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What is already known about this subject? 

• Circulating metabolite patterns may serve as early indicators of disease risk. 

• In adults, a branched chain amino acid (BCAA) metabolite pattern is detectable over a 

decade prior to insulin resistance and incident type 2 diabetes. 

• The majority of published studies in children have been cross-sectional, thereby precluding 

inference on temporality between metabolite patterns and conventional metabolic risk 

factors. 

What does this study add? 

• The BCAA and androgen hormone metabolite patterns, both of which were previously 

cross-sectionally associated with excess adiposity and metabolic risk in the study 

population, were related to change in several metabolic biomarkers during ~5 years of 

follow-up (baseline age 6-10 years) in a sex-specific manner. 

• The BCAA pattern was related to a decrease in fasting glucose in boys, and an increase in 

triglycerides in girls.  

• The androgen hormone pattern was associated with a decrease in leptin and an increase in 

C-reactive protein in girls.  
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ABSTRACT  

Objective: To examine associations of two obesity-related metabolite patterns with changes in 

metabolic biomarkers during early adolescence. 

Methods: Using multivariable linear regression, we examined associations of a branched chain 

amino acid (BCAA) and androgen hormone patterns with changes in glycemia (fasting glucose, 

insulin, HOMA-IR), adipokines (leptin, adiponectin), inflammation (C-reactive protein, 

interleukin-6), lipid profile, and blood pressure during ~5 years follow-up among 213 children 

aged 6-10 years at baseline. We adjusted for baseline age, pubertal status, biomarker level, and 

BMI percentile; and age at follow-up. We also tested for interactions with sex and baseline BMI 

percentile. 

Results: Median age at baseline was 7.7 years; 48.8% were boys. In adjusted models, each 1 unit 

of the BCAA pattern corresponded with a 4.82 (95% CI: 0.92, 8.71) mg/dL decrease in fasting 

glucose in boys. In girls, the BCAA pattern was associated with an increase in triglycerides (4.17 

[0.03, 8.32] mg/dL). The androgen pattern was associated with decreased leptin (-2.35 [-4.34,      

-0.35] ng/dL) and increased CRP (0.28 [0.03, 0.54] mg/dL) in girls. These relationships did not 

differ by baseline BMI percentile. 

Conclusions: The BCAA and androgen hormone metabolite patterns are related to changes in 

metabolic parameters in a sex-specific manner during early adolescence.   
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INTRODUCTION 

In the last two decades, prevalence of type 2 diabetes increased by almost a third among 

children and adolescents in the U.S. (1). These trends are alarming, as youth with chronic 

conditions present treatment challenges and will enter adulthood with several years of disease 

duration, and greater risk of early complications (2). Despite population-based efforts to reduce 

risk of metabolic disease via obesity prevention and lifestyle modifications, the need to pair this 

strategy with targeted approaches for high-risk individuals and subgroups was recently 

acknowledged by the Institute of Medicine (3). 

Profiling of circulating metabolites (“metabolomics”) shows promise as one route to 

identifying specific targets for primary prevention. Studies in adults have unveiled distinct 

differences in plasma metabolite composition of persons who are obese vs. lean (4), some of 

which precede development of insulin resistance and type 2 diabetes by over a decade, 

independently of weight status (5). These findings suggest that metabolite patterns have higher 

discriminative capacity than weight or traditional biomarkers to identify persons at risk of type 2 

diabetes earlier on the disease continuum, and that some metabolite patterns may signal risk even 

among individuals who are not overweight/obese.  

Less is known of these relationships earlier in the life course. Despite a handful of recent 

analyses exploring cross-sectional associations of circulating metabolites with conventional 

biomarkers of glycemia in children and adolescents (6-9), only three studies interrogated this 

relationship prospectively: one study followed 17 adolescents in Boston over the course of 18 

months (9), another was a two-year study of 102 Korean boys (10), and a third followed 16 non-

diabetic adolescents from an obesity clinic for 2.3 years (11). The scant literature in youth is 
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problematic given the importance of understanding determinants and etiology of worsening 

metabolic health during early-life for effective prevention.  

Here, we used data from a cohort of children aged 6-10 years at baseline to attain a better 

understanding of biological pathways underlying worsening metabolic health during 

adolescence.  We investigated associations of two previously-characterized metabolite patterns 

related to metabolic risk during mid-childhood (a branched chain amino acid [BCAA] and an 

androgen steroid hormone metabolite pattern (8)) with change in several metabolic biomarkers 

during 5 years of follow-up.  We also aimed to identify and characterize differences in the 

relationships of interest by baseline weight and pubertal status.  
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METHODS 

Study population 

This study includes participants of Project Viva, a pre-birth cohort recruited from a multi-

specialty group practice in Massachusetts (Atrius Harvard Vanguard Medical Associates). 

Details on study design and recruitment are reported elsewhere (12). Children in this analysis are 

a subset of participants in a pilot study that characterized serum metabolites associated with 

obesity and metabolic risk during mid-childhood (age 6-10 years) (8).  Of the 262 participants in 

the pilot study, we considered 253 who attended the early teen research visit (age 11-15 years) 

and provided fasting blood. The final analytic sample included 213 children with data on change 

in any of the metabolic biomarkers of interest. The Institutional Review Board of Harvard 

Pilgrim Health Care approved all study protocols. All mothers provided written informed 

consent and children provided verbal assent.  

Blood collection 

At the mid-childhood (baseline) and early teen (follow-up) research visits, trained 

research assistants (RAs) collected an 8-hour fasting blood sample from the antecubital vein. All 

samples were refrigerated immediately, processed within 24 hours, and stored at -80oC until time 

of analysis.   

Exposure: plasma metabolites  

We carried out untargeted metabolomic profiling in fasting plasma collected during mid-

childhood via a multi-platform mass spectroscopy (MS)-based technique (13-15). Details 

regarding sample preparation and analysis for this population have been published (13-15) and 

are in the Supplemental Material.  
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For statistical analysis, we examined metabolites in the form of a principal component 

analysis (PCA) factor score, henceforth referred to as the branched chain amino acid (BCAA) 

and androgen pattern, both of which were cross-sectionally associated with excess adiposity and 

metabolic risk in this population during mid-childhood (8). We also examined key metabolites 

within each metabolite pattern (i.e., those with a factor loading >|0.5|) as a z-score, centered at 

the median, and scaled to 1 mean absolute deviation (8). 

Outcome: change in metabolic biomarkers during follow-up 

At both the mid-childhood and early teen visits, we used fasting blood to measure plasma 

glucose, insulin, leptin, adiponectin, C-reactive protein (CRP), and interleukin-6 (IL-6); and 

serum total cholesterol, triglycerides, and high-density lipoprotein (HDL). We calculated low-

density lipoprotein (LDL) using the following equation: LDL = total cholesterol–HDL–

(triglycerides/5), and estimated insulin resistance using the homeostasis model assessment for 

insulin resistance [HOMA-IR= (glucose mg/dL x insulin µIU/mL)/405]. Details on assays for 

laboratory analyses are in the Supplemental Material. We measured systolic (SBP) and 

diastolic blood pressure (SBP) using biannually-calibrated automated oscillometric monitors 

(Dinamap Pro100, Tampa, Florida). RAs recorded BP on the child’s upper arm up to five times 

at one-minute intervals. We used the average of the five measurements for the statistical analysis.   

In addition to examining individual biomarkers, we derived a metabolic syndrome z-

score (MetS z-score) calculated the mean of five age- and sex-specific internal z-scores for waist 

circumference, inverted HDL, natural log (ln)-transformed triglycerides (due to non-normal 

distribution of the original variable), ln-transformed HOMA-IR, and systolic blood pressure. 

This score is modified version proposed by Viitasalo et al. (16). Specifically, we used HOMA-IR 

in lieu of fasting glucose and insulin, as this index has been shown to be a better assessment of 
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glycemic homeostasis in children than glucose or insulin alone (17-19); included HDL and 

triglycerides individually rather than as a ratio given evidence of limited utility of this ratio in 

children (20); and used SBP instead of the average of SBP and DBP since SBP is more reliably 

measured in children and is a stronger predictor of future health (21).  

In the analysis, we focused on change in each biomarker and MetS z-score between the 

two research visits.  

Covariates 

Assessment of covariates, including perinatal and sociodemographic characteristics, and 

child anthropometry and pubertal status are in the Supplemental Material.  

Data analysis 

Step 1. We examined bivariate associations of the BCAA and androgen metabolite pattern factor 

scores (see Perng et al. (8) for details on factor creation) with background and sociodemographic 

characteristics. This step, in conjunction with our knowledge of determinants of metabolic 

health, informed covariate selection. 

Step 2. We investigated relations of the two metabolite patterns, separately, with change in each 

of the biomarkers using multivariable linear regression models that accounted for the child’s age, 

pubertal status, and the biomarker of interest at baseline; and age at follow-up (Model 1). We 

also further accounted for BMI percentile at baseline (Model 2), since weight status is a 

determinant of future metabolic risk (22). Because tests for interactions indicated effect 

modification by sex (P-interaction<0.05), we ran all models separately for boys and girls. We 

used complete case analysis, which resulted in a decreasing sample size with the addition of 
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covariates. To assess for potential bias due to missing data, we examined background 

characteristics across each of the subsamples (Table S1).  

Step 3. To gain insight into biochemical pathways underlying associations of the BCAA and 

androgen patterns with the conventional biomarkers, we further investigated relations of 

individual metabolites with a factor loading >|0.50| in each of the patterns with change in 

biomarkers that were predicted by this pattern in Step 2. In other words, if we detected a 

significant association (P<0.05) between a metabolite pattern and change in a biomarker, we 

further explored associations of individual metabolites within the metabolite pattern with this 

biomarker.  

In all models, we tested for an interaction between the metabolite pattern and baseline 

BMI percentile (continuous) and pubertal status (ordinal summary score). We observed evidence 

of interactions between the BCAA pattern and pubertal status for one of the biomarkers in boys, 

so we evaluated puberty-stratified associations for this biomarker (pre-pubertal vs. pubertal). We 

also carried out sensitivity analyses to assess the impact of further adjustment for covariates that 

were associated with the metabolite patterns in bivariate analysis.  

Because the relationships of interest involve correlated exposures (metabolites on related 

pathways) and outcomes that cluster and track over time (metabolic biomarkers), we did not 

account for multiple comparisons. Instead, we focus on the magnitude and direction of 

associations rather than statistical significance when interpreting results. Additionally, although 

tempo of maturation during follow-up could impact findings, we controlled only for pubertal 

status at baseline and interpreted the estimates as the total effect of the metabolite patterns on 

metabolic risk during follow-up given that change in pubertal status could be on the causal 

pathway, and thus, adjusting for it could introduce bias (23).  
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All models met standard assumptions for multivariable linear regression (linearity of 

exposure/outcome relationship, homoscedasticity of error, normality of residuals). All analyses 

were performed using SAS 9.4 (Cary, NC).  
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RESULTS 

 Median age of the participants at the baseline mid-childhood visit was 7.7 years (range: 

6.7 to 10.6); 48.8% (n=104) were boys. Descriptive statistics on the factor scores, age, BMI, and 

the metabolic biomarkers at the mid-childhood and early teen visits are presented in Table 1.  

 Table 2 shows bivariate associations of the BCAA and androgen factor scores with 

perinatal and sociodemographic characteristics. Children from households with an annual 

income <$70K vs. >$70K had a higher BCAA score (β=0.43, 95% CI: 0.01, 0.85). As we have 

previously shown (8), children of obese women had a higher BCAA score than those whose 

mothers were overweight (β=0.64, 95% CI: 0.06, 1.22) or normal weight (β=0.74, 95% CI: 0.23, 

1.24) prior to pregnancy. Children who were obese at baseline exhibited a higher BCAA score 

than their overweight (β=0.93, 95% CI: 0.29, 1.56) and normal weight (β=1.14, 95% CI: 0.72, 

1.55) counterparts. We observed similar associations for the androgen factor score (Table 2). 

Additionally, children classified as pubertal had a higher score for this metabolite pattern than 

pre-pubertal participants (β=0.60, 95% CI: 0.14, 1.06). 

 Table 3 shows associations of the BCAA pattern at baseline (mid-childhood) with 

changes in the metabolic biomarkers during follow-up (difference between the early teen and 

mid-childhood values). A higher score for the BCAA pattern was associated with a decrease in 

fasting glucose in boys, even after adjusting for age, pubertal status, and fasting glucose at 

baseline; and age at follow-up. Specifically, each 1 unit increment in the BCAA score 

corresponded with a 4.70 (95% CI: 0.93, 8.47) mg/dL decrease in fasting glucose (Model 1). 

This association did not materially change after accounting for baseline BMI percentile (Model 

2: β=-4.97, 95% CI: -8.83, -1.11 mg/dL per 1 unit BCAA score), suggesting that the BCAA 

pattern predicts change in fasting glucose even after accounting for glucose levels and adiposity 
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at baseline. In girls, each 1 unit increment in the BCAA score was associated with a 4.38 (95% 

CI: 0.40, 8.37) mg/dL increase in serum triglycerides levels in Model 1. Adjustment for baseline 

BMI percentile in Model 2 attenuated the estimate by <10% (β= 3.99, 95% CI: -0.13, 8.11 

mg/dL per 1 unit BCAA score). 

 We did not observe any associations of the androgen pattern with change in the metabolic 

biomarkers among boys (Table 4). In girls, a higher score for the androgen pattern corresponded 

with a decrease in leptin (β=-2.39, 95% CI: 4.76, -0.02 ng/dL per 1 unit factor score in Model 1), 

and an increase in CRP (β=0.28, 95% CI: 0.03, 0.54 mg/dL per 1 unit factor score in Model 1). 

These estimates were essentially unchanged after adjustment for baseline BMI percentile in 

Model 2. 

 To obtain a more granular understanding of specific compounds driving the associations 

detected with respect to the factor scores, we further examined relations of key metabolites 

within the BCAA pattern with change in fasting glucose among boys, and with serum 

triglycerides among girls, based on results shown in Table 3 (Table 5),  Among boys, all 

metabolites were associated with a decrease in fasting glucose in boys, with the strongest 

association for propionylcarnitine (β= -4.38, 95% CI: -7.79, -0.97 mg/dL per 1 z-score) and 

isobutyrylcarnitine (β=-3.54, 95% CI: -6.18, -0.90 mg/dL per 1 z-score). Among girls, the 

majority of compounds exhibited a positive relationship with change in triglycerides, with the 

strongest association detected for kynurenine (β=3.65, 95% CI: 0.10, 7.21 mg/dL per 1 z-score) 

and gamma-glutamylleucine (β=4.44, 95% CI: 1.10, 7.79 mg/dL per 1 z-score). 

 When testing for effect modification by pubertal status, we found evidence of an 

interaction with respect to SBP in boys, so we ran these models within strata of baseline pubertal 

status (Table 6). The BCAA pattern was inversely related to change in SBP in pre-pubertal boys 
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(n=79; Model 1: β=-0.86, 95% CI: -2.06, 0.33 mmHg per 1 unit BCAA score), but was 

positively associated with change in SBP in pubertal boys (n=19; Model 1: β=1.67, 95% CI:        

-0.82, 4.16 mmHg per 1 unit BCAA score). Further adjustment for baseline BMI percentile did 

not change these findings (pre-pubertal boys: β=-0.88, 95% CI: -2.09, 0.33; pubertal boys: 

β=2.48, 95% CI: -0.45, 5.40 mmHg per 1 unit BCAA score). We examined these relationships 

with individual metabolites, and identified associations with respect to tryptophan (β=2.59, 95% 

CI: 0.03, 5.15 mmHg per 1 z-score of the metabolite) and kynurenine (β=2.53, 95% CI: 0.51, 

4.55 mmHg per 1 metabolite z-score; Table 6). 

 Table 7 shows associations of metabolites in the androgen pattern with the change in 

leptin and CRP in girls (outcomes selected based on findings from Table 4). All individual 

metabolites were consistently inversely associated with change in leptin, with the strongest 

associations for 4-androsten-3beta,17beta-diol disulfate 2 (β=-1.78, 95% CI: -3.35, -0.20 ng/dL 

per 1 z-score) and pregn steroid monosulfate (β=-2.50, 95% CI: -4.87, -0.13 ng/dL per 1 z-

score). The majority of metabolites were positively associated with change in CRP, but none of 

the estimates were statistically significant.  

 None of the relationships assessed differed by baseline BMI percentile. In sensitivity 

analyses, we evaluated the impact of adjustment for background characteristics associated with 

the metabolite patterns in bivariate analysis – namely, pre-pregnancy BMI, and annual household 

income, and child’s race/ethnicity. Inclusion of these variables did not change the results, so we 

did not include them for the sake of parsimony. An assessment of background characteristics of 

each of the subsamples analyzed in multivariable analyses yielded no notable differences, thus 

indicating that risk of bias due to missing data is likely low (Table S1).  

Page 13 of 41

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t

14 

 

DISCUSSION 

 In this prospective study of 253 children 6-10 years of age at baseline, we examined 

associations of two previously-derived metabolite patterns – a branched chain amino acid 

(BCAA) metabolite pattern and an androgen hormone pattern (8) – with change in conventional 

metabolic biomarkers during ~5 years of follow-up. Counter to findings from adults (5, 24), the 

BCAA pattern was not associated with worsening metabolic health in this cohort of adolescents, 

as the majority of the relationships we examined were null. However, we did find an inverse 

association of the BCAA pattern with change in fasting glucose in boys, and a direct relation of 

this pattern with change in serum triglycerides in girls. The androgen hormone pattern, which, to 

our knowledge has not been evaluated in relation to metabolic risk in other populations, was 

related to decreased leptin and increased CRP during follow-up in girls. 

BCAA metabolite pattern 

During mid-childhood, the BCAA pattern was associated with obesity, as well as higher 

fasting glucose, insulin, HOMA-IR, leptin, CRP, and IL-6. When we examined associations with 

change in the biomarkers during follow-up, the majority of estimates were null, with the 

exceptions of an inverse relationship between the BCAA pattern and fasting glucose in boys, and 

a direct association with serum triglycerides in girls.  

BCAA pattern and change in fasting glucose in boys 

This finding was counter to what we expected based on findings in adults (5, 24), as well 

as two prospective studies in adolescents that did not account for glycemia at baseline (9, 10). 

However, our findings align with results of two cross-sectional analyses in similarly-aged youth. 

In a study of 139 adolescents ~13 years of age, Michaliszyn et al. found that several compounds 
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in the BCAA pattern, including leucine, isoleucine, valine, phenylalanine, and 

propionylcarnitine, were associated with higher insulin sensitivity (7). In the same population, 

Mihalik et al. unveiled evidence that these metabolites were also associated with enhanced fatty 

acid oxidation (6). The investigators hypothesized that the discrepancy in direction of association 

in adults vs. adolescents may be due to an adaptive increase in mitochondrial function (and 

accordingly, an improvement in glycemia) during early life that eventually wanes with age and 

continued metabolic dysregulation (25). Another explanation for our finding relates to the 

nutrient-signaling properties of BCAAs. For example, leucine activates the mammalian target of 

rapamycin (mTOR), a nutrient sensor involved in the neurocircuitry of energy balance, food 

intake, and glycemic regulation (26), that has been shown to improve glucose tolerance in mice 

(27). The fact that we observed positive, albeit non-significant, associations with fasting insulin 

and HOMA-IR supports this mechanism.  

Of note, a recent study of 16 children 8-13 years of age who were obese but non-diabetic 

at baseline found that although circulating BCAAs were associated with worse glycemia 

throughout the course of an oral glucose tolerance test (OGTT) at baseline, these metabolites 

were not associated with glucose control or indices of insulin secretion/sensitivity over 2.3 years 

of follow-up (11).  These findings are generally in line with those of the present analysis, given 

our predominantly null results with respect to other glycemia biomarkers (fasting insulin, 

HOMA-IR). 

 When we examined associations of individual metabolites within the BCAA pattern with 

glucose during follow-up in boys, we found that propionylcarnitine and isobutyrylcarnitine were 

the strongest determinants of decreasing glucose during follow-up. Both compounds are 

downstream intermediates of BCAA catabolism, and the latter of which (isobutyrylcarnitine) is 
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also product of acyl coenzyme A (acyl-CoA) beta oxidation – a process that feeds into the citric 

acid cycle for energy production (28). Although we were not able to locate any published studies 

on isobutyrylcarnitine in relation to glycemia, a pilot trial of 24 patients who were obese and had 

type 2 diabetes found that intravenous administration of propionylcarnitine improved glycemic 

control (29). Proposed mechanisms include propionylcarnitine’s involvement in muscle 

metabolism, endothelial function, and carbohydrate oxidation (30, 31). 

 The BCAA pattern was also associated with increasing SBP among pubertal, but not pre-

pubertal boys. Specific metabolites driving this relationship were tryptophan and its downstream 

metabolite, kynurenine. These results support findings of Wolf et al., who demonstrated that 

intraperitoneal tryptophan administration reduced blood pressure in hypertensive rodents, but 

increased blood pressure in normotensive animals (32). The investigators speculated that the 

duality of tryptophan’s effect on blood pressure is complex and regulated by numerous 

physiological processes involved in control of blood pressure, like brain monoamines and 

catecholamines (32). In the present study population, the majority of children were normotensive 

at baseline (98.8%), therefore the positive relationship between tryptophan and SBP corroborates 

results from rodent models. The fact that this relationship was only observed among pubertal 

boys may reflect the sex-specific differences in blood pressure change during puberty (33).  

BCAA pattern and change in serum triglycerides in girls 

 In girls, a higher score for the BCAA pattern was associated with increased serum 

triglycerides. When we examined component metabolites of the BCAA pattern, we detected the 

strongest relations with respect to kynurenine and gamma-glutamylleucine.  
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Although there have not been any publications specifically relating kynurenine to 

triglycerides, growing evidence suggests that deregulation of the tryptophan-to-kynurenine 

pathway is involved in atherosclerotic cardiovascular disease, possibly through perturbations in 

immune pathways (34). Despite an equally scanty literature on gamma-glutamylleucine in 

relation to lipid profile, the positive association between this compound and triglycerides may 

reflect defective hepatic lipid metabolism, as gamma-glutamylleucine has been associated with 

non-alcoholic fatty liver disease – a condition characterized by accumulation of triglycerides in 

the liver, and elevated circulating triglycerides (35, 36). Because blood lipid levels exhibit high 

within-person variability until after puberty (37), whether or not these compounds serve as early 

indicators of dyslipidemia deserves further investigation beyond adolescence.  

 

Androgen hormone metabolite pattern 

 During mid-childhood, the androgen hormone metabolite pattern, which we speculated 

was an indicator of pubarchal/pubertal advancement, was associated with higher HOMA-IR, and 

marginally higher serum triglycerides, leptin, and IL-6, and lower adiponectin (8). When we 

examined these relationships prospectively, we found that this metabolite pattern corresponded 

with a decrease in leptin and an increase in CRP in girls. The androgen hormone pattern was not 

associated with change in any of the biomarkers in boys. 

Androgen pattern and change in leptin in girls 

A higher score for this pattern at baseline corresponded with a decrease in leptin in girls, 

which was unexpected given that this metabolite pattern is associated with more advanced 

pubarchal/pubertal status at baseline (8) and the fact that leptin levels increase throughout 
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adolescence in females (38, 39). While this finding could be due to variability in tempo of 

maturation during follow-up (a variable that we did not control for because it could be on the 

causal pathway), additional studies are warranted to confirm our results.  When we examined 

associations with specific metabolites, we detected the strongest relations with the testosterone 

precursor 4-androsten-3beta,17beta-diol disulfate 1, and pregn steroid monosulfate which is an 

intermediate in the steroidogenesis of androgen hormones from cholesterol.   

Androgen pattern and change in CRP in girls 

The androgen hormone pattern, but not the individual metabolites, was also related to 

increasing CRP in girls. This finding aligns with published data on the precipitous increase in 

CRP in females, but not males, during adolescence – particularly during the later stages of 

puberty (40). Future investigations are warranted to ascertain whether this relationship persists 

beyond puberty. 

Strengths & weaknesses  

This study has several weaknesses. First, assessment of plasma metabolites at a single 

point in time precludes our ability to infer on upregulation vs. downregulation of specific 

pathways. Second, we did not implement challenge testing (e.g., OGTT), nor did we measure 

glycated hemoglobin, and thus were not able to evaluate the entire range of glycemia. Third, use 

of complete case analysis is subject to missing data bias; however, a comparison of background 

characteristics among each of the subsamples provided no indication of differences in 

background characteristics of participants within the subsamples. Fourth, there may be residual 

confounding from variation in the tempo of sexual maturation during follow-up. Finally, as is the 

case with most analyses of high-dimensional ‘omics data, we cannot rule out the possibility of 
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false positive associations, although we aimed to examine and compare associations (many of 

which are on correlated biochemical pathways) in order to gain insight on etiology, rather than to 

predict outcomes.  

Strengths of this investigation include our ability to examine the relationship of two 

metabolite patterns with prospective change in multiple metabolic biomarkers in a cohort of 

multi-ethnic youth. Each of these elements are key improvements upon published studies, which 

have mostly been cross-sectional (6-9), of smaller sample size and shorter duration of follow-up 

(n=17 for 18 months (9); n=102 for 2 years (10)), and conducted in rather specific populations 

(e.g., Korean boys (10)).  

Conclusions 

We detected sex-specific associations of the BCAA and androgen hormone metabolite 

patterns with change in conventional metabolic biomarkers during ~5 years of follow-up in this 

population of youth aged 6-10 years at baseline. Specifically, the BCAA pattern corresponded 

with decreasing fasting glucose in boys, and increasing serum triglycerides in girls. However, 

given that the majority of associations were null (which may be an artefact of small sample 

sizes), the BCAA metabolite pattern does not appear to be an indicator of worsening metabolic 

health during early adolescence. The androgen hormone pattern – which, to our knowledge, has 

not been reported in other populations – was associated with a decrease in leptin and an increase 

in CRP in girls; these finding are likely related to timing of sexual maturation.  

Given that puberty is a time of rapid physiological change, future studies are required to 

evaluate these relationships beyond the adolescence, and to interrogate the capacity of the these 

metabolite patterns to predict metabolic disease progression beyond that of conventional 
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biomarkers. Nevertheless, given that many metabolic risk factors, including blood pressure (41, 

42), lipid profile (42, 43), and glycemia (42), track from late childhood/early adolescence into 

adulthood, a better understanding of early biomarkers of metabolic risk is a crucial step towards 

identification of targets for primary prevention.   
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Table 1 Descriptive statistics (mean ± SD) for the branched chain amino acid (BCAA) factor score, age, and metabolic biomarkers of 104 boys and 109 
girls in the Project Viva cohort during mid-childhood (baseline) and the early teens (follow-up). 

N 
Boys (n = 104) 

P
a
 N 

Girls  (n = 109) 
P

a
 

Baseline Follow-up Baseline Follow-up 

Factor 4 (BCAA pattern) -0.02 ± 1.51 0.02 ± 1.51 

Factor 9 (Androgen pattern) -0.02 ± 1.56 -0.02 ± 1.56 

Age (years) 104 7.9 ± 0.8 13.0 ± 0.7 0.0007 109 7.9 ± 0.8 13.1 ± 0.7 

BMI (kg/m2) 104 17.8 ± 3.3 21.3 ± 5.0 <0.0001 109 19.2 ± 4.2 23.5 ± 5.7 <0.0001 

BMI percentileb 104 66.7 ± 27.3 63.2 ± 30.7 0.04 109 71.0 ± 31.0 72.3 ± 28.7 0.37 

Insulin (µU/mL) 78 8.1 ± 5.8 17.4 ± 14.8 <0.0001 85 11.2 ± 7.6 18.7 ± 11.6 <0.0001 

Glucose (mg/dL) 66 102.0 ± 17.8 96.2 ± 27.5 0.08 79 96.0 ± 14.4 93.7 ± 14.5 0.33 

HOMA-IR 63 2.1 ± 2.0 3.9 ± 3.7 0.0007 77 2.5 ± 1.6 4.3 ± 3.1 <0.0001 

Leptin (ng/mL) 81 5.9 ± 7.4 9.9 ± 14.6 0.001 86 10.2 ± 10.9 22.3 ± 18.7 <0.0001 

Adiponectin (ng/mL) 81 14.7 ± 8.3 6.0 ± 2.6 <0.0001 86 15.5 ± 10.5 6.3 ± 2.8 <0.0001 

CRP (mg/L) 82 0.97 ± 2.90 0.93 ± 1.97 0.88 83 1.73 ± 4.98 1.19 ± 2.08 0.28 

IL-6 (pg/mL) 80 0.92 ± 1.10 1.13 ± 1.45 0.25 86 1.15 ± 1.55 1.44 ± 2.03 0.24 

Total cholesterol (mg/dL) 83 163.5 ± 26.9 155.3 ± 29.4 0.005 87 164.6 ± 22.5 157.2 ± 27.7 0.003 

HDL (mg/dL) 83 59.9 ± 22.7 55.4 ± 15.3 0.0006 87 55.5 ± 12.3 55.1 ± 13.4 0.74 

LDL (mg/dL) 83 92.3 ± 25.0 86.2 ± 24.5 0.02 87 97.0 ± 20.7 89.2 ± 22.6 0.0001 

Triglycerides (mg/dL) 83 56.9 ± 22.7 68.7 ± 31.2 0.0008 87 60.3 ± 25.5 64.2 ± 29.5 0.26 

SBP (mmHg) 103 96.0 ± 9.0 110.0 ± 8.9 <0.0001 108 95.8 ± 9.0 105.8 ± 9.4 <0.0001 

DBP (mmHg) 103 54.9 ± 5.3 61.3 ± 7.4 <0.0001 108 54.3 ± 5.4 62.7 ± 6.7 <0.0001 

MetS z-scorec 62 0.17 ± 0.61 0.21 ± 0.72 0.57   76 0.17 ± 0.68 0.05 ± 0.63 0.12 

HOMA-IR: homeostatic model assessment of insulin resistance; HDL: high-density lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; DBP: 
diastolic blood pressure; MetS z-score: metabolic syndrome z-score; CRP: c-reactive protein; IL-6: interleukin-6; BMI: body mass index. 

a From a paired t-test. 

b According to the CDC growth reference for children 2-19 years of age. 
c Calculated as the average of 5 internally-standardized sex-specific z-scores for inverted HDL, waist circumference, ln-transformed HOMA-IR, ln-transformed 
triglycerides, and SBP. 
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characteristics of 213 Project Viva mother-child pairs 

N 
BCAA pattern 

factor score 
P
a
 

Androgen pattern 

factor score 
P
a
 

Maternal & perinatal characteristics 

Annual household income 
 

0.05 0.02 

≤$70 k 81 0.25 ± 1.49 0.27 ± 1.69 

>$70 k                                        115 -0.17 ± 1.57 -0.25 ± 1.42 

Smoking habits 
 

0.21 0.23 

Never 141 -0.15 ± 1.56 0.09 ± 1.55 

Former 47 0.20 ± 1.43 -0.36 ± 1.62 

Smoked in early pregnancy 25 0.29 ± 1.27 0.04 ± 1.52 

Pre-pregnancy BMI
b
  0.008 0.25 

Normal weight 114 -0.20 ± 1.54 -0.05 ± 1.56 

Overweight 53 -0.11 ± 1.31 -0.28 ± 1.41 

Obese 46 0.53 ± 1.53 0.36 ± 1.71 

Gestational weight gain 
 

0.18 0.27 

Inadequate 23 -0.15 ± 1.95 -0.31 ± 1.30 

Adequate 65 -0.24 ± 1.59 -0.08 ± 1.47 

Excessive 125 0.12 ± 1.36 0.07 ± 1.66 

Gestational glucose tolerance 
 

0.68 0.53 

Normoglycemic 163 0.00 ± 1.52 -0.06 ± 1.61 

Isolated hyperglycemia 28 -0.18 ± 1.44 0.18 ± 1.20 

Impaired glucose tolerance 6 1.25 ± 1.28 -0.85 ± 2.21 

Gestational diabetes 17 -0.39 ± 1.42 0.32 ± 1.41 

Duration of any breastfeeding 
 

0.52 0.20 

<1 months 33 -0.05 ± 1.58 0.30 ± 1.34 

1-<7 months 71 0.27 ± 1.32 -0.20 ± 1.80 

7-<12 months 40 -0.74 ± 1.53 0.25 ± 1.60 

≥12 months 47 0.11 ± 1.48 -0.38 ± 1.31 

Child's characteristics at baseline (mid-childhood visit) 

Age 
 

0.73 0.03 

<7 years 12 -0.14 ± 1.18 -0.39 ± 1.49 

7 to <8 years 129 -0.03 ± 1.56 -0.16 ± 1.41 

≥8 years 72 0.02 ± 1.47 0.30 ± 1.79 

Race/ethnicity 
 

0.76 0.003 

White 125 -0.03 ± 1.51 -0.25 ± 1.49 

Black 46 0.15 ± 1.36 0.71 ± 1.77 

Hispanic 15 -0.27 ± 1.55 0.15 ± 1.29 

Other  28 -0.13 ± 1.72 -0.27 ± 1.36 

Sex 
 

0.36 0.80 

Male 104 -0.12 ± 1.49 -0.05 ± 1.60 

Female 109 0.07 ± 1.52 0.01 ± 1.53 

Weight status
c
 <0.0001 0.0004 

Normal weight 122 -0.48 ± 1.46 -0.29 ± 1.44 
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Obese 68 0.68 ± 1.38 0.59 ± 1.65 

Pubertal status 0.93 0.01 
Pre-pubertal 144 -0.02 ± 1.51 -0.22 ± 1.53 
Pubertal 60 0.00 ± 1.48   0.38 ± 1.56   

a Represents a test for linear trend for ordinal variables, and a type 3 test for difference for dichotomous 
and categorical (race/ethnicity and smoking habits) 
b According to the World Health Organization (WHO) and Centers for Disease Control and Prevention 
(CDC) adult weight status classification. "Normal weight" includes 4 women classified as "underweight." 

c According to the CDC 2000 age- and sex-specific reference data. "Normal weight" includes 4 children 
classified as underweight (BMI <5th percentile). 
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Table 3 Associations of the BCAA metabolite pattern factor score with change in metabolic biomarkers between mid-childhood (~7 years) and the early teens (~12 
years) among boys and girls in Project Viva 

β (95% CI) per 1 unit  BCAA pattern factor score
a
 

Boys (n = 104) Girls (n = 109) 

Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2 

Change in metabolic biomarkers 

Insulin (µU/mL) -0.26 (-2.40, 1.88) 1.64 (-0.35, 3.64) 1.51 (-0.49, 3.51) 0.57 (-1.26, 2.41) 1.04 (-0.67, 2.75) 0.59 (-1.14, 2.32) 

Glucose (mg/dL) -3.42 (-7.63, 0.79) -4.70 (-8.47, -0.93) -4.97 (-8.83, -1.11) 2.58 (-0.69, 5.86) 2.12 (-0.22, 4.45) 1.60 (-0.78, 3.98) 

HOMA-IR -0.48 (-1.12, 0.15) 0.31 (-0.17, 0.79) 0.26 (-0.22, 0.73) 0.35 (-0.16, 0.85) 0.39 (-0.11, 0.89) 0.24 (-0.26, 0.75) 

Leptin (ng/mL) 0.53 (-0.99, 2.05) 0.23 (-1.34, 1.80) 0.06 (-1.54, 1.65) 0.23 (-2.21, 2.68) 0.35 (-2.18, 2.89) -1.04 (-3.39, 1.31) 

Adiponectin (ng/mL) -0.29 (-1.43, 0.84) -0.13 (-0.49, 0.23) -0.04 (-0.40, 0.33) -0.21 (-1.54, 1.11) -0.01 (-0.35, 0.33) 0.03 (-0.33, 0.38) 

CRP (mg/L) 0.07 (-0.23, 0.37) 0.03 (-0.17, 0.23) 0.03 (-0.17, 0.24) -0.16 (-0.82, 0.51) 0.07 (-0.21, 0.36) 0.09 (-0.21, 0.39) 

IL-6 (pg/mL) 0.15 (-0.08, 0.38) 0.13 (-0.08, 0.33) 0.11 (-0.11, 0.32) -0.08 (-0.40, 0.24) -0.04 (-0.34, 0.25) 0.05 (-0.25, 0.35) 

Total cholesterol (mg/dL) -2.29 (-5.80, 1.22) -2.78 (-5.96, 0.39) -2.87 (-6.13, 0.38) -0.94 (-4.13, 2.25) -0.99 (-4.16, 2.19) -0.97 (-4.30, 2.35) 

HDL (mg/dL) -1.06 (-2.62, 0.51) -1.21 (-2.71, 0.30) -1.02 (-2.56, 0.51) 0.62 (-0.91, 2.15) 0.06 (-1.44, 1.55) 0.49 (-1.02, 1.99) 

LDL (mg/dL) -1.54 (-4.61, 1.53) -1.85 (-4.56, 0.86) -2.15 (-4.92, 0.61) -2.00 (-4.54, 0.54) -1.61 (-4.14, 0.92) -1.99 (-4.62, 0.65) 

Triglycerides (mg/dL) 1.55 (-2.70, 5.79) 1.40 (-2.70, 5.49) 1.13 (-3.07, 5.33) 2.19 (-2.31, 6.69) 4.38 (0.40, 8.37) 3.99 (-0.13, 8.11) 

SBP (mmHg) -0.96 (-2.27, 0.35) -0.49 (-1.58, 0.60) -0.51 (-1.63, 0.62) 0.33 (-0.95, 1.62) 0.87 (-0.24, 1.98) 1.03 (-0.14, 2.20) 

DBP (mmHg) 0.28 (-0.68, 1.24) 0.21 (-0.72, 1.14) -0.03 (-0.98, 0.92) 0.47 (-0.37, 1.32) 0.46 (-0.36, 1.29) 0.56 (-0.30, 1.42) 

MetS z-scoreb -0.03 (-0.12, 0.07) 0.01 (-0.08, 0.11) 0.00 (-0.10, 0.09)   0.02 (-0.08, 0.13) 0.06 (-0.02, 0.15) 0.04 (-0.04, 0.12) 

a Model 1: Estimates are adjusted for pubertal status and the biomarker of interest at the mid-childhood visit, and age at mid-childhood and early teen visits. Model 2: Model 1 + BMI 
percentile at baseline. Bolded values indicate statistical significance at alpha <0.05. 
b Calculated as the average of 5 internally-standardized sex-specific z-scores for inverted HDL, waist circumference, ln-transformed HOMA-IR, ln-transformed triglycerides, and 
SBP. 
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Table 4 Associations of the androgen metabolite pattern factor score with change in metabolic biomarkers between mid-childhood (~7 years) and the early teens (~12 
years) among boys and girls in Project Viva 

β (95% CI) per 1 unit androgen  factor score
a
 

Boys (n = 104) Girls (n = 109) 

Unadjusted Model 1 Model 2 Unadjusted Model 1 Model 2 

Change in metabolic biomarkers 

Insulin (µU/mL) 1.04 (-1.09, 3.18) -0.19 (-2.15, 1.78) -0.48 (-2.47, 1.52) -1.35 (-2.96, 0.25) -1.12 (-2.66, 0.43) -1.14 (-2.64, 0.36) 

Glucose (mg/dL) 2.53 (-1.56, 6.62) 1.90 (-1.88, 5.68) 1.97 (-1.90, 5.85) -0.63 (-3.38, 2.13) 1.27 (-0.78, 3.32) 1.26 (-0.74, 3.25) 

HOMA-IR 0.43 (-0.17, 1.03) -0.09 (-0.52, 0.35) -0.21 (-0.65, 0.23) -0.32 (-0.73, 0.10) -0.22 (-0.66, 0.22) -0.21 (-0.64, 0.22) 

Leptin (ng/mL) 0.37 (-1.17, 1.91) -0.12 (-1.75, 1.52) -0.25 (-1.89, 1.39) -1.85 (-4.09, 0.40) -2.39 (-4.76, -0.02) -2.50 (-4.61, -0.39) 

Adiponectin (ng/mL) 0.46 (-0.68, 1.61) -0.01 (-0.38, 0.38) 0.07 (-0.31, 0.45) 1.04 (-0.18, 2.26) 0.00 (-0.32, 0.33) 0.01 (-0.32, 0.33) 

CRP (mg/L) -0.23 (-0.52, 0.05) 0.12 (-0.09, 0.32) 0.12 (-0.09, 0.33) 0.06 (-0.54, 0.66) 0.28 (0.03, 0.54) 0.28 (0.03, 0.54) 

IL-6 (pg/mL) 0.08 (-0.15, 0.31) 0.20 (-0.02, 0.41) 0.18 (-0.03, 0.40) 0.06 (-0.23, 0.36) 0.26 (-0.02, 0.55) 0.26 (-0.02, 0.54) 

Total cholesterol (mg/dL) -1.97 (-5.46, 1.52) -1.07 (-4.38, 2.24) -1.06 (-4.42, 2.30) -0.43 (-3.38, 2.52) -0.61 (-3.69, 2.46) -0.60 (-3.68, 2.48) 

HDL (mg/dL) -0.71 (-2.28, 0.85) -1.02 (-2.61, 0.58) -0.87 (-2.47, 0.72) 0.02 (-1.39, 1.44) -0.05 (-1.45, 1.36) 0.01 (-1.36, 1.39) 

LDL (mg/dL) -1.25 (-4.30, 1.81) 0.30 (-2.51, 3.11) 0.17 (-2.67, 3.01) -0.28 (-2.66, 2.09) -0.56 (-2.99, 1.87) -0.58 (-3.01, 1.84) 

Triglycerides (mg/dL) -0.07 (-4.30, 4.16) 0.12 (-4.09, 4.32) -0.12 (-4.37, 4.13) -0.85 (-5.02, 3.32) 1.73 (-2.11, 5.57) 1.71 (-2.10, 5.52) 

SBP (mmHg) -0.81 (-2.02, 0.40) 0.16 (-0.91, 1.22) 0.16 (-0.90, 1.22) -1.32 (-2.57, -0.07) -0.52 (-1.63, 0.59) -0.52 (-1.63, 0.59) 

DBP (mmHg) -0.17 (-1.05, 0.72) 0.19 (-0.71, 1.08) 0.06 (-0.83, 0.95) -0.17 (-1.01, 0.68) 0.14 (-0.68, 0.96) 0.15 (-0.67, 0.96) 

MetS z-scoreb -0.03 (-0.12, 0.06) -0.01 (-0.11, 0.08) -0.02 (-0.11, 0.07)   -0.10 (-0.18, -0.02) -0.04 (-0.12, 0.03) -0.04 (-0.11, 0.03) 

a Model 1: Estimates are adjusted for pubertal status and the biomarker of interest at the mid-childhood visit, and age at mid-childhood and early teen visits. Model 2: Model 1 + BMI 
percentile at baseline. Bolded values indicate statistical significance at alpha <0.05. 
b Calculated as the average of 5 internally-standardized sex-specific z-scores for inverted HDL, waist circumference, ln-transformed HOMA-IR, ln-transformed triglycerides, and 
SBP. 

 

  

Page 32 of 41

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Obesity

56
57
58
59
60

This article is protected by copyright. All rights reserved.



A
ut

ho
r M

an
us

cr
ip

t
Table 5 Associations of metabolites within the BCAA pattern with change in fasting glucose in boys and change in 
serum triglycerides in girls. 

Factor 

loading 

Boys (n = 63) Girls (n = 83) 

β (95% CI) for change in 

fasting glucose (mg/dL)
a
 

β (95% CI) for change in 

serum triglycerides (mg/dL)
a
 

Valine 0.83 -2.91 (-6.83, 1.02) 1.72 (-1.88, 5.31) 

Leucine 0.76 -2.12 (-5.48, 1.24) 1.72 (-1.56, 4.99) 

Phenylalanine 0.72 -3.35 (-6.70, 0.01) 0.78 (-2.87, 4.44) 

Isoleucine 0.71 -3.10 (-7.07, 0.87) 2.26 (-1.16, 5.67) 

Propionylcarnitine (C3) 0.66 -4.38 (-7.79, -0.97) 2.01 (-2.31, 6.33) 

2-methylbutyrylcarnitine (C5) 0.63 -2.01 (-6.13, 2.10) 2.74 (-0.69, 6.16) 

Isovalerylcarnitine 0.30 -2.18 (-5.13, 0.76) -0.46 (-3.78, 2.86) 

Isobutyrylcarnitine 0.56 -3.54 (-6.18, -0.90) -0.22 (-3.40, 2.95) 

Tryptophan  0.54 -2.65 (-6.29, 0.98) -1.81 (-5.79, 2.16) 

3-methyl-2-oxovalerate (KMV) 0.52 -0.81 (-4.46, 2.85) 1.13 (-2.99, 5.25) 

Kynurenine 0.52 -1.39 (-5.06, 2.28) 3.65 (0.10, 7.21) 

Tyrosine 0.51 -3.70 (-8.35, 0.94) -2.38 (-6.14, 1.38) 

Gamma-glutamylleucine 0.51 -2.92 (-6.72, 0.88) 4.44 (1.10, 7.79) 

4-methyl-2-oxopentanoate (KIC) 0.51 -0.63 (-4.06, 2.80) -0.19 (-4.23, 3.85) 

a Estimates are adjusted for age, pubertal status, BMI percentile, and biomarker level at the mid-childhood visit, and age at the early 
teen visit. Bolded text indicates statistical significance at alpha<0.05. 
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Table 6 Associations of metabolites within the BCAA pattern with change (∆) in SBP in 98 boys, stratified by 
pubertal status at baseline (mid-childhood). 

Factor 

loading 

β (95% CI) for ∆ in SBP (mmHg)
a
 

Pre-pubertal (n= 79) Pubertal (n = 19) 

BCAA factor score 
 

-0.88 (-2.09, 0.33) 2.48 (-0.45, 5.40) 

 
Individual metabolites  

 
Valine 0.83 -0.44 (-1.40, 0.52) 0.91 (-1.77, 3.59) 

Leucine 0.76 -0.05 (-0.91, 0.81) 1.48 (-0.67, 3.63) 

Phenylalanine 0.72 0.19 (-0.70, 1.07) 1.79 (-0.23, 3.81) 

Isoleucine 0.71 -0.32 (-1.26, 0.62) 1.32 (-1.08, 3.73) 

Propionylcarnitine (C3) 0.66 -0.77 (-1.80, 0.26) -0.54 (-2.71, 1.41) 

2-methylbutyrylcarnitine (C5) 0.63 -0.17 (-1.32, 0.98) 0.65 (-2.19, 3.50) 

Isovalerylcarnitine 0.30 -0.17 (-1.14, 0.79) -0.25 (-1.71, 1.21) 

Isobutyrylcarnitine 0.56 -0.50 (-1.32, 0.33) -0.95 (-2.72, 0.82) 

Tryptophan  0.54 -0.80 (-1.64, 0.04) 2.59 (0.03, 5.15) 

3-methyl-2-oxovalerate (KMV) 0.52 -0.33 (-1.35, 0.68) 2.32 (-0.06, 4.71) 

Kynurenine 0.52 -0.38 (-1.39, 0.62) 2.53 (0.51, 4.55) 

Tyrosine 0.51 -0.21 (-1.44, 1.02) -0.17 (-3.12, 2.77) 

Gamma-glutamylleucine 0.51 -0.08 (-1.27, 1.10) 1.03 (-0.78, 2.84) 

4-methyl-2-oxopentanoate (KIC) 0.51 -0.04 (-1.02, 0.94) 2.31 (-0.08, 4.70) 

a Estimates are adjusted for age, pubertal status as an ordinal variable, BMI percentile, biomarker level at the mid-
childhood visit, and age at the early teen visit. Bolded text indicates statistical significance at alpha<0.05. 
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Table 7 Associations of metabolites within the androgen pattern with change in leptin and CRP in girls. 

Factor 

loading 

β (95% CI)
a
 

Change in leptin (ng/dL) Change in CRP (mg/dL) 

n = 82 n = 79 

4-Androsten-3beta,17beta-diol disulfate 1 0.86 -0.92 (-2.95, 1.11) 0.18 (-0.07, 0.42) 

Dehydroisoandrosterone sulfate (DHEA-S) 0.84 -1.68 (-4.47, 1.11) 0.05 (-0.29, 0.39) 

Epiandrosterone sulfate 0.79 -0.40 (-2.33, 1.52) 0.13 (-0.11, 0.37) 

Androsterone sulfate 0.79 -1.56 (-3.83, 0.71) 0.10 (-0.17, 0.37) 

4-androsten-3beta,17beta-diol disulfate 2* 0.78 -1.78 (-3.35, -0.20) 0.04 (-0.16, 0.23) 

Pregn steroid monosulfate* 0.76 -2.50 (-4.87, -0.13) 0.02 (-0.27, 0.31) 

Pregnen-diol disulfate* 0.70 -1.94 (-4.11, 0.23) -0.02 (-0.29, 0.25) 

Pregnenolone sulfate 0.65 -0.64 (-2.66, 1.39) 0.05 (-0.20, 0.30) 

Andro steroid monosulfate 2* 0.61 -1.09 (-3.14, 0.97) -0.02 (-0.28, 0.24) 

a Estimates are adjusted for age, pubertal status, BMI percentile, and biomarker level at the mid-childhood visit, and age at the early teen visit. 
Bolded text indicates statistical significance at alpha<0.05. Bolded text indicates statistical significance at alpha<0.05. 
* Indicates tier 2 identification in which no commercially available authentic standards could be found, however annotated based on accurate 
mass, spectral and chromatographic similarity to tier 1 identified compounds 
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Assays, laboratory techniques, and instrumentation for measurement of conventional 

metabolic biomarkers 

At both the mid-childhood and early teen visits, we used fasting blood to measure plasma 

glucose enzymatically, and insulin using an electrochemiluminescence immunoassay (Roche 

Diagnostics, Indianapolis, IN). Serum total cholesterol, triglycerides, and high-density 

lipoprotein (HDL) were measured enzymatically with correction for endogenous glycerol. We 

measured plasma leptin and adiponectin concentrations with a radioimmunoassay (Linco 

Research, St Charles, MO). We used an immunoturbidimetric high-sensitivity assay on a Hitachi 

911 analyzer to determine C-reactive protein (CRP) concentrations (Roche Diagnostics, 

Indianapolis, IN). Plasma interleukin-6 (IL-6) was measured by ultrasensitive enzyme-linked 

immunosorbent assay (ELISA).  

Assessment of covariates 

At enrollment, mothers reported their pre-pregnancy weight and height, from which we 

calculated pre-pregnancy BMI. We used standard criteria to categorize BMI as normal (defined 

as 18.5-<25 kg/m2, but we also included 4 women with BMI <18.5) overweight (25-<30 kg/m2), 

and obese (≥30 kg/m2) (1). Using interviews and questionnaires, we collected information on 

maternal race/ethnicity, age, household income; and child race/ethnicity. We determined 

gestational weight gain (GWG) as the difference between the last clinically-measured weight 

within 4 weeks prior to delivery and self-reported pre-pregnancy weight, and categorized it 

according to current IOM guidelines (2).  Obstetric clinicians screened women for gestational 

diabetes mellitus (GDM) at 26–28 weeks of gestation with a non-fasting 50-g oral glucose 
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on results of the 2-stage testing, we categorized women as having GDM, impaired glucose 

tolerance, isolated hyperglycemia, or normoglycemia (3). We obtained birth characteristics, 

including sex and delivery date, from medical records. Mothers reported on breastfeeding 

duration in postpartum questionnaires.  

At the mid-childhood and early teen visits, RAs measured children’s weight (kg) using an 

electronic scale (Tanita Corporation of America, Inc., Arlington Heights, IL) and height (cm) 

with a calibrated stadiometer (Shorr Productions, Olney, MD). We used these values to calculate 

BMI, standardized it as percentile using the Centers for Disease Control growth reference (4), 

and categorized participants as normal weight (5th to <85th percentile, but also included 4 

children with BMI <5th percentile), overweight (85th to <95th percentile), and obese (≥95th 

percentile). At the mid-childhood research visit, mothers reported on pubarchal/pubertal 

phenotype based on appearance of body hair, breast development for girls, and body hair, facial 

hair, and deepening of voice for boys on a scale of 1 (no development) to 4 (full development) 

(5). For the analysis, we combined the characteristics as an ordinal summary score of breast 

development and body hair for girls, and the mean of deepening of voice, facial hair, and body 

hair for boys for use as a covariate in multivariable models, as well as dichotomized as pre-

pubertal (puberty score=1) vs. pubertal (puberty score>1) for stratified analyses. 

Untargeted metabolomics profiling 

For untargeted metabolomics profiling, we sent fasting plasma samples collected at the 

mid-childhood visit to Metabolon Inc. (Durham, NC, USA). Samples were prepared using the 

automated MicroLab STAR® liquid handling machine from Hamilton Robotics, which employs 
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precipitate proteins fraction while allowing maximum recovery of small molecules. The extract 

was then divided into four fractions: one each for analysis on four different columns on ultrahigh 

performance liquid chromatography (UPLC)/MS/MS (2 for positive ions, 2 for negative ions) 

and mixed the samples for 5 minutes on a Geno/Grinder 2000 (Glen Mills, Inc.), followed by 

brief placement on a TurboVap® (Zymark) to remove the organic solvent.  

Next, sample extraction and ultrahigh performance liquid chromatography (UPLC) was 

carried out as previously described (6). The liquid chromatography (LC)/MS of the platform was 

based on a Waters ACQUITY UPLC and a Thermo-Finnigan linear trap quadrupole mass 

spectrometer, which consisted of an electrospray ionization source and linear ion-trap mass 

analyzer. The sample extract was reconstituted in acidic or basic LC-compatible solvents, each 

of which contained 8 or more injection standards at fixed concentrations to ensure injection and 

chromatographic consistency. One aliquot each was analyzed using a reverse-phase positive ion 

method for polar compounds, a reverse-phase positive ion method for lipid compounds, a 

reverse-phase negative ion method, and a negative ion method for hydrophilic compounds. The 

MS analysis alternated between MS and data-dependent MS/MS scans using dynamic exclusion.  

Raw data files are archived and extracted as described below. 

For quality assurance/quality control (QA/QC) purposes, extracts of a pool created from a 

small aliquot of the experimental samples and process blanks were included with each day’s 

analysis. The QC samples were spaced evenly among the injections and all experimental 

samples, and randomly distributed them throughout the run.  A selection of QC compounds were 

added to every sample for chromatographic alignment, including those under test. These 
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compounds. 

Finally, the raw data were extracted and compound peaks were identified using 

Metabolon’s hardware and software. Compounds were identified via comparison to library 

entries of purified standards or recurrent unknown entities.  More than 4000 commercially 

available purified standard compounds have been acquired and registered into Laboratory 

Information Management System (LIMS) for distribution to both the LC and GC platforms for 

determination of their analytical characteristics. 
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Table S1 Background characteristics of Project Viva participants within each of the analytical subsamples. 

 
Boys Girls 

Overall Table 5 Table 6 Overall Table 5 Table 7 Table 7 

  
(∆glucose) (∆SBP) 

 
(∆triglycerides) (∆leptin) (∆CRP) 

 
n = 104 n = 63  n = 98 n = 109 n = 83 n = 82 n = 79 

Maternal & perinatal characteristics 

Annual household income ≤$70 k 61.9% 70.5% 62.6% 55.6% 53.3% 52.7% 52.1% 

Smoked during pregnancy 10.6% 12.7% 11.2% 12.8% 13.3% 13.4% 13.9% 

Pre-pregnancy BMI (kg/m
2
) 25.3 ± 5.2 25.2 ± 5.5 25.2 ± 5.3 26.6 ± 6.5 26.5 ± 6.0 26.6 ± 6.0 26.6 ± 6.1 

Gestational weight gain
a
 

Inadequate 7.7% 9.5% 8.2% 13.8% 14.5% 14.6% 15.2% 

Adequate 28.9% 23.8% 25.5% 32.1% 32.5% 31.7% 32.9% 

Excessive 63.5% 66.7% 66.3% 54.1% 53.0% 53.7% 51.9% 

Gestational glucose tolerance 

Normoglycemic 79.8% 85.7% 81.6% 73.4% 74.7% 74.4% 73.4% 

Isolated hyperglycemia 9.6% 9.5% 9.2% 15.6% 16.9% 17.1% 17.7% 

Impaired glucose tolerance 2.9% 1.6% 3.1% 2.8% 2.4% 2.4% 2.5% 

Gestational diabetes 7.7% 3.2% 6.1% 8.3% 6.0% 6.1% 6.3% 

Duration of any breastfeeding 

<1 months 19.6% 18.3% 19.2% 14.9% 14.3% 14.5% 13.6% 

1-<7 months 33.0% 30.0% 34.0% 41.5% 42.9% 42.0% 42.4% 

7-<12 months 21.7% 23.3% 21.3% 20.2% 18.6% 18.8% 18.2% 

≥12 months 25.8% 28.3% 25.5% 23.4% 24.3% 24.6% 25.8% 

Child's characteristics at baseline 

Age (years) 7.9 ± 0.8 7.7 ± 0.7 7.9 ± 0.8 8.0 ± 0.8 8.0 ± 0.9 8.0 ± 0.9 8.0 ± 0.9 

Race/ethnicity 

White 61.5% 68.3% 63.3% 55.1% 53.0% 52.4% 53.2% 

Black 20.2% 15.9% 19.4% 22.9% 22.9% 23.2% 21.5% 

Hispanic 5.8% 4.8% 6.1% 8.3% 9.6% 9.8% 10.1% 

Other  12.5% 11.1% 11.2% 13.8% 14.5% 14.6% 15.2% 
BMI percentile

b
 66.6 ± 27.2 66.8 ± 28.8 66.1 ± 27.5 71.0 ± 31.0 72.2 ± 30.8 72.9 ± 30.3 72.9 ± 30.3 

Pubertal status 
Pre-pubertal 80.8% 82.5% 80.6% 61.0% 59.0% 58.5% 58.2% 
Pubertal 19.2% 17.5% 19.4%   39.1% 41.0% 41.5% 41.8% 

a According to the 2009 Institute of Medicine recommendations. 

b Age- and sex-specific BMI percentile based on CDC 2000 reference data. 
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