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This paper develops a nonlinear model predictive controller for constrained attitude maneuvering of a fully

actuated spacecraftwith reactionwheels. In the proposed control algorithm, aLie groupvariational integrator is used

as a predictive model. The nonlinear model predictive control problem is formulated in the form of a discrete-time

optimal control problemover eachpredictionhorizon, anda numerical solver is used to solve the necessary conditions

for optimality for this discrete-time optimal control problem. The numerical solver uses the indirect single shooting

method. The control constraints and exclusion zone constraints are handled using the exterior penalty function

approach. Simulation results are presented and comparedwith the case of a fully actuated spacecraftwithout reaction

wheels. The nonlinear model predictive controller is shown to provide a large domain of attraction.

Nomenclature

�B�A = 1∕2�B − BT�; antisymmetric part of square matrix B

�B�S = 1∕2�B� BT�; symmetric part of square matrix B

kBkF =
�������������������������������������P

n
i�1

P
m
j�1

��Bi;j

��2q
; Frobenius normofn×mmatrixB

DxF = functional or variational derivative of the differentiable
scalar valued functional F , with respect to its
argument x

log = exp−1; logarithm map
xjjk = predicted variable xk�j, predicted at time k; note that

x0jk is equal to xk
h·; ·i = standard inner product on R3

hh·; ·ii = natural pairing between elements in so�3� and so�3��

Superscripts

× = cross map fromR3 to so�3�; ifC is equal to a× thenCb
is equal to a × b for all b ∈ R3, where × is the cross
product

−× = inverse of the cross map

I. Introduction

I N RECENT years, increasing demand for downsized and more
agile spacecraft has led to a need for control techniques that can

ensure safe and reliable spacecraft operation at the limits of
performance. These techniques must take system constraints into
account while maximizing performance. One such technique is
model predictive control (MPC) [1], which solves a constrained
optimization problem and yields a stabilizing constraint-admissible
control law. When MPC is based on linear models, the optimization
problem becomes a constrained quadratic programming problem,
which can be solved quickly using processing power that is available
on board; for this reason, MPC based on linear models is often used
when fast computations are desired. For examples of such an
approach to spacecraft attitude control, see [2–6]. MPC based on
nonlinear models used for prediction and optimization and/or
nonlinear constraints is called nonlinear MPC (NMPC). If the
constrained system is nonlinear, then the use of a nonlinear model in
the NMPC scheme leads to more realistic predictions, and therefore
to potentially better performance over linear MPC. Because the
NMPC optimization problem cannot be reduced to a quadratic
programming problem, other numerical methods are needed in order
to quickly solve for the NMPC control. In this work, we present an
NMPC algorithm for use in constrained spacecraft attitude control.
Constrained spacecraft attitude control refers to the control of

spacecraft attitude in the presence of state and control constraints,
which include constraints on the actuation mechanisms, the
spacecraft orientation, its angular velocity, etc. For instance, reaction
wheels used as attitude control actuators in many spacecraft can only
generate limited torque and havemaximum angular speed limits. The
violation of these actuator constraints can cause instability or the loss
of pointing accuracy. Despite the aforementioned issues, the reaction
wheels are still popular as the main actuators for attitude control
purposes in many small satellites because they are powered by
electricity and not fuel and are easier to build and integrate in as
compared to thrusters. So, in this paper, we develop a control
algorithm that can be applied to a spacecraft with a reaction wheel
assembly (RWA). Star trackers used for onboard attitude
determination induce exclusion-zone constraints because star
trackers cannot measure the spacecraft attitude when the sun or the
Earth is within the camera angle and because long exposure to the sun
can damage the camera sensor. Similarly, an accurate sun vector
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measurement from multiple photodiodes is required to measure
the spacecraft attitude. However, in many small satellites, the
photodiodes have limited install angles and positions that make it
difficult to ensure the measurement of the sun vector all the time [7].
Small satellite attitude determination and control system engineers
sometimes select locations and angles for the photodiodes that only
guarantee a high probability of being exposed to the sun but still leave
“dark spots” where the sun vector cannot be detected. Constrained
control can be used to avoid entering in such dark spotswhere attitude
determination becomes impossible. Furthermore, most small space-
craft have several design issues originating from limited resources
such as photodiode installation, etc., which also motivates the use of
constrained control.
Various approaches to handle actuator constraints were proposed

in [8–11], whereas exclusion-zone constraints were treated in
[12–17]. For example, attitude control problemswith exclusion-zone
constraints were addressed in the framework of open-loop attitude
planning and commanding in [15,17] and in exploiting feedback
control in [12,16].
As stated previously, in this paper, we use an NMPC approach to

enforce the aforementioned constraints. The NMPC scheme was
previously developed in [18] for spacecraft attitude, for which the
dynamics evolved on a special orthogonal group in three dimensions
[SO(3)] and for which the control inputs were external torques. The
NMPC scheme from [18] was different from other NMPC
approaches because the prediction model was obtained through the
Lie group variational integrator (LGVI): LGVI is an integration
scheme that, unlike standard integration schemes such as the Runge–
Kutta, preserves conserved quantities of motion, and therefore leads
to a more accurate prediction model. The dynamics obtained via the
LGVI evolved on Lie groups, of which SO(3) was an example. The
NMPCapproach of [18] used the LGVI spacecraft attitude prediction
model in order to enforce system constraints. Note that the work in
[18] was generalized to systems for which the dynamics evolved on
general manifolds [19]. In [20], the authors developed a numerical
solver for the NMPC problem of [18]. The solver was based on [21]
and used exterior penalty function for constraint handling. This paper
is an extension of the approach in [18,20] to the case of spacecraft
with a RWA. The use of MPC for spacecraft attitude control was
supported by the fact that, as shown in [18,19], MPC can provide
global asymptotic stability for systems for which the dynamics
evolved on SO(3). This is in spite of the fact that, for the same systems,
there do not exist globally asymptotically stabilizing continuous
control laws.
The extension to spacecraft with a RWA is significant because this

case is complicated by the need to consider reactionwheel speeds and
the angular momentum exchange between the wheels and the
spacecraft bus in formulating the dynamicmodel of the spacecraft, as
well as in solving the NMPC problem numerically.Moreover, from a
practical standpoint, the case of spacecraft with reaction wheels is
important. Reaction wheels are used in many spacecraft and, unlike
thrusters, reaction wheels can be used for precise pointing and
attitude tracking while not consuming any fuel. We assume that
reaction wheel desaturation is performed, if necessary, by external
torques such as magnetometers or thrusters. The combined treatment
of reaction wheels and external actuators in MPC design is also
possible following the same approach, but the details, including
necessary conditions for optimality and sensitivity calculations, are
more involved and left to future publications. Other reaction wheel
configurations, such as a tetrahedral configuration, can be treated as
well by appropriately reflecting the reaction wheel configuration in
theSmatrix used in the subsequent developments. In fact, the relative
ease by which different reaction wheel configurations can be
accommodated is an appealing characteristic of our approach. The
use of NMPC based on an LGVI model is pursued because, despite a
potentially higher computational cost, it exploits a more realistic
model of the spacecraft dynamics, which can provide an increased
constrained domain of attraction. For example, when the linearized
attitude dynamics are used for prediction inMPC, the achievement of
rest-to-rest maneuvering is affected by the initial attitude condition
of the spacecraft [22]. If the initial attitude is outside the domain of

attraction, the maneuver is not achieved to the target (by definition, if
the initial attitude is outside of the domain of attraction, the closed-
loop trajectories do not converge). By adopting the nonlinear LGVI
model in MPC, we can achieve a larger, and possibly global [19],
domain of the attraction. This topic is treated more in the Simulations
and Discussion section (Sec. V). As in [20], the indirect single
shooting method is applied to the nonlinear root finding problem
resulting from the necessary conditions for optimality, which iswarm
started from the solution at the previous time instant. Our
implementation also exploits sensitivity derivative expressions
obtained from the necessary conditions for optimality, derived using
techniques of calculus of variations on Lie groups. The constraints
are handled using an exterior penalty function approach; such an
implementation is advantageous to handle state-constraint
infeasibility that may occur during real operation due to disturbances
or model mismatch, and it does not introduce extra variables that an
implementation with slack variables may entail. In this paper, we
investigate separately the two cases when the control torque is
external and when the control torque is provided by the RWA.
Clearly, one can combine the two approaches to exploit both external
and internal (RWA) torques. The price to pay is in an increased
complexity of the optimal control problem which leads to more
complex necessary conditions for optimality and sensitivity
calculations. Thus, we do not consider both external and internal
torques at the same times in this paper. Because we focus on attitude
control for a small satellite, we place more emphasis on the RWA
torques because, in small satellites, it is often impossible to install
external torque generating devices, such as thrusters. Furthermore,
external torques generated by magnetorquers are also much weaker
than the torques fromaRWA, and they are not efficient for precise and
fast attitude control. This paper includes the concurrent handling of
reaction wheel constraints and attitude constraints, as well as a
specific application to a spacecraft with a RWA. As previously
mentioned, these actuator constraints and the attitude constraint are
becoming more critical in the recent missions, including several
university satellites. The suggested algorithm can be applied to any
configuration of the RWA and can be extended to other actuators
based on the exchange of angular momentum. It is expected that it
would be possible to execute the proposed algorithm in real time
(after conversion to a C code) and using an embedded processor.
This paper is organized as follows. In Sec. II, discrete dynamics

on the SO(3) are introduced for the spacecraft. In Sec. III, we
define the NMPC problem. In Sec. IV, we present our
computational solver. To demonstrate the effectiveness of the
proposed algorithm, simulation results are presented in Sec. V. The
conference paper of [23] included preliminary results. As
compared to [23], this paper is longer and contains details and
derivations not presented in [23], including the treatment of a
practical spacecraft configuration with four reaction wheels. Note
that the approach of our NMPC solver (based on geometric
mechanics formalism) can also be extended to other problems of a
similar kind, e.g., problems with different reaction wheel
configurations or problems of combined transitional and rotational
motion control [24]. We also present the comparison of the MPC
problem formulations and numerical solution procedure in the case
of the spacecraft with a RWA and spacecraft with external
moments. Although small satellites mostly control attitude via
internal torques of angular momentum exchanging devices, large
satellites may rely on external control torques from thrusters when
attitude pointing requirements are not very stringent. Thus, we
include the case of spacecraft with external torques to demonstrate
how the proposed approach is applicable to different satellites with
relatively small modifications.

II. Discrete Dynamics of a Spacecraft on SO(3)

In this section, we present the discrete-time rigid-body equations
of motion for a satellite with and without a reaction wheel assembly.
In both cases, the dynamics are obtained by using the LGVI. The
equations of motion for a spacecraft with external control moments,
derived in [25], are given by
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hΠ×
k � FkJd − JdF

T
k (1a)

Rk�1 � RkFk (1b)

Πk�1 � FT
kΠk � hMk � huk (1c)

In the preceding equation, h is the sampling time; the matrices Rk

and Fk are rotation matrices and elements of SO(3), where Rk is
the spacecraft orientation and Fk � RT

kRk�1 is the difference in
orientation between samples; Πk ∈ R3 is the spacecraft total angular
momentum; Mk ∈ R3 is the vector of external disturbances that
results from gravity gradients, aerodynamic drag, solar pressure, etc.;
uk ∈ R3 is the control torque, which is used to stabilize the spacecraft
attitude; and the positive definite matrix Jd is the nonstandard
moment of inertiamatrix and is related to the standard inertiamatrix J
by the equation,

Jd � 1

2
tr�J�I3–J (2)

Note that J is the inertia matrix of the whole spacecraft and
includes the inertia of reaction wheels. Also, note that, in Eq. (1), the
implicit equation [Eq. (1a)] is solved first to obtainFk; then,Rk�1 and
Πk�1 are obtained using Eqs. (1b) and (1c).
Next, we consider a spacecraft with a RWA but without external

control torques. A spacecraft with a RWA controls its attitude by
adjusting the angular velocity of its reaction wheels in order to
induce a counter rotation of the spacecraft. Accordingly, the LGVI
equations of motion for a spacecraft with a RWA differ from Eq. (1)
because the actuationmechanisms apply a torque about the reaction
wheels instead of applying a torque directly to the spacecraft.
Following the derivations in [26], we obtain the following equations
of motion:

hΠ×
k � FkAk − AT

kF
T
k (3a)

Rk�1 � RkFk (3b)

Πk�1 � FT
kΠk � hMk (3c)

which are similar to those in Eq. (1), along with equations of motion
relating to the reaction wheel assembly:

Ak � Jd �
1

2

Xn
i�1

�JiΔθi;ksi�× (4a)

πi;k�1 � πi;k � hτi;k (4b)

hπi;k � Ji

�
Δθi;k −

1

2
tr�Fks

×
i �
�

(4c)

In the preceding equation, n is the number of reaction wheels in the
spacecraft with i ranging from one to n. Themain rotation direction
vector of each reaction wheel is denoted by si; we assume that the
rotor is a thin, flat disk and symmetric with respect to the rotation
axis. The scalar πi;k is the angular momentum of the ith wheel
about the si axis, where si is a unit vector with origin at the
spacecraft center of mass; Δθi;k is the difference in rotation wheel
position between samples; τi;k is the control torque applied to the
ith wheel; and the parameter Ji > 0 is the moment of inertia of the
ith wheel about its spin axis [26]. For illustration, in Fig. 1, we
provide two examples of RWAs with three and four reaction
wheels [27].

III. Nonlinear Model Predictive Control Problem
Formulation for a Spacecraft on SO(3)

In this section, we present an NPMC scheme for constrained
control of the spacecraft dynamics, subject to the equations ofmotion
in Eq. (1) or Eqs. (3) and (4), which were introduced in the previous
section. The NMPC scheme is based on the NMPC framework
introduced in [18,19] and uses the computationally fast solver,
which is similar to the one presented in [20] for determining the
control input.
For a spacecraft with external control torque, for which the

dynamics are given in Eq. (1), the controller determines the control
input by solving the following optimization problem:

min
fujjkgN−1

j�0

J 1
d � K1

d�RNjk;ΠNjk� �
XN−1

k�0

C1
d�Rjjk;Πjjk; ujjk� (5a)

subject to hΠ×
jjk � FjjkJd − JdF

T
jjk (5b)

Rj�1jk � RjjkFjjk (5c)

Πj�1jk � FT
jjkΠjjk � hMjjk � hujjk (5d)

H1
l�Rjjk;Πjjk; ujjk� ≤ 0; l � 1; : : : ; m (5e)

In the preceding equation, the dynamics in Eq. (2) were included as
equality constraints. Other inequality constraints are introduced in
Eq. (5e). These inequality constraints can include pointing,
exclusion-zone constraints, constraints on the available torque, and
so on. Note thatm is the number of inequality constraints considered.
In the NMPC law, the control input uk to Eq. (1) is set to the first
element of the control sequence

fu�jjkgN−1
j�0

a) RWAwith three wheels b) RWAwith four wheels
Fig. 1 Two different RWA configurations and their spin axes.
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solving Eq. (5), i.e.,

uk � u�0jk (6)

The functionsK1
d andC

1
d satisfy the assumptions given in [19].We

note that, in [19], terminal conditions were imposed to guarantee
recursive feasibility and stability. These constraints were stringent
and greatly reduced the domain of attraction in general, thereby
degrading the closed-loop response; hence, constraints were treated
as soft. We rely on simulation-based verification of stability
properties.
For the dynamics [Eqs. (3) and (4)] relating to a spacecraft with a

RWA, the NMPC optimization problem is given by

min
fτjjkgN−1

j�0

J 2
d�K2

d�RNjk;ΠNjk;πjjk��
XN−1

k�0

C2
d�Rjjk;Πjjk;πjjk;τjjk� (7a)

subject to hΠ×
jjk � FjjkAjjk − AT

jjkF
T
jjk (7b)

Rj�1jk � RjjkFjjk (7c)

Πj�1jk � FT
jjkΠjjk � hMjjk (7d)

πj�1jk � πjjk � hτjjk (7e)

H2
l�Rjjk;Πjjk; πjjk; τjjk� ≤ 0; l � 1; : : : ; m (7f)

The treatment of this optimization problem is analogous to that of
Eq. (5), with the functions K2

d, C
2
d, and H2

l satisfying properties
analogous to those of K1

d, C
1
d, and H1

l, respectively.
In practice, constraints may become infeasible due to disturbance

or modeling error. To ensure controller operation in the event of
constraint violation, we relax Eqs. (5e) and (7f) and treat them as soft.
Then, the numerical solution is based on the necessary conditions for
optimality for augmented cost functionals of J 1

d;a and J 2
d;a. The

augmented cost functional corresponding to the cost functional J 1
d;a

is given by

J 1
d;a � K1

d�RN;ΠN� �
XN−1

k�0

C1
d�Rk;Πk; uk�

�
XN−1

k�0

hλ1k; �log�R−1
k Rk�1� − log�Fk��−×i

�
XN−1

k�0

hλ2k; �Πk�1 − FT
kΠk − hMk − hBuk�i

�
XN−1

k�0

Xm
l�1

μlϕl�H1
l�Rk;Πk; uk�� (8)

where we have introduced the Lagrange multipliers λ1k, λ
2
k ∈ R3; the

exterior penalty functions ϕl, l � 1; : : : ; m; and the scalar
weighting factors μl > 0, l � 1; : : : ; m. The augmented cost
functional corresponding to J 2

d;a is given by

J 2
d;a � K2

d�RN;ΠN; πN� �
XN−1

k�0

C2
d�Rk;Πk; πk; τk�

�
XN−1

k�0

hλ1k; �log�R−1
k Rk�1� − log�Fk��−×i

�
XN−1

k�0

hλ2k; �Πk�1 − FT
kΠk − hMk�i

�
XN−1

k�0

hλ3k; �πk�1 − πk − hτk�1�i

�
XN−1

k�0

Xm
l�0

μlϕl�H2
l�Rk;Πk; πk; τk�� (9)

where λ3k ∈ R3 is a Lagrange multiplier.

IV. Description of the Numerical Solver

The numerical solver is based on solving the necessary conditions
for optimality. In deriving the necessary conditions, we follow the
approach in [20] and use calculus of variations on Lie groups in the
discrete-time setting. The necessary conditions for optimality are
given by

hΠ×
k � FkAk − AT

kF
T
k (10a)

Rk�1 � RkFk (10b)

Πk�1 � FT
kΠk � hMk (10c)

πk�1 � πk � hτk (10d)

2
64
λ1k
λ2k
λ3k

3
75 �

2
64
AT

k�1 CTk�1 03×n

BT
k�1 DT

k�1 03×n

ET
k�1 GT

k�1 In×n

3
75
2
64
λ1k�1

λ2k�1

λ3k�1

3
75 −

2
4Hk�1

Lk�1

Pk�1

3
5 (10e)

hλ3k � DτkCd �
Xm
l�1

μlDτk �ϕl ∘ Hl� (10f)

where

Ak � FT
k

Bk � h
�
�tr�FkAk�I3×3 − FkAk�Fk − 1

4

�
tr�Fk�I3×3 − FT

k

�
S�Jw�ST

�
tr�Fk�I3×3 − FT

k

	�−1
Ck � hMk

Dk � FT
k � �FT

kΠk�×Bk

Ek � −Bk

�
1

2

�
tr�Fk�I3×3 − FT

k

	
S
�

Gk � �FT
kΠk�×Ek

Hk �
��
RT
k

�
DRk

C2
d

		
A

	−× �
Xm
l�1

μl
��
RT
k

�
DRk

�
ϕl ∘ Hl

			
A

	−×
Lk � DΠk

C2
d �

Xm
l�1

μlDΠk
�ϕl ∘ Hl�

Pk � DπkC
2
d �

Xm
l�1

μlDΠk
�ϕl ∘ Hl�
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In the preceding equations, S ∈ R3×n (which is the reaction wheel
configuration matrix), and Jw ∈ Rn×n (which is the rotational inertia
matrix of the RWA) are defined by

S � � s1 · · · sn � (11)

Jw �

2
64
J1 0 0

0 . .
.

0

0 0 Jn

3
75 (12)

Note that the composition of the S matrix is arbitrary, and the
reaction wheels do not need to be aligned to the principal axis of the
spacecraft. The details of the derivation are available in theAppendix.
To solve the two-point boundary value problem [Eq. (10)], the

indirect single shooting method is used, where the goal is to
determine the initial values of the Lagrange multipliers; we follow a
similar approach to that found in [20,21]. The method calculates the
sensitivity derivative of the terminal condition error with respect to
the initial Lagrange multiplier, which is used as the Jacobian matrix.
The sensitivity derivatives for Eqs. (10b–10d) are given by

2
4 ζk�1

δΠk�1

δπk�1

3
5 �

2
4 Ak Bk Ek

Ck Dk Gk

0n×3 0n×3 In×n

3
5
2
4 ζk
δΠk

δπk

3
5�

2
4 03×n

03×n
hIn×n

3
5δτk

(13)

whereas the sensitivity derivatives for Eq. (10e) are given by

2
64 δλ1k�1

δλ2k�1

δλ3k�1

3
75 � Sk

2
6666666664

ζk�1

δΠk�1

δπk�1

δτk
δλ1k
δλ2k
δλ3k

3
7777777775

(14)

where Sk is a �6� n� × �12� 3n�matrix. Expressing δτk in terms of
τk and δλ

3
k, from Eqs. (13) and (14), we obtain

2
6666664

ζk�1

δΠk�1

δπk�1

δλ1k�1

δλ2k�1

δλ3k�1

3
7777775

� Tk

2
6666664

ζk
δΠk

δπk
δλ1k
δλ2k
δλ3k

3
7777775

(15)

where Tk is an �12� 2n� × �12� 2n� matrix. Therefore, from
Eq. (15), we obtain:

2
6666664

ζN
δΠN

δπN
δλ1N
δλ2N
δλ3N

3
7777775

�
 YN−1

k�0

Tk

!
2
6666664

ζ0
δΠ0

δπ0
δλ10
δλ20
δλ30

3
7777775

(16)

To determine the initial values of the Lagrange multipliers, we
employ the indirect single shooting method, the iterations of which
have the following form:

λ�p�1�
0 � λ�p�0 − γ



δE�p�

δλ�p�0

�−1
E�p� (17)

where the superscripts represent the iteration number, the step size γ
is a scalar satisfying 0 < γ ≤ 1, and E�p� and δE�p� are given as
follows:

E�p� �

2
6664
λ1�p�N−1 �

��
RT
N

�
DRN

K1;2
d

		
A

	−×�p�
λ2�p�N−1 �DΠN

K1;2�p�
d

λ3�p�N−1 �DπNK
1;2�p�
d

3
7775;

δE�p� �

2
6664
δλ1�p�N−1 �

��
δRT

N

�
DRN

K1;2
d

	� RT
N

�
δDRN

K1;2
d

		
A

	−×�p�
δλ2�p�N−1 � δDΠN

K1;2�p�
d

δλ3�p�N−1 � δDπNK
1;2�p�
d

3
7775

The numerical solver is summarized in Fig. 2. During each
sampling period, the solver determines the Lagrange multipliers so
that the terminal boundary conditions are satisfied. During the
initialization step (step ① in Fig. 2), the initial value of Eq. (17) is set
to the solution from the previous sampling time. The numerical solver
then updates the values of the Lagrange multipliers using the
necessary conditions for optimality in step ②. The shooting method
proceeds through steps ④, ⑤, and ⑥ until the termination criterion is
satisfied in step ③ for ϵ � 10−5. Note that the parameter γ is initially
set at one; if, after 50 iterations (i.e., p � 50), Eq. (17) has not
converged, then the algorithm sets γ � 0.1. The initial guess of the
Lagrange multiplier at the first step is set to zero and, after that, it is
warm started using the results of the previous step.
Remark 1: Our solution to the NMPC problem is based on the

exterior penalty function approach and the indirect single shooting
method, which is straightforward in terms of computational
implementation when the equations of motion are formulated based
on the LGVI. Other techniques, such as multiple shooting, interior
point, or sequential quadratic programming, may also be of interest
for future applications.

Fig. 2 Logic diagram for the numerical solver.
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V. Simulations and Discussion

In this section,we report simulation results for three cases. The first
and the second cases correspond to spacecraft with the two different
reaction wheel configurations that were presented in Fig. 1, and the
last case corresponds to a spacecraft with external control moments,
with equations of motion given in Eq. (1).

A. Cost Functions and Inequality Constraints

Cost functions K1;2
d and C1;2

d and constraint functions H1;2
l

corresponding to the three simulations are presented in Table 1.
Matrices P1, P2, Q1, Q2, and Q3 are symmetric positive-definite
matrices. The constraints prescribed by H1;2

1 correspond to the
maximum available control torque uk or τk, where
uk � � u1;k u2;k u3;k �T and τk � � τ1;k · · · τn;k �T . The con-
straints prescribed by H1;2

2 correspond to an inclusion-/exclusion-
zone constraint, where the cosine of the angle between the unit
vectorsRkv andwmust be greater than β. The final constraint that we
consider isH2

3, which is the maximum limit on the allowable rotation
wheel angular momenta πk, where πk � � π1;k · · · πn;k �T ; the
limit is denoted by χ.
The differentiable penalty functions ϕl are defined through

ϕl ∘ H1;2
l � h max �0; H1;2

l �2; l � 1; 2; 3 (18)

B. Simulation Results

We consider a spacecraft with a moment of inertia matrix
J � diag�1; 1; 0.8� kg · m2. We set the integration time step to
h � 0.4 s, and we set the prediction horizon for the MPC algorithm
to N � 5. The weighting matrices are chosen as

P1 � P2 � Q1 � Q2 � 0.01I3×3 (19)

In some of the subsequent figures, the attitude maneuver is plotted
on the two-sphere S2, where the vectors corresponding to the first,
second, and third columns of R0 are plotted in dashed lines,
respectively. Similarly, the paths that are traced by the ends of the
vectors corresponding to the first, second and third columns ofRk are
plotted in solid lines.
In the following, simulation results are reported for the cases of

spacecraft with three and four reaction wheels.

1. Spacecraft with RWA of Three Wheels

We begin by considering a spacecraft with a RWA corresponding
to the three-wheel configuration:

S � � s1 s2 s3 � �
2
4 1 0 0

0 1 0

0 0 1

3
5

Simulations of spacecraft attitude maneuvering are performed
with and without constraints on the reaction wheel torque H2

1,
the exclusion/inclusion zoneH2

2, and the reaction wheel maximum
angular momentum H2

3. The constraint parameters are given
by α � 0.01, β � cos�170 deg�, v � � 1 0 0 �T , w �
−� 0.8851 0.3888 −0.2558 �T , and χ � 0.05. The penalty
weights are chosen based on the process suggested in [28]. We
increase the weight about one order of magnitude larger than the

largest cost weight in the problem so that they are large enough to
ensure that the constraints are enforced reasonably well. Their values
are given by μ1 � 107, μ2 � 103, and μ3 � 104, which are
determined by running multiple simulations. The initial conditions
are chosen judiciously in order to ensure that the constraints become
active during the simulation. The initial conditions for the attitude,
the angular momentum of the spacecraft body, and the angular
momentum of each reaction wheel are given by

R0 � exp�ζ×�; Π0 � � 0 0 0 �T;
π0 � � 0.008 0 −0.015 �T

(20)

where ζ � � 0.5 0.5 0.5 �T . The inertia values of the reaction
wheels are J1 � J2 � J3 � 0.01 kg · m2 and Q3 � I3×3. Both the
constraint-free and constrained simulations are presented in Fig. 3.
Referring to the subplots of Fig. 3, we can see that the constraint-free
simulation is stabilizing but violates the exclusion zone constraint in
marked by ①, the torque constraints in marked by ③ and ④, and the
angular momentum constraints in marked by ⑤ and ⑥. In the
constrained simulation, all of these constraints are tightly enforced.

2. Spacecraft with RWA of Four Wheels

In the next case, we consider the four-reaction-wheel configuration
corresponding to

S � � s1 s2 s3 s4 � �
2
4 1 0 0 0.5774

0 1 0 0.5774

0 0 1 0.5774

3
5

The constraint parameters are changed to α� 0.02, β �
cos�170 deg�, v� �1 0 0 �T , w�−�0.9624 −0.2017 0.1818�T ,
and χ � 0.04. The initial conditions are the same as in the previous
case, except that the angular momentum of each reaction wheel is
modified in order to ensure the activation of the angular momentum
constraint. The reason a larger value of α has to be considered is that,
with the addition of a fourth wheel and a change in the angular
momentum initial conditions, the torque constraint from the previous
simulation is found to be too stringent because the solver is unable to
simultaneously satisfy all constraints. The other constraints are
changed in order to modify the simulation scenario. The new initial
conditions are given as follows:

π0 � � 0.010 0 0.005 −0.020 �T

The inertia values of the reaction wheels are given by J1 � J2 �
J3 � J4 � 0.01 kg · m2 and Q3 � I4×4. The constraint-free and
constrained simulation results are presented in Fig. 4.
Referring to the subplots of Fig. 4, we can see that, although the

exclusion zone constraint is violated in a situation marked by ①, it is
enforced by the NMPC control law as marked by②. Furthermore, we
can see that the torque constraints are activated by control jumps
marked by ③ and ④. These control torque jumps occur in order to
prevent the violation of the zone constraint; and we note that, if the
jump is deemed to be too large, its magnitude can be reduced by
increasing the length of the prediction horizon N. In the next
example, we consider the use of a longer prediction horizon.

Table 1 Summary of cost functions and inequality constraints

Spacecraft with external control moments Spacecraft with RWA

K1
d � 1

2
kP1∕2

1 �RN − I3×3�k2F � 1
2
ΠT

NP2ΠN;

C1
d � h

2
kQ1∕2

1 �Rk − I3×3�k2F � h
2
ΠT

NQ2ΠN � h
2
uTkQ3uk;

H1
1 � kukk2 − α;

H1
2 � β − vTRT

kw

K2
d � 1

2
kP1∕2

1 �RN − I3×3�k2F � 1
2
�ΠN − SπN�TP2�ΠN − SπN�;

C2
d � h

2
kQ1∕2

1 �Rk − I3×3�k2F � h
2
�Πk − Sπk�TQ2�Πk − Sπk� � h

2
τTkQ3τk;

H2
1 � kτkk2 − α;

H2
2 � β − vTRT

kw;
H2

3 � kπkk2 − χ
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3. Spacecraft with External Control Moments

A simulation of the spacecraft with external moments is performed
with and without constraints only on the external moments and the
exclusion/inclusion zone. As in the previous cases, we set the same
integration time step at h � 0.4 s, but the prediction horizon for the
NMPCalgorithm is now increased toN � 10, allowingus to investigate
the effect of a longer prediction horizon. The torque constraint constrain

parameter is chosen to be α � 0.05, and the penalty weights are chosen
to be μ1 � 104 and μ2 � 5. In the longer prediction horizon case, even
with a weight lower than in the shorter horizon case, the controller can
find a solution that satisfies the constraints. The initial conditions of the
attitude, the body angular velocity, and the zone constraint are the same
as those for the first simulation, corresponding to the three-wheel case of
the spacecraft with a RWA.

With constraints Without constraints

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)

Time (s)Time (s)

Time (s)Time (s)

Time (s)Time (s)

Time (s)

Fig. 3 Model predictive control of three-RWA spacecraft with and without constraints.

With constraints Without constraints

Fig. 4 Model predictive control of four-RWA spacecraft with and without constraints.
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The simulations results are presented in Fig. 5. Subplotsmarked by
① and ② in Fig. 5 show that the zone constraint can be satisfied by
using the NMPC law, whereas subplots marked by③,④, and⑤ show
the satisfaction of the external moment constraint.
With the longer prediction horizon, the stabilization time and the

overshoot in the attitude responses are shorter than in the previous
simulations. This observation corresponds to simulations performed
on the three- and four-wheel RWA configurations with longer
prediction horizons. In general, a longer prediction horizon N
corresponds to a shorter stabilization time and smaller overshoot, but
the NMPC computation takes longer to converge, especially in the
complex casewhere there are many constraints. Two examples of the
spacecraft with a RWA have a shorter prediction horizon (five steps)
than the example of the spacecraft with external moments (ten steps).
This is because we want to show that the suggested algorithm is
capable of handling three different constraint categories simulta-
neously.When the spacecraft with a RWA has a zone constraint only,
the longer prediction horizon works well and yields results similar to

those of the example of the spacecraft with external moments. The
longer prediction horizon reduces the overshoot and stabilization
time but, if there exist different constraint categories in the problem, a
shorter horizon can effectively prevent the simultaneous violation of
multiple constraints.

C. Domain of Attraction

We now investigate the closed-loop domain of attraction of our
NMPC algorithm by simulating 13,357 rest-to-rest orientation
maneuvers for the spacecraft with aRWA.To show that the domain of
attraction is global, or close to global, the simulations are subject only
to maximum wheel torque constraints, with state constraints turned
off, i.e.,H1;2

2 � H2
3 ≡ 0. In the following, we list all combinations of

3–2–1 Euler angle parametrizations corresponding to the at-rest
initial conditions that the algorithm is able to stabilize to the desired
equilibrium Rk � I3×3 (all other state initial conditions are set
to zero):
1) For roll, −90;−80;−70; · · · ; 80; 90 deg (19 cases).

Time (s) Time (s) Time (s)

Time (s)Time (s)

Time (s)Time (s)

Time (s)Time (s)

With constraints Without constraints

Fig. 5 Model predictive control of spacecraft moment with and without constraints.

T
im

e 
(s

)

T
im

e 
(s

)

T
im

e 
(s

)

T
im

e 
(s

)

T
im

e 
(s

)

T
im

e 
(s

)

2
1  Only H 2

2  OnlyH 2 2 2
1 2 3,  , and H H H

Steps

Steps

Steps

Steps

Steps

Steps

5 steps prediction horizon with constraints 5 steps prediction horizon without constraints

Fig. 6 Computation time comparison for a four-RWA spacecraft on an Intel® i-7®, 3.6 GHz, 16 GB RAMmachine, with MATLAB®.
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2) For pitch, −90;−80;−70; · · · ; 80; 90 deg (19 cases).
3) For yaw, 0; 10; 20; · · · ; 350; 360 deg (37 cases).
The domain of attraction of the controller in [22] has narrower yaw

and pitch ranges as compared to the proposed controller. For
example, the pitch range larger than	60 deg and yaw range from 90
to 270 deg are not included in the domain of attraction of the
controller in [22].

D. Computation Time

In Fig. 6, we report the computation times corresponding to three
different simulations corresponding to the four-RWA configuration.
The first column of Fig. 6 contains the computation time results with
only the actuator maximum torque constraint H2

1 included, the
second column contains the same results with only the zone
constraint H2

2 included, and the third column contains the same
results with all constraints from the four-RWA example. In the first
case, the numerical solver obtains the solutionwell within the sample
time; however, the addition of state constraints makes the solution
more difficult to obtain. These results were obtained on MATLAB
within a desktop computer environment. We expect that, by
converting the proposed algorithm to a C code, it is possible to speed
up the computation by up to about forty times. Yet, this would likely
be mitigated by the lower amount of computational power available
on an embedded processor. Therefore, to be implemented in real time,
the proposed algorithm will benefit from further computational
enhancements.

VI. Conclusions

In this paper, an NMPC approach to the constrained attitude
control of spacecraft is presented. Thework extends the solver of [20]
to the case of spacecraft with a RWA. The work is distinguished by
exploiting discrete-time LGVImodels that respect the underlying Lie
group structure of SO(3) and are consistent with the geometric
mechanics and control formalism. The numerical solution to the
NMPC optimization problem is obtained using necessary conditions
for optimality and a single shooting method to solve the resulting
two-point boundary-value problem. The sensitivity derivatives are
used in the numerical solver. The simulation results show that this
approach is able to achieve well-behaved closed-loop responses with
a large domain of attraction while satisfying a variety of constraints.

Appendix: Derivation of the Necessary Conditions
for Optimality of the Spacecraft with RWA

The variations of Rk, Fk, Πk, and πk are given as follows:

Rk;ε � Rk exp�εζ×k �
Fk;ε � Fk exp�εξ×k �
Πk;ε � Πk � εδΠk

πk;ε � πk � εδπk

where ζk; ξk ∈ R3. Note that ζ0 � ξ0 � δΠ0 � δπ0 � 0. The
infinitesimal variations of Rk, Fk, Πk, and πk are given by

δRk �
d

dε

����
ε�0

Rk;ε � Rkζ
×
k ;

δFk �
d

dε

����
ε�0

Fk;ε � Fkξ
×
k ;

δΠk �
d

dε

����
ε�0

Πk;ε � δΠk;

δπk �
d

dε

����
ε�0

πk;ε � δπk

A few facts are required to proceed further.
Fact 1 [21]: Note that ζk, ζk�1, and ξk satisfy

ζk�1 � FT
k ζk � ξk

Proposition 1: Note that ξk, δΠk, and δπk satisfy

ξk � BkδΠk � Ekδπk

where

Bk � h

� �tr�FkAk�I3×3 − FkAk�Fk

− 1
4
�tr�Fk�I3×3 − FT

k �S�Jw�ST�tr�Fk�I3×3 − FT
k �

�−1

Ek � −Bk

�
1

2
�tr�Fk�I3×3 − FT

k �S
�

Proof: We begin with the following:

hδπik � Ji

�
δΔθik −

1

2
tr�δFks

×
i �
�
� Ji

�
δΔθik −

1

2
tr�Fkξ

×
k s

×
i �
�

� Ji

�
δΔθik −

1

2
tr�ξ×k s×i Fk�

�

� Ji

�
δΔθik −

1

2
tr�ξ×k ��Mik�S � �Mik�A��

�

� Ji

�
δΔθik −

1

2
tr�ξ×k �Mik�A�

�
� Ji

�
δΔθik −

1

2
tr�ξ×k γ×ik�

�
� Ji�δΔθik � ξTk γik�

where

Mik � s×i Fk � �Mik�S � �Mik�A
�Mik�A � s×i Fk − �s×i Fk�T

2
� s×i Fk � FT

k �s×i �
2

� γ×ik

γik �
1

2

�
tr�Fk�I3×3 − Fk

�
si

By using the matrices S and Jw, we obtain

hδπk � Jw

�
δΔθk � 1

2
ST�tr�Fk�I3×3 − Fk�Tξk

�

which leads to

δΔθk � h�Jw�−1δπk − 1
2
ST�tr�Fk�I3×3 − Fk�Tξk

Note that

h�δΠk�× � δFkAk − AT
k δF

T
k � FkδAk − δAT

kF
T
k (A1)

Using the following properties,

δAk �
1

2

Xn
i�1

s×i �JiδΔθik�;

FkδAk − δAT
kF

T
k �

�
1

2

Xn
i�1

s×i �JiδΔθik�
�
FT
k

� Fk

�
1

2

Xn
i�1

s×i �JiδΔθik�
�

�
�
�tr�FT

k �I3×3 − FT
k �
�
1

2

Xn
i�1

si�JiδΔθik�
��×

�
�
1

2
�tr�FT

k �I3×3 − FT
k �SJwδΔθk

�
×
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we can rewrite Eq. (A1) as follows:

h�δΠk�× � Fkξ
×
k Ak − AT

k ξ
×T
k F

T
k � FkδAk − δAT

kF
T
k

� Fkξ
×
k Ak � AT

k ξ
×
k F

T
k �

�
1

2
�tr�FT

k �I3×3 − FT
k �SJwδΔθk

�
×

� �Fkξk�×FkAk � AT
kF

T
k �Fkξk�×

�
�
1

2
�tr�FT

k �I3×3 − FT
k �SJwδΔθk

�
×

�
�
�tr�FkAk�I3×3 − FkAk�Fkξk

� 1

2
�tr�FT

k �I3×3 − FT
k �SJwδΔθk

�
×

Applying the inverse of the cross map to both sides of the preceding
equation, we obtain

δΠk �
1

h

�
tr�FkAk�I3×3 − FkAk

�
Fkξk

� 1

2h

�
tr
�
FT
k

	
I3×3 − FT

k

�
SJwδΔθk

� 1

h

�
tr�FkAk�I3×3 − FkAk

�
Fkξk �

1

2h

�
tr
�
FT
k

	
I3×3 − FT

k

�

× S
�
hδπk −

1

2
JwST�tr�Fk�I3×3 − Fk�Tξk

�

� 1

h

�
�tr�FkAk�I3×3 − FkAk

�
Fk

−
1

4

�
tr�Fk�I3×3 − FT

k

�
S�Jw�ST

�
tr�Fk�I3×3 − FT

k

	�
ξk

� 1

2

�
tr�Fk�I3×3 − FT

k

�
Sδπk

The result follows from the expressions for δΠk and δπk. □

Fact 2 [21]: Note that δMk � Mkζk, where Mk ∈ R3×3.
Fact 3 [20]: Note that hhDRk

F ; Rkζ
×
k ii � h��RT

k �DRk
F��A�−×; ζki.

With the preceding facts, the variation of the augmented cost
functional can be written as follows:

δJ 2
d;a � h��RT

N�DRN
K2

d��A�−×; ζNi � hDΠN
K2

d; δΠNi � hDπNK
2
d; δπNi

�
XN−1

k�1

���
RT
k �DRk

C2
d

��
A

�−×
; ζki �

XN−1

k�1

�
DΠk

C2
d; δΠk



�
XN−1

k�1

�
DπkC

2
d; δπk



�
XN−1

k�1

�
DτkC

2
d; δτk



�
XN−1

k�0

�
λ1k;
�
ζk�1 − FT

k ζk − ξk
�


�
XN−1

k�0

�
λ2k;
�
δΠk�1 −

�
Fkξ

×
k

�
T
Πk − FT

k δΠk − hMkζk
�


�
XN−1

k�0

�
λ3k; �δπk�1 − δπk − hδτk

�


�
XN−1

k�0

�Xm
l�1

μl
��

RT
k �DRk

�ϕl ∘ H2
l

���
A

�−×
; ζk



�
XN−1

k�0

�Xm
l�1

μlDΠk
�ϕl ∘ H2

l�; δΠk




�
XN−1

k�0

�Xm
l�1

μlDπk�ϕl ∘ H2
l�; δπk



�
XN−1

k�0

�Xm
l�1

μlDτk�ϕl ∘ H2
l�; δτk



�
D��

RT
N�DRN

K2
d

��
A

�−×
; ζN

E
� hDΠN

K2
d; δΠNi � hDπNK

2
d; δπNi

�
XN−1

k�1

D��
RT
k �DRk

C2
d�
�
A

�−×
; ζk
E
�
XN−1

k�1

D
DΠk

C2
d; δΠk

E
�
XN−1

k�1

D
DπkC

2
d; δπk

E
�
XN−1

k�1

D
DτkC

2
d; δτk

E
�
XN−1

k�0

D
λ1k; ζk�1 − FT

k ζk − �BkδΠk � Ekδπk�
E

�
XN−1

k�0

D
λ2k;
�
δΠk�1 − �FT

kΠk�×�BkδΠk � Ekδπk� − FT
k δΠk − hMkζk

�E
�
XN−1

k�0

D
λ3k; δπk�1 − δπk − hδτk�1

E

�
XN−1

k�0

�Xm
l�1

μl
��

RT
k

�
DRk

�
ϕl ∘ H2

l

���
A

�−×
; ζk



�
XN−1

k�0

�Xm
l�1

μlDΠk
�ϕl ∘ H2

l�; δΠk




�
XN−1

k�0

�Xm
l�1

μlDπk�ϕl ∘ H2
l�; δπk



�
XN−1

k�0

�Xm
l�1

μlDτk�ϕl ∘ H2
l�; δτk




Then,

δJ 2
d;a � h��RT

N�DRN
K2

d��A�−× � λ1N−1; ζNi � hDΠN
K2

d � λ2N−1; δΠNi � hDπNK
2
d � λ3N−1; δπNi

�
XN−1

k�1

�� λ1k−1 − Fkλ
1
k − hMT

k λ
2
k

���RT
k �DRk

C2
d��A�−× �P

m
l�1 μl��RT

k �DRk
�ϕl ∘ H2

l���A�−×
�
; ζk




�
XN−1

k�1

��
λ2k−1 − BT

k λ
1
k − �Fk − BT

k �FT
kΠk�×�λ2k �DΠk

C2
d �

Xm
l�1

μlDΠk
�ϕl ∘ H2

l�
�
; δΠk




�
XN−1

k�1

��
λ3k−1 − ET

k λ
1
k � ET

k �FT
kΠk�×λ2k − λ3k �DπkC

2
d �

Xm
l�1

μlDπk �ϕl ∘ H2
l�
�
; δπk




�
XN−1

k�1

��
−hλ3k−1 �DτkC

2
d �

Xm
l�1

μlDτk �ϕl ∘ H2
l�
�
; δτk
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where the analog of integration by parts in the discrete-time setting is
used along with the facts that the variations ζk, δΠk and δπk vanish at
k � 0. Because δJ 2

d;a � 0 should vanish for all variations of ζk, δΠk

δπk, and δτk, we have completed the derivation of the necessary
conditions given in Eq. (10).
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