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Abstract

Aim: Animal body sizes are often remarkably variable across islands, but despite much research we

still have a poor understanding of both the patterns and the drivers of body size evolution. Theory

predicts that interspecific competition and predation pressures are relaxed on small, remote

islands, and that these conditions promote body size evolution. We studied body size variation

across multiple insular populations of 16 reptile species co-occurring in the same archipelago and

tested which island characteristics primarily drive body size evolution, the nature of the common

patterns, and whether co-occurring species respond in a similar manner to insular conditions.

Location: Aegean Sea islands.

Time period: 1984–2016.

Major taxa studied: Reptiles.

Methods: We combined fieldwork, museum measurements and a comprehensive literature

survey to collect data on nearly 10,000 individuals, representing eight lizard and eight snake

species across 273 islands. We also quantified a large array of predictors to assess directly the

effects of island area, isolation (both spatial and temporal), predation and interspecific compe-

tition on body size evolution. We used linear models and meta-analyses to determine which

predictors are informative for all reptiles, for lizards and snakes separately, and for each

species.

Results: Body size varies with different predictors across the species we studied, and patterns dif-

fer within families and between lizards and snakes. Each predictor influenced body size in at least

one species, but no general trend was recovered. As a group, lizards are hardly affected by any of

the predictors we tested, whereas snake size generally increases with area and with competitor

and predator richness, and decreases with isolation.

Main conclusions: No factor emerges as a predominant driver of Aegean reptile sizes. This contra-

dicts theories of general body size evolutionary trajectories on islands. We conclude that

overarching generalizations oversimplify patterns and processes of reptile body size evolution on

islands. Instead, species’ autecology and island particularities interact to drive the course of size

evolution.
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1 | INTRODUCTION

The identification of general pathways in the evolution of body size

variation among insular populations has received decades of attention,

and multiple patterns and drivers have been proposed and contra-

dicted. Trait evolution on islands is often perceived as strong, predict-

able and consistent across taxa (K€ohler, Moy�a-Sol�a, & Wrangham,

2008; Lomolino, 2005; Van Valen, 1973). The most debated pattern is

the ‘island rule’, suggesting that insular animals tend to evolve a

medium body size (Faurby & Svenning, 2016; Lomolino, 2005; Van

Valen, 1973; cf. Itescu, Karraker, Raia, Pritchard, & Meiri, 2014; Leisler

& Winkler, 2015; Meiri, 2007). Insular faunas are generally depauper-

ate, becoming species poor as islands become smaller and more iso-

lated (e.g., Darlington, 1957; MacArthur & Wilson, 1963). Therefore,

insular animals are thought to experience relaxed interspecific competi-

tion and predation pressures, which, in turn, promote higher population

densities and, consequently, stronger intraspecific competition (Melton,

1982). Together with resource limitation, these ecological processes

are commonly thought to drive body size evolution on islands (Case,

1978; Lomolino, 2005; Melton, 1982). Heaney (1978) suggested that

the effect of each of these factors changes with the size of the focal

island and animal. He hypothesized that interspecific competition is

more important to small animals than to large ones and that food limi-

tation is more important to large animals than to small ones. He also

hypothesized that the effect of predation is equally important at all

sizes, but produces different trends at different body sizes. Addition-

ally, he hypothesized that food limitation is the most important selec-

tion agent on small islands, predation on medium-sized islands, and

interspecific competition on large islands and the mainland. Alternative

explanations for body size variation on islands, suggesting indirect

selection of these ecological factors on body size, via direct selection

on life-history traits, have also been proposed (Adler & Levins, 1994;

Palkovacs, 2003; Raia et al., 2003).

Area and isolation are the two main island characteristics thought

to affect animal body size. Lomolino (2005) suggested that small spe-

cies increase in size on smaller and more isolated islands, whereas large

species become smaller on such islands. Other studies, however, found

minor support for such relationships in mammals (Meiri, Dayan, &

Simberloff, 2005, 2006), snakes (Boback, 2003) and lizards (Meiri,

2007). Heaney (1978) predicted that the body size of small mammals

decreases whereas that of large mammals increases with increasing

area (see also Marquet & Taper, 1998; Melton, 1982). He further pre-

dicted that medium-sized animals are largest on intermediate-sized

islands, becoming smaller on both smaller and larger islands (Heaney,

1978). However, Meiri et al. (2005) found no support for Heaney’s pre-

diction, or for a linear response of size to island area.

Isolation can be defined both in space and in time. Spatial isolation,

usually calculated as the distance of the island from the nearest main-

land (e.g., Anderson & Handley, 2002; Meik, Lawing, Pires-daSilva, &

Welch, 2010), reduces immigration (i.e., gene flow) rates and makes in

situ adaptations more likely (Heaney, 2000). The effect of spatial isola-

tion on body size is possibly indirect, reflecting factors such as preda-

tion and competition pressures (Arnold, 1979; Heaney, 1978).

Anderson and Handley (2002) suggested that, where over-water dis-

persal is unlikely (as in the case of Aegean Sea reptiles; Foufopoulos &

Ives, 1999), body sizes on close and far islands would not differ. Tem-

poral isolation is thought to be associated with body size in systems

where sufficient time since isolation has not yet passed to allow a uni-

directional change towards an optimum to be completed (Anderson &

Handley, 2002). However, accelerated trait evolution on recently iso-

lated islands has also been suggested (Aubret, 2015). As increased iso-

lation is expected to drive the same phenotypic changes as decreasing

island area (Adler & Levins, 1994), Heaney’s (1978) prediction for island

area is possibly true for isolation as well (i.e., that intermediate-sized

species are smallest at intermediate isolation, and larger at low and

high degrees of isolation). Furthermore, as Heaney suggested, island

area reflects predation and interspecific competition, and therefore, the

pattern suggested for island area should apply to predation and inter-

specific competition, with the latter possibly showing a stronger effect

in small species.

Reptiles are well known for their extreme-sized insular forms: giant

tortoises and Komodo dragons on the one hand, and the world’s small-

est lizards (Sphaerodactylus geckos and Brookesia chameleons; Glaw,

K€ohler, Townsend, Vences, & Salamin, 2012; Hedges & Thomas, 2001)

and snakes (Caribbean Tetracheilostoma threadsnakes; Hedges, 2008)

on the other. Whether reptile body sizes tend to grow or diminish on

islands compared with the mainland seems to be a clade-specific char-

acteristic (c.f. e.g., Boback & Guyer, 2003; Case, 1978; Meiri, 2007,

2008). How island area and isolation affect reptile body size evolution

is unclear. Previous studies provided inconsistent results (cf. Boback,

2003; Donihue, Brock, Foufopoulos, Herrel, & Grindstaff, 2016;

Hasegawa & Moriguchi, 1989; Meiri, 2007; Meik et al., 2010; Soul�e,

1966). Release from predation is thought to drive size increase in small

species and size decrease in large species by relaxing direct selection

on size-related anti-predatory adaptations (Heaney, 1978; Vervust,

Grbac, & Van Damme, 2007). Relaxed interspecific competition allows

niche shifts and promotes size changes (Case, 1978; Hasegawa, 2003;

Schoener, 1970; Soul�e, 1966; but see Dunham, Tinkle, & Gibbons,

1978). Ecological release (both from predators and from interspecific

competitors) is also thought to promote higher population densities, and

consequently, stronger intraspecific competition and aggressiveness

(Donihue et al., 2016; Pafilis, Meiri, Foufopoulos, & Valakos, 2009),

which in turn favours large sizes, although smaller size is expected

where early maturity is advantageous (Melton, 1982; Palkovacs, 2003;

Raia et al., 2003).

To date, insular reptile body size evolution studies have either con-

trasted mainland and island species or populations (e.g., Boback &

Guyer, 2003; Case, 1978; Itescu et al., 2014; Meiri, 2007) or have

examined the effects of some predictors across populations of a single

species (e.g., Meik et al., 2010; Soul�e, 1966) or genus (Dunham et al.,

1978). It remains unclear which island characteristics primarily drive

body size evolution, the nature of common patterns, and whether co-

occurring species respond in a similar manner to insular conditions.

Which factor is most influential is sometimes debated even for a single

species (cf. Calsbeek & Cox, 2010, 2011; Losos & Pringle, 2011).

Therefore, we approached these questions by directly quantifying the

ITESCU ET AL. | 539



effect of multiple potential selection agents across multiple island pop-

ulations of multiple reptile species within a single archipelago. Compar-

ing species co-occurring within the same archipelago allows one to

eliminate island-specific factors that vary across different regions, such

as latitude, climate, vegetation and primary productivity, but remain rel-

atively uniform among such co-occurring species (Meiri, Meijaard,

Wich, Groves, & Helgen, 2008). This study design potentially enables

us to distinguish between patterns driven by the island conditions we

studied and those that are species specific.

We assembled a database of unprecedented coverage, encompass-

ing body size data for nearly 10,000 individuals of 16 reptile species

(eight lizard and eight snake species), from 273 islands in the Aegean

Sea. These islands vary widely in area, isolation and faunal composition.

Body size in reptile populations on these islands also varies greatly

(and, in some species, even reaches the maximal documented size;

Itescu, Schwarz, Moses, Pafilis, & Meiri, 2016), making this system ideal

to study size evolution on islands. We aimed to test several hypothe-

ses, as follows: (a) small species increase in size whereas large species

become smaller as islands decrease in area, increase in isolation (in time

and space) and harbour fewer predators and competitors for the focal

species (Heaney, 1978; Lomolino, 2005); (b) medium-sized species are

largest on intermediate-sized islands and intermediate degrees of isola-

tion, predation and competition (Heaney, 1978); (3) interspecific com-

petition affects small species more strongly than large species, whereas

the effect of predation is not size dependent (Heaney, 1978); and (d)

body size patterns on islands are consistent across taxa (K€ohler et al.,

2008; Lomolino, 2005).

2 | METHODS

2.1 | Study system

The Aegean Sea has several thousand islands varying across six orders

of magnitude in area. Their geological histories are diverse (Lymberakis

& Poulakakis, 2010), and the landscapes are a patchwork of dwarf

Mediterranean scrub (locally called ‘phrygana’), sclerophyllous ever-

green maquis and agricultural areas (Fielding, Turland, & Mathew,

2005). Consequently, faunal composition and resource availability vary

greatly across islands. Fifty reptile species inhabit Aegean Sea islands,

with the gecko Mediodactylus kotschyi and the lacertid Podarcis erhardii

being most common, inhabiting even very small islets (Valakos et al.,

2008).

2.2 | Data collection

We measured specimens in the field during spring and summer periodi-

cally over 33 years (1984–2016). We also measured specimens in eight

museum collections (Zoologische Staatssammlung M€unchen, Zoologi-

sche Forschungsmuseum Alexander Koenig in Bonn, Natural History

Museum of Crete, Goulandris Natural History Museum, British Natural

History Museum, French National Museum of Natural History,

Museum of Comparative Zoology at Harvard University and Yale Pea-

body Museum of Natural History). Finally, we comprehensively

surveyed literature and recorded body size information for as many

Aegean island reptiles as possible (data were extracted from 97 sour-

ces; see Supporting Information Appendix S1 for a list). We recorded

sex and body size for 9,951 adult individuals of eight lizard and eight

snake species originating from 273 islands (Table 1; Supporting Infor-

mation Appendix S2). We used the most commonly reported size indi-

ces: snout–vent length (SVL) for lizards, and total length for snakes.

Mean body mass for each species was calculated from data we

recorded in the field and from the literature. To ensure that our use of

multiple data sources did not bias the results, we compared the mean

body size of specimens measured in museum collections and specimens

measured in the field for several islands. We compared only islands

from which we recorded body size data of at least five males and five

females for each data source. For the two species with sufficient data

we found no differences between sources (P. erhardii, field mean

SVL561.05 mm, museum560.43 mm, n538 islands, t51.22,

p5 .23; M. kotschyi, field543.35 mm, museum543.68 mm, n525,

t 5 21.05, p5 .30). We therefore pooled museum, literature and field

data in all further analyses.

Following most island biogeography studies (studies of body size

included; e.g., Boback, 2003; Lomolino, 2005; Meiri et al., 2005), we

tested the distance from the nearest mainland as an index of spatial

isolation. However, for land-bridge island systems this index might not

adequately quantify effective isolation (Itescu, 2017), especially in the

Aegean Sea archipelago (Foufopoulos & Ives, 1999). Therefore, we also

studied the distance from the closest larger island and a temporal isola-

tion index, the time since isolation. Distances were calculated using

Google Earth tools. Periods of isolation for islands isolated during the

past 20,000 years [since the end of the Last Glacial Maximum (LGM)]

were calculated by crossing data for the maximal depth between a

focal island and the last landmass to which it was connected with

region-specific charts of sea-level change since the LGM (see

Foufopoulos & Ives, 1999; Foufopoulos, Kilpatrick, & Ives, 2011). Maxi-

mal depths were drawn from fine-resolution bathymetric maps of the

Hellenic Navy Hydrographic Service (www.hnhs.gr/geoindex/). Estima-

tions were calculated to a 1-year resolution, and we did not round val-

ues, although we acknowledge our method cannot accurately estimate

isolation time at such a fine resolution. Temporal isolation data for

islands isolated earlier than the LGM were assembled from the litera-

ture (Supporting Information Appendix S3). We assembled island-

specific faunal lists based on the literature and our own field observa-

tions to count the potential predator and competitor species of each

focal population. Predators were defined as all mammals and reptiles

likely to prey upon focal species (Supporting Information Appendix S4).

Birds were excluded because their mobility across islands and their sea-

sonal migration allows them to hunt well away from their breeding

sites, making it impossible to create reliable island-specific lists. To

ensure that the exclusion of birds did not significantly affect our preda-

tor richness values we tested the correlation between predatory bird

richness values and the combined counts of predatory mammal and

predatory reptiles across 41 islands for which we did have reasonably

reliable predatory bird lists (Itescu, Schwarz, Meiri, Pafilis, & Clegg,

2017). The correlation coefficient (r) was 0.90 (p< .01). We therefore
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feel confident to exclude bird counts from our database. We could not

quantify potential predatory arthropods (e.g., spiders, scorpions, centi-

pedes), because reports of predation on reptiles by arthropods and

island-specific faunal lists for them are too rare. Competitors were

defined as other lizards (for lizards) or other snakes (for snakes), assum-

ing that juveniles of large species potentially compete with adults of

smaller species.

2.3 | Analyses

We examined 16 reptile species for which we had measurements of at

least three individuals per population sampled across at least eight

islands. This approach allowed us to maximize the number of species

and populations as well as the range of islands; hence, to maximize var-

iation in the predictor variables. To avoid size biases attributable to sex-

ual size dimorphism, we calculated the population mean body size by

averaging male and female means. Only for Ablepharus kitaibelii we

used a mean of all individuals regardless of sex, because reliably deter-

mining their sex in the field in a non-invasive manner is extremely

difficult.

We first explored, for each species, whether the relationship of

body size with each of the six island characteristics (island area, dis-

tance from the mainland, distance from the closest larger island, time

since isolation, predator richness and competitor richness) is linear or

curvilinear. To test Heaney’s (1978) prediction that the relationship

between size evolution of species and each of the predictor variables is

affected by the species body size, we regressed the correlation coeffi-

cient of the relationship between body size (i.e., body length) and each

of the six predictor variables against the log10-transformed body mass

of each species. We expected to find a positive relationship where

Heaney’s prediction holds, because it asserts that small species would

show negative body size–predictor slopes, medium-sized species would

have slopes equal to zero, and large species would show positive slopes

(see Meiri et al., 2005). To test Heaney’s prediction that interspecific

competition is more important for small species than for large species,

whereas predation is equally important across all size classes, we

regressed the absolute value of the correlation coefficients against

log10-transformed body mass. Here, we expected to find a significant

negative trend for interspecific competition and no trend for predation

if the prediction holds. We used body mass as the predictor variable in

these analyses, because it is comparable across taxa, eliminating biases

driven by body shape, and therefore is more suitable for interspecific

comparisons than body length (Feldman & Meiri, 2013; Feldman,

Sabath, Pyron, Mayrose, & Meiri, 2016).

We then took a meta-analytic approach to explore whether any

island characteristic significantly affects body size across all reptiles we

studied in general or across each suborder (snakes and lizards) sepa-

rately. We conducted DerSimonian–Laird random-effect meta-analysis

of correlation coefficients (r) of the linear regressions of body size

against each predictor variable in all species as effect sizes, for each

group separately. We used the correlation coefficients from regressions

of log10-transformed body size (against tested predictors) for allT
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species, to standardize the r values we analysed. The meta-analyses

were performed using the ‘metacor’ R package (Lalibert�e, 2011).

Finally, we examined, for each species, which of the six island char-

acteristics comprise the model that best predicts its body size on

islands and compared the selected best models across species. To this

end, we performed a multiple regression test for each species, followed

by a backward-stepwise model-selection procedure based on p-values

(a< .05), using both linear and quadratic terms. We avoided using the

Akaike information criteria (AIC) for model selection [AIC or corrected

AIC (AICc) scores] because the models with the lowest scores often

had predictors that were poorly associated with size (i.e., they had p-

values > .05 when significance levels were estimated), making them

non-informative (models with the lowest scores merely being the best

of a collection of poor models; Arnold, 2010; Mac Nally, Duncan,

Thomson, & Yen, 2017). Thus, the much maligned p-value approach

proved more conservative. Nevertheless, we present the AICc-based

best models for each species in Supporting Information Appendix S5 to

highlight that our general conclusions are robust for using different

model-selection approaches. We avoided overparameterization by lim-

iting models to include a maximum of three data points (i.e., islands)

per tested predictor. We discarded predictors that were highly collinear

with others (variance inflation factor�5) in the same model. To meet

the assumptions of parametric tests, we log10-transformed island area,

time since isolation, and where needed, body size (residual distributions

of six of the 16 species were not normal before transformation; Sha-

piro–Wilk normality test) in all analyses. In all cases where we analysed

correlation coefficients (r) as the dependent variable, we used the r val-

ues from regressions of log10-transformed body size (against tested

predictors) for all species to standardize the analysed values.

3 | RESULTS

The best models for body size were highly inconsistent across species.

Each of the predictors we tested was correlated with the body size of

at least one species, but most predictor–body size relationships were

non-significant, and no predictor was important for all species (Table 1).

We found 14 different models (in terms of variables included and trend

signs) across the 16 studied species. Only the snakes Elaphe quatuorli-

neata and Vipera ammodytes shared a similar model. For two snake spe-

cies (Eirenis modestus and Natrix natrix), no predictors were significant.

Explanatory power and effect sizes of each predictor varied greatly

across the 16 species examined, within snakes and lizards separately,

and even within families (Table 2). In only one out of 16 reptile species

(the snake Telescopus fallax) was a quadratic model of body size for

island area significant, and only five species showed a significant linear

relationship (three positive and two negative) between size and area,

when area was tested in univariate models (Figure 1; see full univariate

model statistics in Supporting Information Appendix S6). After model

selection, T. fallax still showed the same quadratic pattern, and signifi-

cant linear relationships emerged only in lizards (positive in two species

and negative in four). In fact, for lizards the island area was the most

frequently significant predictor. For snakes, the distance from the

mainland was the most frequently significant predictor, negatively cor-

related with body size in three species and positively so in one.

When we regressed the correlation coefficient (r) from the regres-

sion of body size against each predictor variable in each study species

against its log body mass, we found a significant negative relationship

for the three isolation indices (distance from the mainland, distance

from the closest larger island and time since isolation). The results for

island area, predator richness and competitor richness in this analysis

were non-significant (Table 3; Figure 2). Regressing the absolute values

of the correlation coefficients from body length–predator richness and

body length–competitor richness regressions against body mass

(n516) showed that the importance of both predation (slope5 .066

.07, p5 .40, R2 5 .05) and interspecific competition (slope5 .086 .06,

p5 .23, R2 5 .10) for body size variation is not size dependent

(Figure 3).

The meta-analyses (Table 4) revealed that none of the predictors

we tested had a significant effect on body size in reptiles overall. Only

the distance from the closest larger island seemed to have a general

(positive) effect on lizards (and a weak one at that). Snake body size,

however, significantly increased with island area, as well as with com-

petitor and predator richness, and declined with the distance from the

mainland and with the time since isolation. The only predictor variable

that did not significantly affect snake body size was the distance from

the closest larger island (i.e., the opposite of the lizard pattern).

4 | DISCUSSION

Aegean island reptiles show great idiosyncrasy in the way their sizes

respond to the factors we studied. We found great pattern diversity

among the species we studied, with effects of the predictor variables

varying in sign, shape (linear, curvilinear) and significance. None of the

predictor variables consistently affected even the majority of species,

and a comparison of the best models across species showed that nearly

all species were affected by a different combination of factors. Very

few consistent patterns emerged, except that most predictors were

uninformative for most species (a consistency of sorts). In line with this

finding, the meta-analysis of effect sizes showed that none of the three

isolation indices significantly drives insular body size of the studied rep-

tiles in a particular direction (i.e., patterns are inconsistent across spe-

cies). Island area, predator richness and competitor richness probably

have no general effect on insular reptile body size. Our results also

revealed striking differences in the response of body size on islands to

environmental conditions in lizards and those in snakes. That said, small

reptile species tend to become larger on more isolated islands, whereas

large species tend to become smaller as geographical and temporal iso-

lation increases.

A common perception in island biogeography is that as islands get

smaller and more isolated, the effects of the insular environment on

the traits of their inhabitants intensify (Filin & Ziv, 2004; Lomolino,

2005; Melton, 1982). However, when the effects of area and isolation

on reptile body size are tested directly, results are often inconsistent.

For snakes, Hasegawa and Moriguchi (1989) found a negative
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correlation between body size and island area, Boback’s (2003) meta-

analysis revealed no correlation between them, and Meik et al. (2010,

2012) found a strong positive correlation in speckled rattlesnakes (Cro-

talus mitchellii). Our meta-analysis results for snakes in general support

the findings of Meik et al. (2010, 2012), but for most species we

studied (seven out of the eight species) island area is not a particularly

important predictor of body size according to model selection (for T.

fallax it is, but the relationship with body size is hump shaped). Boback

(2003) and Meik et al. (2010) found no association between size and

either temporal or geographical isolation, whereas we found a negative

TABLE 3 Results of the regression of the correlation coefficient (r) between body size and each predictor variable in each of the 16 study
species against its log body mass (in grams)

Predictors Slope SE Intercept SE p-value R2

Log area .14 .13 2.11 .21 .32 .07

Distance from the mainland 2.30 .12 .22 .20 .03 .29

Log distance from closest larger island 2.20 .08 .33 .13 .03 .30

Log time since isolation 2.30 .09 .36 .15 .01 .42

Predator richness .20 .11 2.18 .19 .11 .17

Competitor richness .13 .11 2.04 .18 .27 .08

Note. Significant results are highlighted in bold.

FIGURE 1 Body size as a function of island area. (a) Mediodactylus kotschyi. (b) Hemidactylus turcicus. (c) Podarcis erhardii. (d) Podarcis

gaigeae. (e) Podarcis milensis. (f) Ophisops elegans. (g) Lacerta trilineata. (h) Ablepharus kitaibelii. (i) Dolichophis caspius. (j) Eryx jaculus. (k) Eirenis
modestus. (l) Elaphe quatuorlineata. (m) Natrix natrix. (n) Telescopus fallax. (o) Vipera ammodytes. (p) Vipera xanthina. Body size index is as
follows: snout–vent length (SVL) for species a, b, e, f, g and h; log SVL for species c and d; total length for species i, j, k and l; and log total
length for species m, n, o and p. Trend lines indicate a significant relationship (p< .05)
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relationship. The frequent inclusion of island area in the best models of

lizards (for seven out of eight species) is somewhat surprising, consider-

ing results of previous studies (Dunham et al., 1978; Losos, Schoener,

& Spiller, 2004; Meiri, 2007; Soul�e, 1966; but see Donihue et al.,

2016). However, the fact that the direction of the relationship changes

across species points to no general trend.

We cannot support most of Heaney’s (1978) predictions in the

case of reptiles. It is clear that none of the island characteristics we

examined drives reptile body size patterns in the predicted way. More-

over, isolation, regardless of the index tested, shows the opposite pat-

terns. These results highlight a role of island isolation in driving reptile

body size evolution (Lomolino, 2005; Van Valen, 1973). Island area,

however, in contrast to theory (Heaney, 1978; Lomolino, 2005), has no

overall effect on patterns of reptile body size variation on islands, at

least in the Aegean Sea archipelago. Our results also refute Heaney’s

(1978) prediction that interspecific competition influences small species

more strongly than large species, but support his prediction that the

importance of predation for size variation on island is not size biased.

Surprisingly, we found only a few, weak effects of biotic interac-

tions. Given that others have used island area and isolation as proxies

for biotic effects and found significant associations with body size

(Lomolino, 2005), we expected that testing the effect of the biotic

interactions directly would result in stronger patterns. This, however,

proved false. Predator and competitor richness did not affect the body

size of most of our study species (fewer than a quarter of the species

had these factors included in their best model). For snakes, but not for

lizards or for reptiles in general (i.e., as a group), the meta-analysis

showed a tendency towards larger sizes where predator and competi-

tor richness is greater. We think the weak effect of competitor and

predator richness implies that maybe many, possibly inefficient, com-

petitors and predators do not necessarily impose a stronger selection

pressure than one or two dominant competitors or predators.

FIGURE 2 The relationship between the correlation coefficient (r) of body length (in millimetres; snout–vent length for lizards and total
length for snakes; see main text) against each predictor variable and the log mean body mass (in grams) of each species. Panels show: (a)
log island area (in square kilometres); (b) distance from the mainland (in kilometres); (c) log distance from the closest larger island (in
kilometres); (d) log time since isolation (in years); (e) predator richness; and (f) competitor richness. n516 species in all cases. Trend lines
are shown only if they are statistically significant
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Therefore, we suspect that despite its common use as a predation pres-

sure index in the literature (e.g., Cooper, Prez-Mellado, & Vitt, 2004;

P�erez-Mellado, Corti, & Lo Cascioa, 1997), predator richness poorly

reflects predation intensity (Itescu et al., 2017; Meiri et al., 2005). Like-

wise, competitor richness may be a weak index of competition intensity

(Meiri et al., 2014). Another possibility is that significant evolutionary

changes are apparent only on predator-free, rather than predator-poor,

islands.

Two important factors that we did not test in the present study

but are often thought to shape body size evolution on islands are intra-

specific competition and resource limitation (Case, 1978; Melton,

1982). For example, gigantism on islands has been explained by the

need to evolve a large size in conditions of stronger intraspecific

competition, where predation pressure is low (Pafilis et al., 2009). Terri-

toriality, which involves defending resources against conspecifics and

characterizes some of our study species, is also thought to be associ-

ated with larger sizes on islands (Case, 1978; Keehn, Nieto, Tracy,

Gienger, & Feldman, 2013; but see Case & Schwaner, 1993). Richer

resources, in terms of prey size, prey diversity and prey availability, are

usually associated in reptiles with increased body sizes on islands as

well, especially for snakes (Boback, 2003; Hasegawa, 2003; Hasegawa

& Moriguchi, 1989; Meiri, 2007, 2008; Schwaner, 1985; Shine, 1987).

Furthermore, resource limitation may drive cannibalism in insular rep-

tiles, consequently selecting for larger body sizes (Pafilis et al., 2009).

Body size variation on islands is commonly examined under a

framework of adaptations, but one cannot rule out alternative possibil-

ities, such as habitat-driven plastic phenotypic responses (in contrast to

adaptive genetic response) or founder effects. These possibilities seem

especially relevant in our study system, considering the minor effect

that commonly suggested selection agents have on reptile body size

patterns. For example, individual growth rates can vary as a result of

genetic changes (i.e., adaptation) or plastic changes (e.g., more food

permits faster growth). There are indications that plastic growth rate

variability across insular populations resulting from variation in resource

availability might produce non-adaptive body size differences (Case,

1976; Forsman, 1991; Madsen & Shine, 1993). Additionally, where

predators are rare, foraging and basking times may increase, thereby

allowing enhanced growth. Of course, direct selection on growth rates

rather than on body size per se (e.g., owing to ontogenetic differences

in food limitation, competition intensity or size-biased predation pres-

sure) may also drive population-level body size variation (Aubret,

2012). Vincent et al. (2009) proposed that body size variation in snakes

is no more than an evolutionary spandrel, with gape size being the true

trait under selection. Another alternative non-adaptive explanation for

body size variation across populations is that where adult mortality

rates are low (e.g., where predation is low) larger adult sizes are

attained because individuals survive longer, and reptiles grow through-

out their lives (Hasegawa & Mori, 2008; King, 1989). Founder effects

may also have a role in shaping body size patterns, especially in small,

remote and young islands (Kolbe, Leal, Schoener, Spiller, & Losos,

2012). Thus, body size variation is not necessarily or solely adaptive,

and new approaches (Diniz-Filho & Raia, 2017) might allow better

FIGURE 3 The relationship between the absolute value of the
correlation coefficient (r) of body length (in millimetres; SVL for
lizards, total length for snakes, see text) against (a) predator
richness and (b) competitor richness and the log mean body mass
(in grams) of each species

TABLE 4 Meta-analysis results for all reptiles, only lizards and only snakes

All reptiles Lizards Snakes

Predictors Mean r Range (r) p-value Mean r Range (r) p-value Mean r Range (r) p-value

Log area (km2) .108 2.106 to .313 .16 2.082 2.326 to .173 .27 .410 .146 to .620 < .01

Distance from the mainland (km) 2.201 2.433 to .055 .06 .130 2.129 to .372 .16 2.581 2.777 to 2.281 < .01

Log distance from closest
larger island (km)

.068 2.070 to .204 .17 .152 2.028 to .323 .05 2.124 2.361 to .128 .17

Log time since isolation (years) 2.042 2.224 to .142 .33 .077 2.134 to .282 .24 2.263 2.536 to .058 .05

Predator richness .096 2.098 to .284 .16 2.088 2.278 to .108 .19 .443 .182 to .645 < .01

Competitor richness .147 2.035 to .320 .06 .003 2.190 to .196 .49 .423 .179 to .618 < .01

Note. p-values are for H0: mean correlation coefficient (r)50. Significant results are highlighted in bold.
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discrimination between adaptive and non-adaptive patterns in the near

future.

An interesting and important pattern that emerged from our

results is that lizards and snakes, at the sub-order level, differ markedly

in how their sizes respond to the factors we studied. In fact, we found

they show an exactly opposite picture to each other. Lizard body size

shows no general response to island conditions, except for a weak

tendency to decline with distance from the closest larger island. On the

contrary, snake body size responds to most factors apart from distance

from the closest larger island. It tends to increase with island area, com-

petitor richness and predator richness, and to decline with distance

from the mainland and with time since isolation. Generally, the patterns

found for snakes follow the common predictions regarding insular evo-

lution in large species (Heaney, 1978). Interestingly, however, those of

lizards do not follow the patterns predicted for small species (Heaney,

1978), for the most part. The patterns we found for each of the two

groups separately suggest that the overall effect of isolation on reptile

body size is somewhat complex. It is likely that the negative trend in

the cases of the distance from the mainland and time since isolation

are driven by the tendency of snakes (i.e., generally larger species)

towards dwarfism as these factors increase. In contrast, the negative

trend for the distance from the closest larger island is probably driven

by the tendency of lizards (i.e., generally smaller species) to grow larger

on more remote islands. At this point, we cannot discern the reasons

why different isolation indices affect one group more strongly than the

other. However, we speculate either that the effect of isolation reflects

another factor or combination of factors that affect lizards and snakes

differently (e.g., the absence of rats on remote islands, which offer

quality food for snakes, but possibly prey upon lizards and their eggs),

or that the variation of one group is adaptive, whereas that of the other

is led by strong founder effect signals or is non-adaptive. Inconsistent

patterns of lizard and snake body size evolution on islands have been

shown before (e.g., the island rule, cf. Boback & Guyer, 2003 for snakes

and Meiri, 2007 for lizards).

Conducting a comparative study of such a wide scope as this one

will always create logistic and methodological challenges, and several

caveats should be noted. The role of shared ancestral condition in

shaping body size variation on islands needs to be addressed by com-

paring phylogenetic and non-phylogenetic models. However, the

population-level phylogenies currently available for the studied species

did not allow us to examine this aspect robustly. Therefore, we high-

light the importance of island-level molecular studies, which will gener-

ally facilitate further investigation of evolutionary patterns. The nature

of some of our predictors (e.g., competitor richness, predator richness)

necessitates some general assumptions (e.g., that a predator species

preys upon its prey species wherever they coexist, and that we can

correctly identify all important competitors and predators). Given that

we consistently kept these assumptions regarding all species and

islands, we are confident that they have not biased our results. Perhaps

the most important drawback, and the most challenging to face, is small

sample sizes. With almost 10,000 adult reptiles examined, we still came

rather short in samples for some populations and for certain species.

Several species (e.g., Macrovipera schweizeri, Blanus strauchi, Podarcis

levendis) simply occur on too few islands to be analysed properly. For

the rest, an inherent trade-off exists between the numbers of sampled

islands and sampled individuals per island. Our main unit of analysis

was the population, and therefore, we aimed to maximize the number

of islands for each species (thus also maximizing the variance in predic-

tor values). This, however, may come at the expense of accurately

assessing population-level mean body sizes, because for some islands

we had data from only a few individuals. We acknowledge the possibil-

ity that low statistical power might have affected our results in some

cases. Nonetheless, the general patterns and inconsistencies we found

across species are apparent even across the few best-sampled species.

Thus we have confidence that our conclusions are valid. Moreover, the

number of species we examined and the number of insular populations

we sampled within each of these species are both of unprecedented

scope, at least for reptiles. We think this enables us to draw valid con-

clusions robustly from our results.

Our results provide a compelling example for the statistical issue

of which model-selection approach to prefer. The best AIC (or AICc)

models are often poor overall, and thus relying on AIC scores alone can

be problematic for biological inference. For example, using p-values we

infer that none of the predictors we tested explains the variation in

body size of N. natrix and E. modestus. Using AICc, we could show only

that there are multiple predictors that are equally good (i.e., equally bad

in these cases). In many cases, the AICc method simply proves far less

conservative than the p-value-based one (cf. models in Table 2 with

those in Supporting Information Appendix S5). In no case did the

model, or undistinguishable group of models, with the lowest AICc con-

tain fewer predictors than the best model with only significant predic-

tors (at p< .05). Often, however, the models with the lowest AICc

contained more predictors, including predictors that the p-value-based

method rejected as uninformative (Supporting Information Appendix

S5). We think that, if anything, p5 .05 is not conservative enough (e.g.,

Benjamin et al., 2017; Johnson, 2013). Using a model-selection method

that is even more liberal would have made us infer that many variables,

which have the most tenuous relationship with animal size evolution

on islands, are, in fact, important. We thus use p-values not because of

any theoretical views about their merit, but because we prefer to err

on the side of caution.

The results of the present study indicate that, to a large extent, dif-

ferent species respond idiosyncratically to the insular environment.

Thus, reptile body size variation seems to be affected more by species

identity than by island conditions, at least in this study system. This

contradicts the theory asserting that evolutionary patterns of body size

on islands are general across different taxa. The fact that none of the

predictors we tested consistently affected a majority of the species,

and that the best models differed greatly across species, highlights the

importance of testing several potential driving mechanisms simultane-

ously, as we did, to prevent unjustified generalizations from being

reached. We thus conclude that body size evolution on islands is prob-

ably species and island specific, and that generalizations oversimplify

the complex patterns and processes of size evolution. This study eluci-

dates the need for a major re-thinking of the insular evolution para-

digm, away from island characteristics as monotonous predictors of
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animal trait evolution, and into the need to quantify relevant ecological

effects for different study systems.
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