07.12.2017

Professor Brian McGill,

Editor in Chief

Global Ecology and Biogeography

Dear Prof. McGill,

We attach a revised version of our manuscript 'Inconsistent patterns of body size evolution in **co-occurring island reptiles**' (Ref. GEB-2017-0100; title modified according to referee's suggestion). The manuscript was reviewed by a new anonymous referee and the Editor, Dr. Ana Santos, added her own comments. We were happy to see the supportive review and thanks the editor and the referee for their important suggestions. We followed most of these and revised the manuscript accordingly. Below please find a point by point description of how we dealt with each comment. We hope you will find our manuscript is now at level and ready for publication in *Global Ecology and Biogeography*.

Sincerely,

Yuval Itescu on behalf of all authors

Author

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of record. Please cite this article as doi:10.1111/geb.12716.

EDITOR'S COMMENTS TO AUTHORS

Editor: Santos, Ana

Comments to the Author:

First, I want to apologize for the delay in the editorial process. Sometimes it takes longer that we would like to, as it happened with your manuscript.

Your manuscript was evaluated by a referee that was not involved in the first round of reviews. I share his view of your paper, and I think it has improved greatly since your previous submission. This new reviewer suggests that you use and AIC based model selection. I think this is a good suggestion and it would strengthen your results, but I will leave it up to you to decide if you should include these analyses in the manuscript. What I strongly advise you to do is to follow his suggestion of highlighting more your general conclusions that the island rule is not universal.

We thank the editor for her supporting comments. As we specify below, we included AICc scores in a new appendix and highlighted in the abstract and in the concluding paragraph of the discussion that our results contrast the generality theory of size evolution on islands.

Dr. Ana Santos, Editor

REVIEWER COMMENTS TO AUTHORS

Referee: 1

Comments to the Author

Referee: 2

Comments to the Author

This is a nice work. I didn't get to review the first round, but this version seems robust an straightforward, so to me it was a good decision to eliminate the additional analyses on the species with more data. I've got two significant comments, and a few small ones.

To me the lack of general predictive power of your predictors over all species is the most important result, so I'm really glad you chose to put this in front and make a paper about the lack of general "island rules". By highlighting that responses differ among species rather than trying to explain each species separately based on correlations you make a great job, so I'm 100% in line with the importance of the paper and its timeliness. That is why I think you should highlight it a bit more, tweaking the text to put such heterogeneity in front, e.g. in the title, where I use "Heterogeneous" or "Non coherent" rather than "Divergent". Similarly, in the abstract the main conclusions need to start a straightforward sentence saying something like "There are no universal drivers of body size evolution on Aegean reptiles." And also that "this rejects/contradicts former theory". Some of this rewording is needed also in the discussion, although very little. In particular, you need to stress that you are rejecting former theory in the last paragraph, as part of your take-home message.

Thanks for this suggestion. We changed the text according to it.

To me the main problem remaining in the text is model selection. Although I would agree with you in that your selection of models based on R2 scores provides sound insights on the lack of general drivers, so the conclusions will stand out, I found the reasoning not to use AIC scores a bit unconvincing. Since I'm not a biostatistician I could certainly live with it, but after reading your response to Diniz-Filho I wonder whether you used AIC in the correct way, for it penalizes the amount of variables in the model. And AICc scores are particularly suited for datasets with low sample size, as some of yours are. Here, the pick would be to compare models according to their Akaike weight; that is, the probability that a particular model is the most informative. I'm sure you'll have models with, say, 20 or 30% probability competing as the best model for several species. Anyway, I think you shouldn't abandon the information approach so quickly, and provide AICc results in the supplement, although perhaps not the raw results, which I concur, would be confusing.

As we stated in the text (and in the reply to referees in the previous round of revision), we are not comfortable with relying on AIC (or even AICc) scores to determine which model is the most informative, and Mac Nally et al.'s recent paper (Journal of Applied Ecology, 2017, "Model selection using information criteria, but is the 'best' model any good?" http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.13060/abstract) clearly and compellingly explains why: first, the model with the lowest AIC may simply be the best of a group of non-informative models (like the best of infectious diseases - you still do not want it), and second, the penalty AIC applies to adding additional parameters (2) is too modest. We now cite this paper in the text. We also added a paragraph of discussion regarding this point as we think our results serve as a good example for why to prefer p-value based model selection over information criteria based model selection for studies such as ours. Nevertheless, we accept the referee's suggestion to let the readers get our impression themselves, and now present AICc scores of the best models ($\Delta AICc \leq 2$) for each species in a new supplementary file.

To me the most compelling of your results, and actually the real reason why a frequentist approach is sound here, is your meta-analysis. So why not doing something similar based on AIC weights? AIC scores are not comparable among models based on different datasets, but AIC weights are if the same parameters are tested, so why not just summing all AIC weights per predictor across all species? Here the total weight of a predictor for a species it would be the sum of the AICw of all models where it is present. Given that all models are tested for AICw, the closer to 1, the more informative a variable is. And across all species, the closer to 16, the closer it is to be a general predictor, informative regardless of the species. I think I can hear you saying "but we have showed that with the meta-analysis", but I can also hear other readers saying "but they use R2s! Surely there would be general patterns if they had used AICs". So I still find quite useful to show that results are consistent across analytical paradigms. What this approach certainly does not provide is a pick on the homogeneity signs of the relationships, it just tells you about how often it is informative. But your work will be more trustworthy if it includes similar results from a different approach.

We thank the referee for this suggestion but think that using AIC weights to show what we have shown in the meta-analysis is somewhat confusing, especially since, as the referee rightly mentions, it provides no information about the direction of the effect of the predictor. Therefore, although we do show the AICc based models in Appendix 5, we prefer not to include the AIC weights analysis.

Besides that I have little to say. I really think that the decision of leaving out the more detailed analyses on a few species is sound. The current work is clear and straightforward, and stands out as a valuable contribution for GEB in my opinion, and these other analyses can be published elsewhere.

Some minor comments follow:

Abstract. In the methods you don't tell which kind of analyses you use.

Now added.

In line 52 I'd substitute "We analyse" for "We use linear models and meta-analyses to determine which predictors are more informative, analysing the data for all reptiles..."

Sentence rephrased.

Line74. To be certain, here you refer to MacArthur & Wilson's Equilibrium Theory of Island Biogeography (ETIB). Currently island biogeography theory (ibt) includes many other topics, such as, e.g., that habitat heterogeneity within the island also increases species richness, to mention one you may be familiar with, or that increasing isolation and area determine a radiation zone where cladogenesis starts to be more important than anagenesis. No need to cite these latter theories, just rephrase and mention ETIB rather than just ibt.

We actually want to emphasize only the depauperate nature of islands, rather than point to any (often contentious) mechanism, so we added a citation for Darlington (1957) and retain just the citation for the 1963 paper of MacArthur and Wilson, rather than the more inclusive 1967 book

L242-243. Please show these results (as supplementary material), and rephrase this sentence (it is grammatically incorrect)

We now realized that the sentence as we originally phrased it may be a bit misleading: differences between males and females in their response to single predictors do exist in some of the study species, but our general conclusion, that different factors affect body size in different species, is maintained even if we test only females or only males. Since we want to avoid any confusion by our readers, and since the inter-sexual differences in body size evolution are not the focus of this study (but perhaps an interesting study question in its own right), but rather the interspecific differences, we omitted the sentence from the text.

L<u>366</u>. I'd start this paragraph with "Strikingly" or similar, to highlight your most important result (see my first comment).

We thank the referee for this suggestion, but we think that specifically here it is not appropriate to use <u>"strikingly</u>" or other such strong wording, as we are not the first that failed supporting Heaney's prediction.

L483-486. Rephrase this sentence, it is fragmentary and difficult to read. I probably can make out for 2 or 3 separate sentences.

Done.

Figures 2 and 3. Please put variable names in the Y axes, so the reader does not have to jump continuously to the caption to understand the figure.

The names of the variables on the Y axes are now clearly marked in figures 2 & 3.

Autho

Research paper	1
Inconsistent patterns of body size evolution in co-occurring island reptiles.	2
Yuval Itescu ¹ (yuvitescu@gmail.com), Rachel Schwarz ¹	3
(rachelschwarz13@gmail.com), Colin Donihue ² (colin_donihue@fas.harvard.edu),	4
Alex Slavenko ¹ (slavenko@mail.tau.ac.il), Stephanos A. Roussos ^{3,4}	5
(stephanos.roussos@unt.edu), Kostas Sagonas ⁵ (k.sagonas@qmul.ac.uk), Efstratios	6
D. Valakos ⁶ (evalakos@biol.uoa.gr), Johannes Foufopoulos ⁷ (jfoufop@umich.edu),	7
Panayiotis Pafilis ⁶ (ppafil@biol.uoa.gr), Shai Meiri ¹ (uncshai@post.tau.ac.il)	8
¹ School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel	9
² Department of Organismic and Evolutionary Biology, Harvard University,	10
Cambridge, MA 02138, USA	11
³ Department of Biological Sciences, University of North Texas, Denton, TX 76203,	12
USA	13
⁴ Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA	14
⁵ School of Biological and Chemical Sciences, Queen Mary University of London,	15
London E1 4NS, UK	16
⁶ Department of Biology, National and Kapodistrian University of Athens, Athens 157-	17
84, Greece	18
⁷ School of Natural Resources and Environment, University of Michigan, Ann Arbor,	19
Ann Arbor, MI 48109, USA	20
Key words: body size, competition, island area, isolation, lizards, predation,	21
snakes.	22

Short running title: Body size evolution in insular reptiles	23
Corresponding Author: Yuval Itescu, Department of Zoology, Tel Aviv University,	24
Tel Aviv 6997801, Israel; phone: +972 640 9811, fax: +972 640 9403;	25
yuvitescu@gmail.com	26
Number of words in the abstract: 300	27
Number of words in the main text: 5515	28
Number of references: 73	29
	30

ABSTRACT	31
Aim Animal body sizes are often remarkably variable across islands, but despite	32
much research we still poorly understand both patterns and drivers of body-size	33
evolution. Theory predicts that interspecific competition and predation pressures are	34
relaxed on small, remote islands, and that these conditions promote body-size	35
evolution. We studied body size variation across multiple insular populations of 16	36
reptile species co-occurring in the same archipelago and tested which island	37
characteristics primarily drive body-size evolution, what the common patterns are,	38
and whether co-occurring species respond similarly to insular conditions.	39
	40
Location Aegean Sea islands.	41
	42
Time period 1984-2016.	43
	44
Major taxa studied Reptiles.	45
	46
Methods We combined field work, museum measurements, and a comprehensive	47
literature survey to collect data on nearly 10,000 individuals representing eight lizard	48
and eight snake species across 273 islands. We also quantified a large array of	49
predictors to directly assess the effects of island area, isolation (both spatial and	50
temporal), predation and inter-specific competition on body size evolution. We used	51
linear models and meta-analyses to determine which predictors are informative for all	52
reptiles, for lizards and snakes separately, and for each single species.	53
	54

	Results Body size varies with different predictors across the species we studied, and	55
	patterns differ within families and between lizards and snakes. While each predictor	56
	influenced body size in at least one species, no general trend was recovered. As a	57
	group, lizards are hardly affected by any of the predictors we tested, whereas snake	58
	size generally increases with area, competitor and predator richness, and decreases	59
	with isolation.	60
		61
	Main conclusions No factor emerges as a predominant driver of Aegean reptile sizes.	62
2	This contradicts theories of general body-size evolutionary trajectories on islands. We	63
	conclude that overarching generalizations over-simplify patterns and processes of	64
	reptile body-size evolution on islands. Instead, species' autecology and island	65
	particularities interact to drive the course of size evolution.	66

Author

INTRODUCTION

Identifying general pathways in the evolution of body size variation among insular	68
populations has received decades of attention, and multiple patterns and drivers have	69
been proposed and contradicted. Trait evolution on islands is often perceived as	70
strong, predictable and consistent across taxa (Van Valen, 1973; Lomolino, 2005;	71
Köhler et al., 2008). The most debated pattern is the "island rule", suggesting insular	72
animals tend to evolve a medium body size (Van Valen, 1973; Lomolino, 2005;	73
Faubry & Svenning, 2016 cf. Meiri, 2007; Itescu et al., 2014; Leisler & Winkler,	74
2015Insular faunas are generally depauperate, becoming species-poor as islands	75
become smaller and more isolated (e.g., Darlington, 1957; MacArthur & Wilson,	76
1963). Therefore, insular animals are thought to experience relaxed interspecific	77
competition and predation pressures, which, in turn, promote higher population	78
densities and consequently stronger intraspecific competition (Melton, 1982).	79
Together with resource limitation, these ecological processes are commonly thought	80
to drive body size evolution on islands (Case, 1978; Melton, 1982; Lomolino, 2005).	81
Heaney (1978) suggested that the effect of each of these factors changes with the size	82
of the focal island and animal. He hypothesized that interspecific competition is more	83
important to small animals than to large ones and that food limitation is more	84
important to large animals than to small ones. He also hypothesized that the effect of	85
predation is equally important at all sizes, but produces different trends at different	86
body sizes. Additionally, he hypothesized that food limitation is the most important	87
selection agent on small islands, predation on medium-sized islands, and interspecific	88
competition on large islands and the mainland. Alternative explanations for body size	89
variation on islands, suggesting indirect selection of these ecological factors on body	90

size, via direct selection on life history traits, have also been proposed (Adler &	91
Levins, 1994; Palkovacs, 2003).	92
Let init, 1991, 1 unite (ueb, 2005).	52

Area and isolation are the two main island characteristics thought to affect animal	93
body size. Lomolino (2005) suggested that small species increase in size on smaller	94
and more isolated islands while large species become smaller on such islands. Other	95
studies, however, found minor support for such relationships in mammals (Meiri et	96
al., 2005, 2006), snakes (Boback, 2003), and lizards (Meiri, 2007). Heaney (1978)	97
predicted the body size of small mammals decreases while that of large mammals	98
increases with increasing area (see also Melton, 1982; Marquet & Taper, 1998). He	99
further predicted that medium sized animals are largest on intermediate-sized islands,	100
becoming smaller on both smaller and larger islands (Heaney, 1978). However, Meiri	101
et al. (2005) found no support for Heaney's prediction, or for a linear response of size	102
to island area.	103

Isolation can be defined both in space and in time. Spatial isolation, usually calculated 104 as island distance from the nearest mainland (e.g., Anderson & Handley, 2002, Meik 105 et al., 2010), reduces immigration (i.e., gene flow) rates and makes in situ adaptations 106 more likely (Heaney, 2000). The effect of spatial isolation on body size is possibly 107 indirect, reflecting factors such as predation and competition pressures (Heaney, 108 1978; Arnold, 1979). Anderson & Handley (2002) suggested that, where over-water 109 dispersal is unlikely (as in the case of Aegean Sea reptiles, Fouropoulos & Ives, 110 1999), body sizes on close and far islands would not differ. Temporal isolation is 111 thought to be associated with body size in systems where sufficient time since 112 isolation has not yet passed to allow a unidirectional change towards an optimum to 113 be completed (Anderson & Handley, 2002). However, accelerated trait evolution on 114

recently isolated islands has also been suggested (Aubret, 2015). As increased	115
isolation is expected to drive the same phenotypic changes as decreasing island area	116
(Adler & Levins, 1994), Heaney's (1978) prediction for island area is possibly true for	117
isolation as well (i.e., that intermediate-sized species are smallest at intermediate	118
isolation, and larger at low and high degrees of isolation). Furthermore, as Heaney	119
suggested, island area reflects predation and interspecific competition and therefore	120
the pattern suggested for island area should apply to predation and interspecific	121
competition, with the later possibly showing a stronger effect in small species.	122
Reptiles are well-known for their extreme-sized insular forms: giant tortoises and	123
Komodo dragons on one hand, and the world's smallest lizards (Sphaerodactylus	124
geckos and Brookesia chameleons; Hedges & Thomas, 2001; Glaw et al., 2012) and	125
snakes (Caribbean Tetracheilostoma threadsnakes; Hedges, 2008) on the other.	126
Whether reptile body sizes tend to grow or diminish on islands compared to the	127
mainland seems to be a clade-specific characteristic (see e.g., Case, 1978; Boback &	128
Guyer, 2003; Meiri, 2007, 2008). How island area and isolation affect reptile body	129
size evolution is unclear. Previous studies provided inconsistent results (cf. Soulé,	130
1966; Hasegawa & Moriguchi, 1989; Boback, 2003; Meiri, 2007; Meik et al., 2010;	131
Donihue et al., 2016). Release from predation is thought to drive size increase in small	l 132
species and size decrease in large species by relaxing direct selection on size-related	133
anti-predatory adaptations (Heaney, 1978; Vervust et al., 2007). Relaxed interspecific	134
competition allows niche shifts and promotes size changes (Soulé, 1966; Schoener,	135
1970; Case, 1978; Hasegawa, 2003; but see Dunham et al., 1978). Ecological release	136
(both from predators and interspecific competitors) is also thought to promote higher	137
population densities, and consequently stronger intraspecific competition and	138
aggressiveness (Pafilis et al., 2009; Donihue et al., 2016), which in turn favors large	139

Global Ecology and Biogeography

sizes, although smaller size is expected where early maturity is advantageous (Melton, 140 1982; Palkovacs, 2003). 141

To date, insular reptile body size evolution studies either contrasted mainland and 142 island species or populations (e.g., Case, 1978; Boback & Guyer, 2003; Meiri, 2007; 143 Itescu et al., 2014), or examined the effects of some predictors across populations of a 144 single species (e.g., Soulé, 1966; Meik et al., 2010) or genus (Dunham et al., 1978). It 145 remains unclear which island characteristics primarily drive body size evolution, what 146 the common patterns are, and whether co-occurring species respond similarly to 147 insular conditions. Which factor is most influential is sometimes debated even for a 148 single species (cf. Calsbeek & Cox, 2010, 2011; Losos & Pringle, 2011). Therefore, 149 we approached these questions by directly quantifying the effect of multiple potential 150 selection agents across multiple island populations of multiple reptile species within a 151 single archipelago. Comparing species co-occurring within the same archipelago 152 allows one to eliminate island-specific factors that vary across different regions such 153 as latitude, climate, vegetation, primary productivity, etc., but remain relatively 154 uniform among such co-occurring species (Meiri et al., 2008). This study design 155 potentially enables us to distinguish between patterns driven by the island conditions 156 we studied and those that are species-specific. 157

We assembled a database of unprecedented coverage encompassing body size data for158nearly 10,000 individuals of 16 reptile species (eight lizard and eight snake species),159from 273 islands in the Aegean Sea. These islands vary widely in area, isolation and160faunal composition. Body size in reptile populations on these islands also varies161greatly (and in some species even reaches the maximal documented size, Itescu et al.,1622016), making this system ideal to study size evolution on islands. We aimed to test163

several hypotheses: 1. Small species increase in size while large species become	164
smaller as islands decrease in area, increase in isolation (in time and space), and	165
harbor fewer predators and competitors for the focal species (Heaney, 1978;	166
Lomolino, 2005); 2. Medium sized species are largest on intermediate-sized islands	167
and intermediate degrees of isolation, predation and competition (Heaney, 1978); 3.	168
Interspecific competition affects small species more strongly than large species while	169
the effect of predation is not size-dependent (Heaney, 1978); 4. Body size patterns on	170
islands are consistent across taxa (Lomolino, 2005; Köhler et al., 2008).	171
	. = 0
METHODS	172
Study system	173
The Aegean Sea has several thousand islands varying across six orders of magnitude	174
in area. Their geological histories are diverse (Lymberakis & Poulakakis, 2010) and	174
the landscapes are a patchwork of dwarf Mediterranean scrub (locally called	176
'phrygana'), sclerophyllous evergreen maquis and agricultural areas (Fielding et al.,	177
2005). Consequently, faunal composition and resource availability vary greatly across	178
islands. Fifty reptile species inhabit Aegean Sea islands, with the gecko	179
Mediodactylus kotschyi and the lacertid Podarcis erhardii being most common,	180
inhabiting even very small islets (Valakos et al., 2008).	181
Data collection	182
We measured specimens in the field during spring and summer periodically over 33	183
years (1984-2016). We further measured specimens in eight museum collections	184
(Zoologische Staatssammlung München, Zoologische Forschungsmuseum Alexander	185
Koenig in Bonn, Natural History Museum of Crete, Goulandris Natural History	186

Museun	n, British Natural History Museum, French National Museum of Natural	187
History,	Museum of Comparative Zoology at Harvard University, and Yale Peabody	188
Museun	n of Natural History). Finally, we comprehensively surveyed literature and	189
recorded	d body size information for as many Aegean island reptiles as possible (data	190
were ex	tracted from 97 sources; see Appendix 1 for a list). We recorded sex and body	191
size for	9951 adult individuals of eight lizard and eight snake species originating from	192
273 isla	nds (Table 1, Appendix 2). We used the most commonly reported size indices:	193
snout-ve	ent length (SVL) for lizards, and total length for snakes. Mean body mass for	194
each spe	ecies was calculated from data we recorded in the field and from the literature.	195
To ensu	re our use of multiple data sources did not bias the results, we compared the	196
mean bo	ody size of specimens measured in museum collections and specimens	197
measure	ed in the field for several islands. We compared only islands from which we	198
recorded	d body size data of at least five males and five females for each data source.	199
For the	two species with sufficient data we found no differences between sources (P.	200
erhardii	: field mean SVL=61.05 mm, museum=60.43 mm, n=38 islands, t=1.22,	201
p=0.23;	<i>M. kotschyi</i> : field=43.35 mm, museum=43.68 mm, n=25, t=-1.05, p=0.30).	202
We ther	efore pooled museum, literature and field data in all further analyzes.	203
Followin	ng most island biogeography studies (studies of body size included; e.g.,	204
	, 2003; Lomolino, 2005; Meiri et al., 2005), we tested the distance from the	205
	mainland as an index of spatial isolation. However, for land-bridge island	206
	this index may not adequately quantify effective isolation (Itescu, 2017),	207
especial	ly in the Aegean Sea archipelago (Foufopoulos & Ives, 1999). Therefore we	208
also stud	died the distance from the closest larger island and a temporal isolation index,	209
the time	since isolation. Distances were calculated using Google Earth tools. Periods	210
	ion for islands isolated during the past 20,000 years (since the end of the last	211
	· · · ·	

glacial maximum – "LGM") were calculated by crossing data for the maximum depth	212
between a focal island and the last landmass to which it was connected with regional-	213
specific charts of sea-level change since the LGM (see Fourfopoulos & Ives, 1999;	214
Four for four four four four four four fo	215
bathymetric maps of the Hellenic Navy Hydrographic Service	216
(www.hnhs.gr/geoindex/). Estimations were calculated to a one year resolution, and	217
we did not round values although we acknowledge and do not presume our method	218
can accurately estimate isolation time at such a fine resolution. Temporal isolation of	219
islands isolated earlier than the LGM were assembled from the literature (Appendix	220
3). We assembled island-specific faunal lists based on the literature and our own field	221
observations to count the potential predator and competitor species of each focal	222
population. Predators were defined as all mammals and reptiles likely to prey upon	223
focal species (Appendix 4). Birds were excluded since their mobility across islands	224
and their seasonal migration allows them to hunt well away from their breeding sites,	225
making it impossible to create reliable island-specific lists. To ensure that excluding	226
birds did not significantly affect our predator richness values we tested the correlation	227
between predatory bird richness values and the combined counts of predatory	228
mammal and predatory reptiles across 41 islands for which we did have reasonably	229
reliable predatory bird lists (Itescu et al., 2017). The correlation coefficient (r) was	230
0.90 (p<0.01). We therefore feel confident to exclude bird counts from our database.	231
We could not quantify potential predatory arthropods (e.g., spiders, scorpions,	232
centipedes) since reports on either predation on reptiles by arthropods, and island	233
specific faunal list for them are too rare. Competitors were defined as other lizards	234
(for lizards) or other snakes (for snakes), assuming that juveniles of large species	235
potentially compete with adults of smaller species.	236

Analyses

	We examined 16 reptile species for which we had measurements of at least three	238
	individuals per population sampled across at least eight islands. This approach	239
	allowed us to maximize the number of species and populations as well as the range of	240
	islands and hence, maximize variation in the predictor variables. To avoid size biases	241
	due to sexual size dimorphism, we calculated population mean body size by averaging	242
	male and female means. Only for Ablepharus kitaibelii we used a mean of all	243
	individuals regardless of sex since reliably determining their sex in the field in a non-	244
	invasive manner is extremely difficult.	245
	We first explored for each species whether the relationship of body size with each of	246
	the six island characteristics (island area, distance from the mainland, distance from	247
	the closest larger island, time since isolation, predator richness, and competitor	248
	richness) is linear or curvilinear. To test Heaney's (1978) prediction that the	249
	relationship between size evolution of species and each of the predictor variables is	250
	affected by the species body size we regressed the correlation coefficient of the	251
	relationship between body size (i.e. body length) and each of the six predictor	252
	variables, against log-transformed body mass of each species. We expected to find a	253
	positive relationship where Heaney's prediction holds, since it asserts small species	254
	would show negative body size-predictor slopes, medium-sized species would have	255
	slopes equal to zero, and large species show positive slopes (see Meiri et al., 2005).	256
2	To test Heaney's prediction that interspecific competition is more important for small	257
	species than for large species while predation is equally important across all size	258
	classes, we regressed the absolute value of the correlation coefficients against log-	259
	transformed body mass. Here we expected to find a significant negative trend for	260

	interspecific competition and no trend for predation if the prediction holds. We used	261
	body mass as the predictor variable in these analyses since it is comparable across	262
	taxa, eliminating biases driven by body shape, and therefore is more suitable for inter-	263
	specific comparisons than body length (Feldman & Meiri, 2013; Feldman et al.,	264
	2016). We then took a meta-analytic approach to explore whether any island	265
	characteristic significantly affects body size across all reptiles we studied in general or	266
	across each suborder (snakes and lizards) separately. We conducted DerSimonian-	267
	Laird random-effect meta-analysis of correlation coefficients (r) of the linear	268
- 2	regressions of body size against each predictor variable in all species as effect sizes,	269
	for each group separately. We used the correlation coefficients from regressions of	270
	log10-transformed body size (against tested predictors) for all species, to standardize	271
	the r values we analyzed. The meta-analyses were performed using the 'metacor' R	272
	package (Laliberté, 2011). Finally, we examined for each species which of the six	273
	island characteristics comprise the model that best predicts its body size on islands	274
	and compared the selected best models across species. To this end we performed a	275
	multiple regression test for each species, followed by a backward-stepwise model	276
	selection procedure based on p-values (α <0.05), using both linear and quadratic terms.	277
	We avoided using the Akaike information criteria for model selection (AIC or AICc	278
	scores) because the models with the lowest scores often had predictors which were	279
	poorly associated with size (i.e. had p values >0.05 when significance levels were	280
	estimated), making them non-informative (models with the lowest scores merely	281
- 2	being the best of a collection of poor models; Arnold, 2010; Mac Nally et al., 2017).	282
	Thus, the much maligned p-value approach proved more conservative. Nevertheless,	283
	we present the AICc-based best models for each species in Appendix 5 to highlight	284
	that our general conclusions are robust for using different model-selection approaches.	285

Global Ecology and Biogeography

We avoided over-parameterization by limiting models to include a maximum of three	286
data points (i.e., islands) per tested predictor. We discarded predictors which were	287
highly co-linear with others (variance inflation factor \geq 5) in the same model. To meet	288
the assumptions of parametric tests we log10-transformed island area, time since	289
isolation, and where needed, body size (residual distributions of six of the 16 species	290
were not normal before transformation; Shapiro-Wilk normality test) in all analyses.	291
In all cases where we analyzed correlation coefficients (r) as the dependent variable	292
we used the r values from regressions of log10-transformed body size (against tested	293
predictors) for all species to standardize the analyzed values.	294
RESULTS	295
The best models for body size were highly inconsistent across species. Each of the	296
predictors we tested was correlated with the body size of at least one species, but most	297
predictor-body size relationships were non-significant, and no predictor was important	298
for all species (Table 1). We found 15 different models (in terms of variables included	299
and trend signs) across the 16 studied species. Only the snakes <i>Elaphe quatuorlineata</i>	300
and Vipera ammodytes shared a similar model. For two snake species (Eirenis	301
modestus and Natrix natrix) no predictors were significant. Explanatory power and	302
effect sizes of each predictor varied greatly across the 16 species examined, within	303
snakes and lizards separately, and even within families (Table 2). In only one out of	304
16 reptile species (the snake <i>Telescopus fallax</i>) was a quadratic model of body size for	305
island area significant, and only five species showed a significant linear relationship	306
(three positive and two negative) between size and area, when area was tested in	307
univariate models (Fig. 1; see full univariate model statistics in Appendix 6).	308
Following model selection, <i>T. fallax</i> still showed the same quadratic pattern, and	309

significant linear relationships emerged only in lizards (positive in two species and	310
negative in four). In fact, for lizards island area was the most frequently significant	311
predictor. For snakes, distance from the mainland was the most frequently significant	312
predictor, negatively correlated with body size in three species and positively so in	313
one.	314
When we regressed the correlation coefficient (r) from the regression of body size	315
against each predictor variable in each study species against its log body mass, we	316
found a significant negative relationship for the three isolation indices (distance from	317
the mainland, distance from the closest larger island and time since isolation). The	318
results for island area, predator richness and competitor richness in this analysis were	319
non-significant (Table 3, Fig. 2). Regressing the absolute values of the correlation	320
coefficients from body length-predator richness and body length-competitor richness	321
regressions against body mass (n=16) showed that the importance of both predation	322
(slope= 0.06 ± 0.07 , p= 0.40 . R ² = 0.05) and interspecific competition (slope= 0.08 ± 0.06 ,	323
p=0.23. R^2 =0.10) for body size variation is not size-dependent (Fig. 3).	324
The meta-analyses (Table 4) revealed that none of the predictors we tested had a	325
significant effect on body size in reptiles overall. Only the distance from the closest	326
larger island seemed to have a general (positive) effect on lizards (and a weak one at	327
that). Snake body size, however, significantly increased with island area, as well as	328
with competitor and predator richness, and declined with the distance from the	329
mainland and with time since isolation. The only predictor variable that did not	330
significantly affect snake body size was the distance from the closest larger island	331
(i.e., the opposite of the lizard pattern).	332
DISCUSSION	333
	-

Aegean island reptiles show great idiosyncrasy in the way their sizes respond to the	334
factors we studied. We found great pattern diversity among the species we studied,	335
with effects of the predictor variables varying in sign, shape (linear, curvilinear) and	336
significance. None of the predictor variables consistently affected even the majority of	337
species, and a comparison of the best models across species showed that nearly all	338
species were affected by a different combination of factors. Very few consistent	339
patterns emerged, except that most predictors were uninformative for most species (a	340
consistency of sorts). In line with this finding, the meta-analysis of effect sizes	341
showed that none of the three isolation indices significantly drives insular body size of	342
the studied reptiles in a particular direction (i.e., patterns are inconsistent across	343
species). Island area, predator richness, and competitor richness likely have no general	344
effect on insular reptile body size. Our results also revealed striking differences in the	345
response of body size on islands to environmental conditions in lizards and those in	346
snakes. That said, small reptile species tend to become larger on more isolated islands,	347
while large species tend to become smaller as geographic and temporal isolation	348
increases	349
A common perception in island biogeography is that as islands get smaller and more	350
isolated, the effects of the insular environment on the traits of their inhabitants	351
intensify (Melton, 1982; Filin & Ziv, 2004; Lomolino, 2005). However, when the	352
effects of area and isolation on reptile body size are directly tested, results are often	353
inconsistent. For snakes, Hasegawa & Moriguchi (1989) found a negative correlation	354
between body size and island area, Boback's (2003) meta-analysis revealed no	355
correlation between them, and Meik et al. (2010, 2012) found a strong positive	356
correlation in speckled rattlesnakes (Crotalus mitchellii). Our meta-analysis results for	357
snakes in general support the findings of Meik et al. (2010, 2012), but for most	358

species we studied (seven out of the eight species) island area is not a particularly	359
important predictor of body size according to model selection (for Telescopus fallax it	360
is, but the relationship with body size is hump-shaped). Boback (2003) and Meik et al.	361
(2010) found no association between size and either temporal or geographic isolation	362
whereas we found a negative relationship. The frequent inclusion of island area in the	363
best models of lizards (for seven out of eight species) is somewhat surprising	364
considering results of previous studies (Soulè, 1966; Dunham et al., 1978; Losos et	365
al., 2004; Meiri, 2007, but see Donihue et al., 2016). However, the fact that the	366
direction of the relationship changes across species points to no general trend.	367
We cannot support most of Heaney's (1978) predictions in the case of reptiles. It is	368
clear that none of the island characteristics we examined drives reptile body size	369
patterns in the predicted way. Moreover, isolation, regardless of the index tested,	370
shows the opposite patterns. These results highlight a role of island isolation in	371
driving reptile body size evolution (Van Valen, 1973; Lomolino, 2005). Island area,	372
however, in contrast to theory (Heaney, 1978; Lomolino, 2005), has no overall effect	373
on patterns of reptile body size variation on islands, at least in the Aegean Sea	374
archipelago. Our results also refute Heaney's (1978) prediction that interspecific	375
competition influences small species more strongly than large species, but supports	376
his prediction that the importance of predation for size variation on island is not size-	377
biased.	378
Surprisingly, we only found few, weak effects of biotic interactions. As others have	379
used island area and isolation as proxies for biotic effects and found significant	380
associations with body size (Lomolino, 2005), we expected that testing the effect of	381
the biotic interactions directly would result in stronger patterns. This, however,	382
proved false. Predator and competitor richness did not affect body size of most of our	383
47	

Global Ecology and Biogeography

study species (less than a quarter of the species had these factors included in their best	384
model). For snakes, but not for lizards or for reptiles in general (i.e., as a group), the	385
meta-analysis showed a tendency towards larger sizes where predator and competitor	386
richness is greater. We think the weak effect of competitor and predator richness	387
implies that maybe many, possibly inefficient, competitors and predators do not	388
necessarily impose a stronger selection pressure than one or two dominant	389
competitors\predators. Therefore, we suspect that despite its common use as a	390
predation pressure index in the literature (e.g., Pérez-Mellado et al., 1997; Cooper et	391
al., 2004), predator richness poorly reflects predation intensity (Meiri et al., 2005;	392
Itescu et al., 2017). Similarly, competitor richness may be a weak index of	393
competition intensity (Meiri et al., 2014). Another possibility is that significant	394
evolutionary changes are apparent only on predator-free, rather than predator-poor,	395
islands.	396
Two important factors that we did not test in this study but are often thought to shape	396 397
Two important factors that we did not test in this study but are often thought to shape	397
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation	397 398
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation (Case, 1978; Melton, 1982). For example, gigantism on islands has been explained by	397 398 399
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation (Case, 1978; Melton, 1982). For example, gigantism on islands has been explained by the need to evolve a large size under conditions of stronger intra-specific competition,	397 398 399 400
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation (Case, 1978; Melton, 1982). For example, gigantism on islands has been explained by the need to evolve a large size under conditions of stronger intra-specific competition, where predation pressure is low (Pafilis et al., 2009). Territoriality, which involves	397 398 399 400 401
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation (Case, 1978; Melton, 1982). For example, gigantism on islands has been explained by the need to evolve a large size under conditions of stronger intra-specific competition, where predation pressure is low (Pafilis et al., 2009). Territoriality, which involves defending resources against conspecifics and characterizes some of our study species,	 397 398 399 400 401 402
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation (Case, 1978; Melton, 1982). For example, gigantism on islands has been explained by the need to evolve a large size under conditions of stronger intra-specific competition, where predation pressure is low (Pafilis et al., 2009). Territoriality, which involves defending resources against conspecifics and characterizes some of our study species, is also thought to be associated with larger sizes on islands (Case, 1978; Keehn et al.,	 397 398 399 400 401 402 403
Two important factors that we did not test in this study but are often thought to shape body size evolution on islands are intraspecific competition and resource limitation (Case, 1978; Melton, 1982). For example, gigantism on islands has been explained by the need to evolve a large size under conditions of stronger intra-specific competition, where predation pressure is low (Pafilis et al., 2009). Territoriality, which involves defending resources against conspecifics and characterizes some of our study species, is also thought to be associated with larger sizes on islands (Case, 1978; Keehn et al., 2013, but see Case & Schwaner, 1993). Richer resources, in terms of prey size, prey	 397 398 399 400 401 402 403 404

Furthermore, resource limitation may drive cannibalism in insular reptiles,	408
consequently selecting for larger body sizes (Pafilis et al., 2009).	409
While body size variation on islands is commonly examined under a framework of	410
adaptations, one cannot rule out alternative possibilities such as habitat-driven plastic	411
phenotypic responses (in contrast to adaptive genetic response) or founder effects.	412
These possibilities seem especially relevant in our study system, considering the	413
minor effect commonly suggested selection agents have on reptile body size patterns.	414
For example, individual growth rates can vary as a result of genetic changes (i.e.,	415
adaptation) or plastic changes (e.g., more food permits faster growth). There are	416
indications that plastic growth rate variability across insular populations resulting	417
from variation in resource availability may produce non-adaptive body size	418
differences (Case, 1976; Forsman, 1991; Madsen & Shine, 1993). Additionally, where	419
predators are rare, foraging and basking times may increase, thereby allowing	420
enhanced growth. Of course, direct selection on growth rates rather than on body size	421
per se (e.g., due to ontogenetic differences in food limitation, competition intensity or	422
size-biased predation pressure) may also drive population-level body size variation	423
(Aubret, 2012). Vincent et al. (2009) proposed that body size variation in snakes is no	424
more than an evolutionary spandrel, with gape size being the true trait under selection.	425
Another alternative non-adaptive explanation for body size variation across	426
populations is that where adult mortality rates are low (e.g., where predation is low)	427
larger adult sizes are attained because individuals survive longer and reptiles grow	428
throughout their lives (King, 1989; Hasegawa & Mori, 2008). Founder effects may	429
also have a role in shaping body size patterns, especially in small, remote and young	430
islands (Kolbe et al., 2012). Thus body size variation is not necessarily or solely	431

	adaptive, and novel approaches (Diniz-Filho & Raia, 2017) may allow better	432
	discrimination between adaptive and non-adaptive patterns in the near future.	433
	An interesting and important pattern that emerged from our results is that lizards and	434
	snakes, at the sub-order level, differ markedly in how their sizes respond to the factors	435
	we studied. In fact, we found they show an exactly opposite picture to each other.	436
	Lizard body size shows no general response to island conditions, except for a weak	437
	tendency to decline with distance from the closest larger island. In contrast, snake	438
	body size responds to most factors apart from distance from the closest larger island.	439
	It tends to increase with island area, competitor richness and predator richness, and to	440
	decline with distance from the mainland and with time since isolation. Generally, the	441
	patterns found for snakes follow the common predictions regarding insular evolution	442
	in large species (Heaney, 1978). Interestingly, however, those of lizards do not follow	443
	the patterns predicted for small species (Heaney, 1978), in the most part. The patterns	444
2	we found for each of the two groups separately, suggest that the overall effect of	445
	isolation on reptile body size is somewhat complex. Likely, the negative trend in the	446
	cases of the distance from the mainland and time since isolation are driven by the	447
	tendency of snakes (i.e., generally larger species) towards dwarfism as these factors	448
	increase. In contrast, the negative trend for the distance from the closest larger island	449
	is probably driven by the tendency of lizards (i.e., generally smaller species) to grow	450
	larger on more remote islands. At this point we cannot discern the reasons different	451
	isolation indices affect one group more strongly than the other. However, we	452
	speculate that either the effect of isolation reflects another factor or combination of	453
	factors that affect lizards and snakes differently (e.g., the absence of rats on remote	454
	islands, which offer quality food for snakes, but possibly prey upon lizards and their	455
	eggs), or that the variation of one group is adaptive, while that of the other is led by	456

strong founder effect signals or is non-adaptive. Inconsistent patterns of lizard and	457
snake body size evolution on islands have been shown before (e.g., the island rule, cf.	458
Boback & Guyer, 2003 for snakes and Meiri, 2007 for lizards).	459
Conducting a comparative study of such a wide scope as this one will always create	460
logistic and methodological challenges and several caveats should be noted. The role	461
of shared ancestral condition in shaping body size variation on islands needs to be	462
addressed by comparing phylogenetic and non-phylogenetic models. However, the	463
population-level phylogenies currently available for the studied species did not allow	464
us to robustly examine this aspect. Therefore, we highlight the importance of island-	465
level molecular studies, which will generally facilitate further investigation of	466
evolutionary patterns. The nature of some of our predictors (e.g., competitor richness,	467
predator richness) necessitates some general assumptions (e.g., that a predator species	468
preys upon its prey species wherever they co-exist, and that we can correctly identify	469
all important competitors and predators). Since we consistently kept these	470
assumptions regarding all species and islands, we are confident they have not biased	471
our results. Perhaps the most important drawback, and most challenging to face, is	472
small sample sizes. With almost 10,000 adult reptiles examined we still came quite	473
short in samples for some populations and for certain species. Several species (e.g.,	474
Macrovipera schweizeri, Blanus strauchi, Podarcis levendis) simply occur on too few	475
islands to be properly analyzed. For the rest, an inherent trade-off exists between the	476
numbers of sampled islands and sampled individuals per island. Our main unit of	477
analysis was the population and therefore we aimed to maximize the number of	478
islands for each species (thus also maximizing the variance in predictor values). This,	479
however, may come at the expense of accurately assessing population-level mean	480
body sizes because for some islands we only had data from few individuals. We	481

Global Ecology and Biogeography

-	acknowledge the possibility that low statistical power may have affected our results in	482
	some cases. Yet, the general patterns and inconsistencies we found across species are	483
:	apparent even across the few best-sampled species, thus we have confidence our	484
	conclusions are valid. Moreover, the number of species we examined and the number	485
	of insular populations we sampled within each of these species are both of	486
	unprecedented scope, at least for reptiles. We think this enables us to robustly draw	487
	valid conclusions from our results.	488
	Our results provide a compelling example for the statistical issue of which model-	489
	selection approach to prefer. The best AIC (or AICc) models are often poor overall	490
	and thus relying on AIC scores alone can be problematic for biological inference. For	491
	example, using p-values we infer that none of the predictors we tested explains the	492
9	variation in body size of Natrix natrix and Eirenis modestus. Using AICc, we could	493
	only show that there are multiple predictors that are equally good (i.e. equally bad in	494
	these cases). In many cases the AICc method simply proves far less conservative than	495
1	the p-value based one (cf. models in Table 2 to those in Appendix 5). In no case did	496
	the model, or undistinguishable group of models, with the lowest AICc contain fewer	497
	predictors than the best model with only significant predictors (at $p < 0.05$). Often,	498
	however, the models with the lowest AICc contained more predictors – including	499
	predictors that the p-value based method rejected as uninformative (Appendix 5). We	500
	think that, if anything, $p = 0.05$ is not conservative enough (e.g., Johnson, 2013;	501
	Benjamin et al., 2017). Using a model selection method that is even more liberal	502
	would have made us infer that many variables, that have the most tenuous relationship	503
	with animal size evolution on islands, are actually important. We thus use p values not	504
	because of any theoretical views about its merit, but because we prefer to err on the	505
:	side of caution.	506

	The results of this study indicate that to a large extent different species respond	507
	idiosyncratically to the insular environment. Thus, reptile body size variation seems to	508
	be affected more by species identity than by island conditions, at least in this study	509
	system. This contradicts the theory asserting that evolutionary patterns of body size on	510
	islands are general across different taxa. The fact that none of the predictors we tested	511
	consistently affected a majority of the species, and that the best models differed	512
	greatly across species, highlights the importance of testing several potential driving	513
	mechanisms simultaneously, as we did, to prevent unjustified generalizations from	514
1	being reached. We thus conclude that body size evolution on island is probably	515
	species- and island-specific, and generalizations over-simplify the complex patterns	516
	and processes of size evolution. This study elucidates the need for a major re-thinking	517
	of the insular evolution paradigm, away from island characteristics as monotonous	518
	predictors of animal trait evolution, and into the need to quantify relevant ecological	519
	effects for different study systems.	520
	ACKNOWLEDGMENTS	521
	ACKNOWLEDGMENTS We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury,	521 522
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury,	522
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury,	522 523
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury, Menachem Kurzits, Shani Levinkind, Amir Lewin, Erez Maza, Michael Mosses, Gaya	522 523 524
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury, Menachem Kurzits, Shani Levinkind, Amir Lewin, Erez Maza, Michael Mosses, Gaya Savion, Eylon Sharoni, Achiad Sviri, Oliver Tallowin, Karin Tamar, Alexandros	522 523 524 525
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury, Menachem Kurzits, Shani Levinkind, Amir Lewin, Erez Maza, Michael Mosses, Gaya Savion, Eylon Sharoni, Achiad Sviri, Oliver Tallowin, Karin Tamar, Alexandros Vezyrakis and Keren-Or Werheimer for all their help with field work. We deeply	522 523 524 525 526
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury, Menachem Kurzits, Shani Levinkind, Amir Lewin, Erez Maza, Michael Mosses, Gaya Savion, Eylon Sharoni, Achiad Sviri, Oliver Tallowin, Karin Tamar, Alexandros Vezyrakis and Keren-Or Werheimer for all their help with field work. We deeply appreciate the assistance of Michael Franzen, and Frank Glaw (Zoologische	522 523 524 525 526 527
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury, Menachem Kurzits, Shani Levinkind, Amir Lewin, Erez Maza, Michael Mosses, Gaya Savion, Eylon Sharoni, Achiad Sviri, Oliver Tallowin, Karin Tamar, Alexandros Vezyrakis and Keren-Or Werheimer for all their help with field work. We deeply appreciate the assistance of Michael Franzen, and Frank Glaw (Zoologische Staatssammlung München), Dennis Rödder, Ursula Butt, and Wolfgang Böhme	522 523 524 525 526 527 528
	We thank Aviv Bejerano, Stav Brown, Nir Einav, Tamar Freud, Alison Gainsbury, Efrat Golan, Eden Goshen, Anat Hartmann, Simon Jamison, Lama Khoury, Menachem Kurzits, Shani Levinkind, Amir Lewin, Erez Maza, Michael Mosses, Gaya Savion, Eylon Sharoni, Achiad Sviri, Oliver Tallowin, Karin Tamar, Alexandros Vezyrakis and Keren-Or Werheimer for all their help with field work. We deeply appreciate the assistance of Michael Franzen, and Frank Glaw (Zoologische Staatssammlung München), Dennis Rödder, Ursula Butt, and Wolfgang Böhme (Zoologische Forschungsmuseum Alexander Koenig, Bonn), Petros Lymberakis and	522 523 524 525 526 527 528 529

Diniz-Filho, and two anonymous reviewers for providing insightful and constructive	532
reviews, that greatly contributed to improve earlier versions of this paper. All work	533
was conducted with permission from the Greek Ministry of Environment, Energy, and	534
Climate Change (Permit 20305/824). The study was funded by an Israel Science	535
Foundation (ISF) grant #1005/12. The authors have no conflict of interests to declare.	536
SUPPORTING INFORMATION	537
Appendix 1. Reference list for literature containing body size data.	538
Appendix 2. Data used for analyses.	539
Appendix 3. Literature sources for isolation time of islands isolated before LGM.	540
Appendix 4. A list of potential predator species included in our analyses.	541
Appendix 5. Best models for each species based on AICc scores.	542
Appendix 6. Full statistics of single-predictor linear and curvilinear models.	543
DATA ACCESSIBILITY	544
All the data analyzed in this study is available in Appendix 2.	545
BIOSKETCH	546
Yuval Itescu is a PhD candidate interested in the biogeographic patterns and the	547
processes driving the evolution of morphological and life history trait variation of	548
animals in general and insular animals specifically. He is also fascinated by the	549
implications of the insular environment on the ecology of insular fauna.	550
REFERENCES	551

	Adler, G.H. & Levins, R. (1994) The island syndrome in rodent populations. The	552
	Quarterly Review of Biology, 69, 473-490.	553
- 1	Anderson, R.P. & Handley, C.O. (2002) Dwarfism in insular sloths: biogeography,	554
	selection, and evolutionary rate. <i>Evolution</i> , 56 , 1045-1058.	555
	Arnold, E.N. (1979) Indian Ocean giant tortoises: their systematics and island	556
	adaptations. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 286 , 127-145.	557 558
	Arnold, T.W. (2010) Uninformative parameters and model selection using Akaike's	559
	Information Criterion. Journal of Wildlife Management, 74, 1175-1178.	560
	Aubret, F. (2012) Body-size evolution on islands: are adult size variations in tiger	561
	snakes a nonadaptive consequence of selection on birth size? The American	562
	Naturalist, 179, 756-767.	563
	Aubret, F. (2015) Island colonisation and the evolutionary rates of body size in insular	564
	neonate snakes. <i>Heredity</i> , 115 , 349-356.	565
	Benjamin, D.J., Berger, J.O., Johannesson, M., Nosek, B.A., Wagenmakers, EJ.,	566
	Berk, R., Bollen, K.A., Brembs, B., Brown, L., Camerer, C., Cesarini, D., Chambers,	567
	C.D., Clyde, M., Cook, T.D., De Boeck, P., Dienes, Z., Dreber, A., Easwaran, K.,	568
	Efferson, C., Fehr, E., Fidler, F., Field, A.P., Forster, M., George, E.I., Gonzalez, R.,	569
- 2	Goodman, S., Green, E., Green, D.P., Greenwald, A., Hadfield, J.D., Hedges, L.V.,	570
	Held, L., Ho, T.H., Hoijtink, H., Hruschka, D.J., Imai, K., Imbens, G., Ioannidis,	571
	J.P.A., Jeon, M., Jones, J.H., Kirchler, M., Laibson, D., List, J., Little, R., Lupia, A.,	572
	Machery, E., Maxwell, S.E., McCarthy, M., Moore, D., Morgan, S.L., Munafó, M.,	573

Nakagawa, S., Nyhan, B., Parker, T.H., Pericchi, L., Perugini, M., Rouder, J.,	574
Rousseau, J., Savalei, V., Schönbrodt, F.D., Sellke, T., Sinclair, B., Tingley, D., Van	575
Zandt, T., Vazire, S., Watts, D.J., Winship, C., Wolpert, R.L., Xie, Y., Young, C.,	576
Zinman, J. & Johnson, V.E. (2017) Redefine statistical significance. Nature Human	577
Behaviour, DOI:10.1038/s41562-017-0189-z.	578
Boback, S.M. (2003) Body size evolution in snakes: evidence from island	579
populations. <i>Copeia</i> , 2003 , 81-94.	580
Boback, S.M. & Guyer, C. (2003) Empirical evidence for an optimal body size in	581
snakes. Evolution, 57, 345-451.	582
Calsbeek, R. & Cox, R.M. (2010) Experimentally assessing the relative importance of	583
predation and competition as agents of selection. <i>Nature</i> , 465 , 613-616.	584
Calsbeek, R. & Cox, R.M. (2011) Calsbeek & Cox reply. Nature, 475, E3-E3.	585
Case, T.J. (1976) Body size differences between populations of the chuckwalla,	586
Sauromalus obesus. Ecology, 57, 313-323.	587
Case, T.J. (1978) A general explanation for insular body size trends in terrestrial	588
vertebrates. Ecology, 59, 1-18.	589
Case, T.J. & Schwaner, T.D. (1993) Island/mainland body size differences in	590
Australian varanid lizards. <i>Oecologia</i> , 94 , 102-109.	591
Cooper, W.E., Pérez-Mellado, V. & Vitt, L.J. (2004) Ease and effectiveness of costly	592
autotomy vary with predation intensity among lizard populations. <i>Journal of Zoology</i> ,	593
262 , 243-255.	594

Darlington, P.J. (1957) Zoogeography: the geographical distribution of animals. John	595
Wiley & Sons, New York.	596
Diniz-Filho, J.A.F. & Raia, P. (2017) Island Rule, quantitative genetics and brain-	597
body size evolution in <i>Homo floresiensis</i> . Proceedings of the Royal Society B:	598
Biological Sciences, 284, 20171065.	599
Donihue, C.M., Brock, K.M., Foufopoulos, J. & Herrel, A. (2016) Feed or fight:	600
testing the impact of food availability and intraspecific aggression on the functional	601
ecology of an island lizard. <i>Functional Ecology</i> , 30 , 566-575.	602
Dunham, A.E., Tinkle, D.W. & Gibbons, J.W. (1978) Body Size in Island Lizards: A	603
Cautionary Tale. <i>Ecology</i> , 59 , 1230-1238.	604
Faurby, S. & Svenning, JC. (2016) Resurrection of the Island Rule: Human-Driven	605
Extinctions Have Obscured a Basic Evolutionary Pattern. The American Naturalist,	606
187 , 812-820.	607
Feldman, A. & Meiri, S. (2013) Length-mass allometry in snakes. <i>Biological Journal</i>	608
of the Linnean Society, 108, 161-172.	609
Feldman, A., Sabath, N., Pyron, R.A., Mayrose, I. & Meiri, S. (2016) Body sizes and	610
diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global	611
Ecology and Biogeography, 25 , 187-197.	612
Fielding, J., Turland, N.J. & Mathew, B. (2005) Flowers of Crete, Royal Botanic	613
Gardens, Kew, London, Surrey, UK.	614

	Filin, I. & Ziv, Y. (2004) New theory of insular evolution: unifying the loss of	615
	dispersability and body-mass change. Evolutionary Ecology Research, 6, 115-124.	616
nî	Forsman, A. (1991) Variation in sexual size dimorphism and maximum body size	617
	among adder populations: effects of prey size. The Journal of Animal Ecology, 60,	618
	253-267.	619
	Foufopoulos, J. & Ives, A.R. (1999) Reptile extinctions on land-bridge islands: life-	620
	history attributes and vulnerability to extinction. <i>The American Naturalist</i> , 153 , 1-25.	621
	Fourfopoulos, J., Kilpatrick, A.M. & Ives, A.R. (2011) Climate change and elevated	622
	extinction rates of reptiles from Mediterranean islands. The American Naturalist, 177,	623
	119-129.	624
	Glaw, F., Köhler, J., Townsend, T.M. & Vences, M. (2012) Rivaling the world's	625
\geq	smallest reptiles: discovery of miniaturized and microendemic new species of leaf	626
	chameleons (Brookesia) from northern Madagascar. Plos One, 7, e31314.	627
	Hasegawa, M. (2003) Ecological diversification of insular terrestrial reptiles: a review	628
	of the studies on the lizard and snakes of the Izu Islands. Global Environmental	629
	Research, 7, 59-68.	630
	Hasegawa, M. & Mori, A. (2008) Does a gigantic insular snake grow faster or live	631
	longer to be gigantic? Evidence from a long-term field study. South American Journal	632
ŝ	of Herpetology, 3 , 145-154.	633
	Hasegawa, M. & Moriguchi, H. (1989) Geographic variation in food habits, body size	634
	and life history traits of the snakes on the Izu Islands. Current Herpetology in East	635

	Asia (ed. by M. Matui, T. Hikida and R.C. Goris), pp. 414-432. The Herpetological	636
	Society of Japan.	637
ń	Heaney, L.R. (1978) Island area and body size of insular mammals: evidence from the	638
	tri-colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution, 32, 29-44.	639
	Heaney, L.R. (2000) Dynamic disequilibrium: a long-term, large-scale perspective on	640
	the equilibrium model of island biogeography. Global Ecology and Biogeography, 9,	641
	59-74.	642
j	Hedges, S.B. (2008) At the lower size limit in snakes: two new species of	643
	threadsnakes (Squamata: Leptotyphlopidae: Leptotyphlops) from the Lesser Antilles.	644
	<i>Zootaxa</i> , 1841 , 1-30.	645
	Hedges, S.B. & Thomas, R. (2001) At the lower size limit in amniote vertebrates: a	646
	new diminutive lizard from the West Indies. Caribbean journal of Science, 37, 168-	647
	173.	648
	Itescu, Y. (2017) Evolution on islands: testing the extent and consistency of the effects	649
	of island characteristics. Ph.D. thesis, Tel Aviv University, Israel.	650
	Itescu, Y., Karraker, N.E., Raia, P., Pritchard, P.C.H. & Meiri, S. (2014) Is the island	651
	rule general? Turtles disagree. <i>Global Ecology and Biogeography</i> , 23 , 689-700.	652
j,	Itescu, Y., Schwarz, R., Meiri, S. & Pafilis, P. (2017) Intra-specific competition, not	653
	predation, drives lizard tail loss on islands. Journal of Animal Ecology, 86, 66-74.	654

Itescu, Y., Schwarz, R., Moses, M., Pafilis, P. & Meiri, S. (2016) Record sizes for the	655
Turkish house gecko, Hemidactylus turcicus, from Aegean islands, Greece. The	656
Herpetological Bulletin, 138, 24-26.	657
Johnson, V.E. (2013) Revised standards for statistical evidence. Proceedings of the	658
National Academy of Sciences, 110, 19313-19317.	659
Keehn, J.E., Nieto, N.C., Tracy, C.R., Gienger, C.M. & Feldman, C.R. (2013)	660
Evolution on a desert island: body size divergence between the reptiles of Nevada's	661
Anaho Island and the mainland around Pyramid Lake. Journal of Zoology, 291, 269-	662
278.	663
King, R.B. (1989) Body size variation among island and mainland snake populations.	664
<i>Herpetologica</i> , 45 , 84-88.	665
Köhler, M., Moyà-Solà, S. & Wrangham, R.W. (2008) Island rules cannot be broken.	666
Trends in Ecology & Evolution, 23, 6-7.	667
Kolbe, J.J., Leal, M., Schoener, T.W., Spiller, D.A. & Losos, J.B. (2012) Founder	668
effects persist despite adaptive differentiation: a field experiment with lizards.	669
<i>Science</i> , 335 , 1086-1089.	670
Laliberté, E. (2011) Metacor: Meta-analysis of correlation coefficients. R package.	671
http://CRAN.R-project.org/package=metacor	672
Leisler, B. & Winkler, H. (2015) Evolution of island warblers: beyond bills and	673
masses. Journal of Avian Biology, 46 , 236-244.	674

	Lomolino, M.V. (2005) Body size evolution in insular vertebrates: generality of the	675
	island rule. <i>Journal of Biogeography</i> , 32 , 1683-1699.	676
нî	Losos, J.B. & Pringle, R.M. (2011) Competition, predation and natural selection in	677
	island lizards. Nature, 475, E1-E2.	678
	Losos, J.B., Schoener, T.W. & Spiller, D.A. (2004) Predator-induced behaviour shifts	679
	and natural selection in field-experimental lizard populations. <i>Nature</i> , 432 , 505-508.	680
1	Lymberakis, P. & Poulakakis, N. (2010) Three continents claiming an archipelago:	681
	the evolution of Aegean's herpetofaunal diversity. Diversity, 2, 233-255.	682
	MacArthur, R.H. & Wilson, E.O. (1963) An equilibrium theory of insular	683
	zoogeography. Evolution, 17, 373-387.	684
	Mac Nally, R., Duncan, R.P., Thomson, J.R. & Yen, J.D.L. (2017) Model selection	685
	using information criteria, but is the 'best' model any good? Journal of Applied	686
	<i>Ecology</i> , DOI: 10.1111/1365-2664.13060.	687
	Madsen, T. & Shine, R. (1993) Phenotypic plasticity in body sizes and sexual size	688
	dimorphism in European grass snakes. Evolution, 47, 321-325.	689
	Marquet, P.A. & Taper, M.L. (1998) On size and area: patterns of mammalian body	690
	size extremes across landmasses. Evolutionary Ecology, 12, 127-139.	691
	Meik, J.M., Lawing, A.M. & Pires-daSilva, A. (2010) Body size evolution in insular	692
	speckled rattlesnakes (Viperidae: Crotalus mitchellii). Plos One, 5, e9524.	693
	Meik, J.M., Schaack, S., Ingrasci, M.J., Lawing, A.M., Setser, K., Mociño-Deloya, E.	694
	& Flores-Villela, O. (2012) Notes on activity, body size variation, and diet in insular	695

	speckled rattlesnakes from the western Sea of Cortés, Mexico. Herpetological Review,	696
Z	43 , 556-560.	697
- 6	Meiri, S. (2007) Size evolution in island lizards. Global Ecology and Biogeography,	698
	16 , 702-708.	699
	Meiri, S. (2008) Evolution and ecology of lizard body sizes. Global Ecology and	700
C	<i>Biogeography</i> , 17 , 724-734.	701
	Meiri, S., Dayan, T. & Simberloff, D. (2005) Area, isolation and body size evolution	702
	in insular carnivores. Ecology Letters, 8, 1211-1217.	703
	Meiri, S., Kadison, A.E., Novosolov, M., Pafilis, P., Foufopoulos, J., Itescu, Y., Raia,	704
	P. & Pincheira-Donoso, D. (2014) The number of competitor species is unlinked to	705
	sexual dimorphism. Journal of Animal Ecology, 83, 1302-1312.	706
	Meiri, S., Meijaard, E., Wich, S.A., Groves, C.P. & Helgen, K.M. (2008) Mammals of	707
	Borneo-small size on a large island. Journal of Biogeography, 35, 1087-1094.	708
	Melton, R.H. (1982) Body size and island <i>Peromyscus</i> : a pattern and a hypothesis.	709
	Evolutionary theory, 6, 113-126.	710
	Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. (2009) Intraspecific competition	711
	and high food availability are associated with insular gigantism in a lizard.	712
ŝ	Naturwissenschaften, 96 , 1107-1113.	713
	Palkovacs, E.P. (2003) Explaining adaptive shifts in body size on islands: a life	714
	history approach. Oikos, 103, 37-44.	715

Journal of Zoology, 243, 533-541. 7 Schoener, T.W. (1970) Size patterns in West Indian Anolis lizards. II. Correlations 7 with the sizes of particular sympatric species-displacement and convergence. The 7 American Naturalist, 104, 155-174. 7 Schwaner, T.D. (1985) Population structure of black tiger snakes, Notechis ater niger, 7 on offshore islands of South Australia. Biology of Australasian frogs and reptiles (ed. 7 by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New 7 South Wales. 7 South Wales. 7 South Wales. 7 Valkralian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240. 7 Nutralian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240. 7 Yalakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & 7 Fourfopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira, 7 Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Pérez-Mellado, V., Corti, C. & Lo Cascioa, P. (1997) Tail autotomy and extinction in	716
Schoener, T.W. (1970) Size patterns in West Indian Anolis lizards. II. Correlations 7 With the sizes of particular sympatric species-displacement and convergence. The 7 American Naturalist, 104, 155-174. 7 Schwaner, T.D. (1985) Population structure of black tiger snakes, Notechis ater niger, 7 on offshore islands of South Australia. Biology of Australasian frogs and reptiles (ed. 7 by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New 7 South Wales. 7 Shine, R. (1987) Ecological comparisons of island and mainland populations of 7 Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240. 7 Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist, 7 100, 47-64. 7 Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & 7 Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Mediterranean lizards. A preliminary study of continental and insular populations.	717
with the sizes of particular sympatric species-displacement and convergence. The 7 American Naturalist, 104, 155-174. 7 Schwaner, T.D. (1985) Population structure of black tiger snakes, Notechis ater niger, 7 on offshore islands of South Australia. Biology of Australasian frogs and reptiles (ed. 7 by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New 7 South Wales. 7 Shine, R. (1987) Ecological comparisons of island and mainland populations of 7 Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240. 7 Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist, 7 100, 47-64. 7 Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & 7 Foufopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira, 7 Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Journal of Zoology, 243 , 533-541.	718
with the sizes of particular sympatric species-displacement and convergence. The 7 American Naturalist, 104, 155-174. 7 Schwaner, T.D. (1985) Population structure of black tiger snakes, Notechis ater niger, 7 on offshore islands of South Australia. Biology of Australasian frogs and reptiles (ed. 7 by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New 7 South Wales. 7 Shine, R. (1987) Ecological comparisons of island and mainland populations of 7 Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240. 7 Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist, 7 100, 47-64. 7 Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & 7 Foufopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira, 7 Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7		
 American Naturalist, 104, 155-174. Schwaner, T.D. (1985) Population structure of black tiger snakes, Notechis ater niger, on offshore islands of South Australia. Biology of Australasian frogs and reptiles (ed. by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New South Wales. Shine, R. (1987) Ecological comparisons of island and mainland populations of Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240. Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist, 100, 47-64. Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & Foulopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira, Frankfurt am Main. Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49. Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 	Schoener, T.W. (1970) Size patterns in West Indian Anolis lizards. II. Correlations	719
 Schwaner, T.D. (1985) Population structure of black tiger snakes, <i>Notechis ater niger</i>, on offshore islands of South Australia. <i>Biology of Australasian frogs and reptiles</i> (ed. by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New South Wales. Shine, R. (1987) Ecological comparisons of island and mainland populations of Australian tigersnakes (<i>Notechis</i>: Elapidae). <i>Herpetologica</i>, 43, 233-240. Soulé, M. (1966) Trends in the insular radiation of a lizard. <i>The American Naturalist</i>, 100, 47-64. Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i>. Edition Chimaira, Frankfurt am Main. Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i>, 1, 31-49. Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 	with the sizes of particular sympatric species-displacement and convergence. The	720
 on offshore islands of South Australia. <i>Biology of Australasian frogs and reptiles</i> (ed. by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New South Wales. Shine, R. (1987) Ecological comparisons of island and mainland populations of Australian tigersnakes (<i>Notechis</i>: Elapidae). <i>Herpetologica</i>, 43, 233-240. Soulé, M. (1966) Trends in the insular radiation of a lizard. <i>The American Naturalist</i>, 100, 47-64. Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i>. Edition Chimaira, Frankfurt am Main. Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i>, 1, 31-49. Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 	American Naturalist, 104, 155-174.	721
 by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New South Wales. Shine, R. (1987) Ecological comparisons of island and mainland populations of Australian tigersnakes (<i>Notechis</i>: Elapidae). <i>Herpetologica</i>, 43, 233-240. Soulé, M. (1966) Trends in the insular radiation of a lizard. <i>The American Naturalist</i>, 7 100, 47-64. Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i>. Edition Chimaira, Frankfurt am Main. Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i>, 1, 31-49. Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7 	Schwaner, T.D. (1985) Population structure of black tiger snakes, <i>Notechis ater niger</i> ,	722
South Wales.7Shine, R. (1987) Ecological comparisons of island and mainland populations of7Australian tigersnakes (<i>Notechis</i> : Elapidae). <i>Herpetologica</i> , 43 , 233-240.7Soulé, M. (1966) Trends in the insular radiation of a lizard. <i>The American Naturalist</i> ,7100, 47-64.7Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. &7Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i> . Edition Chimaira,7Frankfurt am Main.7Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1 , 31-49.7Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology,7	on offshore islands of South Australia. Biology of Australasian frogs and reptiles (ed.	723
 Shine, R. (1987) Ecological comparisons of island and mainland populations of Australian tigersnakes (<i>Notechis</i>: Elapidae). <i>Herpetologica</i>, 43, 233-240. Soulé, M. (1966) Trends in the insular radiation of a lizard. <i>The American Naturalist</i>, 100, 47-64. Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i>. Edition Chimaira, Frankfurt am Main. Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i>, 1, 31-49. Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 	by G. Grigg, R. Shine and H. Ehmann), pp. 35-46. Royal Zoological Society of New	724
Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240.7Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist,7100, 47-64.7Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. &7Foufopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira,7Frankfurt am Main.7Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49.7Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology,7	South Wales.	725
Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240.7Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist,7100, 47-64.7Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. &7Foufopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira,7Frankfurt am Main.7Van Valen, L. (1973) Pattern and the balance of nature. Evolutionary theory, 1, 31-49.7Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology,7		
Soulé, M. (1966) Trends in the insular radiation of a lizard. <i>The American Naturalist</i> ,7100, 47-64.7Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. &7Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i> . Edition Chimaira,7Frankfurt am Main.7Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1, 31-49.7Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology,7	Shine, R. (1987) Ecological comparisons of island and mainland populations of	726
100, 47-64.7Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. &7Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i> . Edition Chimaira,7Frankfurt am Main.7Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1, 31-49.7Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology,7	Australian tigersnakes (Notechis: Elapidae). Herpetologica, 43, 233-240.	727
Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. & 7 Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i> . Edition Chimaira, 7 Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Soulé, M. (1966) Trends in the insular radiation of a lizard. The American Naturalist,	728
Foufopoulos, J. (2008) <i>The amphibians and reptiles of Greece</i> . Edition Chimaira, 7 Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	100 , 47-64.	729
Frankfurt am Main. 7 Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1, 31-49. 7 Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P. &	730
Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1 , 31-49. Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Foufopoulos, J. (2008) The amphibians and reptiles of Greece. Edition Chimaira,	731
Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology, 7	Frankfurt am Main.	732
	Van Valen, L. (1973) Pattern and the balance of nature. <i>Evolutionary theory</i> , 1 , 31-49.	733
performance and behaviour between recently diverged populations of <i>Podarcis sicula</i> 7	Vervust, B., Grbac, I. & Van Damme, R. (2007) Differences in morphology,	734
	performance and behaviour between recently diverged populations of Podarcis sicula	735
mirror differences in predation pressure. <i>Oikos</i> , 116 , 1343-1352.	mirror differences in predation pressure. Oikos, 116, 1343-1352.	736

Vincent, S.E., Brandley, M.C., Kuriyama, T., Mori, A., Herrel, A. & Hasegawa, M.	737
(2009) Insular gigantism and dwarfism in a snake, adaptive response or spandrel to	738
selection on gape size. Nature Precedings,	739
http://precedings.nature.com/documents/3360/version/1.	740
0	741
Appendices containing references for data sources	742
Appendix 1 - Reference list for literature containing body size data	743
Appendix 3 - Literature sources for isolation time of islands isolated before the LGM.	744
Appendix 4. A list of potential predator species included in our analyses (with	745
references for sources indicating their potential as reptile predators).	746

Author Mai

Global Ecology and Biogeography

Page 40 of 50

Table 1. Summary of data and the effects of each predictor on each species. (+) marks a positive correlation; (-) a negative correlation; (U) a747positive quadratic relationship; (\cap) a negative quadratic relationship; (NS) non-significant correlation; Full statistics of all models (with sample748sizes) are given in Table 2. Population mean size range refers to SVL in lizards and total length in snakes.749

Group	Family	Species	Islands	Individuals	Population mean size range (mm)	Species mean body mass (g)	Area	Distance from the mainland	Distance from closest larger island	Time since isolation	Predators	Competitors
	Gekkonidae	Hemidactylus turcicus	27	270	42.04 - 59.89	3.3	+	NS	NS	NS	NS	NS
	Gerkollidae	Mediodactylus kotschyi	86	2071	33.52 - 49.88	2.8		NS	NS	NS	NS	Ω
		Podarcis erhardii	118	5323	52.87 - 75.23	6.0				NS	NS	NS
		Podarcis gaigeae	14	641	57.37 - 77.67	8.4	NS	-			NS	NS
Lizards	Lacertidae	Podarcis milensis	8	116	53.65 - 67.09	4.1	-	NS	NS	+	NS	NS
		Lacerta trilineata	16	231	107.33 - 141.85	69.9			NS	NS	NS	NS
		Ophisops elegans	14	143	40.10 - 48.53	2.0		NS	NS	NS		NS
	Scincidae	Ablepharus kitaibelii	24	180	35.66 - 44.84	1.4	NS	+	NS	NS	NS	NS
	Boidae	Eryx jaculus	8	48	269.79 - 516.33	52.5	NS	-	NS	NS		NS
		Dolichophis caspius	11	72	1085.40 - 1886.00	625.2	NS	NS	NS	NS		+
		Eirenis modestus	8	33	386.00 - 543.00	19.8	NS	NS	NS	NS	NS	NS
Snakes	Colubridae	Elaphe quatuorlineata	11	70	1036.20 - 1525.61	846.9	NS	-	NS	NS	NS	NS
Snakes		Natrix natrix	11	55	566.25 - 910.00	91.6	NS	NS	NS	NS	NS	NS
		Telescopus fallax	12	56	477.43 - 903.33	44.9	Ω	NS	NS	NS	NS	NS
	Viperidae	Vipera ammodytes	15	152	281.33 - 592.25	28.1	NS		NS	NS	NS	NS
	vipendae	Vipera xanthina	8	51	490.78 - 1493.33	276.0	NS	NS	NS	U	NS	NS

Table 2. Best models by species. n is island sample size. Body size was log10-750

transformed in species marked with (*).

Group	Family	Species	n	Predictor	Slope	SE	Intercept	SE	Р	Adjusted R ²
		Hemidactylus turcicus	27	log area	1.91	0.59	46.37	1.01	<0.01	0.26
	Gekkonidae	Mediodactylus kotschyi	86	log area competitor richness competitor richness (^2)	-0.86 2.81 -0.38	0.44 0.81 0.12	39.64	0.88	0.05 <0.01 <0.01	0.10
		Podarcis erhardii*	118	log area distance from the mainland log distance from closest larger landmass	(-)<0.01 (-)<0.01 0.01	<0.01 <0.01 <0.01	1.80	<0.01	0.02 0.01 0.04	0.07
Lizards	Lacertidae	Podarcis gaigeae*	14	distance from the mainland log distance from closest larger landmass log time since isolation	(-)<0.01 0.07 -0.08	<0.01 0.02 0.02	2.53	0.19	<0.01 0.01 <0.01	0.51
		Podarcis milensis	8	log area log time since isolation	-2.23 2.06	0.74 0.68	48.63	3.80	0.03 0.03	0.75
		Lacerta trilineata	16	log area distance from the mainland	-7.28 0.14	3.01 0.05	136.02	7.45	0.03 0.01	0.43
		Ophisops elegans	14	log area predator richness	3.06 -0.67	1.00 0.28	41.61	1.28	0.01 0.04	0.36
	Scincidae	Ablepharus kitaibelii	24	distance from the mainland	0.03	0.01	39.13	0.73	<0.01	0.30
	Boidae Eryx jaculus		8	distance from the mainland predator richness	-5.77 -26.20	0.55 3.56	1302.57	89.63	<0.01 <0.01	0.94
Snakes		Dolichophis caspius	11	predator richness competitor richness	-326.08 447.95	88.43 116.38	2751.25	391.42	0.01 <0.01	0.58
	Colubridae Elaphe quatuorlineata		8	none	-	-	-	-	-	-
			11	distance from the mainland	-2.79	0.48	1482.29	37.59	<0.01	0.77
		Natrix natrix*	11	none	-	-	-	-	-	-
		Telescopus fallax*	12	log area (log area)^2	0.55 -0.09	0.21 0.04	2.04	0.26	0.03 0.04	0.43
	Viperidae	Vipera	15	distance from the mainland	(-)<0.01	<0.01	2.74	0.04	< 0.01	0.63

Group	Family	Species	n	Predictor	Slope	SE	Intercept	SE	Р	Adjusted
oroup		- profiles			Stope	51	linercept	51		\mathbf{R}^2
		ammodytes*								
		Vipera		log time since isolation	-6.94	1.86			0.01	
		xanthina*	8	(log time since isolation)^2	0.71	0.19	19.42	4.39	0.01	0.65
]	7	/52
	C								7	53
		p-								
		5								
	Ω	5								
	\geq									
	L									
	A tth	5								

Table 3. Results of the regression of the correlation coefficient (r) between body size754and each predictor variable in each of the 16 study species against its log body mass755(g). Significant results are highlighted in bold.756

Predictors	Slope	SE	Intercept	SE	Р	R ²
Log area	0.14	0.13	-0.11	0.21	0.32	0.0
Distance from the mainland	-0.30	0.12	0.22	0.20	0.03	0.2
Log Distance from closest larger island	-0.20	0.08	0.33	0.13	0.03	0.3
Log Time since isolation	-0.30	0.09	0.36	0.15	0.01	0.4
Predator richness	0.20	0.11	-0.18	0.19	0.11	0.1
Competitor richness	0.13	0.11	-0.04	0.18	0.27	0.0

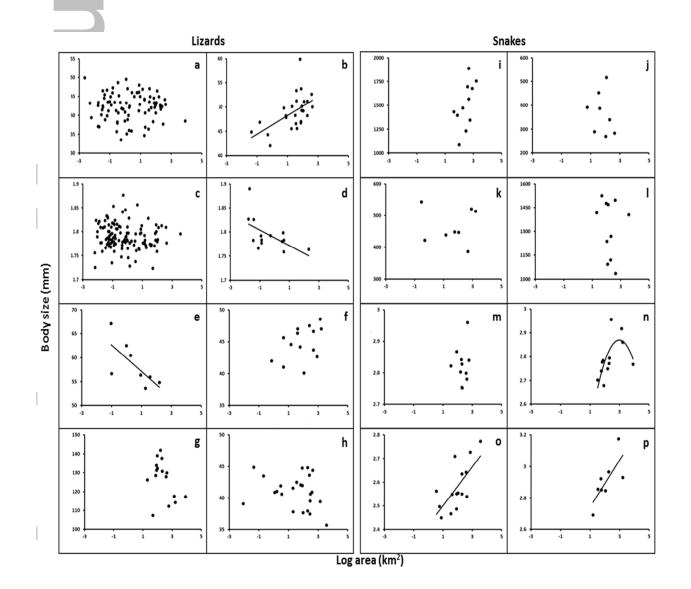
757

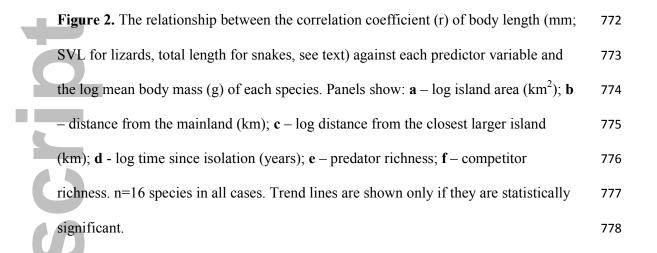
758

an 0 Auth

Table 4. Meta-analysis results for all reptiles, only lizards and only snakes. P values759are for H_0 : r=0. Significant results are highlighted in bold.760

Predictors		All reptiles			Lizards		Snakes				
Treaterors	Mean r	Range (r)	Р	Mean r	Range (r)	Р	Mean r	Range (r)	Р		
Log area (km ²)	0.108	-0.106 - 0.313	0.16	-0.082	-0.326 - 0.173	0.27	0.410	0.146 - 0.620	<0.01		
Distance from the mainland (km)	-0.201	-0.433 - 0.055	0.06	0.130	-0.129 - 0.372	0.16	-0.581	-0.7770.281	<0.01		
Log distance from closest larger island (km)	0.068	-0.070 - 0.204	0.17	0.152	-0.028 - 0.323	0.05	-0.124	-0.361 - 0.128	0.17		
Log time since isolation (years)	-0.042	-0.224 - 0.142	0.33	0.077	-0.134 - 0.282	0.24	-0.263	-0.536 - 0.058	0.05		
Predator richness	0.096	-0.098 - 0.284	0.16	-0.088	-0.278 - 0.108	0.19	0.443	0.182 - 0.645	<0.01		
Competitor richness	0.147	-0.035 - 0.320	0.06	0.003	-0.190 - 0.196	0.49	0.423	0.179 – 0.618	<0.01		


761


762

763

Author N

Figure 1. Body size as a function of island area: a – <i>Mediodactylus kotschyi</i> ; b –	764
Hemidactylus turcicus; \mathbf{c} – Podarcis erhardii; \mathbf{d} – Podarcis gaigeae; \mathbf{e} – Podarcis	765
milensis; \mathbf{f} – Ophisops elegans; \mathbf{g} – Lacerta trilineata; \mathbf{h} – Ablepharus kitaibelii; \mathbf{i} –	766
Dolichophis caspius; \mathbf{j} – Eryx jaculus; \mathbf{k} – Eirenis modestus; \mathbf{l} – Elaphe	767
quatuorlineata; \mathbf{m} – Natrix natrix; \mathbf{n} – Telescopus fallax; \mathbf{o} – Vipera ammodytes; \mathbf{p} –	768
Vipera xanthina. Body size index is: SVL for species a, b, e, f, g, h; Log SVL for	769
species c, d; Total length for species i, j, k, l; Log total length for species m, n, o, p.	770
Full trend lines indicate a significant relationship (p<0.05).	771

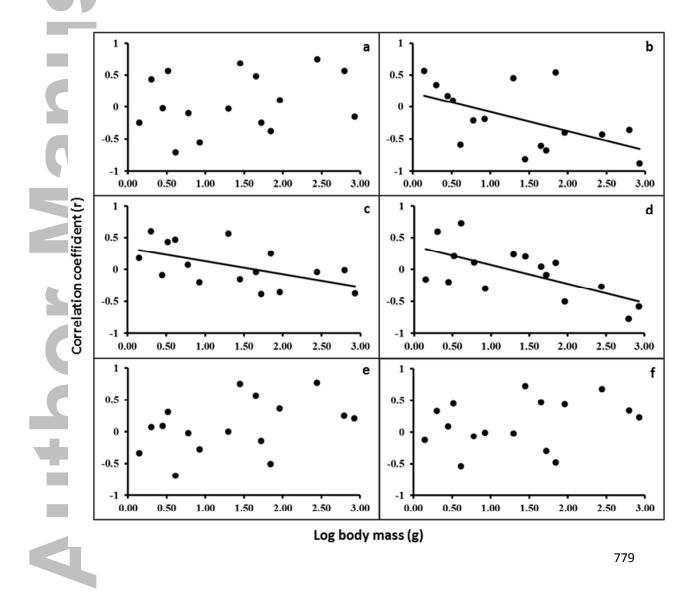
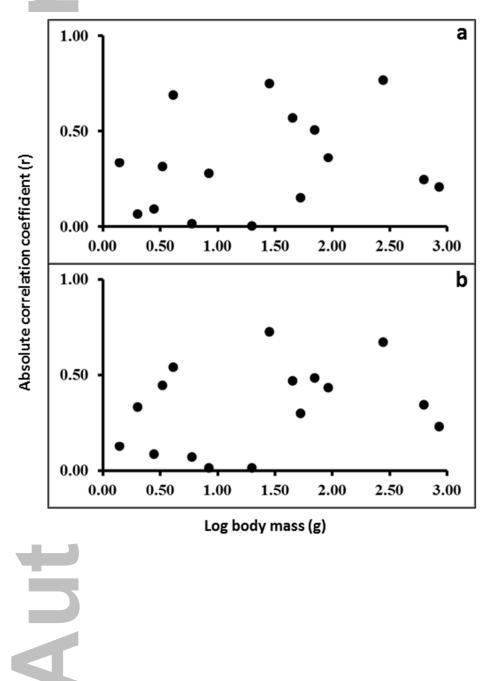



Figure 3. The relationship between the absolute value of the correlation coefficient (r)780of body length (mm; SVL for lizards, total length for snakes, see text) against predator781richness (a) and competitor richness (b) and the log mean body mass (g) of each782species.783

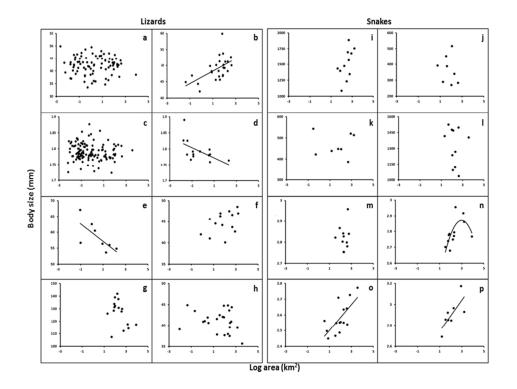


Figure 1. Body size as a function of island area: a – Mediodactylus kotschyi; b – Hemidactylus turcicus; c –
Podarcis erhardii; d – Podarcis gaigeae; e – Podarcis milensis; f – Ophisops elegans; g – Lacerta trilineata; h
Ablepharus kitaibelii; i –Dolichophis caspius; j – Eryx jaculus; k – Eirenis modestus; l – Elaphe
quatuorlineata; m – Natrix natrix; n – Telescopus fallax; o – Vipera ammodytes; p – Vipera xanthina. Body
size index is: SVL for species a, b, e, f, g, h; Log SVL for species c, d; Total length for species i, j, k, l; Log
total length for species m, n, o, p. Full trend lines indicate a significant relationship (p<0.05).

81x60mm (300 x 300 DPI)

Autho

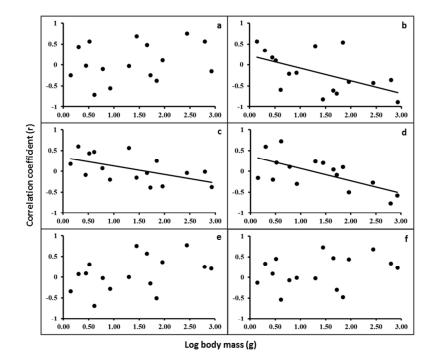


Figure 2. The relationship between the correlation coefficient (r) of body length (mm; SVL for lizards, total length for snakes, see text) against each predictor variable and the log mean body mass (g) of each species. Panels show: a – log island area (km2); b – distance from the mainland (km); c – log distance from the closest larger island (km); d - log time since isolation (years); e – predator richness; f – competitor richness. n=16 species in all cases. Trend lines are shown only if they are statistically significant.

81x60mm (300 x 300 DPI)

Autho

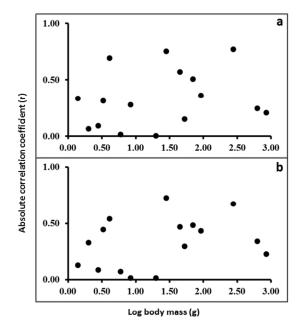


Figure 3. The relationship between the absolute value of the correlation coefficient (r) of body length (mm; SVL for lizards, total length for snakes, see text) against predator richness (a) and competitor richness (b) and the log mean body mass (g) of each species.

81x60mm (300 x 300 DPI)

Author