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Abstract

We offer an inference methodology for the upper endpoint of a regularly varying distribu-
tion with finite endpoint. We apply it to the IDL and GRG data sets of lifespans of super-
centenarians. As in the comprehensive analysis of Rootzén and Zholud, our results underscore
the effect of the data sampling scheme and censoring on the conclusions. We also quantify the
statistical difficulty of distinguishing between the hypotheses of finite and infinite lifespan by
providing estimates of the required sample size.

1 The Bible, facts, and myths

The question about whether the natural human lifespan has a hard biological limit has been of
great interest since the beginning of time. Not surprisingly, therefore, the answer can be found in
The Bible, Genesis (The Wickedness of Mankind), Ch 6:3 [1]:

And the Lord said, My Spirit shall not always strive with man, for that he also is flesh: yet his
days shall be a hundred and twenty years.

Our colleague Ya’acov Ritov who brought this quote to our attention, explained that in the original
Hebrew version, the above stipulation is gender-free and it should have applied to Jeanne Calment
who lived 122 years and 164 days – the longest undisputedly documented human lifetime. The
Bible itself as well as many other sources mention human lifespans of well over 120 years, but it is
well-known that such data tend to be either mythical or highly unreliable.

Extreme Value Theory is the most natural statistical framework that can provide a principled
answer to the question about whether or not natural human lifespan is finite. Simply put, it amounts
to fitting either a Generalized Pareto Distribution model to the Peaks over Extreme Threshold, or
a Generalized Extreme Value model to block-maxima of the data. Roughly speaking, the resulting
index estimate (perhaps with a confidence interval) would then suggest whether the underlying
distribution is of finite support or not. This recipe, however, assumes that the data are pristine,
independent samples from a fixed population. The key challenge in applying this methodology to
human lifespan data is the data itself.
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Rootzén and Zholud [13] take great care in using perhaps the best available data set of super-
centenarian lifespans from the International Database on Longevity [10]. They clearly demonstrate
that poor understanding of the sampling scheme or selection biases, which plague many available
longevity data sets, can easily lead to conflicting conclusions. Then, using a suitably defined
likelihood, which accounts for the sampling scheme as well as the extremal behavior of the data,
they show that the force of mortality (survival rate) of super-centenarians is likely constant with
age. Therefore, there is no evidence that the current record value of the human lifespan is close to
its natural biological limit if one exists at all.

We congratulate Holger Rootzén and Dmitrii Zholud on a most thorough and illuminating treat-
ment of this important question. Their work can serve as a gold-standard of further applications
of extreme value theory to data – they pay equal attention to the data, its curation, and sampling
scheme, as well as to the appropriate statistical methodology.

The question about the limit of natural human lifespan is complex and confounded in many
factors that bring life to an end. To best estimate the upper endpoint of the human lifespan
distribution (finite or infinite), one should focus on individuals who die of natural causes and
not due to a commonly preventable disease. This is essentially achieved by focusing on super-
centenarians because, having passed the threshold of 110, these individuals have managed to avoid
most ailments and accidents that bring demise to humans. The cause of death, however, is not
indicated even in the carefully curated IDL data-base, which may in principle contribute to some
bias even in the careful treatment of [13].

In contrast to [8], a large body of statistically sound research on gerontology exists where
many important penultimate extreme age phenomena are discussed. Notably, the excellent study
of Andersen et al [2] provides an in-depth survival analysis on the effect of ailments on age and
longevity. It shows (using statistically sound Weibull regression techniques) that super-centenarians
become increasingly immune to disease and ailments with age:

“We observed a progressive delay in the age of onset of physical and cognitive function impairment,
age-related diseases, and overall morbidity with increasing age. As the limit of human life span was
effectively approached with supercentenarians, compression of morbidity was generally observed.”

Fries [9, 15] pioneered the “aging healthy” philosophy. He formulated the “compression of mor-
bidity” hypothesis, which postulates that society will become increasingly more healthy in old age
and the morbidity will be squeezed into shorter and shorter intervals prior to death. Other recent
studies argue for a broader definition and an expansion-of-morbidity phenomenon [3]. While these
studies address the important question about whether humans will “age healthily” or “age sick” the
ultimate question about the limit on natural human lifespan requires solid statistical methodology,
which is rooted in Extreme Value Theory.

In the rest of this note, we provide some inference methods for the endpoint of a distribution
with a finite upper bound. We then apply these methods to the IDL and GRG data sets and largely
confirm the detailed analysis of Rootzén and Zholud [13]. We end with a cautionary tale on the
minimum sample size required to be able to draw a confident conclusion about the finiteness of
human lifespan. The MATLAB code used to produce all tables and figures is given in [14].
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2 Confidence sets for the upper endpoint of a distribution

Next we present a methodology for constructing confidence sets for the endpoint of a distribu-
tion. Our approach is based on the method of test-inversion and differs from the profile likelihood
method illustrated in Figure 1 of Davison [7]. Let Xi, i = 1, . . . , n be iid (independent identically
distributed) realizations from a distribution F with an upper endpoint xF <∞. We shall suppose
that F belongs to the max domain of attraction of a reversed Weibull law with index −ξ < 0. That
is,

P(xF −Xi < 1/z) = L(z)z−1/ξ, z > 0,

where L is a slowly varying function at ∞ with exponent −1/ξ (see, e.g., Proposition 1.13 in [12]).
Equivalently, the random variables

Yi = Yi(xF ) :=
1

(xF −Xi)
, i = 1, . . . , n (1)

have heavy, regularly varying right tails, i.e.,

P(Yi > z) = L(z)z−1/ξ, z > 0. (2)

The test-inversion based method. Let X(n,n) ≤ X(n−1,n) ≤ · · · ≤ X(1,n) be the order statistics
of the data. Our goal is to obtain a confidence region for xF . We do so by the method of test
inversion. Specifically, consider the family of hypotheses testing problems:

Tθ :

{
H0 : xF = θ
Ha : xF 6= θ

for θ ∈ [θ0, θ1]. Suppose that we have a calibrated test statistic that produces a p-value p(θ) =
p(θ; Xn) having the Uniform(0, 1) distribution under the null hypothesis. Then, the method of
inversion entails that, given an α ∈ (0, 1),

Cα := {θ : p(θ) > α} (3)

is a 100× (1− α)% confidence region for xF .
We use this test-inversion strategy to obtain a confidence interval. Observe that under the

null hypothesis Yn(θ) := {Yi(θ), i = 1, . . . , n} are regularly varying. Based on Yn(θ), we next
define a class of statistics which are asymptotically Uniform(0, 1) and independent (see (10) in
Proposition 2). Applying a test of uniformity to these statistics, we obtain p-values p(θ) over the
range, θ > X(1,n), which by (3) yields a confidence region for xF . In practice, these confidence
regions depend on the choice of the test (Section 3 illustrates the dependence on order statistic
parameters).

Testing for regular variation. We start with the ideal Pareto setting. Namely, suppose that
Zn := {Zi, i = 1, . . . , n} are iid standard 1/ξ−Pareto distributed, i.e., P(Zi > x) = x−1/ξ, x ≥
1, ξ > 0. Recall the celebrated Hill statistics:

ξ̂j(Zn) :=
1

j

j∑
i=1

log

(
Z(i,n)

Z(j+1,n)

)
≡ 1

j

j∑
i=1

i log

(
Z(i,n)

Z(i+1,n)

)
, j = 1, 2, . . . , n− 1, (4)

where Z(1,n) ≥ Z(2,n) ≥ · · · ≥ Z(n,n) are the order statistics of the Zi’s.
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Consider now the trimmed Hill statistics introduced by Bhattacharya, et al [4]:

ξ̂k0,j(Zn) :=
1

j

k0+j∑
i=k0+1

i log

(
Z(i,n)

Z(i+1,n)

)
, where 0 ≤ k0 + j ≤ n− 1 (5)

Observe that the usual Hill statistics in (4) are recovered for k0 = 0. For 1 ≤ k0 ≤ n− 2, however,
the ξ̂k0,j ’s do not involve the top-k0 order statistics of the sample. As we shall see, this will allow
us to construct calibrated confidence intervals for the endpoint of a distribution, even if the data
are censored, e.g., the largest k0 observations are missing.

Proposition 1 Let Ek = 1, 2, . . . be iid exponential random variables with unit mean and let
Γk = E1 + · · ·+ Ek be the arrival times of a unit-rate Poisson process on (0,∞).

(i) We have

{ξ̂k0,j(Zn), 0 ≤ k0, 1 ≤ j < n− k0}
d
= ξ

{
Γk0+j − Γk0

j
, 0 ≤ k0, 1 ≤ j < n− k0

}
. (6)

(ii) Consequently, for a fixed 0 ≤ k0 < n− 2, the statistics

Uk0,j(Zn) :=

(
jξ̂k0,j(Zn)

(j + 1)ξ̂k0,j+1(Zn)

)j
, (7)

are Uniform(0, 1) and independent in j = 1, . . . , n− k0 − 2.

The proof is given the Appendix. We now turn to the general regularly varying case.

Let Q(u) be the tail quantile function of the Yi’s in (1), i.e.,

Q(u) := F
←
Y (u) := inf{z > 0 : F Y (z) < u}, u ∈ (0, 1)

By (2) and Proposition 1.5.15 in [6], we have that Q(u) = `(u)u−ξ, as u ↓ 0, where ` is a slowly
varying function at 0 (related to L). Without loss of generality, we suppose that

Yi = Q(Vi) = `(Vi)V
−ξ
i , i = 1, . . . , n,

where the Vi’s are independent and Uniform(0, 1). By the monotonicity of Q, and a version of the
Rényi representation, for every fixed integer k, we have

(Y(1,n), . . . , Y(k,n))
d
=

(
Q

(
Γ1

Γn+1

)
, . . . , Q

(
Γk

Γn+1

))
(8)

a.s.∼ Q

(
Γk+1

Γn+1

)((
Γ1

Γk+1

)−ξ
, . . . ,

(
Γk

Γk+1

)−ξ)
, as n→∞.

The formal proof is given in the Appendix. Therefore, as n→∞,(
Y(i,n)

Y(i+1,n)
, i = 1, 2, . . . , k

)
d−→
(

Z(i,k+1)

Z(i+1,k+1)
, i = 1, 2, . . . , k

)
, (9)

where Z(1,k+1) ≥ Z(2,k+1) ≥ . . . are the order statistics of a standard 1/ξ-Pareto random sample.
This suggests that if one replaces the Z(i,n)’s in (5) by the Y(i,n)’s, the corresponding Uk0,j statistics
in (7) would be asymptotically independent and Uniform(0, 1). More precisely:
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Proposition 2 Fix the integers 0 ≤ k0 < k and let Yn = {Yi, i = 1, . . . , n}, where the Yi’s are as
in (2). Then, as n→∞, we haveUk0,j(Yn) :=

(
jξ̂k0,j(Yn)

(j + 1)ξ̂k0,j+1(Yn)

)j
, j = 1, . . . , k − k0 − 2

 d−→ {Uj , j = 1, . . . , k − k0 − 2},

(10)
where the Uj’s are independent Uniform(0, 1).

The result follows from Proposition 1 and the Continuous Mapping Theorem when Relation (9)
is applied to (5) with n = k.

3 Simulations and Data Analysis

Understanding the testing based method. We simulated n = 631 (size of the validation A
(Type A) data set from [10], see also [13]) independent realizations from two models for the lifetimes
of super-centenarians. The first has a finite endpoint xF = 122.4493 (Jeanne Calment’s age):

X = 110 + (xF − 110)×B, where P(B > x) = (1− x)1/ξ, x ∈ (0, 1). (11)

The second model is a shifted exponential distribution, that is

X = 110 + E, where P(E > x) = e−λx, x ∈ (0,∞).

The parameters ξ = 0.1206 and λ = 1/1.34 were chosen so that both models have the same
mean excess lifetime over the threshold 110. Specifically, we match the estimate 1.34 of Rootzén
and Zholud [13]. Figure 1 highlights the fundamental differences between the two models. The
p-value maps based on the testing method (left and middle panels) were obtained as follows.
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Figure 1: Left & Middle panels: Heatmap plots of the p-value matrices P((n−2)×T ) of p-values for the

shifted GPD model in (11) with xF = 122.4493 and ξ = 1/8.291 = 0.1206 and the shifted exponential model

(GPD with ξ = 0) and λ = 1/1.34. Right panel: P-value profiles for the two models for several values of k.

We compute the U0,j(θ), j = 1, . . . , k statistics via (10), over a grid of values θ(i) = xF +ih, i =
1, . . . , T . Then, for each value k of top-order statistics, we test the hypothesis that U0,j(θ), j =
1, . . . , k are Uniform(0, 1) and obtain a p-value P (k, i). We used the Anderson-Darling test but
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other tailored tests may lead to better results [5]. Heatmaps of the resulting p-value matrices
P = (P (k, i))(n−2)×T for the finite support and exponential models are shown in the left and
middle panels of Figure 1, respectively.

Recall that for a fixed k, the set of θ’s corresponding to p-values greater than a level α, yield a
100× (1−α)% confidence region for the maximum lifespan. These ranges can be read-off from the
p-value profile plots in the right panel of Figure 1. Observe the fundamental difference between the
p-value heatmaps and profiles between the two models. The p-value profiles for the finite-support
model yield confidence sets with a finite upper bound, whereas those of the exponential model are
monotone increasing indicating infinite support. This discussion provides some guidance on how
to interpret p-value maps and profile plots for real data.

Remarks:

1. As for the Hill estimator of the heavy-tail index, our method requires choosing k. Relatively
small values of k yield high uncertainty (wide confidence bounds), while large values of k may
lead to bias since the asymptotic power-law (Pareto) scaling may not have kicked–in. The
choice of k is an important problem beyond the scope of this note.

2. The p-value map provides only a qualitative picture of the nature of the distribution, which
should not be interpreted as the outcome of a multiple hypotheses testing problem. The test
statistics in Proposition 2 are used merely as a means of obtaining confidence regions through
the method of inversion (3). Specifically, once a value of k has been chosen, thresholding the
p-value profile yields a confidence set.

3. The behavior of the p-value profiles is similar to the log-likelihood profiles of the Generalized
Pareto model, used to obtain asymptotic confidence intervals for xF in Fig. 1 of [7].

Inference on the maximum attainable human lifespan. Here, playing God’s advocate, we
assume that the lifetime distribution has a finite upper bound xF and construct confidence regions
for it. We study three different data sets: (i) Type A ages from IDL; (ii) Types A and B ages from
IDL, combined; (iii) The GRG data. The data was obtained from the International Database on
Longevity web-site [10]. In each case, we scan the region [122.49, 300] for the upper bound xF on
human lifespan.

Table 1 summarizes our findings. For type A and A&B data, we find no evidence that the
natural human lifespan is finite, based on the confidence regions obtained. It may appear that this
conclusion is fragile. Inspired by the analysis in Figure 1 of Davison [7], we censored the type A
dataset by removing the top-2 observations. If the data are treated as if no censoring is performed
(k0 = 0), then many of the confidence intervals obtained indicate a finite bound to human lifespan.
However, if the correct value of k0 = 2 is chosen, then despite the lower bounds being shifted
down (due to lack of important extreme observations), the upper confidence bounds (as for the
uncensored type A data) indicate no finite limit.

The GRG data leads us to the opposite conclusion, i.e., if one is content with picking k = 100,
then with confidence at least 95% the natural human lifespan is limited to 137.47. As indicated in
the careful analysis of Rootzén and Zholud, the GRG data are likely age-biased and this conclusion
should not be trusted. This brief discussion corroborates the findings of [13] and [7] and underscores
the crucial importance of correctly accounting for possible censoring and sampling bias in the
analysis of extreme ages. Figure 2 clarifies this picture further. Note that to resolve a technical
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Table 1: Confidence intervals for the maximum human lifespan obtained form the method of inversion at

order statistics k = 100 and 200 for the Type A; A and B; GRG datasets; ‘–’ indicates that the maximum

search region of 300 was reached. See also left and middle panels in Figure 2 for other values of k. The last

two sets of rows correspond to the censored type A dataset with top 2 observations removed (see Figure 1

of Davison [7], for analogous analysis). Observe that if censoring is not accounted for, the conclusions are

reversed (see also Figure 3, below).

Dataset
Ord Stat k = 100 k = 200

Conf Levels 90% 95% 99% 90% 95% 99%

A
Lower 128.95 126.65 124.45 129.95 127.55 124.95
Upper – – – – – –

A and B
Lower 128.65 126.35 124.25 129.65 127.35 124.95
Upper – – – – – –

GRG
Lower 117.37 117.27 117.17 117.77 117.57 117.37
Upper 126.87 137.47 – 128.57 136.37 –

Censored A (k0 = 0)
Lower 116.98 116.88 116.77 117.08 116.98 116.78
Upper 122.78 128.18 – 153.18 – –

Censored A (k0 = 2)
Lower 119.48 118.48 117.68 119.78 119.08 118.18
Upper – – – – – –

problem of ties among the order statistics, we dithered the data by adding to each of the lifespan
observations independent random hour of death values, which are uniformly distributed on the
interval [−0.5/365.25, 0.5/356.25] (see Appendix B).

Confidence regions for the maximum human lifespan. Figure 2 shows the results from
the proposed testing-based method applied to the type A and GRG data sets. The heatmap and
p-value profiles for the validation A data do not support the case for a finite endpoint xF . In fact,
they conform rather closely to the exponential excess lifetime model in Figure 1. This finding is
in agreement with the sophisticated censored likelihood approach of Rootzén and Zholud [13]. In
contrast, the p-value heatmap and profiles for the GRG data are drastically different and conform
with a bounded support model (see also Figure 1).

The effect of censoring. Finally, motivated by the analysis in Figure 1 of [7], we demonstrate
the importance of correctly accounting for missing data. Specifically, in Figure 3, we removed
the largest 2 observations from the type A data and re-did the analysis under: (i) the incorrect
assumption that there are no missing data (k0 = 0) – left panel; (ii) the correct assumption that
k0 = 2 – middle panel. The right panel shows the contrast in the p-value profiles of cases (i)
and (ii). It demonstrates, how easy one can arrive at conflicting conclusions if proper care of the
potential censoring of the data is not exercised.

4 The statistical difficulty of the problem

Here we provide an assessment of the inherent difficulty of the problem in a simplified but realistic
hypothesis testing context. Namely, let fX(x), x ≥ 0 be the probability density function of the
excess lifespan of a typical super-centenarian (over age 110). Consider the hypothesis testing
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Figure 2: The layout is as in Figure 1. The statistics are based on the dithered (see the appendix for more

details) type A and GRG data sets.

Censored: k
0
=0

150 200 250 300

Lifespan (years)

100

200

300

400

500

600

O
rd

e
r 

S
ta

t 
k

0

0.2

0.4

0.6

0.8

1

Censored: k
0
=2

150 200 250 300

Lifespan (years)

100

200

300

400

500

600

O
rd

e
r 

S
ta

t 
k

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300

Lifespan (years)

0

0.2

0.4

0.6

0.8

P
-v

a
lu

e
s

P-value profiles: k=200

incorrect: k
0
=0

correct: k
0
=2

Figure 3: Type A data with the largest 2 observations deleted. The p-value heatmap in the left panel is

based on the statistics U0,j under the incorrect assumption that there are no missing data (k0 = 0); The

middle panel involves the corrected statistics U2,j (k0 = 2). The right panel shows the drastic difference

between the p-value profiles.

problem: {
Hθ : fX(x) = pθ(x) := 1

ξθ

(
1− x

θ

)1/ξ−1
, x ∈ (0, θ)

H∞ : fX(x) = p∞(x) := λe−λx, x > 0.

Based on the careful analysis of Rootzén and Zholud [13], we shall assume that the average excess
lifetime of a super-centenarian is me := 1.34 and thus set λ := 1/1.34. Also, given that Jeanne
Calment’s excess lifespan is θ0 := 122.45− 110 = 12.45, we shall only consider θ ≥ θ0. For a given
value of θ, we shall identify ξ = ξ(θ), so that

Eθ[X] =
θξ

(ξ + 1)
= me =

1

λ
= E∞[X].

That is, we match the means of the excess lifetimes under the null and alternative hypotheses.
Under Hθ, the maximum excess lifespan θ is finite. Observe that as θ grows, distinguishing

between Hθ and H∞, becomes increasingly more difficult since pθ → p∞. Our goal is to quantify
the sample size necessary for a satisfactory answer to the problem.
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Suppose that we have n independent realizations from the excess lifetime distribution. Every
(possibly randomized) testing procedure can be identified with a function φ : [0,∞)n → [0, 1], such
that, given data values x = (x1, . . . , xn) ∈ [0,∞)n, the hypothesis Hθ is rejected with probability
φ(x) and otherwise H∞ is rejected with probability (1− φ(x)). The overall testing error can then
be measured as the sum of the type I and type II errors:

En(φ) :=

∫
[0,∞)n

φ(x)pθ(x)dx +

∫
[0,∞)n

(1− φ(x))p∞(x)dx,

where pθ(x) =
∏n
i=1 pθ(xi).

For any fixed θ and n, the optimal testing error is then obtained by minimizing over all possible
testing procedures φ:

Eoptn (pθ, p∞) = inf
0≤φ≤1

En(φ) =

∫
[0,∞)n

(pθ ∧ p∞)(x)dx.

The latter is the so-called testing affinity between the distributions pθ and p∞, which is in fact
achieved by the Neyman-Pearson likelihood ratio-based test.

Given a value of θ, by inverting the testing affinity, one can in principle compute the minimum
sample size n(θ), required for the optimal (Neyman-Pearson) test to be able to achieve a specified
testing error δ = Eoptn (pθ, p∞) ∈ (0, 1). We provide instead lower and upper bounds on the minimum
sample size, based on the easier to compute Hellinger affinity:

ρn(pθ, p∞) :=

∫
[0,∞)n

√
pθ(x)p∞(x)dx = ρn(θ),

where

ρ(θ) =

∫ ∞
0

√
pθ(x)p∞(x)dx =

√
λ

θξ

∫ θ

0
(1− x/θ)(1−ξ)/2ξe−λx/2dx. (12)

By the Le Cam testing inequalities, we obtain (see, e.g., page 44 in [11]),

1−
√

1− ρ2n(θ) ≤ Eoptn (pθ, p∞) ≤ ρn(θ). (13)

This yields the bounds
log(1− (1− δ)2)

2 log(ρ(θ))
≤ n(θ) ≤ log(δ)

log(ρ(θ))
,

where the integral (12) can be computed numerically.
Table 2 illustrates the difficulty of the testing problem. Specifically, for the current sample size

of n = 631 observations from the type A dataset, the conservative bound on the combined type I
and type II error is about 0.28. More precisely, for this sample size, the lower and upper bounds on
the optimal (testing affinity) error based on (13) are [0.0388, 0.2757]. In reality, the testing error
is perhaps closer to the lower bound. This simple analysis shows that the available data may not
be sufficient to give a very confident answer to the question of whether or not the human lifespan
is finite. Furthermore, these results provide some guidance for future studies of the problem based
on larger samples and record values of θ.
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Table 2: Lower and upper bounds for the minimum sample size required to achieve testing error δ, as a

function of θ based on Hellinger affinity.

θ = 122.45 θ = 130 θ = 140 θ = 150

δ = 0.28 179 624 528 1,838 1,276 4,445 2,349 8,186
δ = 0.10 407 1,128 1,199 3,325 2,899 8,039 5,340 14,807
δ = 0.05 570 1,467 1,681 4,326 4,064 10,460 7,485 19,264
δ = 0.01 959 2,256 2,828 6,650 6,838 16,079 12,594 29,614

5 Discussion

Reducing the question about the endpoint of a distribution to a single number does not tell the
full story behind the data. Here, we proposed a methodology for constructing confidence regions
for the upper endpoint of a distribution in the domain of attraction of a reversed Weibull law.
The methodology is likely asymptotically sub-optimal to parametric techniques such as generalized
likelihood ratio tests or profile likelihood-based confidence intervals. Nevertheless, our methods are
likely more robust to departures from the asymptotic parametric model, they can handle missing ex-
treme observations, and provide also a graphical device that aide the understanding of the extremal
behavior of the data. Our analysis of lifespans of super-centenarians confirms the conclusions of
Rootzén and Zholud and underscores the importance of correctly accounting for missing extremes
and sampling bias. We ended with a cautionary tale on the sample size required to distinguish
between the finite and infinite lifespan hypotheses.
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A Proofs

Proof of Proposition 1. Observe that Zi = V −ξi , where Vi, i = 1, . . . , n are iid Uniform(0, 1).
A version of the Rényi representation entails that

(V(n,n), V(n−1,n), . . . , V(1,n))
d
=

(
Γ1

Γn+1
,

Γ2

Γn+1
, . . . ,

Γn
Γn+1

)
.

Using this representation and the fact that Z(i,n) = V −ξ(n−i+1,n), from (4), we obtain

{ξ̂k0,k(n), 0 ≤ k0 < k < n} d
=

− ξ

k − k0

k∑
i=k0+1

i log

(
Γi

Γi+1

)
, 0 ≤ k0 < k < n

 . (14)
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Note that the random variables Γi/Γi+1, i = 1, . . . , n − 1 are independent. Indeed, this follows
from the fact that for all k, (

Γ1

Γk
, . . . ,

Γk−1
Γk

)
and Γk

are independent. Furthermore, Γi/Γi+1 has the Beta(i, 1) distribution and hence Wi := (Γi/Γi+1)
i

is Uniform(0, 1). This implies that

−i log

(
Γi

Γi+1

)
= − log(Wi), i = 1, . . . , n− 1,

are iid standard exponential, which in view of (14) yields (6).
By the so-established part (i), for a fixed k0, we have that

{(k − k0)ξ̂k0,k(n), k = k0 + 1, . . . , n− 1} d
= ξ {Γk−k0 , k = k0 + 1, . . . , n− 1} .

Therefore, for the statistics defined in (7), we obtain

{Uk0,k(n), k = k0 + 1, . . . , n− 2} =


(

(k − k0)ξ̂k0,k(n)

(k − k0 + 1)ξ̂k0,k(n)

)k−k0
, k = k0 + 1, . . . , n− 1


d
=

{(
Γk−k0

Γk−k0+1

)k−k0
, k = k0 + 1, . . . , n− 2

}
.

As argued above, the random variables (Γi/Γi+1)
i, i = 1, 2, . . . are iid Uniform(0, 1), which proves

(7). �

Proof of Relation (8). We have(
Q

(
Γ1

Γn+1

)
, . . . , Q

(
Γk

Γn+1

))
= Q

(
Γk+1

Γn+1

)(
Q

(
Γ1

Γn+1

)/
Q

(
Γk+1

Γn+1

)
, . . . , Q

(
Γk

Γn+1

)/
Q

(
Γk+1

Γn+1

))
= Q

(
Γk+1

Γn+1

)(
`(Γ1/Γn+1)

`(Γk+1/Γn+1)

(
Γ1

Γk+1

)−ξ

, · · · , `(Γk/Γn+1)

`(Γk+1/Γn+1)

(
Γk

Γk+1

)−ξ
)
.

By the Strong Law of Large Numbers, we have Γk+1/Γn+1
a.s.−→ 0, and hence by the slow variation

property of `, for all fixed k and i = 1, . . . , k, we have

`(Γi/Γn+1)

`(Γk+1/Γn+1)
=
`((Γi/Γk+1)(Γk+1/Γn+1))

`(Γk+1/Γn+1)

a.s.−→ 1.

This yields (8).

B The need for dithering

Table 3 shows that each of the three longevity data sets involves a fair number of identical ages.
This digitization effect is due to the fact that human lifetimes are reported as integer number

of days. Indeed, the period of 12 years and 164 days (the excess lifetime of Jeanne Calment) over
the super-centenarian threshold of 110 years involves (approximately) m = 4, 547 days (assuming

11



Table 3: Sample sizes and corresponding numbers of unique numerical values for each data set.

Data set A A&B GRG

Sample size 631 668 347
Distinct values 478 499 313
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Figure 4: Scatter-plots of the U0,j statistics (10) based on the raw (left panel) and dithered (middle panel)

type A data. The right panel shows a quantile-quantile plot of the raw versus the dithered data.

the year has 365.25 days). If one samples uniformly and at random n = 631 excess ages (in
integer number of days) from {1, . . . ,m}, then the expected number of distinct ages in this sample
is m × (1 − (m − 1)n/mn) ≈ 589.23. The non-uniform excess age distribution leads to fewer
distinct values but this ball-park computation explains the source of the seemingly odd digitization
effect. The digitization effect in-of-itself does not indicate issues with the sampling scheme, but
leads to many ties among the order statistics which affect the empirical distribution of the U0,j ’s
(Figure 4). Before we can apply the proposed methodology, we need to fix this problem. We do so
with dithering, i.e., to each lifetime Xi, we add a random time-of-day when the person departed.
Formally, we consider the dithered sample X∗i := Xi + ∆i, i = 1, . . . , n, where the ∆i’s are
independent and uniformly distributed in the interval [−0.5/365.25,+0.5/365.25]. Such dithering
has virtually no effect on the distribution of the excess lifetimes but it eliminates the large number
of ties among the order statistics and corrects for the odd digitization effect on the scatter-plots of
the U0,j-statistics (see Figure 4).
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