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Summary: Researchers in genetics and other life sciences commonly use permutation tests to evaluate differences

between groups. Permutation tests have desirable properties, including exactness if data are exchangeable, and are

applicable even when the distribution of the test statistic is analytically intractable. However, permutation tests can

be computationally intensive. We propose both an asymptotic approximation and a resampling algorithm for quickly

estimating small permutation p-values (e.g. < 10−6) for the difference and ratio of means in two-sample tests. Our

methods are based on the distribution of test statistics within and across partitions of the permutations, which we

define. In this article, we present our methods and demonstrate their use through simulations and an application to

cancer genomic data. Through simulations, we find that our resampling algorithm is more computationally efficient

than another leading alternative, particularly for extremely small p-values (e.g. < 10−30). Through application to

cancer genomic data, we find that our methods can successfully identify up- and down-regulated genes. While we

focus on the difference and ratio of means, we speculate that our approaches may work in other settings.

Key words: Computational efficiency; Genomics; Multiple hypothesis tests; Resampling methods; Two-sample

tests
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Fast Approximation of Small p-values in Permutation Tests 1

1. Introduction and Motivation

Many researchers in the life sciences use permutation tests, for example, to test for differential

gene expression (Doerge and Churchill, 1996, Morley et al., 2004, Stranger et al., 2005, 2007,

Raj et al., 2014), and to analyze brain images (Nichols and Holmes, 2002, Bartra et al.,

2013, Simpson et al., 2013). These tests are useful when the sample size is too small for

large sample theory to apply, or when the distribution of the test statistic is analytically

intractable. Permutation tests are also exact, meaning that they control the type I error

rate exactly for finite sample size (Lehmann and Romano, 2006). However, permutation

tests can be computationally intensive, especially when estimating small p-values for many

tests. In this paper, we present computationally efficient methods for approximating small

permutation p-values (e.g. < 10−6) for the difference and ratio of means in two-sample tests,

though we speculate that our methods will also work for other smooth function of the means.

We denote the two groups of sample data as x = (x1, . . . , xnx
)′ and y = (y1, . . . , yny

)′,

with respective sample sizes nx and ny. We denote the full data as z = (x′,y′)′, with total

sample size N = nx + ny. Writing z = (z1, . . . , zN)
′, we have that zi = xi, i = 1, . . . , nx,

and znx+j = yj, j = 1, . . . , ny. In our setting, zi are scalar values for all i = 1, . . . , N . We

use π to denote a permutation of the indices of z, i.e. π : {1, . . . , N} → {1, . . . , N} is a

bijection, and we denote the permuted dataset corresponding to π as z∗ = (z∗1 , . . . , z
∗
N)

′,

where z∗π(i) = zi, i = 1, . . . , N . We use the term correspondence throughout this paper, so for

clarity, we define our use of the term in Definition 1.

Definition 1 (Correspondence): Let z = (z1, . . . , zN)
′ be the N -dimensional vector of

observed data, and let π : {1, . . . , N} → {1, . . . , N} be a bijection (permutation) of the

indices of z. We say that the N -dimensional vector z∗ = (z∗1 , . . . , z
∗
N)

′ corresponds to

permutation π if z∗π(i) = zi for all i = 1, . . . , N .
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2 Biometrics, 000 0000

It will also be useful to write the permuted dataset as z∗ = (x∗′,y∗′)′, where x∗ =

(z∗1 , . . . , z
∗
nx
)′ and y∗ = (z∗nx+1, . . . , z

∗
N)

′ are the permuted group samples.

Let T be a test statistic, such that larger values are more extreme, and let t = T (x,y)

be the observed test statistic. Similar to Lehmann and Romano (2006, p. 636), we denote

the permutation p-value as p̂ = Pr(T > t|z) = |Ψ|−1
∑

π∈Ψ I[T (x∗,y∗) > t], where Ψ is

the set of all permutations of the indices of z, |Ψ| = N ! is the number of elements in Ψ, I

is an indicator function, and for each π, (x∗′,y∗′)′ is the corresponding permuted dataset.

The randomization hypothesis (Lehmann and Romano, 2006, Definition 15.2.1) asserts that

under the null hypothesis, the distribution of T is invariant under permutations π ∈ Ψ. This

allows, for example, for the null hypothesis H0 : zi
iid
∼ P, i = 1, . . . , N , or more generally, for

exchangeability, H0 : P (Z1 = z1, . . . ZN = zn) = P (Z1 = z∗1 , . . . , ZN = z∗N) for all permuted

datasets z∗.

The set Ψ is typically too large to evaluate fully, so Monte Carlo methods are usually

used to approximate p̂. When resampling with replacement, also known as simple Monte

Carlo resampling, the Monte Carlo estimate of p̂ is p̃ = (B + 1)−1
(

∑B

b=1 I [Tb > t] + 1
)

,

where B is the number of resamples, and Tb = T (x∗,y∗) for (x∗′,y∗′)′ corresponding to the

bth randomly sampled permutation πb. We refer to the above estimate as the adjusted p̃,

because it adjusts the estimate to ensure it stays within its nominal level (Lehmann and

Romano, 2006). However, for simplicity and to be consistent with other computationally

efficient methods, particularly that of Yu et al. (2011), we use the unadjusted p̃, in which we

remove the ‘+1’ from the numerator and denominator.

While there may be many reasons for obtaining accurate small p-values, perhaps they are

most often obtained in multiple testing settings, which are common in genetics. For example,

in the analysis we present in Section 6, we analyze 15,386 genes for differential expression.

With a Bonferroni correction and a type I error rate of α = 0.05, to control the family-wise
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Fast Approximation of Small p-values in Permutation Tests 3

error rate (FWER), we would need to estimate p-values < 0.05/15, 386 ≈ 3.25×10−6. While

one might want to use a different correction to control the FWER, false discovery rate (FDR),

or other criteria, we would still need to calculate small p-values before implementing typical

step-up or step-down procedures (for example, Holm (1979) to control FWER, or Benjamini

and Hochberg (1995) to control FDR). These p-values, in combination with content area

expertise and other statistical quantities, such as effect size, can be useful for prioritizing

genes for further laboratory and statistical analysis.

As noted by Kimmel and Shamir (2006) and Yu et al. (2011), with simple Monte Carlo

resampling, to estimate p-values on the order of p̂ = 10−6 with a precision of σp̂ = p̂/10,

we need on the order of B = 108 resamples when using simple Monte Carlo resampling. For

example, to separately estimate 5,000 p-values that are each on the order of 10−6, we would

need a total of 5, 000× 108 = 5× 1011 resamples.

Several researchers have developed methods for reducing the computational burden of

permutation tests, including Robinson (1982), Mehta and Patel (1983), Booth and Butler

(1990), Kimmel and Shamir (2006), Conneely and Boehnke (2007), Li et al. (2008), Han et al.

(2009), Knijnenburg et al. (2009), Pahl and Schäfer (2010), Zhang and Liu (2011), Jiang and

Salzman (2012), and Zhou and Wright (2015). For comparisons with our method, we focus

on the stochastic approximation Monte Carlo (SAMC) algorithm developed by Liang et al.

(2007) and tailored to p-value estimation by Yu et al. (2011). Of the available methods, we

found that SAMC was the most appropriate comparison, because: 1) we could directly apply

it to the test static in our motivating application (see Section 6), 2) it is intended for very

small p-values, and 3) it does not require derivations, so is more likely to be used in practice.

In this article, we propose alternative methods for quickly approximating small permuta-

tion p-values for the difference and ratio of the means in two-sample tests. Our approaches

partition the permutations such that p̃ has a predictable trend across the partitions. Taking
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4 Biometrics, 000 0000

advantage of this trend, we develop both a closed form asymptotic approximation to the

permutation p-value, as well as a computationally efficient resampling algorithm.

We find through simulations that our resampling algorithm is more computationally effi-

cient than the SAMC algorithm, which in turn is 100 to 500,000 times more computationally

efficient than simple Monte Carlo resampling (Yu et al., 2011). However, SAMC is a more

general algorithm and can be used for a greater variety of statistics. The increase in efficiency

is most notable for our algorithm when estimating extremely small p-values (e.g. < 10−30).

Our asymptotic approximation tends to be less accurate than our resampling algorithm but

does not require resampling.

Before presenting our methods, we briefly explain the underlying properties that make

them possible. The two basic components underlying our methods are 1) the partitions,

which we define, and the distribution of permutations across these partitions, and 2) the

limiting behavior of test statistics within each partition, and the trend in p-values across the

partitions. We address the first component in Section 2 and the second in Section 3.

In Section 4, we introduce methods for estimating permutation p-values that take advan-

tage of the properties discussed in Sections 2 and 3. In Section 5, we investigate the behavior

of these methods through simulations and compare against the SAMC algorithm (additional

simulations and comparisons against other methods are in the Web Appendices). Then in

Section 6, we use our proposed methods to analyze cancer genomic data. In Section 7, we

end with a discussion of limitations and possible extensions. As noted under Supplementary

material, we have implemented our methods in the R package fastPerm.
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Fast Approximation of Small p-values in Permutation Tests 5

2. Partitioning the permutations

2.1 Defining the partitions

Let the smaller of the two sample sizes be nmin = min(nx, ny). We define the distance between

permutation π and the observed ordering of the indices (1, 2, 3, . . . , N) as the number of

observations that are exchanged between x and y under the action of π. To be precise, let

ω(π) be the set of indices that π places in one of the first nx positions, i.e. ω(π) = {i ∈

{1, . . . , N} : π(i) 6 nx}. Then we define the distance, denoted as d(π), between permutation

π and the observed ordering, as

d (π) = nx − |ω(π) ∩ {1, 2, . . . , nx}|. (1)

We define partitionm, denoted as Π(m), as the set of all permutations a distance ofm away

from the observed ordering, i.e. Π(m) = {π : d (π) = m}, m = 0, 1, . . . , nmin. As described

below, our proposed methods focus on the permutation distributions of test statistics when

resampling is restricted to permutations from a single partition.

To see why this definition of distance is useful, and to foreshadow our method, suppose

that µx 6= µy, and note that as observations are exchanged between x and y, the empirical

distributions of the permuted samples x∗ and y∗ tend to become more similar. Consequently,

test statistics that measure changes in the mean tend to become less extreme. For example,

suppose that n = nx = ny with n even, and let z∗ = (x∗′,y∗′)′ be a permuted dataset

corresponding to a permutation π ∈ Π(n/2). Then half of the observations in x∗ are from x

and half are from y, and the same is true for y∗. Consequently, we would expect x̄∗ ≈ ȳ∗,

where x̄∗ and ȳ∗ are the means of the permuted samples.

To make this explicit, and again assuming that n = nx = ny, let δ
π
x = (δπx,1, . . . , δ

π
x,n)

′ and

δπ
y = (δπy,1, . . . , δ

π
y,n)

′ be n×1 indicator vectors designating which observations are exchanged

Page 6 of 33Biometrics
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6 Biometrics, 000 0000

between x and y under the action of permutation π:

δπx,i =



















1 if π(i) > n

0 if π(i) 6 n

, i = 1, . . . , n, δπy,j =



















1 if π(n+ j) 6 n

0 if π(n+ j) > n

, j = 1, . . . , n.

Under the action of permutation π, x̄∗ = n−1
[

(1− δπ
x)

′x+
(

δπ
y

)′
y
]

, where 1 is an n × 1

vector of ones. Assuming uniform distribution of the permutations π, E [δπ
x |π ∈ Π(m)] =

(m/n)1, an n×1 vector with all elements equal tom/n. Consequently, E[x̄∗|π ∈ Π(m),x,y] =

x̄+ (m/n)(ȳ − x̄) and E[ȳ∗|π ∈ Π(m),x,y] = ȳ + (m/n)(x̄− ȳ).

Then, for example, with the test statistic T = x̄ − ȳ, we have that E[T (x∗,y∗)|π ∈

Π(m),x,y] = (x̄ − ȳ)(1 − 2m/n), where x∗,y∗ are the permuted samples corresponding

to a permutation π ∈ Π(m), m = 0, . . . , n. This shows that the expected value of T is zero

when for both x∗ and y∗ half of the observations are from x and half are from y, i.e. in the

m = n/2 partition. Similarly, the magnitude of T is |x̄ − ȳ| when either none or all of the

observations are exchanged between x and y (partitions m = 0 and m = n, respectively).

This example demonstrates that test statistics tend to be less extreme when the permuted

group samples, x∗ and y∗, each contain a mixture of elements from the observed group

samples, x and y. Similar results hold for unbalanced sample sizes.

2.2 Distribution of the partitions

Uniform sampling of the permutations π leads to a non-uniform distribution of the partitions

Π(m). The probability of drawing a permutation from partition m under uniform sampling,

which we denote as f(m),m = 1, . . . , nmin, is given by

f (m) ∝ |Π(m)| (π ∼ Uniform)

=

(

nx

m

)(

ny

m

)

,

Page 7 of 33 Biometrics
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Fast Approximation of Small p-values in Permutation Tests 7

where the last line follows directly from the definition of Π(m). The normalizing constant is

∑nmin

j=0

(

nx

j

)(

ny

j

)

=
(

N

nmin

)

, so

f (m) =

(

N

nmin

)−1(
nx

m

)(

ny

m

)

. (2)

As described in Section 4, in our proposed methods, we use f to weight the partition-specific

p-values in order to obtain an overall p-value.

We note that in practice, directly using (2) to calculate f(m) is not possible for large nx

and ny, because the binomial coefficients become too large to represent on most computers.

However, by noting the relationship between the gamma function and factorials, we can

compute (2) for large sample sizes with the equivalent form:

f (m) = exp{log Γ(nx + 1)− log Γ(nx −m+ 1)

+ log Γ(ny + 1)− log Γ(ny −m+ 1)− 2 log Γ(m+ 1)

− log Γ(N + 1) + log Γ(N − nmax + 1) + log Γ(nmax + 1)},

where log Γ is the log gamma function.

3. Trend in p-values across the partitions

In this section, we describe the trend in p-values across the partitions both with asymptotic

and simulated results. The results described in this section are given in greater detail in Web

Appendix A and are the basis for our proposed methods.

Let T be a two-sided test statistic that is a function of the means, such that larger values

are more extreme. In particular, we study T = |x̄ − ȳ| and T = max(x̄/ȳ, ȳ/x̄). T is a

random variable, and we could calculate its value for all permutations of the data to get its

permutation distribution.

We use two notations for the arguments to T : T (x,y) and T (m). T (x,y) denotes the

test statistic computed with data x,y, e.g. T (x,y) = |x̄ − ȳ|, and T (m) denotes the test

statistic computed with some permuted dataset z∗, where z∗ corresponds to a permutation

Page 8 of 33Biometrics
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8 Biometrics, 000 0000

π ∈ Π(m). This notation facilitates further analysis in Web Appendix A. We note that

Pr (T (m) > t|z) = Pr (T (x∗,y∗) > t|z, π ∈ Π(m)), i.e., T (m) = T (x∗,y∗) restricted to per-

mutations in partitionm. To be concrete, we could in principle compute the partition-specific

permutation p-value, Pr(T (m) > t|z), as p̂(m) = |Π(m)|−1
∑

π∈Π(m) I[T (x
∗,y∗) > t], where

for each π ∈ Π(m), (x∗′,y∗′)′ is the corresponding permuted dataset.

While we are primarily interested in two-sided statistics T in this paper, it helps to first

note results for their one-sided counterparts, which we denote by R. In particular, R = x̄− ȳ

and R = x̄/ȳ. Similar to before, let R(m) = R(x∗,y∗) restricted to permutations in partition

m. As shown in Corollary 2 of Web Appendix A, under certain regularity conditions and

sufficiently large sample sizes, R(m) ∼ N(ν(m), σ2(m)), where ν(m) and σ2(m) are functions

of the partition m as well as the sample means and variances of x and y. The regularity

conditions are standard assumptions for finite sample central limit theorems and the delta

method, requiring that the tails of the distributions of the data are not too large and that

the derivative of R exists at the means.

As described in Corollary 3 of Web Appendix A, a direct consequence of the limiting

normality of R(m) is that for nx and ny sufficiently large,

Pr (T (m) > t|z) ≈ 2− Φ [ξ (min {m, 2mmax −m})]− Φ
[

ξconj (min {m, 2mmax −m})
]

, (3)

where Φ is the standard normal cumulative density function (CDF), mmax = argmaxm f(m),

and ξ and ξconj are functions of the partition m and data z, whose forms depend on the

statistic T . The functions ξ and ξconj are identical in form but reverse the role of the means

of the permuted samples x̄∗ and ȳ∗. This accounts for the two-sided form of T . Equation 3

is the basis for our asymptotic approximation, which is described in Section 4.1.

The proof of (3) involves the fact that Pr (T (m) > t|z), as a function ofm, is approximately

symmetric about mmax. This symmetry is exact when nx = ny and less accurate as the group

sample sizes become imbalanced. Consequently, the accuracy of the approximation in (3)

Page 9 of 33 Biometrics
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Fast Approximation of Small p-values in Permutation Tests 9

is best for equal group sample sizes and worsens as the group sample sizes become more

imbalanced.

The result in (3) and the form for ξ and ξconj shown in Web Appendix A for T =

max(x̄/ȳ, ȳ/x̄) give the smooth pattern shown in Figure 1 for nx = ny = 100, µx = σ2
x = 4,

and µy = σ2
y = 2. In the case where nx 6= ny, the center of the trend shifts but is otherwise

similar.

The smooth trend shown in Figure 1 is primarily an observation, though it holds with

striking similarity for both T = |x̄ − ȳ| and T = max(x̄/ȳ, ȳ/x̄) for a wide range of group

sample sizes and parameter values. This observation is the basis for our resampling algorithm

described in Section 4.2.

Figure 2 shows simulated results with B = 103 resamples within each partition for data

coming from the following distributions with nx = ny = 100: Poisson with rates λx = 4 and

λy = 2; exponential with rates λx = 2 and λy = 1; log normal with means µx = 2 and µy = 1

and variances σ2
x = σ2

y = 1, where µ and σ2 are the means and variances of the log; and

negative binomial with size rx = ry = 3 and probability of success p = r/(r + µ), where

the means are µx = 4 and µy = 2. For visual comparison between theoretical and simulated

results, Figure 1b shows the theoretical values cut off at 10−3.

Note that the p-value for the m = 0 partition is always 1, as the only permutation in that

partition is the observed test statistic. The same holds for partition m = nmin when nx = ny.

[Figure 1 about here.]

[Figure 2 about here.]

4. Proposed methods

In this section, we propose two methods for approximating small permutation p-values:

1) a closed-form asymptotic approximation, and 2) a computationally efficient resampling

Page 10 of 33Biometrics
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algorithm. First, we note that we can express the permutation p-value as

Pr(T > t|z) =

nmin
∑

m=0

Pr (T (m) > t |z) f (m) . (4)

Both the asymptotic and resampling-based approaches involve approximations for the

Pr (T (m) > t |z) terms in (4). The asymptotic approach uses (3) to approximate these terms,

whereas the resampling algorithm uses the trend across the partitions to predict the terms.

If multiplicity corrections are needed, researchers can apply step-up or step-down pro-

cedures to the p-values produced by our method (e.g. Holm (1979) to control FWER, or

Benjamini and Hochberg (1995) to control FDR).

4.1 Asymptotic approximation

Our asymptotic approximation to the permutation p-value is given by p̂asym =
∑nmin

m=0 h(m)f(m),

where f(m) is given by (2) and

h(0) = 1

h(m) = 2− Φ [ξ(min {m, 2mmax −m})]− Φ
[

ξconj(min {m, 2mmax −m})
]

,m ∈ [1, nmin − 1]

h(nmin) =



















1 if nx = ny

2− Φ [ξ(min {m, 2mmax −m})]− Φ
[

ξconj(min {m, 2mmax −m})
]

otherwise

To see why h(0) = 1 always and h(nmin) = 1 when nx = ny, note that the p-value is always 1

in the m = 0 partition, because this partition only contains the observed permutation. The

same is true for the nmin partition when nx = ny, as T is a two-sided statistic.

Regarding notation, we use a hat in p̂asym as opposed to a tilde to emphasize that we are

not using Monte Carlo methods.

4.2 Resampling algorithm

As noted in Section 3, we could in principle estimate each Pr(T (m) > t|z) term in (4)

with Monte Carlo methods, but this would be more computationally intensive than directly

estimating Pr(T > t|z) without conditioning on the partition. This is because for small p-

Page 11 of 33 Biometrics
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Fast Approximation of Small p-values in Permutation Tests 11

values, Pr(T (m) > t|z) terms for m near mmax (the middle partition when nx = ny) are very

small, so we would need to use an extremely large number of resamples to estimate these

values (e.g. see Figure 1a).

However, by taking advantage of the trend in p-values across the partitions, we can avoid

directly calculating Pr(T (m) > t|z) for m near mmax. Instead, we use simple Monte Carlo

resampling to estimate Pr(T (m) > t|z) sequentially for m = 1, 2, . . . ,mstop, where mstop is

the stopping partition, which, as described below, is determined dynamically. We then use a

Poisson model to predict the Pr(T (m) > t|z) terms for the remaining partitions (as well as

for partitions m = 1, . . . ,mstop) under the assumption that the log of the partition-specific

p-values is linear in m.

We then take a weighted sum across the predicted partition-specific p-values, as in (4), to

obtain an overall p-value. We denote the resulting p-value as p̃pred, where the tilde emphasizes

the use of Monte Carlo methods and the subscript emphasizes that the estimate is based on

predicted counts within each partition.

As described in Algorithm 1, we set the number of Monte Carlo resamples within partitions

at Bpred (e.g. we use Bpred = 103) and estimate Pr(T (m) > t|z) for m = 1, . . . ,mstop, where

mstop is the first partition in which none of the resampled statistics are larger than the

observed statistic. We stop at partition mstop because the exponential decrease in p-values

across the partitions, shown in Figure 1a, makes it nearly certain that we would not obtain a

p-value greater than zero in partitions larger than mstop using only Bpred = 103 resamples. In

other words, it would be a waste of resources to continue sampling from additional partitions.

Furthermore, since the trend is symmetric about mmax, we can estimate the p-values in

partitions m = mmax + 1, . . . , nmin using the p-values in partitions m = 1, . . . ,mmax.

Regarding the Poisson model, this is a natural choice for count data (the number of resam-

pled statistics larger than the observed statistic within each partition) and also enforces a log-

Page 12 of 33Biometrics
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linear trend. Furthermore, we found that Poisson regression worked best in the simulations.

In addition to our current approach of using a slope and intercept term in the Poisson model,

we experimented with using higher order polynomials and B-splines and selecting the optimal

order or degrees of freedom based on AIC. However, we found that this approach was too

sensitive to noise in the data and sometimes gave highly erroneous results (e.g. p-values > 1).

In Algorithm 1, we represent vector indices by square brackets [·] and begin the index

at zero because our partitions begin at m = 0. We use the vector c to store the count of

permuted test statistics in each partition that are as large or larger than the observed test

statistic as obtained with simple Monte Carlo resampling and use cpred to store predicted

counts based on a fitted model. We use Bpred to denote that number of resamples within

each partition.

Algorithm 1 p̃pred

1: set m← 1 and c[0]← Bpred

2: while (m 6 mmax and c[m− 1] > 0) do

3: for b = 1, . . . , Bpred, sample πb ∈ Π(m) uniformly and calculate Tb(m) = T (x∗,y∗)

for x∗,y∗ corresponding to πb

4: set c[m]←
∑

b I[Tb(m) > t] and update m← m+ 1

5: end while

6: set mstop ← m− 1 and mreg ← maxm {m ∈ {1 . . . ,mmax} : c[m] > 0}

7: regress c[0 : mreg] on (0, . . . ,mreg) using a Poisson model with slope and intercept terms

8: predict cpred for m = 1, . . . , nmin with fitted model, s.t. cpred is symmetric about mmax

9: set cpred[0]← Bpred, and if nx = ny, then set cpred[nx]← Bpred

10: return p̃pred ≡ (1/Bpred)
∑nmin

m=0 cpred[m]f(m)

Our proposed algorithm runs in O(Bpredmstop) time. As described in Web Appendix F, we

provide functions for estimating mstop, and thus run-time, prior to running the algorithm.
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Fast Approximation of Small p-values in Permutation Tests 13

5. Simulations

To investigate the behavior of our proposed methods, we conducted simulations with the

statistics T = |x̄ − ȳ| and T = max(x̄/ȳ, ȳ/x̄). Given the extremely small p-values in our

simulations, it was not feasible to compute the true permutation p-values for comparison.

Instead, we used asymptotically equivalent p-values and large sample sizes.

In Web Appendix C, we show results from additional simulations for 1) small sample sizes,

and 2) data generated under the null hypothesis, in which case we approximated the true

permutation p-value with simple Monte Carlo resampling, and 3) data generated as Gamma

random variables. In Web Appendix D, we also show simulations with the moment-corrected

correlation (MCC) method of Zhou and Wright (2015) using the statistic T = |x̄ − ȳ|, and

compare our method with saddle point approximations (Robinson, 1982) by analyzing two

small datasets (nx = ny = 8 and nx = 7, ny = 10), also using the statistic T = |x̄ − ȳ|. In

Web Appendix E, we show simulation results using our method with a studentized statistic

to test null hypotheses regarding a single parameter as opposed to the full distribution,

as described by Chung et al. (2013). The results in Web Appendices C and D show that

the accuracy of our method is comparable to alternative methods, and the results in Web

Appendix E show that by using a studentized statistic, our method can be extended to null

hypotheses specifying equality in the means (H0 : µx = µy), as opposed to equality in the

entire distributions (H0 : Px = Py).

5.1 Difference in means

In this section, we consider the test statistic T = |x̄ − ȳ| with normally distributed data

of equal variance. Since the t-test is asymptotically equivalent to the permutation test in

this setting (Lehmann and Romano, 2006, p. 642-643), we used the t-test as a baseline

for comparison. We simulated data with both equal and unequal sample sizes (nx = ny

and nx 6= ny). In both cases, we generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as
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realizations of the respective random variables Xi
iid
∼ N(µx, 1) and Yj

iid
∼ N(µy, 1) for various

parameter values. For each combination of parameter values, we generated 100 datasets.

For equal sample sizes, we set n = nx = ny = 100, 500, or 1,000. For unequal sample sizes,

we set ny = 500, and nx = 50, 200, or 350. In both cases we set µy = 0 and µx = 0.75 or 1.

For each dataset, we applied our methods and did a t-test with the t.test function in R (R

Core Team, 2015) (two-sided with equal variance). For our resampling algorithm, we used

Bpred = 103 resamples in each partition.

For comparison, we also ran the SAMC algorithm using the R package EXPERT written by

Yu et al. (2011). We set the number of iterations (also resamples) in the initial round at

5 × 104 and the number of iterations in the final round at 106. Following the advice of Yu

et al. (2011), we set the gain factor sequence to begin decreasing after the 1, 000th iteration,

the proportion of data to be updated at each iteration at 0.05, and the number of regions at

101 for the initial run and 301 for the final run.

Results are shown in Figures 3 and 4. In the Figures, pt denotes the p-value from a two-

sided t-test with equal variance, and p denotes the p-value from either our methods or

SAMC. The dashed line has a slope of 1 and intercept of 0, and indicates agreement between

methods. The SAMC algorithm did not produce values for smaller p-values due to numerical

problems, so these points are missing from Figures 3 and 4 (385 missing points in Figure

3, and 179 missing points in Figure 4). In order to estimate these points with the EXPERT

implementation of the SAMC algorithm, we would need to increase the number of iterations.

[Figure 3 about here.]

[Figure 4 about here.]

As Figures 3 and 4 show, our resampling algorithm and asymptotic approximation are able

to estimate extremely small p-values, which the SAMC algorithm is not able to estimate

even though we set it to use approximately two orders of magnitude more resamples than
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Fast Approximation of Small p-values in Permutation Tests 15

our resampling algorithm. While our asymptotic approximation has less variance than our

resampling algorithm, the asymptotic approximation appears to have more bias. We note

that the scales are not the same in Figures 3 and 4, but in both cases, the p-values are

smaller than what would typically be estimated with resampling methods.

Figures 3b and 4b also demonstrate that our algorithm uses fewer permutations when

estimating smaller p-values than when estimating larger p-values. This occurs because the

trend in partition-specific p-values across the partitions tends to be steeper for smaller overall

p-values, which leads to earlier stopping times.

5.2 Ratio of means

In this section, we consider the test statistic T = max(x̄/ȳ, ȳ/x̄), both for nx = ny and

nx 6= ny. We generated data xi, i = 1, . . . , nx and yj, j = 1, . . . , ny as realizations of

the respective random variables Xi
iid
∼ Exp(λx) and Yj

iid
∼ Exp(λy), where Exp(λ) is an

exponential distribution with rate λ, i.e. E[Xi] = 1/λx. We chose this setup because 1)

having data with non-negative support ensures non-zero denominators in the ratio statistic,

and 2) the resulting ratio statistic follows a beta prime distribution, also called a Pearson

type VI distribution (Johnson et al., 1995, p. 248), which provides an approximate baseline

for comparison (see Web Appendix B).

For equal sample sizes, we set n = nx = ny = 100, 500, or 1,000. For unequal sample sizes,

we set ny = 500, and nx = 50, 200, or 350. In both cases we set λx = 1 and λy = 1.75 or

2.25. For all parameter combinations, we generated 100 datasets.

For each dataset, we applied our methods and computed the p-value from the beta prime

distribution. For our resampling algorithm, we used Bpred = 103 resamples in each partition.

We also computed p-values using the delta method (see Web Appendix G) and ran the

SAMC algorithm with the same specifications as described in Section 5.1.

Results are shown in Figures 5 and 6. In the Figures, pβ denotes the p-value from the beta
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prime distribution, and p denotes the p-value from either our methods, the delta method

(see Web Appendix G), or SAMC. The dashed line has a slope of 1 and intercept of 0,

and indicates agreement between methods. As before, the SAMC algorithm did not produce

values for smaller p-values, so these points are missing from Figures 5 and 6 (246 missing

points in Figure 5, and 33 missing points in Figure 6).

[Figure 5 about here.]

[Figure 6 about here.]

As Figures 5 and 6 show, both our resampling algorithm and asymptotic approximation

appear to have more bias in this setting than for the difference in means, though in this

case, the asymptotic approximation is biased downward instead of upward. Our resampling

algorithm tends to be biased upward.

As before, the SAMC algorithm had trouble estimating extremely small p-values with the

number of iterations we allowed it. In the case of equal sample sizes, the SAMC algorithm

began to have problems for p-values around 10−30. In the case of unequal sample sizes, the

SAMC algorithm appears to have performed similarly to our resampling algorithm, albeit

with one to two orders of magnitude more resamples. Figures 5 and 6 also show that p-values

from the delta method (see Web Appendix G) are not reliable, even for large sample sizes.

Similar to Section 5.1, Figures 5b and 6b show that our resampling algorithm uses fewer

resamples for smaller p-values. Also, as before, the scale of the p-values is not the same in

Figures 5 and 6, but in both cases, they are smaller than what would typically be estimated

with resampling methods.

6. Application to cancer genomic data

To further demonstrate our methods, we analyzed RNA-seq data collected as part of The

Cancer Genome Atlas (TCGA) (National Cancer Institute, 2015). In particular, we were
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Fast Approximation of Small p-values in Permutation Tests 17

interested in identifying genes that were differentially expressed in two different types of

lung cancers: lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC).

We downloaded normalized gene expression data from the TCGA data portal. As described

by TCGA, to produce the normalized gene expression data, tissue samples from patients with

LUSC and LUAD were sequenced using the Illumina RNA Sequencing platform. The raw

sequencing reads from all patient samples were processed and analyzed using the SeqWare

Pipeline 0.7.0 and MapspliceRSEM workflow 0.7 developed by the University of North

Carolina. Sequencing reads were aligned to the human reference genome using MapSplice

(Wang et al., 2010), and gene level expression values were estimated using RSEM (Li and

Dewey, 2011) with gene annotation file GAF 2.1. For each sample, RSEM gene expression

estimates were normalized to set the upper quartile count at 1,000 for gene level estimates.

For the analyses in this section, we used the normalized RSEM gene expression estimates.

For both LUAD and LUSC, TCGA contains normalized expression estimates for 20,531

genes (the same genes for both cancers). There were 548 subjects with LUAD observations,

and 541 with LUSC observations. To ensure that our results would be biologically meaningful,

we restricted our analysis to genes for which at least 50% of the subjects had expression levels

above the 25th percentile of all normalized gene expression levels (6.57). This reduced our

analysis to 15,386 genes.

Let Px,g and Py,g be the underlying distributions that generated the normalized expression

levels in LUAD and LUSC, respectively, for gene g. To test the two-sided hypothesis of

H0 : Px,g = Py,g versus the alternative H1 : µx/µy 6= 1, we used the fold-change statistic

T = max(x̄g/ȳg, ȳg/x̄g). Here, µx and µy are the means of Px,g and Py,g, respectively.

First, we conducted simple Monte Carlo permutation tests on all 15,386 genes with B = 103

resamples. This left us with 10,302 genes with p-values less than 10−3, the minimum estimate
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possible with only B = 103 resamples. We then used our resampling algorithm to estimate

p-values for the 10,302 genes that passed our preliminary screen.

Table 1 shows the results for the fifteen genes with the smallest p-values, as well as the

deviance and AIC from the Poisson regression fit during the resampling algorithm. We report

both the estimate from the initial, single run of our algorithm, as well as the 10th, 50th, and

90th quantiles from an additional 1,000 runs. Note that Table 1 reports the observed ratio

of mean(LUAD)/mean(LUSC), not the max of the ratios that we used in the permutation

test. Of the top 15 genes, none had elevated levels of LUAD. Point estimates for all genes

are available as supplementary material.

Eleven of the these fifteen genes, shown in bold (DSG3, KRT5, DSC3, CALM3, TP63,

ATP1B3, KRT6B, TRIM29, PVRL1, FAT2, and KRT6C ), were also identified by Zhan

et al. (2015) as being among the most effective genes for distinguishing between LUAD and

LUSC. Like us, Zhan et al. (2015) used the TCGA dataset, though they based their analysis

on the area under the curve from a Wilcoxon rank-sum test.

[Table 1 about here.]

We emphasize that in presenting Table 1, we are not trying to promote the use of p-

values as the sole source of information for making scientific decisions, such as ranking the

importance of genes. Instead, we present Table 1 and make comparisons with the findings of

Zhan et al. (2015) as a way of verifying the reasonableness of our results. Zhan et al. (2015)

used different methods to analyze the TCGA data, so we do not expect our results to be

exactly the same, but it is encouraging that our results appear to agree to some extent.

We also want to point out that our resampling algorithm can approximate extremely small

p-values, but that in doing so, there is a large amount variability in the estimates. However,

we think these estimates could still be used as an approximation of the order of magnitude,
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Fast Approximation of Small p-values in Permutation Tests 19

and note that they would be infeasible to estimate with existing Monte Carlo methods,

including the SAMC algorithm.

7. Discussion

As we have demonstrated through simulations and an application to cancer genomic data,

our methods can quickly approximate small permutation p-values (e.g. < 10−6) for two-

sample tests, where the test statistic is the difference or ratio of means. The computational

efficiency of our resampling algorithm is particularly notable when estimating extremely

small p-values (e.g. < 10−30).

As is suggested in the example of Section 2, our methods can only detect changes in the

mean. If Px 6= Py but µx = µy, then the statistics T = |x̄− ȳ| and T = max(x̄/ȳ, ȳ/x̄) cannot

detect differences. We also note that while our development focuses on the null hypothesis

Px = Py, the simulations in Appendix E suggest that our methods extend to less restrictive

null hypotheses, such as those considered by Janssen (1997) and Chung et al. (2013).

As shown in the Section 5 and the Web Appendices, the accuracy of our resampling method

is comparable to alternative methods, such as SAMC and MCC, though SAMC and MCC

are applicable in situations where our methods are not. In particular, MCC can handle any

statistic that can be expressed as, or is permutationally equivalent to, an inner product. In

addition to these methods, researchers may want to consider the method of Fieller (1954)

for obtaining confidence intervals for the ratio of means, and the approaches described by

Cui and Churchill (2003) for using t-tests and ANOVA to analyze the mean log ratio.

While the reliability of our resampling algorithm will vary based on the empirical distri-

bution of the data, in general, we recommend having at least 15-20 observations in each

group for p-values near 1 × 10−6 and at least 70-90 observations in each group for p-

values near 1 × 10−30 (see Web Appendix F). As demonstrated in Section 6, there can

be considerable variability in estimating extraordinarily small p-values (e.g. 1 × 10−200).
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For these extraordinarily small p-values, we recommend that our method be used only to

approximate the order of magnitude of the permutation p-value.

In choosing between our resampling algorithm and asymptotic approximation, we rec-

ommend using the resampling algorithm when possible for small p-values, as it appears

to perform better in simulations. However, as demonstrated in the Web Appendix, our

asymptotic method may be preferable for large p-values, as it appears to be more conservative

under the null. Both approaches work best for equal sample sizes, and we suggest caution

when using with small and highly imbalanced samples.

Depending on a researcher’s needs, our algorithm could be useful as a fast approximation

of small p-values. This might be helpful, for example, in a screening study involving many

genes, in which a researcher wants to quickly get a sense for which genes have p-values that

are likely to be below a small threshold. It might also be helpful as a preliminary analysis to

approximate the order of magnitude of a p-value, which could help a researcher to determine

whether it would be feasible to follow-up with other Monte Carlo methods, such as SAMC,

and if so, how many iterations they would need to use. For some situations, such as our

analysis in Section 6, this could save considerable time and resources.

We want to emphasize that our methods are most useful for approximating small permu-

tation p-values. For large p-values, our resampling algorithm is less computationally efficient

than simple Monte Carlo resampling. In the context of genomics data, before using our

methods, we recommend that researchers use simple Monte Carlo resampling with a small

number of resamples (e.g. 103) to identify which genes have p-values below a certain threshold

(e.g. 10−3). However, this is not a requirement.

This paper focuses on two-sample tests, and we plan to explore extensions to multiple

samples in future work. As one way to handle multiple samples, we could conduct a union-

intersection test (Casella and Berger, 2002, p. 380). For example, say we have k samples
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Fast Approximation of Small p-values in Permutation Tests 21

x1, . . . ,xk, and we wish to test the hypothesis H0 : ∩i 6=jPxi
= Pxj

versus the alternative

H1 : ∪i 6=jµxi
6= µxj

, where µi is the mean of Pxi
. Then we could use Algorithm 1 to compute

p-values for all pairwise differences (or all pairwise ratios), and then take the minimum p-

value. As another alternative, we could extend Algorithm 1 to use an omnibus statistic,

similar to the ANOVA F-test, and use a multi-sample version of (2). For example, we might

use T =
∑

i ni|x̄i − x̄|/n where x̄i and ni are the mean and sample size, respectively, for

group i, x̄ is the overall mean, and n =
∑

i ni. However, the extension of (2) to multiple

samples is non-trivial. It is also unclear whether the p-values from the multi-sample case

would follow the same trends across the partitions as in the two-sample case.

Returning to the two-sample case, while we have focused on the difference and ratio of

the means, preliminary efforts to explain the nearly log-linear trend in p-values across the

partitions suggests that the same pattern might hold for other smooth functions of the

means. In future work, we plan to explore this further. We also plan to investigate potential

diagnostics for assessing the reliability of the algorithm’s output, possibly based on the AIC

from the Poisson regression. Finally, we note that alternative Monte Carlo methods could

be incorporated into our resampling algorithm. For example, the SAMC algorithm could be

used in place of simple Monte Carlo resampling within each partition. This might further

reduce run-time and increase accuracy.

8. Supplementary material

We have implemented our method in the R package fastPerm available at https://github.

com/bdsegal/fastPerm. All code for the simulations and analyses in this paper are available

at https://github.com/bdsegal/code-for-fastPerm-paper. Web Appendices referenced

in Sections 1 and 3-7 are available with this paper at the Biometrics website on Wiley Online

Library.
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(a) Theoretical trend (b) Theoretical trend cut off at 10−3

Figure 1: Theoretical trend in p-values with T = max(x̄/ȳ, ȳ/x̄) for nx = ny = 100, µx =
σ2
x = 4, and µy = σ2

y = 2.
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Figure 2: Simulated trend in p-values with B = 103 resamples within each partition and
T = max(x̄/ȳ, ȳ/x̄)
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(a) p-values (b) Number of resamples in Alg 1

Figure 3: Simulation results using the statistic T = |x̄ − ȳ| with equal sample sizes of
n = nx = ny = 100, 500, 1,000. Alg 1 is our resampling algorithm with Bpred = 103 resamples
in each partition, Asym is our asymptotic approximation, SAMC is the SAMC algorithm,
and pt is a two-sided t-test with equal variance. The diagonal dashed line has slope of 1 and
intercept of 0, and indicates agreement between methods. The horizontal line in 3b shows
the number of iterations used in the SAMC algorithm (set in advance, and independent of
p-value). The SAMC algorithm did not produce values for 385 tests (points missing). This
figure appears in color in the electronic version of this article.
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(a) p-values (b) Number of resamples in Alg 1

Figure 4: Simulation results using the statistic T = |x̄ − ȳ| with unequal sample sizes,
where ny = 500 and nx = 50, 200, 350. Alg 1 is our resampling algorithm with Bpred = 103

resamples in each partition, Asym is our asymptotic approximation, SAMC is the SAMC
algorithm, and pt is a two-sided t-test with equal variance. The diagonal dashed line has
slope of 1 and intercept of 0, and indicates agreement between methods. The horizontal line
in 4b shows the number of iterations used in the SAMC algorithm (set in advance, and
independent of p-value). The SAMC algorithm did not produce values for 179 tests (points
missing). This figure appears in color in the electronic version of this article.
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(a) p-values (b) Number of resamples in Alg 1

Figure 5: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with equal sample
sizes of n = nx = ny = 100, 500, 1,000. Alg 1 is our resampling algorithm with Bpred =
103 resamples in each partition, Asym is our asymptotic approximation, Delta is the delta
method, SAMC is the SAMC algorithm, and pβ is the two-sided p-value from the beta
prime distribution. The diagonal dashed line has slope of 1 and intercept of 0, and indicates
agreement between methods. The horizontal line in 5b shows the number of iterations used
in the SAMC algorithm (set in advance, and independent of p-value). The SAMC algorithm
did not produce values for 246 tests (points missing). This figure appears in color in the
electronic version of this article.
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(a) p-values (b) Number of resamples in Alg 1

Figure 6: Simulation results using the statistic T = max(x̄/ȳ, ȳ/x̄) with unequal sample
sizes, where ny = 500 and nx = 50, 200, 350. Alg 1 is our resampling algorithm with Bpred =
103 resamples in each partition, Asym is our asymptotic approximation, Delta is the delta
method, SAMC is the SAMC algorithm, and pβ is the two-sided p-value from the beta
prime distribution. The diagonal dashed line has slope of 1 and intercept of 0, and indicates
agreement between methods. The horizontal line in 6b shows the number of iterations used
in the SAMC algorithm (set in advance, and independent of p-value). The SAMC algorithm
did not produce values for 33 tests (points missing). This figure appears in color in the
electronic version of this article.
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Table 1: Fifteen genes with the smallest p-values, and other output from our algorithm with
Bpred = 103 resamples in each partition. Single run is the value of log10(p̃pred) from the initial
run of our resampling algorithm. The quantiles are from 1,000 replicates. For the single run,
mstop is the partition at which our algorithm stopped, and deviance and AIC are from the
Poisson regression fit during the algorithm. Genes shown in bold were identified by Zhan
et al. (2015) as being among the most effective genes for distinguishing between LUAD and
LUSC using the area under the curve from a Wilcoxon rank-sum test.

log10(p̃pred)

Gene name Single run Quantiles (10th, 50th, 90th) mean(LUAD)
mean(LUSC)

mstop Deviance AIC

DSG3 -212 (-217, -208, -200) 0.0100 5 40.1 68.1
KRT5 -210 (-223, -214, -205) 0.0107 4 12.5 38.2
DSC3 -197 (-212, -205, -197) 0.0175 6 41.5 72.1

CALML3 -195 (-198, -188, -179) 0.0138 6 57.8 90
TP63 -193 (-199, -192, -186) 0.0308 6 24.2 55.1

ATP1B3 -193 (-196, -188, -181) 0.225 5 28.6 57.7
S1PR5 -190 (-190, -181, -173) 0.0775 6 98.4 131
KRT6B -185 (-189, -181, -173) 0.0173 5 45.4 76.1
TRIM29 -183 (-188, -181, -174) 0.0788 6 39.3 72
JAG1 -180 (-186, -179, -172) 0.170 5 60.7 92.2

PVRL1 -180 (-183, -177, -171) 0.110 6 8.33 39.2
CLCA2 -178 (-188, -180, -172) 0.0138 7 51.6 86.8
BNC1 -178 (-197, -188, -181) 0.0244 7 76.8 112
FAT2 -177 (-186, -179, -173) 0.0339 7 53.5 89

KRT6C -177 (-188, -181, -174) 0.0183 6 84.8 119
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