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The design optimization of aircraft engines considering their integration with the airframe has been limited by

challenges with existing propulsion modeling tools. Gradient-based optimization with derivatives computed using

adjoint methods has been successful in solving aerodynamic and structural shape optimization problems but has not

yet been applied to coupled propulsion–airframe optimization, partly because existing tools lack analytic derivative

computation. As a step toward obtaining a full cycle analysis with efficient analytic derivative computation, a new

chemical-equilibrium thermodynamics solver is developed for propulsion applications. This solver provides a

continuous formulation that enables analytic derivative computation using a coupled adjoint approach. The results

from this solver are verified against a well-established chemical-equilibrium code. The analytic derivatives are also

verified by comparing them with finite-difference approximations. The performance of the analytic derivative

computations is tested using two optimizations: combustion temperature maximization with respect to equivalence

ratio, and combustion temperature maximization with respect to air pressure. The results show clear speed and

numerical stability benefits when comparing the proposedmethod against finite-difference approximations. It is now

possible to use this new solver as the foundation for further development of a complete propulsion analysis for

integrated propulsion–airframe design optimization.

Nomenclature

aij = stoichiometric constant for the ith element in the ith
species

b = moles of an element summed across all species in a gas
b∘ = moles of an element summed across all species in a gas at

the initial composition
CP = specific heat at constant pressure
CV = specific heat at constant volume
G = Lagrangian of the Gibbs energy minimization
g = Gibbs energy
H∘ = enthalpy of a species as a function of T
h = specific enthalpy
h0 = input specified enthalpy
Ne = total number of elements
Ns = total number of chemical species
n = concentration of chemical species, kg ⋅mol∕kg ⋅mixture
P = pressure
Pa = pressure at standard conditions (1.01325 bar)
R = universal gas constant
R = residual function
S = entropy
S0 = input specified entropy

S∘ = entropy of a species as a function of T
T = temperature
U = vector of state variables in the chemical-equilibrium

equations
γ = ratio of specific heats (CP∕CV )
λ = Lagrange multipliers
μ = chemical potential energy
π = modified Lagrange multipliers
ρ = density
ϕ = air–fuel equivalence ratio

Subscripts

i = quantity for the ith element
j = quantity for the jth chemical species
k = alternate subscript for the kth chemical species

I. Introduction

N EWaircraft concepts with a high degree of propulsion–airframe
integration have been proposed to dramatically reduce fuel

burn, emissions, and noise. These concepts (such as overwing
nacelles [1,2] and engine installations designed for boundary-layer
ingestion (BLI) [3–6]) couple the thermodynamic performance of the
propulsion system with the aerodynamic performance of the
airframe. This requires coupling the aerodynamic and propulsion
analysis tools for aircraft design and motivates the application of
multidisciplinary design analysis and optimization (MDAO) to
navigate the potentially large design space [7]. Drela [8] underscored
the importance of capturing this coupling in the D8 aircraft concept,
andWelstead and Felder [9] made the same point for the Single Aisle
Turboelectric Aircraft Concept—Aft Boundary Layer Ingestion
(Starc-ABL) concept.
Applying MDAO requires a set of analysis tools well suited to

optimization. Thismeans that the toolsmust be numerically stable, be
capable of returning physically meaningful results even when
starting with poor designs, and be computationally efficient. In cases
where gradient-based optimization is used, it is highly desirable that
the analysis tools can efficiently and accurately compute derivatives,
and that the formulation of the analysis leads to smooth and

Presented as Paper 2016-0669 at the 57th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, San Diego, CA,
4–8 January 2016; received 17 February 2016; revision received 7 October
2016; accepted for publication 20 October 2016; published online 30 January
2017. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States. All requests
for copying and permission to reprint should be submitted to CCC at
www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876
(online) to initiate your request. See also AIAA Rights and Permissions
www.aiaa.org/randp.

*Aerospace Engineer, PSA Branch, 21000 Brookpark Rd., MS 5-11; also
Doctoral Candidate, University of Michigan, Department of Aerospace
Engineering, Ann Arbor, MI 48109. Member AIAA.

†Aerospace Engineer, PSA Branch, 21000 Brookpark Rd., MS 5-11.
Member AIAA.

‡Aerospace Engineer, PSA Branch, 21000 Brookpark Rd., MS 5-11.
§Professor, Department of Aerospace Engineering. Associate Fellow

AIAA.

1041

JOURNAL OF PROPULSION AND POWER

Vol. 33, No. 5, September–October 2017

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

5,
 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.B
36

21
5 

http://dx.doi.org/10.2514/1.B36215
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.B36215&domain=pdf&date_stamp=2017-01-31


differentiable functions. Computing the derivatives of a function of
interest is always possible by using finite-difference approximations.
However, such an approach is not efficient because the cost of
computing the complete gradient is proportional to the number of
variables. In addition, this method is subject to errors due to
subtractive cancellation [10]. Analyticmethods, where the analysis is
linearized, are muchmore accurate and generally more efficient [11].
Two main forms of analytic methods exist: the direct method and the
adjoint method. The computational cost of the direct method is
proportional to the number of designvariables and independent of the
number of functions of interest, whereas the cost of the adjoint
method is proportional to the number of functions of interest and
independent of the number of design variables.
Applying MDAO to propulsion–airframe integration problems

requires coupling viscous computational fluid dynamics (CFD) to
propulsion analysis. When using CFD-based shape optimization, the
most common technique is to use gradient-based optimizationwith the
gradients computed via the adjoint method. The reason for this choice
is that there are few functions of interest (usually drag, lift, andmoment
coefficients), but a large number of design variables are required to
parametrize three-dimensional shapes. Many CFD tools that compute
adjoint derivatives are already available, such as FUN3D [12],
SU2 [13], elsA [14], and ADflow [15–18]. The adjoint method, in
conjunction with gradient-based optimization, has been used in many
studies of aerodynamic shape optimization, as demonstrated by the
series of benchmarks developed by the AIAA Aerodynamic Design
Optimization Discussion Group [14,17,19–21]. However, propulsion
analysis tools are not as well developed in this regard, and many
existing applications still rely on gradient-free methods, which cannot
handle large numbers of design variables.
To date, gradient-free methods have been successful because the

number of design variables required to formulate the problem has
been kept relatively small, but the integration of propulsion analysis
with viscous CFD requires a large number of design variables, which
makes gradient-based optimization a requirement [22]. Sandhi et al.
[23] identified many different options in their survey of propulsion
modeling tools, but none computed analytic derivatives. Of the tools
identified, numerical propulsion system simulation (NPSS) [24] is
the most recently developed and is widely used. Because NPSS does
not compute analytic derivatives, the finite-differencemethod is used
to approximate derivatives. The finite-difference derivatives from
NPSS could, in theory, be combinedwith the adjoint derivatives from
the CFD tool to form a semianalytic coupled derivative that would
enable gradient-based optimization.
Although the semianalytic approach would allow integrated

propulsion–airframe optimizationwith existing tools, such a solution
is far from ideal. Finite-difference derivative approximations from
NPSS result in numerical issues. They offer limited accuracy, which
can require the optimization to go through many more iterations and
reduce the efficiency of finding a true optimum [25]. Numerical
stability issues also exist when finite differencing NPSS to compute
derivatives, which Geiselhart et al. [26] identified as a major
motivation for applying gradient-free methods in their low-boom
design optimization of a supersonic business jet. Similarly, Allison
et al. [27–29] also noted problems with stability and convergence in
their extensive work on integrating NPSS into the conceptual design
for military aircraft. These issues motivate us to move away from
finite-difference derivative approximations and develop a new
propulsion analysis tool based on more accurate analytic derivatives.
Future work will first use this propulsion analysis tool to apply

gradient-based optimization to propulsion-only models to minimize
specific fuel consumption or emissions, and it will later use coupled
propulsion–airframe models to minimize mission fuel burn or total
energy consumption. Before a new propulsion analysis tool can be
built, we must develop a core thermodynamics model capable of
providing analytic derivatives. The thermodynamics model
computes all properties of the working fluid (enthalpy, entropy,
temperature, pressure, density, etc.) given any two thermodynamic
states and is a fundamental building block in a full propulsion
analysis framework. This model must provide analytic derivatives of
computed gas properties with respect to the prescribed properties

(e.g., ∂γ∕∂T, ∂S∕∂P), which are then used to compute the derivative
for the full propulsion model.
The core thermodynamics model is implemented in the

OpenMDAO framework, which uses a Newton solver to converge
the nonlinear chemical-equilibrium equations and facilitates the
computation of both the derivatives for this Newton solver and the
derivatives required for gradient-based optimization via analytic
methods (both direct and adjoint) [11,30–32].
The rest of the paper is organized as follows: Sec. II reviews the

available thermodynamics methods and justifies the use of the
chemical-equilibrium-based method. Section III summarizes the
Gibbs energy equilibrium equations and the numerical solver used to
converge the chemical-equilibrium equations. The details of the
coupled-derivative implementation are given in Sec. IV, and Sec. V
verifies the results of the analysis and computations of the derivatives.
Finally, Sec. VI presents the optimization results for maximum
combustion temperature; the results demonstrate the speed and
improvements in numerical stability achieved by using analytic
derivatives.

II. Existing Thermodynamics Tools

A number of different methods exists for computing the
thermodynamic properties of air and air–fuel mixtures, and many
implementations of these methods are available. NPSS provides a set
of thermodynamics libraries (CEA, JANAF, ALLFUEL, GasTbl),
which the user can select at runtime [24]. ALLFUEL and GasTbl are
computationally efficient but are based on interpolated tabular data
and are only accurate for jet-A fuels or other fuels that are chemically
very similar to jet-A fuel. Tran and Snyder [33] demonstrated that
tabular thermodynamics data offer limited accuracywhen considering
fuels that are chemically dissimilar from those used to generate the
data. They recommended either generating new tabular data when
switching fuels or integrating a chemical-equilibriumanalysis directly
into the propulsion code. For unconventional cycle configurations that
usemultiple fuels (for example, a combination of jet-A fuel and liquid
natural gas [34]), tabular thermodynamics data are not suitable.
Amore advanced technique for building a kriging surrogatemodel

of the equilibrium gas composition was proposed by Walter and
Owen [35] and offers a more flexible option for an interpolation-
based method. However, this technique does not provide a means of
computing the thermodynamic properties of the composite gas. The
CEA and JANAF libraries use a chemical-equilibrium-based
method, but the JANAF library only considers a fixed set of species.
The CEA [36] library is by far the most general of the options in
NPSS, accepting an arbitrary number of chemical species that
enables it to consider a wide range of fuels.
There is also a number of chemical-equilibrium libraries

developed for fields outside of cycle analysis. MINEQL� [37]
specializes in equilibrium reactions in aqueous solutions. ChemSage
[38] supports reactions that include metallic elements and metal
oxides. JANAF, CEA, MINEQL�, and ChemSage all solve for
chemical equilibriumdirectly byminimizing theGibbs energy. These
codes differ primarily in the details of how they converge the
nonlinear chemical-equilibrium equations and offer specialized
features for their specific applications. Another alternative is the
nonstoichiometric equilibrium method [39], which is used by the
open-source library Cantera [40]. Chin et al. [41] used the Cantera
implementation for an application involving cycle analysis.
For each propulsion analysis, the thermodynamics module is called

hundreds of times, so computational efficiency is important. However,
flexibility to consider a wide range of fuels is also important to allow
alternative fuels to be investigated, such as hydrogen [42], natural gas
[34,43], and biofuels. The low flexibility of interpolative methods
makes them less desirable, despite their simplicity. Chemical-
equilibrium methods provide the needed flexibility. The Cantera
librarywas ruled out for our purposes due to our prior experience using
it in this application, where it led to problems regarding performance.
We considered the option of differentiating one of the other chemical-
equilibrium libraries, but none of them implements a continuous
solution algorithm that is differentiable. TheCEAand JANAF libraries
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use a method for handling trace species (those with negligible
concentrations) where a heuristic controls their addition and removal
from the equilibrium calculations, causing small discontinuities in the
solution. These discontinuities are problematic from an analysis point
of view [44] and create points where derivatives are not defined.
Therefore, we developed a new algorithm for solving the chemical-
equilibrium analysis that is differentiable, and thus suitable for
gradient-based optimization.

III. Chemical-Equilibrium Equations

A. Thermodynamic Properties Prediction

To find the thermodynamic state of a gas, CEA uses the multistep
process illustrated in Fig. 1 as an extended design structure matrix
(XDSM)diagram [45]. First, it solves a systemof nonlinear equations
to minimize the Gibbs energy, which gives the equilibrium
composition for the gas at the prescribed state. Second, it solves an
additional set of equations to compute the thermodynamic state of the
gas by using the converged equilibrium composition. These
equations were documented in detail by Gordon andMcBride [36] in
their seminal paper on CEA. However, the form of the equations
presented in theirwork combined the residuals from theGibbs energy
minimization with a customized procedure for solving for the
Newton update. This combination was motivated by the limitations
imposed at the time by computer hardware. With modern computers
and more powerful linear algebra libraries, it is much better to keep
the residuals separate from the numerics to simplify the task of
differentiating the analysis. The purely physical formof the equations
is presented here. We refer the reader to the original CEA publication
for details on the second step, where the thermodynamic properties
were computed from the converged equilibrium solution; it remains
unchanged from the original formulation [36].

B. Gibbs Energy Minimization

The full thermodynamic state of a real gas can be defined by any
two of the five physical state variables: temperature T, pressure P,
density ρ, entropy S, and enthalpy h. Three specific combinations are
useful for propulsion analysis: temperature and pressure TP,
enthalpy and pressure hP, and entropy and pressure SP. The TP
formulation is the most fundamental. The hP and SP formulations
augment the TP formulation equations with a new state variable T
and the associated residual to drive the solution to the prescribed
value of h or S.

1. Temperature–Pressure Formulation

The Gibbs energy g is defined as

g �
XNs

j

�μjnj� (1)

where Ns is the number of chemical species, and nj and μj are the
concentration (kilogram-mole per kilogram-mixture) and the
chemical potential of the jth species, respectively. The chemical
potential is a function of temperature, pressure, and concentration;
and it is given by

μj
RT

� H∘
j�T�
RT

−
S∘j�T�
RT

� ln
�
P

Pa

�
� ln �nj� − ln

�XNs

k

nk

�
(2)

where R is the universal gas constant, and H∘ and S∘j are given by

H∘
j�T�
RT

� −c0
T2

� c1 ln �T�
T

� c2�
c3
2
T� c4

3
T2� c5

4
T3 � c6

5
T4 � c7

T
(3)

S∘j�T�
R

� −c0
2T2

−
c1
T
� c2 ln �T�� c3T� c4

2
T2 � c5

3
T3 � c6

4
T4� c8

(4)

where c0; : : : ; c8 are constants for each species, taken from the

NIST-JANAF Thermochemical Tables [46].
The equilibrium composition is defined by the values of the

concentration variables n that minimize the Gibbs energy subject to

conservation-of-mass constraints. The mass is tracked on an

elemental basis and is given by

Rmass i �
XNs

j�1

�aijnj� − b∘i � 0 (5)

whereNs is the number of species in the mixture, b∘i is the amount of

each element in the initial composition, and aij is the stoichiometric

constant for element i of species j. Themass balance residualsRmass i

yieldNe constraints: one per element present in the mixture. To solve

the mass-constrained minimization of the Gibbs energy, we form a

Lagrangian

G �
XNs

j�1

�μjnj� �
XNe

i�1

λi

�XNs

j�1

�aijnj� − b∘i

�
(6)

where λi is the Lagrange multiplier for the ith element. We

differentiate with respect to the n and λ variables to build a system of

nonlinear equations for which the solution minimizes the

Lagrangian:

δG �
XNs

j�1

�
μj �

XNe

i�1

�λiaij�
�
δnj �

XNe

i�1

�XNs

j�1

�aijnj� − b∘i

�
δλi � 0

(7)

Because δG is linear in δnj and δλi, we can split Eq. (7) into two

sets of equations. We get Ns equations:

RGibbs � μj �
XNe

i�1

�λiaij� � 0 (8)

as residuals representing the Gibbs energy. For convenience, because

of the factors of 1∕RT in Eqs. (2) and (4), we define an alternative

Lagrange multiplier as follows:

πi � −
λi
RT

(9)

This yields an alternate form of Eq. (8):

RGibbs �
μj
RT

−
XNe

i�1

�πiaij� � 0 (10)

Equations (5) and (10) yield a systemwithNs � Ne unknowns and

Ns � Ne residual equations, which can then be solved numerically.Fig. 1 XDSM diagram of the chemical equilibrium analysis sequence.
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2. Enthalpy–Pressure Formulation

The hP formulation retains the state variables (n and π) from the
TP solver and the associated residuals from Eqs. (5) and (10). In
addition, it adds a new state variable T and a new residual to drive the
computed enthalpy to match the specified enthalpy value h0:

Rh � h0 −
XNs

j�1

�njH∘
j�T�� � 0 (11)

3. Entropy–Pressure Formulation

Like thehP problem, theSP formulation uses the same setup as the
TP problem with one additional state variable and residual. In this
case, the new state variable is the prescribed entropy S0. The new
residual drives the computed entropy to match the prescribed
entropy:

RS�S0−R
XNs

j�1

�
nj

�
S∘j�T�
R

−ln
�
P

Pa

�
−ln �nj��ln

�XNs

k

nk

���
�0

(12)

where the pressure term is nondimensionalized by standard
atmospheric pressure (Pa � 1.01325 bar). The reference condition is
necessary because entropy is defined as a variation from a reference
condition.

C. CEA Modified Newton’s Method for Chemical Equilibrium

1. Newton Convergence Scheme

Gordon and McBride [36] applied Newton’s method to converge
the chemical-equilibrium system. When applied to Gibbs energy
minimization, Newton’s method consists of successive solutions of
the linear system

∂R
∂U

ΔU � −R�U� (13)

whereU � �n; π� for a TP problem, andU � �n; π; T� for hP and SP
problems.ΔU is iteratively computed and applied until the residuals
[Eqs. (5), (10–12)] converge to zero within a chosen tolerance.
Note that Eq. (10) involves computing μj, which through Eq. (2)

requires taking the natural logarithm of n. In addition, Eq. (4)
involves taking the natural logarithm of T. Thus, neither n nor T can
be negative during the iterations. The natural logarithms also cause
numerical difficulties because the derivativewith respect to n tends to
infinity as n tends to zero. In addition, this means that the Newton
system becomes ill conditioned as n tends toward zero. In CEA, this
problem is partially dealt with via a logarithmic transformation,
whereΔU is split into two parts: one for [n, T] and another for π. The
[n, T] components of the updates are treated as Δ ln �n�∕n and
Δ ln �T�∕T. The Newton update equation is modified to account for
this as follows:

nk�1 � nk exp

�
Δ ln �n�

n

�
(14)

Tk�1 � Tk exp

�
Δ ln �T�

T

�
(15)

By using the exponential update form, negative values from the
Newton solution are converted into multiplicative updates that are
always positive; so, assuming a positive initial guess, the values of n
and T never become negative. The π update variables are treated
normally, with the Newton update

πk�1 � πk � Δπ (16)

Although the CEAmethod deals with the need to keep both n and
T positive, it does not solve the problemwhereby trace species create

poorly conditioned Jacobians. For this problem, species with n lower
than a set value (10−5 by default) are discarded from the solution.
Removal of species, even trace species, introduces a non-
differentiable discontinuity that needs to be avoided. Leal et al.
[44] proposed a method that retained all species and modified the
computed Newton step for trace species to keep them positive.
Because this method retained all species, it was continuous, and thus
differentiable. We adopt this method for this work and use a step-
limiting method similar to that used by the built-in solvers in
OpenMDAO.

2. Computing ∂R∕∂U
We compute ∂R∕∂U analytically, where the nonzero elements for

the TP residual partial derivatives are given by

∂RGibbs j

∂nk
�

8>>><
>>>:

−1PNs

l nl
if j ≠ k

1

nk
−

−1PNs

l nl
if j � k

(17)

∂RGibbs j

∂πi
� −aij (18)

∂Rmass i

∂nj
� aij (19)

When solving an hP or SP problem, additional nonzero partial
derivatives of Eq. (8) with respect to T are given by

∂RGibbs j

∂T
� ∂H∘

j

∂T
−
∂S∘j
∂T

(20)

For an hP problem, the residual [Eq. (11)] contributes the
following nonzero partial derivatives:

∂Rh

∂nj
� −RTH∘

j (21)

∂Rh

∂T
� −RT

XNs

j�1

nj

�∂H∘
j

∂T
�H∘

j

�
(22)

Similarly, for anSP problem, the residual [Eq. (12)] contributes the
following nonzero partial derivatives:

∂RS

∂nj
� −R

�
S∘j�T�
R

− ln
�
P

Pa

�
− ln �nj� � ln

�XNs

k

nk

�
− 1

�
(23)

∂RS

∂T
� −R

XNs

j�1

�
nj

∂H∘
j

∂T

�
(24)

All these nonzero terms can be assembled into a matrix, which is
then inverted by using a direct method because the size of the matrix
is, at most, �Ns � Ne � 1� by �Ns � Ne � 1�, where the largest term
Ns is on the order of hundreds of species.

IV. Multidisciplinary Derivatives

We define multidisciplinary derivatives as the total derivatives of a
function (objective or constraint) with respect to the design variables
of a problem where the multidisciplinary system is converged. In
other contexts, these could also be called total derivatives or coupled
derivatives [11]. This work involves a single engineering discipline:
thermodynamics. However, the model is built up of multiple
components, as seen in Fig. 1, and each component can be thought of
as a subdiscipline. In that sense, any derivative of an OpenMDAO
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model is a multidisciplinary derivative. OpenMDAO automatically
computes the multidisciplinary derivatives of an arbitrary model,
assuming that each component in the model provides its own partial
derivatives [47,48].
Partial derivatives are computed for a single component (i.e.,

derivatives of component outputs with respect to its own input
variables); they must be provided to the framework for each
component. Partial derivatives can be computed analytically or via
automatic differentiation [11,49]. In this work, analytic expressions
are derived by hand for all components. The derivations are
straightforward because of the fine-grained breakdown of the
analysis into multiple components, where each component consists
of a limited amount of code. This style of building up an analysis via a
combination of small components is encouraged when using the
OpenMDAO framework because it facilitates differentiation.
Computing the required partial derivatives for a given output is

done in a manner that is almost identical to the computation of the
partial derivatives for the Newton solver. The only difference is that,
for the Newton solver, we compute only the partial derivatives of the
residual equations with respect to the state variables. To compute the
multidisciplinary derivatives, we reuse the derivatives from the
Newton solver but now also include partial derivativeswith respect to
all other inputs of that component. As an example, consider Eq. (12).
The two partial derivatives needed for the Newton solver are given by
Eqs. (23) and (24). These two derivatives are augmentedwith the two
following additional derivatives:

∂Rs

∂S0
� 1 (25)

∂Rs

∂P
� R

P

XNs

j�1

nj (26)

Once all the partial derivatives are computed, OpenMDAO
automatically assembles them into a linear system that, by using

either a coupled direct or a coupled adjoint method [50], is solved to
compute the multidisciplinary derivatives. In OpenMDAO, this is
achieved via the unified derivative equation [11]:

∂R
∂U

du

dr
� I � ∂R

∂U
Tdu

dr

T
(27)

where ∂R∕∂U is a Jacobian matrix of partial derivatives, I is the
identity matrix, and du∕dr is the matrix of total derivatives for which
we want to solve. The left-hand side of Eq. (27) represents the
coupled direct method, solved one time per design variable; whereas
the right-hand side represents the coupled adjointmethod, solved one
time per function of interest. The coupled adjoint capability is the
most significant, given the ultimate goal of integration with adjoint
CFD codes, but once the partial derivatives are given, both direct and
adjoint solvers are available from OpenMDAO with no additional
work. In Eq. (27), the Jacobian ∂R∕∂U is similar to that used in the
Newton solver from Eq. (13), but it includes the additional partial
derivatives with respect to all the inputs, represented by Eqs. (25) and
(26) in our case.
For the chemical-equilibrium model developed herein, the

structure of ∂R∕∂UT is shown in Fig. 2 for a TP solver and in Fig. 3
for the hP or SP solver. The diagonal terms are the partial derivatives
of the residuals with respect to the associated state variable or an
output with respect to itself. The off-diagonal terms are partial
derivatives of residuals or outputs with respect to the other variables.
In Fig. 2, the 2 × 2 block of partial derivatives, outlined in dark gray,
are the same derivatives needed for the Newton solver. These partial
derivatives are given by Eqs. (17–19). For the TP solver, temperature
is an input to the calculation; but, for the hP and SP solvers, it
becomes a state variable. For these slightlymore complex solvers, the
∂R∕∂U matrix includes h or S as inputs and T as an additional state
variable. The 3 × 3 block, outlined in dark gray in Fig. 3, contains the
Newton derivatives for the corresponding solvers. All other shaded
boxes outside theNewton blocks are the additional partial derivatives
needed to compute the multidisciplinary derivatives. It is convenient

Fig. 2 Structure of partial derivative matrix for adjoint multidisciplinary derivatives of the TP solver. The subset of partial derivatives needed for the
Newton solver is highlighted by the gray square outline.
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that the partial derivatives necessary for a Newton solver can be
reused with the unified derivative equations, but Figs. 2 and 3 also
show that significantlymore partial derivativesmay be required in the
latter case.
Although Eq. (27) is just a linear system, solving it efficiently for a

chemical-equilibriummodel is not easy. The lower diagonal elements
of the matrix prevent the use of Gaussian elimination. A naive
implementation could use a direct method to solve the entire linear
system monolithically. Although this would work for an isolated
chemical-equilibrium analysis, a more complex propulsion model
with many such solutions would become prohibitively large for that
approach. The modular analysis and unified derivatives (MAUD)
architecture for solving the derivative equations suggests a more
efficient approach that uses a nested linear solver that follows the
hierarchy of the nonlinear model to generate effective precondi-
tioners for use with sparse iterative linear solvers such as the
generalized minimum residual (GMRES) method [48].
OpenMDAO implements the MAUD solver architecture by

allowing each component to specify its own nonlinear solver and
linear solver. Figure 4 illustrates the model hierarchy and shows
which linear and nonlinear solvers are used for each component. At
the top level, one iteration through each subcomponent is used for the
nonlinear solver because there is no intercomponent coupling in this

model. The sequential nature of the nonlinear solver enables a
Gaussian elimination at the top level, implemented by one-block
linear Gauss–Seidel (LNGS) iteration for the linear solution. The
inputs and thermodynamic properties components are both a
collection of explicit equations that can also use a LNGS algorithm
with a single iteration for the linear solution. The chemical-
equilibrium component uses a Newton solver for the nonlinear
solution and a GMRES linear solver. TheCP andCV components are
composed of linear equations that can be solved by using a direct
method for both the nonlinear and the linear solvers, although this
component is actually only linear. For chemical equilibrium, CP and
CV , a natural synergy exists between the nonlinear and linear solvers.
For chemical equilibrium, the same linear solver needed to solve for
the Newton update can be reused for the derivatives. ForCP and CV ,
the exact same solver can be used for both because both are linear
systems.

V. Verification of Analysis and Derivatives

The thermodynamics module is to be the foundation for a new
cycle analysis tool, so it is important that it accurately models the
thermodynamic properties of air and air–fuel mixtures across a wide
range of temperatures and pressures. Given the goal of using this
work for optimization, it is also important that the analytic derivatives
be correct. This section presents the verification of the analysis and
the corresponding derivatives.

A. Approach to Analysis Verification

The new code was verified against CEA predictions. The
verification cases correspond to the temperature and pressure
combinations listed in Table 1. A total of 3600 different conditions
were examined with temperatures ranging from 200 to 4800°R and
pressures from 1 to 1500 psi. This regular grid was run at four
equivalence ratiosϕ of 0, 0.015, 0.3, and 0.44 to provide awide range
of combustion conditions. The equivalence ratio (the ratio of the

Fig. 3 Structure of partial derivative matrix for adjoint multidisciplinary derivatives of hP and SP solvers. The subset of partial derivatives needed for
the Newton solver is highlighted by the gray square outline.

Top Level
NL Solver: One Iteration

LIN Solver: LNGS

Inputs

NL: One Iteration
LIN: LNGS

Chemical
Equilibrium

NL: Newton
LIN: GMRES

NL: Direct 
LIN: Direct

CP

NL: Direct
LIN: Direct

CV

NL: One Iteration
LIN: LNGS

Thermodynamic
Proproperties

Fig. 4 Hierarchy for chemical-equilibrium solver with both nonlinear
(NL) and linear (LIN) solvers indicated for each component.
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actual fuel-to-air ratio to the stoichiometric value) is a convenientway
to express the amount of potential combustion in a manner that is
independent of the specific fuel being used. This verification grid
includes low temperatures that are not physicallymeaningful and that
actually extend below the valid range of the thermodynamics data
provided as input. Such low temperatures are run, not to test the
physical predictive power of the code under invalid conditions but
rather to compare it numerically with CEAunder extreme conditions.
Because the new code is to be used for optimization, it must be
numerically stable even under nonphysical conditions because
optimizations often iterate through physically invalid areas on their
way to the optimum.
To compute the verification data, the new code was set up with air

at the temperature and pressure conditions prescribed in Table 1 and
then combusted at the givenϕwith jet-A, which is a hydrocarbon fuel
(C12H23) with a stoichiometric fuel–air ratio of 0.06817
corresponding to ϕ � 1.
The combustion was modeled as a prescribed enthalpy process by

computing the overall enthalpy of the air–fuel combination and
holding it constant while solving for a chemical-equilibrium
composition. Because the total enthalpy calculation was already
required for the combustion model in the new code, the
corresponding CEA runs were set up with h and P by using the
enthalpy output from the corresponding case. For both codes, a
reduced set of 19 chemical species was considered in order to reduce
the number of trace species present in the converged equilibrium
results and to improve computational speed. The following species
were included: N, NH3, N2, NO, NO2, NO3, CH4, C2H4, CO, CO2,
O, OH, O2, H, H2, H2O, HO2, H2O2, and Ar.
Two different types of verification are performed. First, the

predicted chemical-equilibrium compositions are compared to
ensure that the proper amount of each chemical species is present at
each test point. Next, the actual thermodynamic properties (P,T, ρ,h,
S, CP, CV , γ) are compared. To verify the composition, the average
discrepancy between the codes is 5.2 × 10−6 mol and the maximum
error is 1.1 × 10−4 mol. The average discrepancy in the prediction of
the thermodynamic properties is 0.03%, and the maximum error is
0.52%. These results demonstrate a strong agreement over a wide
range of temperatures and pressures.
One unavoidable source of discrepancy between the new code and

CEA comes from implementation details related to handling trace
species, as discussed in Sec. III.C.1. Figure 5 quantifies this effect
more clearly, showing the number of species retained in the final

solution from CEA for different values of ϕ over a range of
temperatures. The number of active species varies most for ϕ � 0
(from 4 to 11) because, at lower temperatures, the composition of air
stays relatively close to atmospheric, but NOx starts to form and

dissociation starts to occur at the higher temperatures. Note that the
data in Fig. 5 are pressure averaged over the entire range of pressures
from Table 1. A slight negative correlation exists between pressure

and the number of active species in the data, but this is negligible
compared with the temperature effect. If a larger set of species were
considered, the pressure effect could be more pronounced.

B. Verification of Chemical Equilibrium

The first verification serves to confirm that the new code returns the
same chemical composition as does CEA over the verification grid

from Table 1. The comparison is done on a per-species basis and is
measured with absolute differences. Air, even when combusted with
ϕ � 0.44, is composed of over 70% diatomic nitrogen, which means

that any other chemical species (e.g.,CO2,H2O), although important
to the thermodynamic properties, makes up less than 30% of the
overall gas. Some species (e.g., NH3, NO3) are present only in trace

amounts and have almost no impact on the thermodynamics. The
accuracy of the amount of trace species predicted by using a

chemical-equilibriummethod is highly limited but is still of practical
significance to ensure that the two codes predict the same trace
species. The low concentration of many species requires an absolute

error to measure the discrepancy between codes and, to be
meaningful, absolute error requires knowledge of the actual value for
nj. Figure 6 shows the accuracy of the predicted values forn averaged

Table 1 Temperature and
pressure conditions used for

verification cases

Low High Step

Temperature, °R 200 4800 200
Pressure, psi 1 1500 10

Fig. 5 Variation of total number of active chemical species in CEA
solutions with respect to temperature.

Fig. 6 Mean differences between equilibrium gas compositions
predicted by CEA and by the proposed code.
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over the fullT andP verification set as a function of equivalence ratio.
The mean nj are shown as solid blue lines and can be compared with
the absolute errors knjCEA − njk2, which are represented as orange
lines. Most of the errors are at least two orders of magnitude smaller
than the mean concentrations, indicating strong agreement between
the two codes. For NH3 and NO3, the discrepancies are the same
order of magnitude as the mean value because CEA results include
these species at the lower limit of 10−10. These two species further
highlight the subtle difference between the trace-species method for
CEA and the new code. At such small concentrations, these species
do not have a meaningful impact on the thermodynamic properties.
Note that CH4 and C2H4 are excluded from Fig. 6 because they are
always trace species for CEA and their compositions are always
below 10−13 for the new code.
In addition to showing the discrepancy for each species

individually, Fig. 7 also shows how the norm of the absolute error
knCEA − nk2 varies with T and P for the case of ϕ � 0.44. There is a
clear trend toward increasing discrepancy with higher temperature
and a much weaker correlation with increasing pressure. Although
the discrepancy grows from 3 × 10−5 to 2 × 10−4 upon moving from
the lower-left corner to the upper-right corner, it is still small. This
trend is consistent with Fig. 5, where CEA starts introducing small

concentrations of new species as the temperature rises. Because

different methods are used to handle these trace species, we expect

additional discrepancy in areas where trace species are prevalent.

Figures 6 and 7 demonstrate that both codes give results that are in

strong agreement in terms of overall composition across the entire

verification grid. The overall conclusion is that the proposed code and

CEA both compute the same composition within solver tolerance.
From a cycle analysis perspective, the composition vector n is not

important in itself; however, because the thermodynamic properties

are computed as a function of n, it is still important. Therefore, the

verification of predicted composition serves as a preliminary

verification of the thermodynamics itself. The next section presents

the verification of the thermodynamic properties, but these data

reinforce those results by ensuring that the calculations are based on

the same chemical compositions.

C. Verification of Thermodynamic Properties

We use relative measurements to compare the thermodynamic

state variables predicted by CEA with those predicted by the new

code. Figure 8 shows mean discrepancy, measured across the full

verification grid, for entropy S, temperature T, enthalpy h, density ρ,
pressureP, specific heat ratio γ, and specific heat at constant pressure
CP. The mean error for all cases, across all properties, is 0.03%, and

the maximum error is 0.52%. Note that, because both h and P are set

directly for the CEA run, from the output of the corresponding cases

with the new code, these properties have the lowest errors in Fig. 8.

The other errors are larger but are still less than 0.1%. This

demonstrates a strong agreement between CEA and the new code,

and it verifies its predictions for cycle analysis applications.

D. Verification of Multidisciplinary Derivatives

The derivative accuracy is verified by comparing analytic

derivatives (direct method in this case) to finite-difference

approximations by using forward-, central-, and backward-difference

methods. Figures 9 and 10 show the relative error between the three

finite-difference derivative approximations and the analytic reference

values. This relative error is plotted for varying finite-difference step

sizes. The plots follow the structure of the Jacobian, showing the

derivatives of h, S, ρ, CP, and γ (rows) with respect to T and P
(columns). Figure 9 corresponds to standard day conditions (288 K,

1 bar), whereas Fig. 10 corresponds to a representative cruise

condition (1500 K, 10 bar). The analytic and finite-difference

Fig. 7 l2 norm of difference between concentration vectors
knCEA − nk2.

Fig. 8 Mean relative errors between the thermodynamic states predicted by CEA and by proposed code of less than 0.1%.
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derivatives all agree to at least 10−5, although the point of best
agreement occurs at different step sizes for different variables.
Whereas the results for standard day conditions in Fig. 9 show

good agreement for all step sizes, the results for the cruise condition
in Fig. 10 show a dramatic increase in accuracywhen the relative step
size is less than 10−5. At cruise conditions, the temperature and
pressure are higher, and the converged mixture contains many more

active species, which makes the solution more sensitive to input
values. Thus, keeping the step size sufficiently small to prevent major
changes in the solution is the key to obtaining accurate finite-
difference approximations. The central-difference approximation
converges faster than the forward or backward schemes and offers
better overall accuracy over a range of step sizes. This is expected,
because central differencing is second-order accurate, whereas the

Fig. 9 Relative error of finite-difference approximations versus step size obtained for standard day conditions and by using computed analytic values as
reference.

Fig. 10 Relative error of finite-difference approximations versus step size for cruise conditions and with computed analytic values as reference.
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other two schemes are first order accurate. However, this accuracy
comes at a cost because central differencing requires two function
evaluations for each derivative.
Figure 11 shows the computational times for assembling the full

5 × 2 Jacobian of the responses with respect to the design variables.
All computational times were measured on an Apple MacBook Pro
laptop with a 2.6 GHz dual-core Intel Core i5 processor and 16GB of
memory. The computational cost of the central-difference
approximation is twice that of the forward- and backward-difference
schemes. Computing the derivatives with the direct method is faster
than with the finite-difference approximations because each finite-
difference step requires the convergence of the full nonlinear model,
as opposed to the solution of a linear system for the direct method.
Of the two analytic methods, the direct method is faster than the

adjoint method for this problem. Recall that the direct method
corresponds to solving the left-hand side of the unified derivatives
[Eq. (27)], whereas the adjoint method solves the right-hand side of
the same equation. In this case, the direct method is expected to be
faster because it involves two independent variables and five
responses. Thus, for the direct method, two linear solutions are
needed to compute the full Jacobian. For the adjoint method, five
linear solutions are needed. For problems with more design variables
than constraints, the adjoint method would become advantageous.

VI. Optimization Results

A. Equivalence Ratio Optimization

To demonstrate the use of analytic derivatives in a gradient-based
optimization,we ran a series of unconstrained optimizations at a fixed
precombustion gas temperature of 518°R. Each optimization sought
to maximize the combustion temperature by varying ϕ for a given
fixed pressure. We solved 200 optimizations for pressures ranging
from 15 to 1500 psi. Figure 12 plots the optimal temperatures and the
corresponding values of ϕ for the various pressures. The maximum
temperatures occurred for ϕ between 1.02 and 1.07, which seemed
counterintuitive. Under the assumption of perfect combustion, the
maximum temperature would occur at the stoichiometric value,
ϕ � 1, where every molecule of diatomic oxygen would be

converted to water. However, equilibrium calculations took into
account disassociation effects, which simultaneously lowered the
maximum achievable temperature and caused that temperature to
occur at a richer ϕ [51]. The effect of dissociation became less severe
at higher pressures, which tended to favor the creation of slightly
larger molecules, and the reaction more closely approximated ideal
combustion. This is shown in Fig. 12 by both the increasing
maximum temperature and the decreasing optimal ϕ as pressure
increased. These optimization problems were solved by using
gradients computed with both the finite-difference method and the
adjoint method. The results were identical in terms of both overall
execution time and final objective value because, for this problem
with a single design variable, the adjoint method did not significantly
improve the speed or accuracy.

B. Equivalence Ratio and Pressure Optimization

These results establish that combustion becomes more efficient as
pressure increases, even when accounting for equilibrium chemistry
effects. Therefore, we expect that including pressure as a design
variable yields the same result without requiring the parameter study
for pressure. To verify this, a second series of optimizations is solved
with both ϕ and P as design variables, again seeking to maximize
combustion temperature. For this set of optimizations, the tolerance of
the chemical equilibriumnumerical solver is varied from 10−8 to10−12

to test how sensitive the optimization is to the accuracy of the solution.
Again, weuse twomethods to compute derivatives: the adjointmethod
and the forward finite-difference approximation. Both derivative
methods converge to ϕ � 1.021 and P � 1500 psi, which is
consistent with the previous optimization results shown in Fig. 12.
However, unlike the single-design-variable optimization, the adjoint
method clearly performs better than the finite-difference method. The
finite-difference approximation is at least twice as expensive as the
adjoint method, as shown in Fig. 13. One of the main challenges with
using finite-difference derivatives is the need to have tight tolerances
for the solvers, such as the one used to converge chemical equilibrium.
The data in Fig. 13 quantify this effect by comparing the performance
for different tolerances of chemical equilibrium solvers. The
optimizations that use adjoint-computed gradients require a nearly
constant computation time. However, the optimizations that use finite-
difference derivatives require between 5.5 and 110 s, depending on
solver tolerance and finite-difference step size. This wide range in
computational time results from inaccurate derivatives,which force the
optimizer to iterate more to converge to the required tolerance. The
worst performance occurs when using a step size of 10−6 with
tolerances between 10−11 and 10−10, but the times are reduced for step
sizes between 10−10 and 10−9. This erratic behavior is particularly
troubling and shows that finite-difference approximations are not
reliable. For both step sizes, with a solver tolerance of 10−8, the
computational times start to rise. Beyond that point, numerical noise

Fig. 11 Wall times required to compute the 5 × 2 Jacobian by using
analytic methods (direct and adjoint) and finite-difference approxima-
tions.

Fig. 12 Air–fuel equivalence ratio ϕ that maximizes the combustion
temperature T as a function of pressure P ranging from 15 to 1500 psi.

Fig. 13 Optimizationwall timeversus tolerance of chemical equilibrium
solver obtained by using analytic and finite-difference (FD) methods to

compute derivatives.
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prevents the optimizer from converging when using finite-difference
derivatives. This result highlights the value of the analytic approach.
Even for just two design variables, the adjoint derivatives enable both
faster and more stable optimization.

VII. Conclusions

The need to incorporate propulsion cycle modeling into the
multidisciplinary design optimization (MDO) of aircraft motivates
the development of a new propulsion cycle analysis model that can
efficiently compute derivatives. As a first step toward this new
capability, a new chemical equilibrium thermodynamics method is
developed that predicts the gas properties of air and fuel–air mixtures
for a wide range of fuels in a computationally efficient manner. The
major contribution of the new method is the addition of analytic
derivative computation (both direct and adjoint). To compute the
coupled derivatives, it is necessary to reformulate the mechanism for
handling trace species in the chemical equilibrium solver to create a
continuous analysis response.
The new method was implemented using the OpenMDAO

framework and its automatic coupled-derivatives capability to simplify
the development. This implementation was verified by comparing its
results against those obtained with the CEA code over a wide range of
temperatures, pressures, and equivalence ratios. The verification
results match closely, with a maximum discrepancy between the
proposed implementation and CEA of less than 0.1%. In addition to
validating the analysis, the accuracy of the analytic derivatives was
verified by comparing them to finite-difference approximations. The
analytic derivatives agreedwith the finite-difference approximations to
within a relative error of O�10−5�.
The value of the analytic derivatives approach is further

demonstrated via two optimizations forwhich the goal is tomaximize
the combustion temperature with respect to the pressure and
equivalence ratio. These optimizations compare the performance of
the adjoint derivatives with that of the finite-difference derivatives
and show that, even for an optimization with only two design
variables, adjoint derivatives significantly reduce the computational
cost and increase the numerical stability. The improvements in speed
and accuracy clearly demonstrate the value of the adjoint derivatives
for optimization applications and suggest that similar improvements
in performance for larger propulsion cycle analyses are possible.
Future work will consist in building a new propulsion analysis

method based on this thermodynamics method. Models for inlets,
compressors, combustors, turbines, andnozzleswill bedevelopedwith
adjoint derivatives, and then combined into full propulsion models.
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