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Abstract 

A butterfly-based hierarchical LU factorization scheme for 

solving the PMCHWT equations for analyzing scattering 

from homogenous dielectric objects is presented. The 

proposed solver judiciously re-orders the discretized inte-

gral operator and butterfly-compresses blocks in the oper-

ator and its LU factors. The observed memory and CPU 

complexities scale as 2( log )O N N  and 1.5( log )O N N , re-

spectively. The proposed solver is applied to the analyses of 

scattering several large-scale dielectric objects. 
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1  |  INTRODUCTION 

The analysis of electromagnetic scattering from large-scale 

(piecewise) homogenous dielectric-magnetic objects often-

times is performed using fast multipole-accelerated  

Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) 

integral equation (IE) solvers1,2. Unfortunately, these iterative 

methods suffer from poor convergence when the object under 

study supports high-Q resonances or is discretized via dense 

meshes. They also become inefficient when applied to prob-

lems involving multiple excitations or requiring partial up-

dates of discretized IE operators, further termed interaction 

matrices.    

Fast direct solvers oftentimes outperform iterative ones 

under these conditions.  With few exceptions, present direct 

solvers approximate off-diagonal blocks of interaction ma-

trices and their “inverses” (e.g., LU factors and inverse de-

compositions leveraging H-matrix, hierarchically 

semi-separable matrix, and skeletonization techniques) using 

low-rank (LR) products3,4,5,6,7,8,9.  These solvers exhibit qua-

si-linear CPU and memory requirements when applied to 

electrically small3,10 and structured11,12,13, 14 objects. However, 

when used for analyzing scattering from electrically large and 

arbitrarily-shaped objects, their CPU and memory 

requirements deteriorate to ( log )O N Nα β   

( 2.0 3.0α = ∼ , 1β ≥ ) and ( log )O N Nα  ( 1.3 2.0α = ∼ ), as 

off-diagonal blocks of interaction matrices and their inverses 

are no longer LR compressible.  

Recently, a new class of direct solvers leveraging butterfly 

compression schemes15,16,17,18 was developed19,20,21. Butterfly 

schemes represent judiciously selected submatrices in 

off-diagonal blocks of interaction matrices (that are them-

selves LR incompressible) and their inverses in terms of LR 

products. The CPU and memory requirements of butter-

fly-based direct solvers for analyzing scattering from perfect 

electrically conducting (PEC) objects were estimated and 

experimentally validated to be 
1.5( log )O N N  and 

2( log )O N N , irrespective of the object’s shape and size21.  

This letter extends the above-referenced solver for PEC 

scatterers to homogeneous dielectric-magnetic objects.  Spe-

cifically, it introduces a fast butterfly-enhanced hierarchical 

LU scheme for solving the PMCHWT equations. Butterfly 

compression is applied to blocks of a judiciously re-ordered 

PMCHWT interaction matrices, effectively combining four 

blocks in the original matrix into one that models a single 

(admissible) source-observer pair.  The solver is applied to 

the analysis of scattering from a sphere, a NASA almond, and 

a helicopter model involving one million unknowns.  Its CPU 

and memory requirements are observed to scale as 
1.5( log )O N N  and 2( log )O N N , respectively. 

2  |  FORMULATION 

2.1  |  PMCHWT Equations 

Let Γ  denote an arbitrarily-shaped closed surface with 

outward pointing normal n̂ . The exterior and interior of Γ  

henceforth are termed regions 1 and 2.  Region i = 1,2 has 

constant permittivity and permeability ε i
 and µi

, respec-

tively. Time-harmonic electromagnetic fields 
inc inc

{ ( ), ( )}E r H r  with angular frequency ω   produced by 

sources in region 1 impinge on Γ . Total electromagnetic 

fields { ( ), ( )}E r H r are composed of incident and scattered 

fields, and relate to equivalent electric and magnetic currents 

ˆ( ) ( )= ×J r n H r  and ˆ( ) ( )= ×M r E r n  on Γ  that satisfy the 

PMCHWT equations  
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1 1 2 1 1 2

1

inc

[ ]( ) [ ]( ) [ ]( ) [ ]( )

ˆ   ( )

ηη η
η

+ − −

= − ×

J r J r M r M r

n E r

T T K K
 (1) 

1

1 1 2 1 1 2

2

inc

1

[ ]( ) [ ]( ) [ ]( ) [ ]( )

ˆ   ( ).

ηη η
η

η

+ + +

= − ×

J r J r M r M r

n H r

K K T T

 (2) 

Here η µ ε=i i i
 is the wave impedance in region i , and 

the operators 
iT  and 

iK  are  

2

'
ˆ[ ]( ) ' ( ') ( , ')i i i i

i

ik d g
k

η
Γ

 ∇∇= × ⋅ − 
 

∫F r n r F r I r rT  (3) 

ˆ[ ]( ) . . ' ( ') ' ( , ')i iPV d g
Γ

= − × ×∇∫F r n r F r r rK  (4) 

where I  is the identity dyad,  P.V. denotes Cauchy principal 

value, and ω ε µ=i i ik  and ( , ') exp( ) / (4 )i ig ik R Rπ=r r  

with 'R = −r r  are the wavenumber and Green’s function 

for region i , respectively. 

To numerically solve (1) and (2), currents 
1 ( )η J r  and 

( )M r  are discretized using N ′  Rao-Wilton-Glisson (RWG) 

basis functions ( )nf r  as22 

 
1

1

( ) ( )
N

J

n n

n

Iη
′

=

=∑J r f r  (5) 

 
1

( ) ( ).
N

M

n n

n

I
′

=

=∑M r f r  (6) 

Here J

nI  and M

nI  are electric and magnetic current expansion 

coefficients associated with ( )nf r . Inserting (5)-(6) into 

(1)-(2) and testing the resulting equation with ˆ ( )n×n f r  

yields the following N N×  with 2N N ′=  linear system of 

equations: 

   

2

1

1

2

1 2 1 2

1 2 1 2

.
J E

M H

η
η

η
η

 − −    
  =   
      

T + T K K I V

I VK + K T + T
  (7) 

Here the nth entries of J
I  and M

I  are J

nI  and M

nI , respec-

tively. The mth entries of E
V  and H

V , 1,...,m N ′= , are  

 incˆ ˆ( ), ( )
E

m mV = − × ×n f r n E r  (8) 

 inc

1
ˆ ˆ( ), ( )

H

m mV η= − × ×n f r n H r  (9) 

where  ,⋅ ⋅  denotes the standard inner product. The (m,n)th 

elements of the interaction matrix follow from 

 
,

ˆ ( ), [ ]( )i mn m i nT = ×n f r f rT  (10) 

 
,

ˆ ( ), [ ]( )i mn m i nK = ×n f r f rK  (11) 

The CPU and memory costs for directly solving (7) via 

Gaussian elimination or LU factorization scale as 3( )O N  and 
2( )O N , respectively. Below, a butterfly-based hierarchical 

LU factorization scheme that reduces these requirements to 
1.5

( log )O N N  and 
2

( log )O N N  is outlined.  The scheme 

consists of two steps: filling/compressing and hierarchical 

LU factorization of the interaction matrix.     

2.2  |  Matrix Filling/Compression 

The solver constructs a compressed representation of the 

interaction matrix in (7) via (i) recursive matrix decomposi-

tion and (ii) butterfly compression of off-diagonal blocks.  

Step (i) recursively bisects Γ  ML  times until the fin-

est-level subscatterers contain (1)O  basis functions. At level 
M

1 ,l L≤ ≤  there are 2 l  level l−  subscatterers, each con-

taining roughly 2
l

N ′  basis functions. Two level l−  sub-

scatterers constitute a far-field pair if their geometric centers 

are separated by at least 1 4χ< <  times the sum of their 

circumscribing radii and their parent subscatterers do not 

form a far-field pair; two level ML−  subscatterers that do not 

form a far-field pair constitute a near-field pair.  

There are two unknowns ( J

nI  and M

nI ) and two tested 

fields ( E

nV  and H

nV ) associated with each function ( )nf r .  It 

follows there are four blocks in (7) associated with each 

subscatterer pair. To efficiently compress all blocks associ-

ated with one far-field pair, rows and columns in the interac-

tion matrix in (7) are permuted, resulting in the following 

system of equations: 

 .=ZI V   (12) 

Here 
1 1( , ,..., , )J M J M T

N NI I I I′ ′=I , 
1 1( , ,..., , )E M E M T

N NV V V V′ ′=V  

and 

   

2

1

1

2

1 2 1 2

1 2 1 2

.
T

η
η

η
η

 − −
 =
 
 

T + T K K
Z S S

K + K T + T
  (13) 

And S denotes the permutation matrix that mixes the com-

ponents of JI  and MI  into I . In what follows, Z  is termed 

the reordered interaction matrix. The recursive decomposi-
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FIGURE 1    Matrix format of butterfly-based direct solver. 
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tion of Γ and unknown/field reordering procedures induce a 

hierarchical partitioning of the interaction matrix Z  that is 

illustrated in Figure 1 for M 7L =  and Γ  modeled by a 2D 

curve. 

 Step (ii) classically computes blocks representing 

near-field interactions via (10)-(11) and butterfly-compresses 

blocks representing far-field interactions. Consider a m n×  

level- l  far-field block 
O

SZ  in Z  with / 2ln m N≈ ≈ . Note 

that odd/even indices in set S  point to electric/magnetic 

unknowns J

nI / M

nI ; similarly odd/even indices in set O  point  

to measured fields in E

nV / M

nV . The butterfly scheme first 

divides O

SZ  into judiciously-selected submatrices 
d
j

d
i

O

S
Z : for 

each 0 Md L L l≤ ≤ = − , 1,...,2L di −= , 1,...,2dj = , d

iS  and 
d

jO  are subsets corresponding to level- l L d− +  and level- 

( l d− ) subscatterers, respectively. It can be shown that the 

(butterfly) rank r  of each submatrix 
d
j

d
i

O

S
Z  is approximately 

constant23. Upon computing LR approximations to all 

2 ( 1)L L+  submatrices, the butterfly representation B  of 
O

S
Z  consists of the product of 2L +  sparse matrices 

   1L
B = PR RQ…  (14) 

where P  and Q  are block diagonal projection matrices, and 

the interior matrices 
dR , 1,...,d L=  are also block diagonal 

after (predefined) row permutation:  

 
1 2

diag( ,..., )L=P P P  (15) 

  1 2
diag( ,..., )L=Q Q Q  (16) 

 1,1 ,2
diag( ,..., ).Ld d d d −=D R R R  (17) 

Here, 
dD  is the  permutation matrix that yields 

dR  block 

diagonal, and the diagonal blocks in (15), (16) and (17) have 

approximate dimensions ( / 2 )Lm r× , ( / 2 )Lr n× , and 

2r r×  respectively (Figure 1).  

It can be shown that construction and storage of one sub-

matrix 
O

SZ  requires only ( log )O n n  CPU and memory re-

sources, and that the overall memory and CPU requirements 

associated with the matrix filling phase scale as 
2( log )O N N .  

2.3  |  Hierarchical LU Factorization  

The second phase of the proposed solver constructs a but-

terfly-compressed hierarchical LU factorization of the reor-

dered interaction matrix. The crux of the factorization process 

relies on the experimental observation that all blocks in the 

LU factors dimension-wise matching far-field blocks in Z  

are butterfly compressible with similar butterfly ranks. The 

solver arrives at a compressed representation of the LU fac-

tors of Z  using randomized butterfly reconstruction meth-

ods to represent compositions of existing butterflies (addi-

tions, multiplications, and solutions of triangular systems) in 

terms of new butterflies. 

The factorization process starts by partitioning and LU 

factorizing the impedance matrix Z  as  

 
11 12 11 11 12

21 22 21 22 22

     
= =     
     

Z Z L U U
Z

Z Z L L U
        (18) 

The process proceeds as follows: (i) LU factorize 

11 11 11=Z L U ; (ii) compute 1

12 11 12

−=U L Z  via back substitution; 

(iii) compute 1

21 21 11

−=L Z U  via back substitution; (iv) update 

22 22 21 12
ˆ = −Z Z L U ; and (v) LU factorize 22 22 22

ˆ =Z L U . The 

constituent blocks in these five procedures are further parti-

tioned until 11Z , 12Z , 21Z , 21L / 12U , 22Ẑ  in steps (i)-(v) 

dimension-wise match those in Z . Consequently, the hier-

archical partitioning of the LU factors of Z  matches exactly 

that of Z  (Figure 1).  

During the recursive factorization process (i)-(v), there are 

essentially three types of block operations that are not recur-

sive in nature: 

 
1 2= +B B B  (19) 

  
1 1or  = ⋅ = ⋅B B A  B A B  (20) 

 1 1

1 1
ˆ ˆor  .− −= ⋅ = ⋅B L B   B B U  (21) 

Here 1B  and 2B  are butterfly-compressed matrices, and A , 

L̂  and Û  are hierarchical partitioned full, lower triangular, 

and upper triangular matrices with butterfly-compressed 

blocks. It is assumed and experimentally observed that all 

B ’s in (19)-(21) that dimension-wise match far-field blocks 

in Z  can be butterfly-compressed.  To arrive at butterfly 

approximations for all B ’s, the solver uses a fast randomized 

scheme that relies on the information gathered by (rapidly) 

multiplying B  (i.e. the right hand sides in (19)-(21)) and its 

transpose to sparse random vectors21. 

 The memory requirement of the factorization step scales as 
2( log )O N N   due to the observation that butterfly ranks in 

(19)-(21) are approximately constant; the computational cost 

of the factorization step scales as 
1.5

( log )O N N  because 

each randomized butterfly operation (19)-(21) requires 
1.5( log )O n n  CPU time.  A detailed complexity analysis can 

be found in21.  

Once factorized, the inverse of the impedance matrix can 

be rapidly applied to excitation vectors using partitioned 

forward/backward substitution3.  

   

3  |  NUMERICAL RESULTS  

This section presents numerical results that demonstrate 

the efficiency and accuracy of the proposed solver. Simula-

tions are performed on a cluster of eight-core 2.60 GHz Intel 

Xeon E5-2670 processors with 4 GB memory per core. In all 

examples, region 1 is vacuum, i.e.  
1 0ε ε=  and 

1 0µ µ= , the 
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permittivity and permeability of the scatterers are 
2 03ε ε=  

and 
2 0µ µ= , and χ  is set to 2. 

3.1  |  Sphere 

First, the memory and CPU requirements of the proposed 

solver are verified via its application to the analysis of scat-

tering from a 1m-radius dielectric sphere. The frequency 

(2 )f ω π=   and number of unknowns N  are changed from 

0.4 GHz and 12,072 to 3.2 GHz and 725,274, respectively. 

The solver utilizes 16 processors. The memory required to 

store Z  and its LU factors, plotted in Figure 2(a), scale as 
2

( log )O N N . The CPU time required for factorizing Z ,  

shown in Figure 2(b), clearly adheres to the predicted 
1.5( log )O N N  scaling law. 

Next, the accuracy of the proposed solver is demonstrated 

via computation of the sphere’s bistatic radar cross section 

(RCS) for f = 3 GHz and 961,008N = . Matrix Z  is hier-

archically partitioned using 10 levels after setting the fin-

est-level block dimension to approximately 938. The memory 

required for storing Z and its LU factors, and the CPU time 

required for filling and factorizing Z  are listed in Table I. 

The solver requires peak memory of 853 GB and total CPU 

time of 82.6 h on 64 processors. The HH-polarized bistatic 

RCS in directions along 90θ = °  and [0,180]ϕ = °  for a total 

of 10,000 directions are computed and compared with the 

Mie series solutions in Figure 3. Results agree very well.   

3.2  |  NASA Almond  

Next, the proposed solver is applied to the analysis of 

scattering from a NASA almond enclosed by a fictitious box 

of dimensions 25.25 cm 9.76 cm 3.25 cm× × . The almond is 

illuminated by a  f = 40.0 GHz  plane wave that is either x- or 

z-polarized  and propagating along y. Matrix Z  with 

722,712N = is partitioned using 9 levels by setting the fin-

est-level block dimension to approximately 1411. The solver 

requires peak memory of 348 GB and total CPU time of 26.6 

h using 64 processors (see Table I). The electric and magnetic 

currents induced on the almond are plotted in Figure 4.   

3.3  |  Helicopter 

Finally, the proposed solver is applied to the analysis of 

scattering from a “plastic helicopter” model residing in a 

fictitious box of dimensions 18.60 m 21.96 m 7.15 m× × . 

The helicopter is illuminated by a  f = 0.5 GHz  plane wave 

that is either x- or z-polarized  and propagating along the y 

direction.  The impedance matrix with 559,992N =  is hier-

archically partitioned with 10 levels upon setting the size of 

the finest-level block dimension to approximately 546. The 
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FIGURE 2     (a) Memory costs for storing Z  and its LU factorization and 

(b) CPU times for the factorization phase using the proposed solver. 
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FIGURE 3    HH bistatic RCS of the sphere at 3 GHz computed at 90θ = °  

and [0,180]ϕ = °  using the proposed solver and the Mie series. 

 
TABLE 1   The technical data for the setups and solutions of the largest 

scattering problems considered in this paper.  

  

 Sphere Almond Helicopter 

Max dimension 2 m (20 λ ) 25 cm (33 λ ) 22 m (36 λ ) 

Unknown N  961,008 722,712 559,992 

Memory: Z  493.1 GB 162.3 GB 111.5 GB 

Memory: LU factor 853.5 GB 348.1 GB 383.1 GB 

Matrix filling time 794 s 1.6 h 535 s 

Factorization time 82.6 h 26.6 h 60 h 

Solution time  136 s 37 s 65 s 
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memory requirements for storing Z and its LU factorization, 

and the CPU times for filling and factorizing Z  as well as 

the backsubstitution phases are listed in Table I. The solver 

requires 383.1 GB memory and 60 h CPU time using 64 

processors. The electric and magnetic currents on the heli-

copter are shown in Figure 5.   

4  |  CONCLUSIONS  

A fast butterfly-based LU factorization scheme for solving 

the PMCHWT equations pertinent to the analysis of scatter-

ing from electrically large homogenous dielectric-magnetic 

objects was presented. The proposed solver re-orders and 

butterfly-compresses blocks in the interaction matrix and its 

LU factors. Importantly, the observed CPU and memory 

complexities of the resulting solver scale as 1.5( log )O N N  and 
2( log )O N N , respectively.  Current efforts are aimed at re-

ducing the leading constants implicit in the above estimates, 

to allow application of the solver to much bigger objects.  
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FIGURE 5    Current density (in dB) induced on the almond computed by 

the proposed direct solver: (a) 
1η J  and (b) M  induced by a x-polarized and 

-y-propagating incident electric field, and (c) 
1

η J  and (d) M  induced by a 

z-polarized and -y-propagating incident electric field.    

FIGURE 6    Current density (in dB) induced on the helicopter computed by 

the proposed direct solver: (a) 
1

η J  and (b) M  induced by a x-polarized and 

-y-propagating incident electric field, and (c) 
1

η J  and (d) M  induced by a 

z-polarized and -y-propagating incident electric field.    
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