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 30 

Running headline: Simple trait-dependent speciation test 

Abstract 32 

 

1. Many quantitative traits, for example body size, have been hypothesized to influence the 34 

diversification dynamics of lineages over macroevolutionary timescales. The Quantitative 

State Speciation-Extinction (QuaSSE) model and related methods provide an elegant 36 

framework for jointly modeling the relationship between change in continuous traits and 

diversification. However, model misspecification and phylogenetic pseudoreplication can 38 

result in elevated false discovery rates in this and other state-dependent speciation-

extinction models.  40 

 

2. Here, we evaluate alternative trait-dependent diversification methods that do not formally 42 

model the relationship between traits and diversification, but instead test for correlations 

between summary statistics of phylogenetic branching patterns and trait variation at the 44 

tips of a phylogenetic tree (hereafter tip rate correlations or TRCs). We compare 

alternative branching pattern statistics and significance tests, and we evaluate their 46 

performance relative to QuaSSE under a range of evolutionary scenarios.  

 48 

3. We found that a simple statistic derived from branch lengths (inverse equal splits) can 

detect trait-associated rate variation, and that a simulation-based method performs better 50 

than phylogenetic generalized least-squares (PGLS) for testing the significance of trait-

rate correlations. This test (ES-sim) had better power to detect trait-dependent 52 

diversification than other TRCs. By testing the approach across a diverse set of 

simulation scenarios, we found that ES-sim is similar to QuaSSE in statistical power. 54 

However, the approach rarely led to false inferences of trait-dependent diversification, 

even under conditions that are problematic for formal state-dependent models. We 56 

illustrate the application of ES-sim to real data by re-assessing the relationship between 

dispersal ability and diversification in Furnariid birds.  58 
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4. We conclude that simple, semi-parametric tests like ES-sim provide a promising approach 60 

for trait-dependent diversification analyses in groups with heterogeneous diversification 

histories and provide a useful alternative or complement to formal state-dependent 62 

speciation-extinction models. 

 64 

 

Key-words: comparative methods, inverse equal splits statistic, trait-dependent diversification, 66 

phylogenetic generalized least squares, state-dependent speciation and extinction models 

 68 

 

Introduction  70 

 

Traits of organisms can impact their propensity for evolutionary diversification through time 72 

(Stanley 1975; Jablonski 2008). Many traits thought to be responsible for trait-dependent 

diversification are quantitative or continuous, rather than discrete. Body size may be associated 74 

with diversification, for example, if the higher metabolic rates or faster generation times typical 

of smaller-bodied species lead to higher evolutionary rates (Glazier 1987; Marzluff and Dial 76 

1991; Gittleman and Purvis 1998). Other examples of continuous traits with hypothesized links 

to diversification rates include dispersal ability (Phillimore et al. 2006; Claramunt et al. 2011), 78 

ecological specialization (Futuyma and Moreno 1988), strength of sexual selection (West-

Eberhard 1983; Panhuis et al. 2001), range size (Rosenzweig 1995), and latitudinal range 80 

(Cardillo 1999).   

Early investigations of trait-dependent diversification involved comparing the diversities 82 

of sister clades that differed in some trait of interest (Mitter et al 1988; Farrell et al 1991; 

Barraclough et al 1998). In recent years, the study of trait-dependent diversification has focused 84 

on jointly modeling diversification dynamics and trait evolution across a phylogeny (e.g., Paradis 

2005, Bokma 2008). The most recent such method for continuous traits, quantitative state 86 

speciation and extinction or QuaSSE (FitzJohn 2010), allows speciation and extinction rates to 

vary as arbitrary (user-defined) functions of trait values. The degree to which the phylogeny and 88 

trait data are explained by models with and without trait-dependent diversification can then be 

compared in a likelihood framework. QuaSSE and related state-dependent speciation-extinction 90 
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(SSE) models for binary (BiSSE) and multi-state (MuSSE) characters are powerful tests for 

detecting trait-dependent diversification (Maddison et al. 2007; FitzJohn et al. 2009; FitzJohn 92 

2012; Beaulieu and O’Meara 2016). However, various authors have found high incidences of 

false inference of trait-dependent relationships using SSE methods (Maddison and FitzJohn 94 

2015; Rabosky and Goldberg 2015; Rabosky and Huang 2016), including QuaSSE (FitzJohn 

2010; Machac 2014).  96 

Recently, Beaulieu and O'Meara (2016) noted that many false inferences of state-

dependent diversification ultimately follow from an incorrectly formulated hypothesis-testing 98 

framework. Specifically, formal tests for trait-dependent diversification have typically involved 

comparing a model with trait-dependent diversification (e.g., BiSSE) to a model with no 100 

diversification rate variation (e.g., constant-rate birth-death process). This procedure is 

problematic, because state-dependent models frequently provide a good fit whenever 102 

diversification rate variation is present in the data, even if it is unlinked to the character state of 

interest. As noted by Beaulieu and O’Meara (2016), this outcome is not a “false positive” in the 104 

statistical sense, because it reflects correct rejection of an overly simplistic null hypothesis rather 

than incorrect rejection of a true null hypothesis. Nonetheless, we continue to refer to “false 106 

positives” and “false discovery rates” in the remainder of the text, partly for brevity and partly 

because the biological interpretation of the result is that observed diversification dynamics are 108 

associated with trait variation even though in actuality they are not.   

As an alternative to overly simplistic null models, Beaulieu and O'Meara developed 110 

several models (CID-2, CID-4) that allow diversification rates to vary across the phylogeny as a 

function of unobserved character states. Use of these hidden-state models in conjunction with 112 

BiSSE can dramatically reduce false inferences of trait-dependent diversification (Beaulieu and 

O'Meara 2016; Rabosky and Goldberg 2017). However, an equivalent hidden-state model has 114 

yet to be developed for quantitative characters, and modeling continuous variation in 

diversification rates across a phylogeny as a function of an unobserved latent variable poses a 116 

challenging problem in numerical analysis.  

An alternative class of methods for trait-dependent diversification analyses involves 118 

assessing the correlation between variation in a trait of interest across the tips of a phylogeny and 

tip-specific estimates of speciation rates. These tip rate correlation (hereafter TRC) methods 120 

bypass the need for a fully parameterized model of diversification and trait evolution. Speciation 
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rate metrics used in TRC tests are generally simple indices based on the waiting times between 122 

speciation events and ignore extinction; as such, they provide a more reliable index of speciation 

than net diversification in many scenarios (Belmaker and Jetz 2015). Freckleton (2008) 124 

introduced a TRC method for continuous traits, measuring speciation rate as the mean internode 

distance (branch lengths) between the root and a given tip. Jetz et al. (2012) used a related 126 

measure (the "DR statistic") that assigns more weight to recent branch lengths than to branches 

early in the clade's history. Bromham et al (2016) and Hua and Bromham (2016) present a suite 128 

of alternative summary statistics describing phylogenetic branching patterns.  

TRC methods involve, in addition to choice of speciation rate metrics, a strategy for 130 

assessing the significance of correlations between traits and diversification. Most TRC tests have 

used phylogenetic generalized least squares (PGLS) to assess the significance of correlations 132 

while accounting for shared evolutionary history among relatives (Freckleton et al. 2008, Jetz et 

al. 2012, Harvey et al 2017). PGLS accounts for shared history using the expected covariance of 134 

residuals based on the phylogenetic distance between species and assuming some model of 

evolutionary change (e.g. random Brownian motion). Although this strategy may be appropriate 136 

for modelling covariance among species in many traits, it is unclear whether Brownian motion 

and similar models appropriately account for covariance in comparisons involving summary 138 

metrics of branching patterns (hereafter “speciation rate metrics”) , which change in concert 

between sister lineages at each node rather than randomly along branches.  140 

The significance of trait-speciation correlations can also be assessed by testing whether 

the observed correlation between trait values and speciation rate metrics lies outside a 142 

distribution constructed by simulation under a null evolutionary model (e.g. Garland et al. 1993). 

Rabosky and Huang (2016) developed a test (STRAPP) that builds a null distribution of 144 

associations between speciation metrics and trait variation by permuting trait values among 

diversification rate regimes inferred using BAMM (Rabosky 2014) or potentially other 146 

multiprocess diversification models, but the power of this approach is limited by the number of 

distinct rate regimes present in a given phylogeny. Bromham et al. (2016) and Hua and 148 

Bromham (2016) developed tests that construct null distributions of trait-speciation associations 

by backward simulation of phylogenetic trees with or without trait dependence. The FiSSE 150 

approach (Rabosky and Goldberg 2017) constructs a null distribution by simulating change in a 

binary trait across the empirical phylogeny under a simple Markovian model. Rabosky and 152 
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Goldberg (2017) demonstrated that this strategy performed well across a diverse range of testing 

scenarios, although FiSSE was limited to analysis of discrete characters.  154 

Here, we explore the performance of TRC tests for trait-dependent speciation in 

quantitative characters. We use simulations to evaluate the performance of alternative tip-156 

specific speciation rate metrics. We also compare strategies for significance testing including 

PGLS and simulation-based approaches to generating a null distribution of speciation-trait 158 

correlations. We then evaluate the performance of our best-performing TRC method relative to 

QuaSSE using simulated and empirical data. Our simulation scenarios encompass a range of 160 

possible model violations that might lead to spurious inference of relationships between traits 

and diversification.  162 

 

 164 

Methods 

 166 

Tip rate correlation tests 

 168 

 We evaluated three tip-specific metrics of speciation rate for use in TRC tests. The node 

density (ND) is the simplest measure of speciation rate and is simply the ratio of the number of 170 

speciation events (nodes) along a particular root-to-tip path divided by the age of the clade, or 

 172 ��� = ���  

 

where ��� is the speciation rate for tip i, Ni

 180 

 is the number of nodes between tip i and the root of 174 

the tree, and T is the total evolutionary time between the tips and the root. Alternatively, we can 

estimate the speciation rate for a particular tips as the inverse of the corresponding equal-splits 176 

(ES) measure, which was originally designed to capture the amount of unique evolutionary 

history that could be apportioned among each tip in a phylogenetic tree (Redding & Mooers, 178 

2006): A
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Here, ESi is the speciation rate for tip i, Ni is the number of edges between tip i and the root of 182 

the tree, and lj is the length of each edge j beginning with the terminal edge (j = 1) and 

terminating with the root edge (j = Ni

 We evaluated two methods of determining the significance of associations between trait 194 

variation and speciation rate metrics: phylogenetic generalized least squares (PGLS) and a 

simulation test involving comparison of the observed correlation with a null set of associations 196 

between the speciation metrics and trait values. We used caper (Orme et al. 2013) to fit PGLS 

models assuming a Brownian motion model for the error structure, following prior studies 198 

(Freckleton et al. 2008, Jetz et al. 2012, Gomes et al. 2016). For the simulation test, we simulated 

Brownian trait evolution 1000 times across the empirical tree using root state and diffusion rate 200 

(σ

). Effectively, ES represents the sum of the lengths of the 184 

edges subtending a tip, with each edge root-ward down-weighted by ½. The log-transformed ES 

is the diversification rate statistic (“DR statistic”) employed in trait-dependent diversification 186 

tests by Jetz et al. (2012). Finally, the inverse of the terminal branch lengths (TB) can be used as 

a measure of the time since the last speciation event, with lineages exhibiting higher speciation 188 

rates expected to have shorter terminal branches. This statistic has been used recently for trait-

dependent diversification analyses (e.g., Bromham et al. 2016; Gomes et al. 2016). In summary, 190 

ND captures splitting dynamics over the entire history of the lineage leading to a tip, TB captures 

only the dynamics at the tips, and ES uses information from the full root-to-tip path but is 192 

weighted towards branching patterns nearer the tips.    

2) parameters from the maximum-likelihood fit of a Brownian motion model to the original 

data. Note that PGLS and the simulation approach need not yield identical results: PGLS 202 

assumes that the residuals of the relationship between traits and speciation rates can be modelled 

as a Brownian motion on the phylogeny (Revell 2010); the simulation approach assumes 204 

Brownian motion in the trait only. Two-tailed p-values were computed by comparing the 

Pearson’s correlation between the speciation rate metric and trait values in the original data to 206 

the correlation between the speciation rate metric and the simulated trait values. We note that test 

statistics aside from Pearson’s correlation could certainly be used, including statistics that 208 

accommodate non-linear associations between traits and diversification (see Discussion). 
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 210 

General overview of performance tests 

 212 

 We used simulated datasets to evaluate the performance of TRC methods. First, we 

compared the power of the three speciation rate metrics (ND, ES, and TB) to detect associations 214 

between speciation and traits changing at different rates. Second, we evaluated the two strategies 

for significance testing (PGLS and simulations), based on both power and false discovery rates, 216 

in datasets of different sizes. Third, we evaluated whether power was reduced when the 

assumption of Brownian motion used in our simulation-based significance test was violated. 218 

Fourth, we compared the power of our best-performing TRC test to that of QuaSSE. Finally, we 

compared false discovery rates of the TRC test to those of QuaSSE across a wide range of 220 

evolutionary scenarios. 

 222 

Speciation rate metrics  

 224 

 We evaluated the ability of the three speciation rate metrics (ND, ES, and TB) to infer 

true relationships between continuous traits and speciation rates by assessing their performance 226 

on trees simulated with a QuaSSE process (FitzJohn 2010). Using diversitree (FitzJohn 2012), 

we performed forward-in-time pure-birth simulations in which speciation rate was related to trait 228 

values according to a linear function (slope = 0.004). Traits evolved along the tree under a 

Brownian motion process. Different speciation rate metrics may perform better depending on the 230 

rate of trait evolution and associated rate of change in diversification rates in a dataset. For 

example, in rapidly evolving traits we might expect trait variation at the tips to be associated 232 

with length variation only in the most recent branches. For such traits, TB may be the best 

diversification metric. For slowly evolving traits, ND may be preferred because it captures 234 

variation in diversification back to the root of the phylogeny. Therefore, we simulated trait-

dependent diversification under a series of diffusion rates of trait change (σ2) encompassing a 236 

range of values (0.00006, 0.0006, 0.006, 0.06, 0.6, 6, 60) similar to the spectrum of body size 

evolution rates observed in empirical studies (Harmon et al. 2010). At each rate of trait change, 238 

we simulated 100 datasets with 250 species each and assessed the power of all three speciation 

rate metrics to recover the signal of trait-dependent diversification. We evaluated power by 240 
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calculating the proportion of simulated datasets for which trait-dependent diversification was 

correctly inferred using both of the significance testing approaches described below. 242 

 

Significance tests 244 

 

We compared PGLS and simulation-based significance tests using the 250-tip datasets 246 

simulated at an intermediate rate of trait change (σ2

 

 = 0.06) from the previous section, but added 

sets of datasets (n=100) containing 50 tips and 1250 tips to assess the effect of dataset size on 248 

test performance. We also simulated datasets in which there was no relationship between 

speciation rate and trait values (simulated using simple Brownian motion) to measure the false 250 

discovery rate of each test. For clarity, a full list of the trait-dependent diversification tests 

examined in the study is presented in Table 1.  252 

Evaluating power of TRC tests with violations of Brownian trait evolution  254 

 

Our simulation-based significance test relies on a simple Brownian motion process to 256 

generate the null distribution of trait values. Trait model misspecification can, however, lead to 

spurious results in comparative analyses (Diaz-Uriarte and Garland 1996, Pennell et al. 2015). 258 

To investigate the sensitivity of our method to misspecification of the model of trait evolution, 

we simulated datasets under an Ornstein-Uhlenbeck (OU) model and compared the performance 260 

of the Brownian motion simulation test to an alternative test in which the correct (OU) model 

was used to generate the null distribution. We simulated trees and OU trait evolution using 262 

diversitree with “pull” toward the optimum determined by the linear function α(x̂ − x) as 

suggested by FitzJohn (2010). We examined α values of 0.002, 0.02, and 0.2. These absolute 264 

values mean little because α is scaled to tree depth (Cooper et al. 2016), but this range included 

the parameter space across which all methods lost power to detect trait dependence. At each α 266 

value we simulated 100 datasets with 250 tips with trait-dependence and examined the power of 

simulation-based tests using Brownian and OU models. OU models were fit using the R package 268 

geiger (Harmon et al. 2008) and OU simulations used phytools (Revell 2012).  

 270 

Power comparison with QuaSSE 
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 272 

We compared the best-performing test of trait-dependent diversification based on the 

above analyses to QuaSSE (FitzJohn 2010). We used the same sets of datasets with different 274 

numbers of tips (50, 250, and 1250 species) and with and without trait-dependence that were 

examined in “Significance tests” above to evaluate the power and false discovery rates of both 276 

tests. We used QuaSSE to fit a model in which the trait exhibited a linear relationship with 

speciation versus one in which speciation was constant with respect to trait variation. We used 278 

likelihood ratio tests for model comparison and to determine whether trait-dependence was 

supported in each case.  280 

 

False discovery rate comparison with QuaSSE 282 

 

A major goal of this study is to evaluate methods that may overcome the erroneous 284 

inferences of trait-dependent diversification (“false discovery” for brevity) often observed in 

analyses with formal state-dependent speciation-extinction tests (Machac 2014; Rabosky and 286 

Goldberg 2015; but see Beaulieu and O'Meara 2016). We therefore examined false discovery 

rates of our best-performing TRC test and QuaSSE in datasets simulated under a broad spectrum 288 

of scenarios where the focal trait was unlinked to diversification rates, roughly following 

Rabosky and Goldberg (2017). These scenarios included sets of trees simulated under a constant 290 

diversification rate, a diversification rate slowdown, a QuaSSE tree with trait dependence, a 

BiSSE tree with trait dependence, the coral supertree from Huang and Roy (2015), the carnivore 292 

tree from Nyakatura and Bininda-Emonds (2012), and a set of diversity-dependent multiprocess 

trees with a single shift between decoupled diversification processes from Rabosky (2014). 294 

These were combined with each of the following trait simulation scenarios: Brownian motion, 

Brownian motion with a single rate shift, Brownian motion with a jump in the mean values in 296 

one clade, no phylogenetic signal in the trait (i.e., evolving as if along a star-shaped tree), 

Brownian motion across most of the tree but white noise (no phylogenetic signal) in a single 298 

subclade, Brownian motion but with one clade fixed for a single trait value, shifts between two 

discrete trait distributions (normally distributed), an OU process with a single optimum and weak 300 

“pull” toward the optimum, and an OU process with a single optimum and strong “pull” toward 

that optimum. The resulting scenarios represent 63 unique combinations of diversification and 302 
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trait evolution settings, but in none of the scenarios is diversification rate linked to trait values 

(Table S1). For each combination, one iteration of trait evolution was simulated on each of 50 304 

trees from the tree set, except in combinations involving the coral supertree, for which 50 

iterations of trait evolution were simulated on the single tree. Thus, 50 simulated datasets were 306 

generated for each of the 63 scenarios. We then ran the TRC test and QuaSSE on each iteration 

of each scenario and tabulated the frequency with which each method incorrectly inferred state-308 

dependent diversification. In some scenarios, the find.mle optimizer from QuaSSE failed under 

the default settings. In these cases, we used the optim function with the Nelder-Mead algorithm 310 

using starting parameters estimated by QuaSSE. If both optimization strategies failed for any 

particular iteration, we treated the iteration as failed and excluded it from further analysis. 312 

 

Trait-dependent diversification in Furnariidae 314 

 

We evaluated the results of different tests of trait-dependent diversification on an 316 

empirical dataset previously found to exhibit trait-dependent diversification dynamics 

(Claramunt et al. 2011). This dataset includes a time-calibrated phylogenetic tree of birds in the 318 

family Furnariidae and measurements of the hand-wing index (HWI), a morphological metric 

that predicts dispersal ability. In continental settings, high dispersal ability is expected to inhibit 320 

speciation in birds, because it allows populations to maintain genetic cohesion in the presence of 

biogeographic barriers. Accordingly, Claramunt et al. (2011) found that species with high HWI 322 

had relatively low speciation rates based on a QuaSSE analysis. In fact, their best model (log-

Likelihood [lnL] = -1531.6) included a sigmoidal relationship in which lineages with high HWI 324 

had low speciation rates, those with low-to-moderate HWI had high speciation rates, and those 

with the smallest HWI again had somewhat lower speciation rates (i.e., an “intermediate 326 

dispersal” model). However, a simple linear model in which HWI was negatively correlated with 

speciation rate was still a better fit (lnL = -1535.6) than a model in which speciation was 328 

unrelated to HWI (lnL = 1539.7). Thus, we expect a significant negative linear correlation 

between HWI and speciation rate in this dataset.  330 

We first examined the Furnariid dataset using our best-performing TRC method 

assuming Brownian trait evolution as described above. We removed one species (Asthenes 332 

luizae) lacking HWI information, resulting in a final set of 282 species. Although Brownian 
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simulations perform reasonably well in TRC tests even when the trait evolved under a different 334 

model (see Results), comparing the fit of alternative trait evolution models may still be advisable 

in analyses of empirical datasets. We therefore compared the fit of a model of Brownian motion, 336 

an OU model, an early burst model, and a white noise model assuming no covariance among 

species to the Furnariid dataset using AICc scores. We also used parametric bootstrapping to 338 

evaluate model adequacy by simulating 1000 trait datasets under the best-fit model and assessing 

whether the log likelihood of the real data fell outside the 95% confidence interval of log 340 

likelihoods from the simulated datasets. We compared the results of ES-sim using a Brownian 

motion, ES-sim using the best-fit trait evolution model, and QuaSSE. 342 

  

 344 

Results 

 346 

Comparison of performance among TRC tests 

 348 

The most powerful tip-rate correlation (TRC) test for trait-dependent diversification 

combined ES (the inverse of the equal splits measure) with a simulation-based significance test 350 

(Fig. 1). We refer to this test hereafter as ES-sim. TB (the inverse of terminal branch lengths) and 

ND (node depth) both exhibited lower power than ES in tests using the simulation-based 352 

significance test. Pearson’s correlation performed similar to or better than other test statistics in 

the simulation test (Table S2). PGLS-based tests had lower power than simulation-based tests in 354 

ES and TB. PGLS with ND actually performed better than the simulation-based test with ND, but 

was still less powerful than ES-sim. All tests performed better on 250-tip trees than on 50-tip 356 

trees, with more modest improvements on 1250-tip trees relative to 250-tip trees. Rates of false 

positives were low across all tests when they were used to examine datasets simulated without 358 

trait-dependent diversification (Table S3). 

 All TRC tests examined had the greatest power at intermediate rates of trait change given 360 

a linear relationship between the trait and speciation rate with a slope of 0.004 (σ2; Figs. 2, S1). 

In the simulation tests, all three metrics performed poorly at very slow rates (σ2 ≤ 0.0006) 362 

presumably due to minimal variation in speciation rate at this value, ES had the highest power at 

intermediate rates, and ES and TB performed similarly at very high rates (σ2 ≥ 6; Fig. 2). ES, 364 
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therefore, may be the best metric for use in simulation-based tests of trait-dependent 

diversification across a broad range of rates of trait evolution. 366 

ES-sim in which Brownian motion was used for trait simulations had lower power to 

detect trait-dependent diversification when the true model of trait evolution was an OU model, 368 

particularly as the “pull” toward an optimum increased (Table 2). However, an ES-sim test in 

which the correct, OU model was used for simulations performed similarly to ES-sim with the 370 

Brownian motion model, suggesting that a mis-matched trait evolution model is not the problem 

but rather that the signal of trait-dependent diversification is obscured by an OU model of trait 372 

change. On a related note, we also found that QuaSSE showed similar reductions in power with 

greater deviation from Brownian motion in the trait evolution model (Table S4). 374 

 

Comparison of performance relative to QuaSSE 376 

 

QuaSSE had slightly more power to detect trait-dependent diversification in datasets of 378 

50 and 250 tips than ES-sim (Table 3). In the set of 63 diversification and trait evolution 

scenarios modelled after that of Rabosky Goldberg (2017), we found false discovery rates were 380 

substantially higher (5% or more) in QuaSSE than in ES-sim in 43 of 63 scenarios (Fig. 3). False 

discovery rates were similar (within 5%) in 8 scenarios, and were higher in ES-sim in 9 382 

scenarios. QuaSSE results failed in all iterations in the remaining 3 scenarios. The ES-sim false 

discovery was 10% or lower in all but one scenario (it was 18% in the coral tree with trait 384 

simulations in which one clade had trait values with no phylogenetic signal). However, QuaSSE 

false discovery rates were higher than 18% in 54 scenarios. The scenarios with the highest false 386 

discovery rates were those including the empirical carnivore tree and the simulated diversity-

dependent multiprocess trees with a single shift between decoupled diversification processes, 388 

which were (along with the coral supertree) the largest trees examined. 

 390 

Trait-dependent diversification in Furnariidae 

 392 

Consistent with the results of Claramunt et al. (2011), our QuaSSE results indicated a 

model containing a linear association between the hand-wing index (HWI) and speciation rate 394 

was a better fit than a model in which speciation was constant with respect to HWI in Furnariid 
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birds (likelihood ratio test: χ2

 416 

 = 8.054, p = 0.005). The best-fit model of trait evolution for HWI 396 

was an Ornstein-Uhlenbeck (OU) model (AICc = 1467.1 versus AICc = 1481.7 with Brownian 

motion; Table S5). However, OU models can be incorrectly favored over Brownian motion in 398 

some cases (Cooper et al. 2016). Parametric bootstrapping indicated that the real data was not 

distinguishable from datasets simulated under either a Brownian (p = 0.094) or OU (p = 0.108) 400 

model. We therefore conducted ES-sim tests using both Brownian and OU models. We failed, 

however, to detect significant trait-dependent correlations in the Furnariid dataset using ES-sim 402 

with either OU (p = 0.33) or Brownian motion (p = 0.40). The Pearson’s correlation coefficient 

[ρ] was -0.16, indicating 2.56% of the variance in speciation rate was explained by variation in 404 

HWI. The slope of a linear model fit to the data was -0.02, which equates to model-based 

speciation rates 0.11 species/My higher in species with the lowest HWI values versus the highest 406 

(speciation rates observed across species in the dataset ranged from 0.04 to 1.37 species/My). 

Although these effect size measures do not account for covariance among related species, they 408 

do provide additional evidence that dispersal ability is a weak predictor of speciation rates in this 

group. The Furnariid tree appears to show some heterogeneity in diversification dynamics (Fig. 410 

4a), which might explain the inference of trait-dependent diversification with QuaSSE. QuaSSE 

analysis of 100 traits simulated with random Brownian motion on the Furnariid tree revealed a 412 

high rate (40%) of false positives. The positive result in QuaSSE may also be partly due to 

phylogenetic pseudoreplication; many of the points with high values of HWI and low speciation 414 

rates are in one clade, the Sclerurinae (Fig 4 a, b).  

 

Discussion  418 

 

We assessed the performance of a series of TRC methods for testing hypotheses about the 420 

relationship between continuous-valued traits and lineage diversification rates. We focused on 

three measurements of tip-specific speciation rate (ND, ES, and TB) under two general 422 

approaches for significance testing (PGLS and null simulations). Our results highlight 

differences in performance both among TRC tests and between TRC tests and QuaSSE under a 424 

set of simple evolutionary scenarios. Consistent with prior results (FitzJohn 2010, Machac 2014), 

we found that QuaSSE exhibits a high rate of false positives when trees contain diversification 426 
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rate variation unlinked to the focal trait. QuaSSE false discovery rates were especially high in 

datasets containing large trees with heterogeneous diversification dynamics, such as the 428 

carnivore trees (Nyakatura and Bininda-Emonds 2012) and the diversity-dependent multiprocess 

trees from Rabosky (2014). The use of more sophisticated null models is an important way 430 

forward in addressing false positives in SSE methods and in phylogenetic comparative methods 

generally (Beaulieu et al. and O’Meara 2016, Uyeda et al. 2017). This approach may be possible 432 

with QuaSSE, but implementations are lacking and the computational challenges associated with 

fitting such models in a QuaSSE framework are expected to be nontrivial.  434 

We found that a simulation-based test using ES (ES-sim) had nearly as much power as 

QuaSSE to detect trait-dependence across trees of different sizes (Table 3) and was robust to 436 

false inferences of trait-dependent diversification across a range of evolutionary scenarios (Fig. 

3). The null trait-speciation associations used in ES-sim are simple to simulate and may be 438 

sufficiently realistic to avert false positives in many evolutionary scenarios. ES-sim performed 

better than simulation-based tests using the other speciation rate metrics we considered, ND and 440 

TB. TB performed as well or slightly better than ES at very high rates of trait evolution, and may 

be preferred in analyses of rapidly evolving traits, but ES performed better across a wide range of 442 

evolutionary rates. Tests that used PGLS to evaluate significance also were less powerful than 

simulation-based tests, a result that bears further investigation but may be related to the fact that 444 

speciation rate metrics change in non-Brownian fashion. Even when traits were simulated using 

non-Brownian models, we found that ES-sim with Brownian motion simulations had roughly 446 

equivalent power to an alternative approach where the true trait evolution model (OU) was used 

to construct the null distribution (Table 2). This suggests that, like FiSSE for discrete characters 448 

(Rabosky and Goldberg 2017), ES-sim may be reasonably robust to model misspecification in 

terms of statistical power as well as false discovery rates (Fig. 3).  450 

ES-sim is a powerful test because it incorporates relatively fine-scale variation in 

speciation rates across phylogenies. It is therefore useful in small trees with few dramatic 452 

diversification rate shifts, in contrast to methods like STRAPP (Rabosky and Huang 2016). 

However, the sensitivity of ES-sim needs to be taken into account in empirical studies, and 454 

researchers should evaluate the effect size as well as significance of their results. Effect size in a 

test like ES-sim could correspond either to the amount of variance in speciation rate explained by 456 

trait variation (i.e., the spread of points away from the correlation line), or the magnitude of the 
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difference in speciation rates between lineages with the minimum and maximum trait values (the 458 

slope of the correlation line). Although the Pearson’s correlation from ES-sim does not account 

for covariance between closely related species, it does provide an index of the amount of 460 

variance in speciation rate that might be explained by variation in the trait of interest. The slope 

of a linear model fit to the data can provide an index of the magnitude of the change in speciation 462 

rates across the observed range of trait values. We encourage researchers to report both the 

variance explained by the trait of interest and the slope of the correlation, as we did for the 464 

Furnariid dataset. Plotting the relationship between a trait and tip rates can also provide informal 

but useful insights into effect size. Moreover, sensitivity tests can provide quantitative 466 

information about the robustness of results to stochastic noise, measurement error, and the 

impact of phylogenetic pseudoreplication. Moving forward, it would be useful to develop formal 468 

measures of trait-diversification effect size that estimate the change in species richness – or 

potentially, the among-clade variance in richness – that is attributable to the correlation with 470 

traits. Such a metric could compare the magnitude of the observed difference in species richness 

to that which would be present if the clade evolved in the absence of a relationship between traits 472 

and diversification rates. 

In our empirical analysis, we found that the relationship between the hand-wing index 474 

(HWI), a measure of dispersal ability, and speciation rate in Furnariid ovenbirds identified using 

QuaSSE (Claramunt et al. 2011) was not supported by ES-sim. However, this result does not 476 

conclusively reject an association between HWI and speciation in this group. The best-fit model 

found by Claramunt et al. (2011) included a sigmoidal relationship between HWI and speciation, 478 

but we tested only for a linear relationship between speciation and traits using ES-sim and may 

have failed to capture a more complex relationship. QuaSSE has higher power than ES-sim based 480 

on simulations, and it is possible our non-significant ES-sim result simply reflects inadequate 

power. Researchers should generally be wary of over-interpretation when TRC tests reveal a 482 

negative result. Even a strong causal relationship between traits and speciation rates could be 

difficult to detect with TRC methods if there is insufficient replication across the phylogeny. 484 

Nonetheless, there is no clear visual signal of a relationship between HWI and ES (Fig. 4b).  

Independent evidence supports the association between high dispersal ability and limited 486 

divergence in birds (Burney and Brumfield 2009, Salisbury et al. 2012, Weeks and Claramunt 
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2014), but additional study wil l surely reveal a more nuanced understanding of their association 488 

and interactions with other predictors. 

The methods examined in this study are amenable to modification and extension. ES-sim 490 

can readily accommodate missing trait information. The method can even be used with sparsely 

sampled trait data across a tree, provided the sample reflects the spectrum of trait variation across 492 

the phylogeny as a whole. However, the estimation of tip-specific speciation rates will be biased 

by incomplete taxon sampling. For phylogenies with substantial and/or non-random missing 494 

taxa, we suggest that researchers estimate speciation rates from distributions of phylogenies 

where the unsampled species have been placed on the tree according to constraints, but 496 

integrating over possible placements of the unsampled lineages (e.g., Kuhn et al, 2011; Thomas 

et al. 2013). The trait values for these unsampled taxa should not be included in the analyses, due 498 

to biases in the rate of trait evolution that can emerge when unsampled species are placed 

randomly on trees with respect to trait values (Rabosky 2015).  500 

TRC methods could also be devised that allow for non-linear relationships between traits 

and diversification, and potentially, multiple predictor variables. In the present article, we 502 

assessed the performance of ES-sim only under scenarios where speciation rates are a strict linear 

function of the underlying traits. However, we should be clear that there are many potential 504 

functional relationships between speciation rate and phenotypes, including unimodal (hump) 

functions, logistic/threshold functions, step functions, and others. As noted above for the 506 

Furnariids, QuaSSE can already accommodate sigmoidal and other potential relationships. ES-

sim could also be modified to fit non-linear models to datasets and incorporate different test 508 

statistics, for example the absolute difference between the upper and lower limits in a sigmoid 

function, to assess significance. We expect that ES-sim will perform better for some types of 510 

relationships than others, and for some functional relationships the method may fail entirely. The 

interpretation of parameters from ES-sim may be difficult if the true evolutionary process 512 

deviates substantially from a simple linear relationship, even if the method recovers a significant 

relationship. These concerns provide another argument for always visualizing the relationships 514 

between tip rates, phenotypes, and fitted values; simple visual inspection may help diagnose 

potential problems with the analyses. 516 

In summary, ES-sim provides a powerful test for trait-dependent speciation with 

relatively low rates of false positives. ES-sim is also appealing because the inverse equal splits 518 
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measure provides an intuitive metric of speciation rate that is closely connected to the underlying 

data (e.g., the branch lengths) and lends itself to visual inspection of the trait-speciation 520 

relationship. It may be an appropriate alternative or supplement to likelihood-based state-

dependent speciation-extinction analyses, particularly in datasets with heterogeneous 522 

diversification dynamics. Finally, the computational speed of ES-sim makes it feasible for use 

with very large datasets that may be computationally intractable with other methods.  524 
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Table 1. Trait-dependent diversification tests examined in this study.  

      Test Reference 

Joint model of trait evolution and diversification 

  

1 QuaSSE FitzJohn 2010 

Tip rate correlation (TRC) tests 

 

PGLS Tests 

  

2 ES-pgls Jetz et al. 2012 

  

3 ND-pgls Freckleton 2008 

  

4 TB-pgls Gomes et al. 2016 

 

Simulation Tests 

  

5 ES-sim this study 

  

6 ND-sim this study 

    7 TB-sim this study 

 736 

 

 738 

 

 740 

 

 742 

 

 744 

 

Table 2. Performance of ES-sim when trait analyzed was simulated under OU model. 746 

  ES-sim (Brownian) ES-sim (OU) 

  Power FDR Power FDR 

OU with alpha = 0.002 0.89 0.04 0.85 0.05 

OU with alpha = 0.02 0.33 0.01 0.36 0.01 

OU with alpha = 0.2 0.01 0.00 0.04 0.03 

FDR, false discovery rate 

   "Brownian" and "OU" in parentheses reflect the trait evolution model used for the 
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simulation-based significance test 

 

 748 
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 760 

Table 3. Power of ES-sim relative to QuaSSE. 

  50 tips 250 tips 1250 tips 

ES-sim 0.38 0.93 1.00 

QuaSSE 0.45 0.98 1.00 

 762 
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 774 

 

 776 

 

 778 

 

Figure 1. A comparison of the power of tip rate correlation (TRC) tests of trait-dependent 780 

diversification differing in the speciation rate metrics examined and in the approach for 

significance testing. The diversification metrics examined were the inverse of the equal splits 782 

metric (ES), node density (ND), and the inverse of the terminal branch length (TB). The 

significance tests examined were phylogenetic generalized least squares (PGLS) and a 784 

simulation test in which the observed correlation was compared to a null distribution of trait-

diversification correlations.  786 

 

Figure 2. A comparison of the power of simulation-based TRC tests with alternative speciation 788 

rate metrics across different rates of trait evolution and associated rates of change in 

diversification dynamics.  790 

 

Figure 3. False discovery rates of ES-sim compared to QuaSSE across 63 diversification and 792 

trait evolutionary scenarios. Scenarios are numbered across the bottom axis, and vertical lines 

connect the false discovery rates of ES-sim and QuaSSE. The numbers above individual points 794 

denote the number of iterations for that scenario (of 50) for which no QuaSSE results could be 

obtained due to numerical failures; no number is given for scenarios where QuaSSE worked for 796 

all iterations. In the four scenarios furthest to the right, QuaSSE failed on all replicates and no 

point is presented for QuaSSE. 798 

 

Figure 4. Plots of the empirical dataset from Furnariid ovenbirds. (a) The time-calibrated 800 

phylogeny of ovenbirds with a bar graph indicating the value of a morphological measure of 

dispersal ability (hand-wing index; HWI) for each tip. (b) A scatterplot showing the association 802 

between ES and the HWI. An association between diversification and HWI was significant based 

on QuaSSE analysis, but not ES-sim. This is likely because the simple null model used in 804 
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QuaSSE failed to account for the complex diversification dynamics evident across the Furnariid 

tree. In addition, many of the large values of HWI were confined to one slowly diversifying 806 

clade (Sclerurinae), colored red on the phylogeny and in the scatter plot. 
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