
half-space Green’s function. The image reconstruction prob-
lem is first transformed into a nonlinear optimization prob-
lem, and then optimized by the modified fireworks
algorithm. Such a transformation from a nonlinear equation
to anther optimization problem will make the flowchart of
microwave imaging easy and straightforward. This transfor-
mation also makes the image reconstruction problem easy to
utilize modern optimization techniques. With the use of our
modified fireworks algorithm, the reconstructed target shape
is accurate and the convergence is fast. The fireworks algo-
rithm based procedures of this study can be applied to many
other nonlinear electromagnetic problems.
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Abstract
A butterfly-based hierarchical LU factorization scheme for
solving the PMCHWT equations for analyzing scattering
from homogenous dielectric objects is presented. The pro-
posed solver judiciously re-orders the discretized integral
operator and butterfly-compresses blocks in the operator
and its LU factors. The observed memory and CPU
complexities scale as O(N log2 N) and O(N1.5 log N),
respectively. The proposed solver is applied to the analy-
ses of scattering several large-scale dielectric objects.
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1 | INTRODUCTION

The analysis of electromagnetic scattering from large-scale
(piecewise) homogenous dielectric-magnetic objects often-
times is performed using fast multipole-accelerated Poggio-
Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral
equation (IE) solvers.1,2 Unfortunately, these iterative meth-
ods suffer from poor convergence when the object under
study supports high-Q resonances or is discretized via dense
meshes. They also become inefficient when applied to prob-
lems involving multiple excitations or requiring partial
updates of discretized IE operators, further termed interaction
matrices.

Fast direct solvers oftentimes outperform iterative ones
under these conditions. With few exceptions, present direct
solvers approximate off-diagonal blocks of interaction matri-
ces and their “inverses” (e.g., LU factors and inverse decom-
positions leveraging H-matrix, hierarchically semi-separable
matrix, and skeletonization techniques) using low-rank (LR)
products.3–9 These solvers exhibit quasi-linear CPU and
memory requirements when applied to electrically small3,10

and structured11–14 objects. However, when used for analyz-
ing scattering from electrically large and arbitrarily-shaped
objects, their CPU and memory requirements deteriorate to
O(Na logb N) (a5 2.0 � 3.0, b� 1) and O(Na log N)
(a5 1.3 � 2.0) , as off-diagonal blocks of interaction matri-
ces and their inverses are no longer LR compressible.

Recently, a new class of direct solvers leveraging
butterfly compression schemes15–18 was developed.19–21

Butterfly schemes represent judiciously selected submatri-
ces in off-diagonal blocks of interaction matrices (that are
themselves LR incompressible) and their inverses in terms
of LR products. The CPU and memory requirements of
butterfly-based direct solvers for analyzing scattering from
perfect electrically conducting (PEC) objects were esti-
mated and experimentally validated to be O(N1.5 log N)
and O(N log2 N), irrespective of the object’s shape and
size.21

This letter extends the above-referenced solver for
PEC scatterers to homogeneous dielectric-magnetic objects.
Specifically, it introduces a fast butterfly-enhanced hier-
archical LU scheme for solving the PMCHWT equations.
Butterfly compression is applied to blocks of a judiciously
reordered PMCHWT interaction matrices, effectively com-
bining four blocks in the original matrix into one that
models a single (admissible) source-observer pair. The
solver is applied to the analysis of scattering from a
sphere, a NASA almond, and a helicopter model involving
one million unknowns. Its CPU and memory requirements
are observed to scale as O(N1.5 log N) and O(N log2 N),
respectively.

2 | FORMULATION

2.1 | PMCHWT equations

Let C denote an arbitrarily-shaped closed surface with out-
ward pointing normal n̂. The exterior and interior of C
henceforth are termed regions 1 and 2. Region i5 1,2 has
constant permittivity and permeability Ei and li, respectively.
Time-harmonic electromagnetic fields {Einc(r), Hinc(r)} with
angular frequency x produced by sources in region 1
impinge on C. Total electromagnetic fields {E(r), H(r)} are
composed of incident and scattered fields, and relate to
equivalent electric and magnetic currents J(r)5 n̂ 3 H(r)
and M(r)5E(r) 3 n̂ on C that satisfy the PMCHWT
equations

T 1 h1J½ �ðrÞ1h2

h1
T 2 h1J½ �ðrÞ2K1 M½ �ðrÞ2K2 M½ �ðrÞ

52n̂3EincðrÞ
(1)

K1 h1J½ �ðrÞ1K2 h1J½ �ðrÞ1T 1 M½ �ðrÞh1

h2
T 2 M½ �ðrÞ

52h1n̂3HincðrÞ:
(2)

Here, hi5
ffiffiffiffiffiffiffiffiffiffi
li=Ei

p
is the wave impedance in region i, and

the operators T i and Ki are

T i F½ �ðrÞ5ikihin̂3
ð
Cdr0Fðr0Þ: I2

rr0

k2i

� �
giðr; r0Þ (3)
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Ki F½ �ðrÞ52n̂3P:V :
ð
Cdr0Fðr0Þ3r0giðr; r0Þ (4)

where I is the identity dyad, P. V. denotes Cauchy principal
value, and ki5x

ffiffiffiffiffiffiffiffiEili
p

, and gi (r,r0)5 exp(iki R)/(4pR) with
R 5 |r 2 r0| are the wavenumber and Green’s function for
region i, respectively.

To numerically solve Equations 1 and 2, currents h1J(r)
and M(r) are discretized using N0 Rao-Wilton-Glisson
(RWG) basis functions fn(r) as

22

h1JðrÞ5
XN0

n51

IJn f nðrÞ (5)

MðrÞ5
XN0

n51

IMn f nðrÞ: (6)

Here, IJn and IMn are electric and magnetic current expan-
sion coefficients associated with fn(r). Inserting Equations 5
and 6 into Equations 1 and 2 and testing the resulting equa-
tion with n̂3fn(r) yields the following N × N with N 5 2N0

linear system of equations:

T11
h2

h1
T2 2K12K2

K11K2 T11
h1

h2
T2

2
664

3
775 IJ

IM

" #
5

VE

VH

" #
: (7)

Here, the nth entries of IJ and IM are IJn and IMn , respec-
tively. The mth entries of VE and VH, m 5 1,. . .,Nʹ, are

VE
m52hn̂3 fmðrÞ; n̂3EincðrÞi (8)

VH
m52hn̂3 fmðrÞ;h1n̂3HincðrÞi (9)

where h�,�i denotes the standard inner product. The (m, n)th

elements of the interaction matrix follow from

Ti;mn5hn̂3 fmðrÞ; T i f n½ �ðrÞi (10)

Ki;mn5hn̂3 fmðrÞ;Ki f n½ �ðrÞi (11)

The CPU and memory costs for directly solving Equation
7 via Gaussian elimination or LU factorization scale as O
(N3) and O(N2), respectively. Below, a butterfly-based
hierarchical LU factorization scheme that reduces these
requirements to O(N1.5 log N) and O(N log2 N) is outlined.
The scheme consists of two steps: filling/compressing and
hierarchical LU factorization of the interaction matrix.

2.2 | Matrix filling/compression

The solver constructs a compressed representation of the
interaction matrix in Equation 7 via (i) recursive matrix
decomposition and (ii) butterfly compression of off-diagonal
blocks.

Step (i) recursively bisects C LM times until the finest-
level subscatterers contain O(1) basis functions. At level
1� l� LM, there are 2l level –l subscatterers, each containing
roughly Nʹ/2l basis functions. Two level –l subscatterers con-
stitute a far-field pair if their geometric centers are separated
by at least 1<v< 4 times the sum of their circumscribing
radii and their parent subscatterers do not form a far-field
pair; two level –LM subscatterers that do not form a far-field
pair constitute a near-field pair.

There are two unknowns (IJn and IMn ) and two tested
fields (VE

n and VH
n ) associated with each function fn(r). It

follows there are four blocks in Equation 7 associated with
each subscatterer pair. To efficiently compress all blocks
associated with one far-field pair, rows, and columns in the
interaction matrix in Equation 7 are permuted, resulting in
the following system of equations:

ZI5V: (12)

Here, I5ðIJ1 ; IM1 ; . . . :; IJN 0 ; IMN 0 ÞT , V5ðVE
1 ;V

M
1 ; . . . :;VE

N 0 ;

VM
N 0 ÞT and

Z5ST
T11

h2

h1
T2 2K12K2

K11K2 T11
h1

h2
T2

2
664

3
775S: (13)

And S denotes the permutation matrix that mixes the
components of IJ and IM into I. In what follows, Z is termed
the reordered interaction matrix. The recursive decomposi-
tion of C and unknown/field reordering procedures induce a
hierarchical partitioning of the interaction matrix Z that is
illustrated in Figure 1 for LM5 7 and C modeled by a 2D
curve.

Step (ii) classically computes blocks representing near-
field interactions via Equations 10 and 11 and butterfly-
compresses blocks representing far-field interactions. Con-
sider a m 3 n level-l far-field block ZO

s in Z with n � m �

FIGURE 1 Matrix format of butterfly-based direct solver [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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N/2l. Note that odd/even indices in set S point to elec-
tric/magnetic unknowns IJn /I

M
n ; similarly odd/even indices

in set O point to measured fields in VE
n /V

M
n . The butter-

fly scheme first divides ZO
s into judiciously-selected sub-

matrices Z
Od

j

Sdi
: for each 0 � d � L5LM2l; i51; . . . ; 2L2d ,

j5 1,. . .,2d, Sdi and Od
j are subsets corresponding to

level-l2L1 d and level-(l2d) subscatterers, respectively.
It can be shown that the (butterfly) rank r of each sub-
matrix Z

Od
j

Sdi
is approximately constant.23 Upon computing

LR approximations to all 2L (L1 1) submatrices, the
butterfly representation B of ZO

S consists of the product
of L 1 2 sparse matrices

B5PRL . . .R1Q (14)

where P and Q are block diagonal projection matrices,
and the interior matrices Rd, d 5 1,. . .,L are also block
diagonal after (predefined) row permutation:

P5diagðP1; . . . ;P2LÞ (15)

Q5diagðQ1; . . . ;Q2LÞ (16)

DdRd5diagðRd;1; . . . ;Rd;2L21Þ (17)

Here, Dd is the permutation matrix that yields Rd block
diagonal, and the diagonal blocks in Equations 15, 16, and
17 have approximate dimensions (m/2L)3r, r3(n/2L), and
r 3 2r respectively (Figure 1).

It can be shown that construction and storage of one
submatrix ZO

S requires only O(n log n) CPU and memory
resources, and that the overall memory and CPU require-
ments associated with the matrix filling phase scale as
O(N log2 N).

2.3 | Hierarchical LU factorization

The second phase of the proposed solver constructs a
butterfly-compressed hierarchical LU factorization of the
reordered interaction matrix. The crux of the factorization
process relies on the experimental observation that all blocks
in the LU factors dimension-wise matching far-field blocks
in Z are butterfly compressible with similar butterfly ranks.
The solver arrives at a compressed representation of the LU
factors of Z using randomized butterfly reconstruction meth-
ods to represent compositions of existing butterflies (addi-
tions, multiplications, and solutions of triangular systems) in
terms of new butterflies.

The factorization process starts by partitioning and LU
factorizing the impedance matrix Z as

Z5
Z11 Z12

Z21 Z22

" #
5

L11

L21 L22

" #
U11 U12

U22

" #
(18)

TABLE 1 The technical data for the setups and solutions of the largest scattering problems considered in this paper

Sphere Almond Helicopter

Max dimension 2 m (20 k) 25 cm (33 k) 22 m (36 k)

Unknown N 961 008 722 712 559 992

Memory: Z 493.1 GB 162.3 GB 111.5 GB

Memory: LU factor 853.5 GB 348.1 GB 383.1 GB

Matrix filling time 794 s 1.6 h 535 s

Factorization time 82.6 h 26.6 h 60 h

Solution time 136 s 37 s 65 s

FIGURE 2 (A)Memory costs for storing Z and its LU factorization
and (B) CPU times for the factorization phase using the proposed solver
[Color figure can be viewed at wileyonlinelibrary.com]
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The process proceeds as follows: (i) LU factorize Z11 5

L11U11; (ii) compute U125L21
11 Z12 via back substitution; (iii)

compute L215Z21U21
11 via back substitution; (iv) update

Ẑ225Z222L21U12; and (v) LU factorize Ẑ225L22U22. The
constituent blocks in these five procedures are further parti-
tioned until Z11, Z12, Z21, L21/U12, Ẑ22 in steps (i)–(v)
dimension-wise match those in Z. Consequently, the hier-
archical partitioning of the LU factors of Z matches exactly
that of Z (Figure 1).

During the recursive factorization process (i)–(v), there
are essentially three types of block operations that are not
recursive in nature:

B5B11B2 (19)

B5B1:A or B5A:B1 (20)

B5L̂
21
:B1 orB5B1:U21 (21)

Here, B1 and B2 are butterfly-compressed matrices, and
A, L̂ and Û are hierarchical partitioned full, lower triangu-
lar, and upper triangular matrices with butterfly-
compressed blocks. It is assumed and experimentally
observed that all B’s in Equations 19–21 that dimension-
wise match far-field blocks in Z can be butterfly-
compressed. To arrive at butterfly approximations for all
B’s, the solver uses a fast randomized scheme that relies on
the information gathered by (rapidly) multiplying B (i.e.
the right hand sides in Equations 19–21) and its transpose
to sparse random vectors.21

The memory requirement of the factorization step scales
as O(N log2 N) due to the observation that butterfly ranks in
Equations 19–21 are approximately constant; the computa-
tional cost of the factorization step scales as O(N1.5 log N)
because each randomized butterfly operation Equations 19–
21 requires O(n1.5 log n) CPU time. A detailed complexity
analysis can be found in Ref. [21].

Once factorized, the inverse of the impedance matrix can
be rapidly applied to excitation vectors using partitioned for-
ward/backward substitution.3

3 | NUMERICAL RESULTS

This section presents numerical results that demonstrate the
efficiency and accuracy of the proposed solver. Simulations
are performed on a cluster of eight-core 2.60 GHz Intel Xeon

FIGURE 4 Current density (in dB) induced on the almond computed by the proposed direct solver: (A) h1J and (B)M induced by a x-polarized and-
y-propagating incident electric field, and (C) hJ and (D)M induced by a z-polarized and-y-propagating incident electric field [Color figure can be viewed
at wileyonlinelibrary.com]

FIGURE 3 HH bistatic RCS of the sphere at 3 GHz computed at h5
908 andu5 [0,180]8 using the proposed solver and theMie series [Color
figure can be viewed at wileyonlinelibrary.com]
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E5–2670 processors with 4 GB memory per core. In all
examples, region 1 is vacuum, i.e. E15 E0 and l15 l0, the
permittivity and permeability of the scatterers are E25 3E0
and l25 l0, and v is set to 2.

3.1 | Sphere

First, the memory and CPU requirements of the proposed
solver are verified via its application to the analysis of scat-
tering from a 1 m-radius dielectric sphere. The frequency
f5x/(2p) and number of unknowns N are changed from
0.4 GHz and 12 072 to 3.2 GHz and 725 274, respectively.
The solver utilizes 16 processors. The memory required to
store Z and its LU factors, plotted in Figure 2A, scale as O(N
log2 N) . The CPU time required for factorizing Z, shown in
Figure 2B, clearly adheres to the predicted O(N1.5 log N)
scaling law.

Next, the accuracy of the proposed solver is demon-
strated via computation of the sphere’s bistatic radar cross
section (RCS) for f5 3 GHz and N5 961 008. Matrix Z is
hierarchically partitioned using 10 levels after setting the
finest-level block dimension to approximately 938. The
memory required for storing Z and its LU factors, and the
CPU time required for filling and factorizing Z are listed in
Table 1. The solver requires peak memory of 853 GB and
total CPU time of 82.6 hours on 64 processors. The HH-
polarized bistatic RCS in directions along u5 908 and
u5 [0,180]8 for a total of 10 000 directions are computed

and compared with the Mie series solutions in Figure 3.
Results agree very well.

3.2 | NASA almond

Next, the proposed solver is applied to the analysis of scatter-
ing from a NASA almond enclosed by a fictitious box of
dimensions 25.25 cm 3 9.76 cm 3 3.25 cm. The almond is
illuminated by a f5 40.0 GHz plane wave that is either x- or
z-polarized and propagating along y. Matrix Z with N 5

722 712 is partitioned using 9 levels by setting the finest-
level block dimension to approximately 1411. The solver
requires peak memory of 348 GB and total CPU time of 26.6
hours using 64 processors (see Table 1). The electric and
magnetic currents induced on the almond are plotted in
Figure 4.

3.3 | Helicopter

Finally, the proposed solver is applied to the analysis of scat-
tering from a “plastic helicopter” model residing in a ficti-
tious box of dimensions 18.60 m 3 21.96 m 3 7.15 m. The
helicopter is illuminated by a f5 0.5 GHz plane wave that is
either x- or z-polarized and propagating along the y direction.
The impedance matrix with N 5 559 992 is hierarchically
partitioned with 10 levels upon setting the size of the finest-
level block dimension to approximately 546. The memory
requirements for storing Z and its LU factorization, and the

FIGURE 5 Current density (in dB) induced on the helicopter computed by the proposed direct solver: (A) h1J and (B)M induced by a x-polarized
and-y-propagating incident electric field, and (C) hJ and (D)M induced by a z-polarized and-y-propagating incident electric field [Color figure can be
viewed at wileyonlinelibrary.com]
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CPU times for filling and factorizing Z as well as the back-
substitution phases are listed in Table 1. The solver requires
383.1 GB memory and 60 hours CPU time using 64 process-
ors. The electric and magnetic currents on the helicopter are
shown in Figure 5.

4 | CONCLUSIONS

A fast butterfly-based LU factorization scheme for solving
the PMCHWT equations pertinent to the analysis of scatter-
ing from electrically large homogenous dielectric-magnetic
objects was presented. The proposed solver reorders and
butterfly-compresses blocks in the interaction matrix and its
LU factors. Importantly, the observed CPU and memory
complexities of the resulting solver scale as O(N1.5 log N)
and O(N log2 N), respectively. Current efforts are aimed at
reducing the leading constants implicit in the above esti-
mates, to allow application of the solver to much bigger
objects.
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