20 0.0875 0.0885 0.1260 0.0885 0.1000
40 0.1050 0.1040 0.1350 0.1060 0.0975
60 0.1040 0.1080 0.1370 0.1040 0.1040

5

0.01
20 0.0140 0.0110 0.0200 0.0140 0.0145
40 0.0090 0.0100 0.0155 0.0090 0.0100
60 0.0105 0.0090 0.0120 0.0110 0.0075

0.05
20 0.0540 0.0535 0.0845 0.0540 0.0620
40 0.0530 0.0525 0.0730 0.0525 0.0555
60 0.0520 0.0510 0.0635 0.0520 0.0500

0.1
20 0.1140 0.1160 0.1520 0.1140 0.1130
40 0.0995 0.1000 0.1300 0.0995 0.1040
60 0.1040 0.0985 0.1320 0.1050 0.1060
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(a) p-values

(b) Number of resamples in Alg 1

Figure S15: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with gamma
data and equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1 is our resampling
algorithm with Bpred = 103 resamples in each partition, Asym is our asymptotic
approximation, Delta is the delta method, SAMC is the SAMC algorithm, and pβ
is the two-sided p-value from the beta prime distribution. The diagonal dashed
line has slope of 1 and intercept of 0, and indicates agreement between methods.
The horizontal line in S15b shows the number of iterations used in the SAMC
algorithm (set in advance, and independent of p-value). The SAMC algorithm
did not produce values for 652 tests (points missing). This figure appears in color
in the electronic version of this article.

For equal samples sizes, we set λy = 7, 12.5 for each n. For unequal sample sizes, we set

λy = 2.25, 2.75 for all nx for α = 0.5, λy = 2, 2.5 for all nx for α = 3, and λy = 1.75, 2.25 for

all nx for α = 5. We simulated 100 datasets for each combination of parameters.

Results for equal and unequal sample size are shown in Figures S15 and S16, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, Delta is the delta method, SAMC is the SAMC algorithm, and

pβ is the two-sided p-value from the beta prime distribution. Figures S15b and S16b show

the number of resamples used by our resampling algorithm.

C.4.2 Under the null hypothesis Px = Py

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ Gamma(α, 1) and Yj

iid∼ Gamma(α, 1) for α = 0.5, 3, 5. For equal

sample sizes, we set n = nx = ny = 20, 40, 60. For unequal sample sizes, we set nx = 20, 40, 60
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(a) p-values

(b) Number of resamples in Alg 1

Figure S16: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with gamma
data and unequal sample sizes of nx = 20, 40, 60, ny = 100, and rates λy = 5, 10,
and λx = 1. Alg 1 is our resampling algorithm with Bpred = 103 resamples in
each partition, Asym is our asymptotic approximation, Delta is the delta method,
SAMC is the SAMC algorithm, and pβ is the two-sided p-value from the beta
prime distribution. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods. The horizontal line in S16b shows
the number of iterations used in the SAMC algorithm (set in advance, and inde-
pendent of p-value). The SAMC algorithm did not produce values for 304 tests
(points missing). This figure appears in color in the electronic version of this
article.
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and ny = 100. For both equal and unequal sample sizes, we simulated 1,000 datasets for

each combination of parameters (we used 1,000 datasets instead of 100 to better investigate

the type I error rate). We used the p-value from simple Monte Carlo resampling with 105

resamples, denoted as p̃, as an approximation for the true permutation p-value.

Results for equal and unequal sample size are shown in Figures S17 and S18, respectively.

Alg 1 is our resampling algorithm with Bpred = 103 resamples in each partition, Asym is our

asymptotic approximation, Delta is the delta method, Beta prime gives the p-value from the

beta prime distribution, and p̃ is from simple Monte Carlo resampling with 105 resamples.

Given the large p-values, using 105 Monte Carlo resamples should be sufficient to obtain

reliable estimates of the true permutation p-value. Therefore, this comparison demonstrates

that the permutation p-value is not exactly the same as the p-value from the beta prime

distribution. However, it appears reasonably close, so we use it as an approximation to the

truth in other simulations in which the p-values are much smaller and simple Monte Carlo

methods are not feasible.

We do not show results from the SAMC algorithm, because as noted above, the EXPERT

package (Yu et al., 2011) does not provide results for p-values > 10−3.

Tables S7 and S8 show the Type I error rates under the null H0 : Px = Py for the

equal and unequal sample sizes, respectively. MC is the unadjusted p-value from simple

Monte Carlo resampling with 105 resamples, Beta prime is the p-value from the beta prime

distribution, Alg 1 is our resampling algorithm, and Asym is our asymptotic approximation.

D Comparison with additional methods

D.1 Moment-corrected correlation

Moment-corrected correlation (MCC) (Zhou and Wright, 2015) is an analytical approxima-

tion to the permutation p-value, which is applicable in multiple testing situations in which

the test statistic is permutationally equivalent to a single inner product. Where applicable,

this approach is fast, as it does not involve resampling. However, if the test statistic of

interest is not permutationally equivalent to an inner product, the MCC approach cannot

be used.

The statistic T = x̄ − ȳ fits into this setting, whereas, to the best of our knowledge,

T = x̄/ȳ does not. To see this, let z = (x′,y′)′ andw = (1/nx, . . . , 1/nx︸ ︷︷ ︸
nx

,−1/ny, . . . ,−1/ny︸ ︷︷ ︸
ny

)′.

Then x̄− ȳ = z′w. In contrast, x̄/ȳ cannot be written in this form, and we conjecture that

it is not permutationally equivalent to any statistic that can be.
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Figure S17: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with gamma
data under the null of Px = Py with equal sample sizes of n = nx = ny = 20,
40, 60. Alg 1 is our resampling algorithm with Bpred = 103 resamples in each
partition, Asym is our asymptotic approximation, Delta is the delta method, Beta
prime gives the p-value from the beta prime distribution, and p̃ is from simple
Monte Carlo resampling with 105 resamples. The diagonal dashed line has slope
of 1 and intercept of 0, and indicates agreement between methods. This figure
appears in color in the electronic version of this article.
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Figure S18: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with gamma
data under the null of Px = Py with unequal sample sizes of nx = 20, 40, 60 and
ny = 100. Alg 1 is our resampling algorithm with Bpred = 103 resamples in each
partition, Asym is our asymptotic approximation, Delta is the delta method, Beta
prime gives the p-value from the beta prime distribution, and p̃ is from simple
Monte Carlo resampling with 105 resamples. The diagonal dashed line has slope
of 1 and intercept of 0, and indicates agreement between methods. This figure
appears in color in the electronic version of this article.
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Table S7: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with gamma data and equal sample sizes n = nx = ny. α is the shape parameter
in the gamma distribution, MC is simple Monte Carlo resampling with 105 resam-
ples, Alg 1 is our resampling algorithm, Asym is our asymptotic approximation,
Delta is the delta method, and Beta prime is the the beta prime distribution.

α signif level n MC Alg 1 Asym Delta Beta prime

0.5

0.01
20 0.013 0.018 0.093 0.002 0.015
40 0.007 0.014 0.055 0.001 0.007
60 0.007 0.010 0.047 0.002 0.011

0.05
20 0.050 0.076 0.182 0.026 0.053
40 0.050 0.072 0.135 0.037 0.055
60 0.048 0.068 0.114 0.043 0.050

0.1
20 0.110 0.136 0.243 0.106 0.108
40 0.106 0.135 0.196 0.114 0.104
60 0.096 0.127 0.178 0.101 0.097

3

0.01
20 0.007 0.012 0.027 0.003 0.006
40 0.012 0.016 0.025 0.010 0.010
60 0.012 0.015 0.025 0.012 0.008

0.05
20 0.043 0.067 0.088 0.046 0.044
40 0.053 0.062 0.073 0.052 0.051
60 0.059 0.075 0.080 0.061 0.049

0.1
20 0.095 0.126 0.143 0.103 0.090
40 0.098 0.133 0.147 0.104 0.103
60 0.095 0.115 0.116 0.097 0.093

5

0.01
20 0.009 0.015 0.023 0.009 0.009
40 0.008 0.013 0.025 0.008 0.011
60 0.012 0.012 0.019 0.012 0.013

0.05
20 0.046 0.063 0.082 0.054 0.052
40 0.048 0.063 0.066 0.050 0.043
60 0.055 0.078 0.079 0.057 0.057

0.1
20 0.093 0.130 0.139 0.106 0.099
40 0.091 0.134 0.138 0.094 0.093
60 0.115 0.138 0.136 0.116 0.112
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Table S8: Type I error rates Pr(p-value ≤ signif level|H0) for T = max(x̄/ȳ, ȳ/x̄)
with gamma data and unequal sample sizes nx 6= ny (nx shown and ny = 100).
α is the shape parameter in the gamma distribution, MC is simple Monte Carlo
resampling with 105 resamples, Alg 1 is our resampling algorithm, Asym is our
asymptotic approximation, Delta is the delta method, and Beta prime is the beta
prime distribution.

α signif level nx MC Alg 1 Asym Delta Beta prime

0.5

0.01
20 0.011 0.015 0.065 0.006 0.011
40 0.015 0.018 0.053 0.003 0.013
60 0.008 0.011 0.042 0.003 0.012

0.05
20 0.043 0.069 0.128 0.047 0.053
40 0.057 0.072 0.133 0.048 0.056
60 0.052 0.071 0.112 0.045 0.050

0.1
20 0.098 0.121 0.179 0.109 0.091
40 0.113 0.141 0.195 0.119 0.108
60 0.106 0.126 0.172 0.109 0.098

3

0.01
20 0.011 0.016 0.023 0.012 0.011
40 0.005 0.011 0.027 0.005 0.009
60 0.011 0.013 0.017 0.011 0.011

0.05
20 0.047 0.070 0.073 0.059 0.039
40 0.058 0.065 0.069 0.057 0.054
60 0.053 0.066 0.070 0.050 0.052

0.1
20 0.088 0.128 0.135 0.104 0.087
40 0.094 0.124 0.124 0.101 0.089
60 0.094 0.119 0.117 0.097 0.097

5

0.01
20 0.010 0.014 0.022 0.007 0.009
40 0.011 0.011 0.017 0.011 0.009
60 0.015 0.020 0.025 0.015 0.018

0.05
20 0.058 0.074 0.085 0.066 0.054
40 0.046 0.057 0.059 0.048 0.052
60 0.059 0.081 0.085 0.061 0.062

0.1
20 0.110 0.145 0.143 0.121 0.114
40 0.081 0.114 0.108 0.085 0.088
60 0.113 0.145 0.138 0.118 0.115
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(a) nx = ny (b) nx 6= ny

Figure S19: MCC with large sample sizes for T = |x̄− ȳ| with normal data and
equal sample sizes of n = nx = ny = 100, 500, 1, 000, and unequal sample sizes of
nx = 50, 200, 350 with ny = 500. In both cases, data were simulated as normal
random variables with µy = 0, µx = 0.75, 1 and σ2

x = σ2
x = 1. pt is the p-value

from a t-test with equal variance. The diagonal dashed line has a slope of 1 and
an intercept of 0, and indicates agreement. This figure appears in color in the
electronic version of this article.

Figures S19 through S21 show simulation results for two-sided and doubled p-values, as

described by Zhou and Wright (2015), using the mcc package (Zhou, 2014) under the same

normal data settings as in Section C.1. While MCC is more reliable for large sample sizes

(Figure S19), MCC appears to suffer from the same bias as our methods for small sample

sizes (Figure S20). Furthermore, we do not think that MCC can be used to obtain p-values

for the statistic T = max(x̄/ȳ, ȳ/x̄).

Figures S22 and S23 show simulation results for two-sided and doubled p-values for small

sample sizes and under the null, respectively, using the mcc package (Zhou, 2014) under the

same gamma data settings as in Section C.3. In Figure S22, we used B = 105 resamples to

obtain the Monte Carlo estimate p̃ of the true permutation p-value, and only show results

for p̃ > 10−3 to ensure reliable estimates (1,019 values shown in Figure S22a, and 705 values

shown in Figure S22b).

As seen in Figure S22, in many cases the MCC method substantially underestimated the

permutation p-value for equal sample sizes nx = ny and α = 0.5. We did not observe this

tendency with our resampling algorithm (see Figures S11 and S12).

D.2 Saddlepoint approximations

Saddlepoint approximations can be used to estimate permutation p-values (Robinson, 1982).

As shown in Table S9, estimates from our methods are comparable to those from saddle-
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(a) nx = ny (b) nx 6= ny

Figure S20: MCC with small sample size for T = |x̄ − ȳ| with normal data and
equal sample sizes of n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as normal
random variables with µy = 0, µx = 2, 3 and σ2

x = σ2
x = 1. pt is the p-value

from a t-test with equal variance. The diagonal dashed line has a slope of 1 and
an intercept of 0, and indicates agreement. This figure appears in color in the
electronic version of this article.

(a) nx = ny (b) nx 6= ny

Figure S21: MCC under the null hypothesis for T = |x̄ − ȳ| with normal data
for equal sample sizes of n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as normal
random variables with µy = µx = 0 and σ2

x = σ2
x = 1. pt is the p-value from

a t-test with equal variance. The diagonal dashed line has a slope of 1 and
an intercept of 0, and indicates agreement. This figure appears in color in the
electronic version of this article.
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(a) nx = ny (b) nx 6= ny

Figure S22: MCC with small sample size for T = |x̄ − ȳ| with gamma data
and equal sample size n = nx = ny = 20, 40, 60, and unequal sample sizes of
nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as gamma
random variables, as described in Section C.3. p̃ is the p-value from simple Monte
Carlo resampling with 105 resamples. The diagonal dashed line has a slope of 1
and an intercept of 0, and indicates agreement. This figure appears in color in
the electronic version of this article.
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(a) nx = ny (b) nx 6= ny

Figure S23: MCC under the null hypothesis for T = |x̄ − ȳ| with gamma data
for equal sample sizes of n = nx = ny = 20, 40, 60, and unequal sample sizes
of nx = 20, 40, 60 with ny = 100. In both cases, data were simulated as gamma
random variables, as described in Section C.3. p̃ is the p-value from simple Monte
Carlo resampling with 105 resamples. The diagonal dashed line has a slope of 1
and an intercept of 0, and indicates agreement. This figure appears in color in
the electronic version of this article.
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Table S9: Comparison with Saddlepoint approximations for T = |x̄− ȳ|. Datasets
are from Robinson (1982, Table 2), who obtained them from Lehman (1975).
Dataset 1 pertains to hours of pain relief due to two different drugs (nx = ny = 8),
and Dataset 2 pertains to the effect of an analgesia for two classes (nx = 7, ny =
10). The exact and saddlepoint p-values are from Robinson (1982). The the
p-value from our resampling algorithm (p̃pred) is the mean from 100 runs; the
first and third quantiles were (0.080, 0.088) for dataset 1, and (0.011, 0.012) for
dataset 2.

Method Dataset 1 Dataset 2

Exact 0.102 0.012
First saddlepoint 0.089 0.010

Second saddlepoint 0.101 0.011
p̃pred 0.083 0.012
p̂asym 0.092 0.013

point approximations when using the statistic T = |x̄ − ȳ|. However, unlike saddlepoint

approximations, our resampling algorithm requires no derivations.

E Simulations under null hypotheses for single param-

eters

Neuhaus (1993), Janssen (1997), Chung et al. (2013), and others have extended permutation

tests to be valid not only under the null Px = Py, but also under the more general null that

θ(Px) = θ(Py), where θ(P ) is a single parameter. For example, for X ∼ N(µx, σ
2
x), Y ∼

N(µy, σ
2
y), we might be interested in the alternative H1 : µx 6= µy, even if σ2

x 6= σ2
y.

As described by Chung et al. (2013), in order to obtain a test procedure that is asymp-

totically valid in the above setting where σ2
x 6= σ2

y , we need to replace T = |x̄− ȳ| with the

studentized statistic

T =
|x̄− ȳ|√

s2
x/nx + s2

y/ny
(12)

where s2
x = (nx−1)−1

∑
i(xi− x̄)2 and s2

y = (ny−1)−1
∑

j(yj− ȳ)2 are the sample variances.

For each permutation, we compute the quantities x̄∗, ȳ∗, s∗x
2, and s∗y

2 with the permuted

datasets. In this section, we conduct simulations using (12) when Px 6= Py under the null

H0 : µx = µy and alternative H1 : µx 6= µy.

We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of the respective

random variables Xi
iid∼ N(0, σ2

x) and Yj
iid∼ N(0, σ2

y), where σ2
x = 9 and σ2

y = 1. For

equal sample sizes, we set n = nx = ny = 20, 40, 60, and for unequal sample sizes we set
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Figure S24: Simulation results under the null µx = µy with normal data and un-
equal sample sizes of n = nx = ny = 20, 40, 60. Alg 1 Student and Alg 1 are our
resampling algorithm with the studentized (12) and unstudentized statistics, with
Bpred = 103 resamples in each partition. t-test is the p-value from a two-sided
t-test with unequal variance. MC student and MC are Monte Carlo estimates
with the studentized (12) and unstudentized statistics, respectively, with 105 re-
samples. The diagonal dashed line has slope of 1 and intercept of 0, and indicates
agreement between methods. This figure appears in color in the electronic version
of this article.

nx = 20, 40, 60 and ny = 100. For both equal and unequal sample sizes, we simulated 1,000

datasets for each combination of parameters. Figures S24 and S25 show the results with

equal and unequal sample sizes, respectively.

As seen in Figures S24 and S25, the permutation test with the unstudentized statistic

is relatively unaffected in our simulation under equal sample sizes, but is inaccurate for

unequal sample sizes. This is as expected. By using a studentized statistic, our method is

accurate even for unequal sample sizes. For comparison, Figures S24 and S25 also show the

p-value from a t-test with unequal variance, as well as a Monte Carlo estimate using the

unstudentized statistic T = |x̄− ȳ|.

F Run time and sufficient sample size

In this section, we provide further details on the run-time of our resampling algorithm and

guidance regarding the sample sizes necessary for our test to be reliable.

Our resampling algorithm runs in O(Bpredmstop) time. In our current implementation,

we set Bpred a priori. Regarding mstop, we obtain the following approximation for small
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Figure S25: Simulation results under the null µx = µy with normal data with
unequal sample sizes of nx = 20, 40, 60 and ny = 100. Alg 1 Student and Alg 1 are
our resampling algorithm with the studentized (12) and unstudentized statistics,
and with Bpred = 103 resamples in each partition. t-test is the p-value from a
two-sided t-test with unequal variance. MC student and MC are Monte Carlo
estimates with the studentized (12) and unstudentized statistics, respectively,
with 105 resamples. The diagonal dashed line has slope of 1 and intercept of 0,
and indicates agreement between methods. This figure appears in color in the
electronic version of this article.

p-values, in which we assume that 1− Φ(ξ(m))� 1− Φ(ξconj(m)). From Algorithm 1,

masym
stop = min

m
{m ∈ {1, . . . ,mmax} : c[m] < 1}

≈ min
m
{m ∈ {1, . . . ,mmax} : Pr(T (m) ≥ t|x,y) < 1/Bpred} (for large Bpred)

≈ min
m
{m ∈ {1, . . . ,mmax} : 1− Φ(ξ(m)) < 1/Bpred} (13)

≈ min
m

{
m ∈ {1, . . . ,mmax} : Φ−1(1− 1/Bpred) < ξ(m)

}
(for large nx, ny) (14)

≡ masym
stop ,

where (13) follows from (6) and the assumption that 1− Φ(ξ(m))� 1− Φ(ξconj(m)).

In the R package fastPerm, we provide functions for computing masym
stop , which can help

an analyst to approximate run-time before running the algorithm. We emphasize that masym
stop

is based on asymptotic approximations, and may not be the same as the actual stopping

partition; masym
stop is not used in Algorithm 1. As shown in Figure S26, the expected stopping

distribution masym
stop appears to be a reasonable estimate of the actual stopping partition mstop

in our analysis of cancer genomic data.

We can also use masym
stop to provide guidance on sample size. Note that masym

stop is the ex-
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Figure S26: Comparison between masym
stop and mstop in the analysis of cancer ge-

nomic data. mstop is the actual stopping partition, which our resampling algo-
rithm determines dynamically. masym

stop is our estimate of the stopping partition
based on asymptotic approximations, and can be computed before running the
algorithm. The dashed diagonal line has a slope of 1 and an intercept of 0, and
indicates agreement. This figure appears in color in the electronic version of this
article.

pected number of data points available to the Poisson regression in our resampling algorithm

for estimating the overall p-value. Large values of masym
stop imply more reliable but slower es-

timates, and smaller values of masym
stop imply less reliable but faster estimates. To ensure that

the results of the sampling algorithm are reliable, we recommend that masym
stop ≥ c for some

constant c. For example, we use c = 4. Then for equal sample sizes n = nx = ny, we set

n̂ = min
n
{n ∈ N : masym

stop ≥ c}.

While not explicit in the above notation, we note that masym
stop , and thus n̂, is a function of

σ2
x, σ

2
y, µx, µy, and Bpred. Tables S10 and S11 show n̂ and p̂asym = p̂asym(n̂, σ2

x, σ
2
y, µx, µy), the

the p-value from our asymptotic approximation for the given set of parameter values and

sample sizes. In Tables S10 and S11, we set Bpred = 1, 000. As in Figure 1 in Section 3 and

Figure S1 in Web Appendix A, to obtain p̂asym, we substituted parameter values for sample

quantities, e.g. µx for x̄ and σ2
x for (nx − 1)−1

∑nx

i=1(xi − x̄)2. As can be seen in Tables S10

and S11, n̂ and p̂asym have an inverse relationship.

In general, we recommend that researchers check the output from fastPerm to ensure

that mstop ≥ 4, and we note that the sample sizes required to achieve mstop ≥ 4 increase

as the p-value decreases. Based on Tables S10 and S11, at least 15-20 observations in each

group appears sufficient for p-values near 1 × 10−6, and at least 70-90 observations in each
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group appears sufficient for p-values near 1× 10−30.

Table S10: n̂ for T = max(x̄/ȳ, ȳ/x̄), equal samples sizes nx = ny = n̂, Bpred =
1, 000, and c = 4.

µy = σ2
y µx = σ2

x n̂ p̂asym

2

3 5 2.4× 10−1

4 6 2.4× 10−2

5 13 2.4× 10−5

5.25 16 1.3× 10−6

5.5 19 6.0× 10−8

5.75 24 4.2× 10−10

6 31 4.1× 10−13

6.25 40 4.3× 10−17

6.5 55 1.1× 10−23

6.6 63 3.3× 10−27

6.7 74 4.5× 10−32

6.8 87 7.7× 10−38

6.9 105 7.8× 10−46

7 130 6.0× 10−57

Table S11: n̂ for T = |x̄ − ȳ|, σ2
x = σ2

y = 1, equal samples sizes nx = ny = n̂,
Bpred = 1, 000, and c = 4.

µy µx n̂ p̂asym

0

1.5 5 5.4× 10−2

2 9 7.7× 10−4

2.2 13 2.1× 10−5

2.25 15 3.7× 10−6

2.3 18 3.1× 10−7

2.4 32 4.0× 10−12

2.45 53 2.3× 10−19

2.475 80 1.3× 10−28

2.48 89 1.1× 10−31

2.49 115 1.5× 10−40

2.5 165 1.4× 10−57
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G Asymptotic test of the ratio of means via the delta

method and application to cancer genomic data

Let x̄ and ȳ be the sample means, and s2
x = (nx−1)−1

∑
i(xi−x̄)2 and s2

y = (ny−1)−1
∑

i(yi−
ȳ)2 be the sample estimates of variance. By the central limit theorem, for nx, ny sufficiently

large, and assuming independence between samples,(
x̄

ȳ

)
∼ N

([
µx

µy

]
,

[
σ2
x/nx 0

0 σ2
y/ny

])
.

Let g(x̄, ȳ) = (x̄/ȳ). Then ∇g = (1/ȳ,−x̄/ȳ2)′, and by the delta method x̄/ȳ → N(θ, τ 2
1 ),

where θ = g(µx, µy) = µx/µy and

τ 2
1 = ∇gT (µx, µy)

[
σ2
x/nx 0

0 σ2
y/ny

]
∇g(µx, µy) =

σ2
x

nx

1

µ2
y

+
σ2
y

ny

µ2
x

µ4
y

.

Using unbiased estimates for the variance, we get

τ̂1
2 =

s2
x

nxȳ2
+
s2
yx̄

2

nyȳ4

where s2
x and s2

y are the sample variances for x and y, respectively. Similarly, we estimate

the variance of ȳ/x̄ as

τ̂2
2 =

s2
y

nyx̄2
+
s2
xȳ

2

nxx̄4
.

Therefore, to test the null H0 : µx/µy = 1 versus the alternative H1 : µx/µy 6= 1, the

two-sided p-value using the delta method and unbiased estimates of variance is

p∆ =

Pr(Z > x̄/ȳ) + Pr(U ≤ ȳ/x̄), x̄/ȳ ≥ 1

Pr(U > ȳ/x̄) + Pr(Z ≤ x̄/ȳ), x̄/ȳ < 1
,

where Z ∼ N(1, τ̂1
2) and U ∼ N(1, τ̂2

2). We use the ∆ subscript in p∆ to emphasize that the

p-value is from the delta method. We note that p∆ is potentially problematic, particularly if

τ̂1
2 or τ̂2

2 are large, because the ratio is bounded below by zero, but the normal distribution

is not.

We note that by allowing for unequal variance, we are testing a different null hypothesis

than with the permutation test (H0 : Px = Py). However, we expect that in practice, re-

searchers would allow for unequal variance when using the delta method, which is why we use
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it as a basis for comparison. This comparison puts the permutation test at a disadvantage,

but as shown in the simulations, the permutation test still performs better than the delta

method.

Figure S27 compares estimates of the permutation p-values from our resampling algo-

rithm (p̃pred) to p∆ for the cancer genomic data in Section 6. The dashed lines have an

intercept of zero and slope of one, and indicate agreement. As seen in Figure S27, p∆ tends

to be an overestimate for small p-values, which is the same trend observed in the simulations.

Out of the 100 genes with the smallest p∆, only three were identified by Zhan et al. (2015)

as strongly distinguishing between LUAD and LUSC (PVRL1, PERP, and ATP1B3 ).

(a) Genes with p̃ ≤ 1× 10−3 (10, 302 genes) (b) Genes with p̃ > 1× 10−3 (5, 084 genes)

Figure S27: p-values for cancer genomic data: Comparison of results with the
delta method (p∆) and our resampling algorithm (p̃pred) with Bpred = 103 resam-
ples within each partition, or with simple Monte Carlo (p̃) with a total of B = 103

resamples (see Section 6). The diagonal dashed lines have a slope of 1 and an
intercept of 0, and indicate agreement between the methods. This figure appears
in color in the electronic version of this article.
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