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Running headline: Simple traitdependengpeciatiortest
Abstract

1. Many.quantitativeraits,for example body sizéave beemmypothesized to influendbe
diversifiecation dynamics of lineages ovaacravolutionary timescale3.he Quantitative
State"Speciatioixtinction (QuaSSE) model and related methods provide an elegant
framework for jointly modeling the relationship between change in continuous trdits a
diversification. However, model misspecification giylogenetic pseudoreplication can
result imeleated false discovematesin this and othestatedependent speciation-

extinction models.

2. Here, we evaluate alternative trd@pendent diversification methods that do not formally
model the relationship between traits and diversification, but inggeatbr correlations
betweersummarystatisticsof phylogenetic branching patterns and trait variation at the
tips‘of‘a’‘phylogenetic tree (hereafter tip rate correlations or TRCs). We compare
alternative branching pattern statistics and significance tests, and we evaluate their
perfermance relative to QuaSSE under a range of evolutionary scenarios.

3. We fownd that a simple statistic derived from branch lengths (inverse equal splits) can
detecttrait-associated rate variation, and that a simulabi@sed method penfms better
thansphylogenetic generalized leagtiares (PGLS) for testing the significance of-rait
rate correlationsThis test ES-sim) hadbetter power to detect tradiependent
diversification than other TRCs. By testing the approach across a dsetise
simulation scenarios, we found thEg-simis similar to QuaSSE in statistical power.
However, the approach rarely led to false inferences ofdegiendent diversification,
evensunder conditions that are problematic for formal state-dependent nvdeels.
illustratethe applicationof ES-simto real databy re-assessing the relationship between

dispersal ability and diversification in Furnariid birds.
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4. We conclude that simplesemiparametric testike ES-ssim provide a promising approach
for traitdependent diversification analyses in groups with hetessgendiversification
histories angrovide a useful alternativad complemento formal statedependent

speciatiopextinction models.

Key-words:comparative methods, inverse equal splits statistic;deggendent diversification,

phylogenetic'generalized least squares, state-dependent speciation andmrextiodels

Introduction

Traits of organisms can impact their propensity for evolutionavgrdificaton through time
(Stanley 1975Jablonski 2008 Many traits thought to be responsible for t@dépendent
diversificationarequantitativeor continuoustather than discret@ody sizemaybe associated
with diversification for exampleif the higher metabolic ratesr faster generation timegpical
of smalerbodied speciekeadto higher evolutionary ratd&lazier 1987; Marzluff and Dial
1991; Gittleman and Purvis 1998)therexamples otontinuous traits with hypothesized links
to diversification rate include @spersal ability(Phillimore et al. 2006; Claramunt et al. 2011),
ecological specializatior-(tuyma and Moreno 1988jtrength of sexual tion (Vest
Eberhard 19883; Panhuis et al. 20ange sizéRosenzweid 995), and latitudinal range
(Cardillo 1999y.

Early investigations ofrait-dependent diversification involved comparihg diversities
of sister clades that differed in some trait of interest (Mitter £9@8; Farrell et al 1991,
Barraclough.et.al 1998). In recent years, the study ifdegpendent diversification has focused
on jointly modeling diversification dynamics and trait evolutianoss a phylogenfe.g., Paradis
2005, Bokma2008)I'he mostecent such methddr continuous traitsquantitative state

speciation and. extinction or QuaSSE (FitzJohn 2010), allows speciation and extiaiesotor

vary as arbitrary (usatefined) functions of trait values. The degree to which the phylogeny and

trait dataareexplained by models with and without trait-dependent diversification can then be
compared in a likelihood frameworQuaSSE and related statependenspeciatiorextinction
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(SSE)models for binary (BiSSE) and mufitate (MuSSE) charactersgrowerful tests for
detecting traidependent diversification (Maddison et al. 2007; FitzJohn et al. 2009; FitzJohn
2012; Beaulieu and O’Meara 2016)owevervarious authors have found high incidences of
false inference dfrait-dependent relationships usiS§E methodgMaddison and FitzJohn
2015; Rabosky and Goldberg 2015; Rabosky and Huang 2016), incl@dat®SE FitzJohn
2010;Machac2014).

Recently, Beaulieu and O'Meara (2016) noted that many false inferences-of state
dependent diversification ultimately follow from an incorrectly formwdtgpothesigesting
framework. Specifically, formal tests for traiependent diversification have tgally involved
comparingsa model with tradependent diversification (e.g., BiISSE) to a model with no
diversification rate variation (e.g., constaate birthdeath process). This procedure is
problematic, because statependent models frequently provide a good fit whenever
diversification rate variation is present in the data, even if it is unlinked to the character state of
interest As.noted by Beaulieu and O’Meara (2016), this outcome is not a “false positives in t
statistical sense, because it reflaxiaect rejection of an overly simplistmll hypothesis rather
than ncorrectrejection of a truaull hypothesis. Nonetheless, we continuecfer to “false
positives™andfalse discoveryate$ in the remainder of the texpartly for brevityand partly
because.the biological interpretation of the result is that observed fibadisn dynamics are
associated with trait variation even though in actuality they are not.

As an alternativéo overly simplistic null model®eaulieu and O'Meardeveloped
severamodelsy(CID2, CID-4) that allow diversification rates to vary across the phylogeny as a
function d'unebserved character stateselbf thesdiddenstatemodels in conjunction with
BiSSE can dramatically reduce false inferences dtdegiendent diversification (Beaulieand
O'Meara 2016; Rabosky and Goldberg 2017). However, an equivalent lsiddemodel has
yet to be developed for quantitative characters, and modeling continuous variation in
diversification rates across a phylogesya function of an unobserved latent varigolges a
challengingspoblem in numerical analysis.

An alternativeclassof methods for traitiependent diversification analyses involves
assessing the correlation betweniation in atrait of interesticross the tips of a phylogeny and
tip-specific estimatesf speciatiorrates. These tip rate correlation (hereafter TRC) methods
bypass the need for a fully parameterized model of diversification and traitienobpeciation
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rate metrics used in TRCstis are generally simple indices based on the waiting times between
speciation events and ignore extinction; as such, they provide a more reliable ingesiatien
than net diversification in many scenarios (Belmaker and Jetz Z&&gkleton (2008)

introduced a TRC method for continuous traits, measuring speciation rate agthmt@eode
distance (branch lengths) between the root and a given tip. Jetz et al.y28d2)yelated

measure (the "DR statistic") that assigns more weight to recenhidemgths than to branches
early in'the“clade's historipromham et al (2016) and Hua and Bromham (2016) present a suite
of alternative"summary statistics describing phylogenetic branching patterns

TRC methods involveniaddition to choice adpeciatiorratemetrics, a strategy for
assessqg the significance of correlations between traits and diversificalost TRC tests have
usedphylogenetic generalized least squares (PGLS) to assess the significance of correlations
while accouning for shared evolutionary history among relatives (Freckleton et al. 2008, Jetz et
al. 2012, Harvey et al 2017). PGLS accounts for shared history using the expected coghriance
residuals based on the phylogenetic distance between species and assuming some model of
ewlutionarysehange (e.g. random Brownian motion). Althotinigh strategynay be appropriate
for modelling ‘eovariance among species in mais, it is unclear whether Brownian motion
and similar.modelappropriately accourfibr covariance in comparisonsviolving summary
metrics_ofdoranching patterifisereafter Speciation rate metris which change in concert
between sister lineages at each node rdkia randomly along branches.

The.significance of traispeciation correlations can also be asselsgeaesting whether
theobserved eoarrelation between trait values smetiation rate metrides outside a
distributionseonstructed by simulation under a null evolutionary model (e.g. Garland ¢€23).
Rabosky and Huang (20)L8eveloped a test (STRAPP) that builds a null distribugfon
associations between sp@®n metrics and trait variatidosy permuting trait values among
diversification rate regimes inferrecsingBAMM (Rabosky 2014) or potentialtyther
multiprocess . digrsification moded, but the power of this approach is limited by the number of
distinctratesregimegresent in a given phylogeny. Bromham et al. (2016) and Hua and
Bromham (2016) developed tests that construct null distributions of trait-spe@aso@tions
by backward simulation of phylogenetic trees with or without trait depend€hed=iSSE
approach (Rabosky and Goldberg 2017) constructs a null distribution by simulating change in a
binary trait across the empirical phylogeny under a simple Markovian niRal@bsky and
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Goldberg (2017) demonstrated thiais strategy performedaell across a diverse range of testing
scenarios, althoughiSSEwas limited toanalysis otdiscrete characters.

Here, we explore the performance of TRC tests fordigiendenspeciationn
guantitative characters. We use simulations to evaluate the performance of altépyative
specific spegiation rate metrics. We also compare strategies for significanceitestidigg
PGLS and simulation-based approaches to genemtidj distribution of speciatiotrait
correlationsWethenevaluate the performance aiir best-performing TRC methoelative to
QuaSSE using'simulated and empirical data.baudlation scenarios encompasgange of
possible model violations that gfit lead to spurious farence ofelationshig between traits

and diversification.

Methods

Tip rate correlation tests

Werevaluated threip-specific metrics of speciation rate for use in TRC tests. The node
density (\D)is the simplest measure of speciation rate and is simply the ratio of the number of

speciation events (nodes) along a particular tedip path divided by the age of the clade, or

N;
NDl' - ?

whereNDjgisthe speciation rate for tipN; is the number of nodes betweenitgnd the root of
the tree, and Is the total evolutionary time between thestgnd the root. Alternatively, we can
estimatehespeciatiorrate for a particular tips as the inverse of the corresponding sypjital-
(ES) measure,whictvas originally designed to capture the amount of unique evolutionary
history that could be apportionadhong eachip in a phylogenetic tre@Redding & Mooers,
2006):
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Here,ESpissthesSpeciation rate for tipN; is the number of edges betweenitgnd the root of
the treeandl; is the length of each edgbeginning with the terminal edgeX 1) and
terminating with the root edge<£ N;). Effectively,ESrepresentshe sum of the lengths of the
edges sugnding a tip, with each edge root-ward down-weighted by Y. ThedogformeES
is the diversifieation rate statistftDR statistic”) employedn trait-dependent diversification
testsby Jetzwet‘al.Z012) Finally, the inverse of the terminal branch lengif)(can be used as
a measure of the time since the last speciation gwéhtlineagesxhibiting higher speciation
rates expected,to haghorter terminal branchebhis statistichas been use@centlyfor trait-
dependent.diversification analyqdesg., Bromham et al. 2016.0@es et al2016). In summary,
ND captures splitting dynamics over the entire history of the lineage leading tGR taptues
only the dynamics at the tips, aB& usesinformation from the full roote-tip path but is
weighted towards branching patterns netirertips

We evaluated two methods of determining the significance of associations between trait
variation and Speciation rate metrics: phylogengticeralized least squares (PGLS) and a
simulationstestrinvolving comparison of the observed correlation with a null setaufi@sons
between the speciation metrics and trait values. We used caper (Orme et al. 2013) to fit PGLS
models assuming a Browniamotion model for the error structure, following prior studies
(Freckleton et al. 2008, Jetz et al. 2012, Gomes et al. 2016). For the simulation s&siylated
Brownian trait.evolution 1000 times across the empirical tree using rooasthtdiffusionrate
(6°) parameters. from the maximdiikelihood fit of a Brownian motion model to the original
data. Notethat‘PGLS and the simulation approach need not yield identical RGUWS
assumes that the residuals of the relationship between traits and speciation rates can be modelled
as a Brownian motion on the phylogeny (Revell 2010); the simulation approach assumes
Brownian mation in the trait only. Twiailed pvalues were computed by comparing the
Pearson’s correlation between the speciation rate nagtddrait values in the original data to
the correlation between the speciation rate metric and the simulated trait values. We note that test
statistics aside from Pearson’s correlation could certainly be used, including statistics that

accommodate nolnear associations between traits and diversification (see Discussion).
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210
General overview of performance tests
212
We used simulated datasets to evaluate the performance of TRC methods. First, we
214 compared th@ower of the three speciation rate metflgB, ES andTB) to detect associations
between speciation and traits changing at défierates. Second, we evaluated the two strategies
216 for significancetesting (PGLS and simulations), based on both power and falsergisatese
in datasets ofdifferent ®2. Third, we evaluated whether power was reduced when the
218 assumption of Brownian motion used in our simulati@sed significance test was violated.
Fourth, we,compared the power of our best-performing TRC test to that of QuaSSk, waall
220 comparedfalsdiscovery rates of the TRC test to those of QuaSSE across a wide range of
evolutionary scenarios.
222
Speciation rate metrics
224
We evaluated thability of thethreespeciation rate metridhD, ES, andTB) to infer
226 true relationships between continuous traits spetiatiorrates by assessinipeir performance
on trees simulatedith a QuaSSEprocess (FitzJohn 20). Using diversitree (FitzJohn 2012),
228 we performediorwardin-time purebirth simulations in which speciationteawas related to trait
values according to a linear function (slope = 0.00#Aitsevolved along the tree under a
230 Brownian meotien procesfifferent speciation rate metrianay perform better depending on the
rateof trait'evelution and associateate of change in diversification rat@ a datasetr~or
232 example, in rapidly evolving traits we might expect trait variation at the tipsdedoeiated
with length variation only in the most recent branches. For saits,fTB may be thdest
234  diversification.metricFor slowly evolving traitsND may be preferred because it captures
variation in diversification back to the root of the phylogéFyerefore, we simulated trait
236 dependentdiversification undesariesof diffusionratesof trait change (6%) encompassing a
range of values (0.00006, 0.0006, 0.006, 0.06, 0.6, Giddar to the spectrum of body size
238 evolution rates observed in empirical studies (Harmon et al. 28L8xach rate of trait change,
we simulated 10Qdatasets with 250 specieach and assessed the power affedlespeciation
240 rate metricgo recover the signal of trastependent diversification. We evaluated power by
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calculating the proportion of simulated datasets for which trait-depedidensification was
correctly inferredusing both of the significance testing approaches described below.

Sgnificance tests

Wecompared PGLS and simulativased significance tedising the 25Qip datasets
simulated atanintermediate rate of traitnge (o> = 0.06)from the previous section, but added
sets of datasets (n=100) containing 50 tips and 1250 tips to assess the effect of dataset size on
test performanceNe also simulatedatasetsn which thee was naelationshipbetween
speciationsatesand trait valugsmulated using simple Brownian motido)measuréhe false
discovery ratef each testFor clarity, afull list of the traitdependent diversification tests

examined in the study is presented in Table 1.

Evaluating power of TRC tests with violations of Brownian trait evolution

Oursimulationbasedsignificancetest relies on a simple Brownian motion prodess
generatethaull distributionof trait valuesTrait model misspecification can, however, lead to
spurious.results in comparatigealysegDiaz-Uriarte and Garland 1996, Pennell et al. 2015).
To investigate the sensitivity of our method to misspecification of the modaeailitoé¥olution,
we simulated datasets under an Ornstéitenbeck (OU) model and compared the performance
of the Brownian motiosimulation testo an alternative test in which the correct (OU) model
was used te.generate the null distributidfe simulated trees and OU trait evolution using
diversitree with “pull” toward the optimum determined by the linear funecti®n- x) as
suggested by FitzJohn (201®e examined a values of 0.002, 0.02, and 0.2. Theseabsolute
values mean little becauaes scaled to tree dep{ooper et al. 2016), but this range included
the mrameter.space across whathmethods lost power to detect trait dependeAceach o
valuewe simulated100 datasets with 250 tipsth trait-dependence and examined the power of
simulationtbased tests using Brownian and OU mad@ld models werét usingthe R package

geiger (Harmon et al. 2008) and OU simulations used phytools (Revell 2012).

Power comparison with QuaSSE
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We comparedhe best-performingest of traitdependent diversification based on the
above analyse® QuaSSE (FitzJohn 201®)e used the same sets of datasets with different
numbers of tips_ (50, 250, and 1250 species) and with and withoudepgtidence that were
examinedn_ “Significance tests” abovi® evaluate the power and false discovery rates of both
tests We used.QuaSSE to fit a model in which the trait exhibited a linear relationship with
speciation‘versus one in which speciation was constant with respect vatiation We used
likelihood ratio tests for model comparison and to determine whether trait-dependas

supported in each case.

False discoverysrate comparison with QuaSSE

A major goal of this study is to evaluate methods that may overtwrerrmeous
inferences.of traiiependent diversificatiofifalse discovery” for brevitypften observed in
analyses witliormal statedependent speciatiaxtinction test§Machac2014; Rabosky and
Goldberg 2015but see Beaulieu and O'Meara 2DM8e therefore examined false discovery
rates ofour.bestperformingTRC testand QuaSSE in datasets simulated under a broad spectrum
of scenarios'where the focal trait was unlinked to diversification, nateghly following
Rabosky and Goldberg (2017hese scenarios included sets of trees simulated under a constant
diversification rate, a diversification rate slowdown, a QuaSSE tree with trait dependence, a
BiSSE tregwwith trait dependence, the coral supe fromHuang and Roy (20} 5the canivore
tree flom Nyakatura and Bininda-Emonds (2012), arskhofdiversity-dependent multiprocess
trees with a single shifbetween decoupled diversification procedses Rabosky (2014).
These were combined with each of the following trait simulation scenBri@amian motion,
Brownian motion with a single rate shift, Brownian motion with a jump in the mearvai
one clade,.no phylogenetic signal in that (i.e., evolving as if along a stahaped tree),
Brownian_maetioracross most of the tree but whitgise (no phylogenetic signal) in a single
subclade, Brownian motion but with one clade fixed for a single trait value, shiftedretwo
discrete trait distributions (normally distributed), an OU process with a single optimum and weak
“pull” toward the optimum, and an OU process with a single optimum and strong ‘@u#id
that optimumTheresulting scenarios represent@idque combinations of diversification and
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trait evolution settingsut in none of the scenarios is diversification rate linkedaibuwalues
(Table Q). For each combination, one iteration of trait evolution was simulated on each of 50
trees from the tree set, except in combinatimvolving the coral supertree, for which 50
iterations of trait evolution were simulated on the single ffees, 50 simulated datasetsre
generatedor.each of the 63 scenaridd/e thenranthe TRC testand QuaSSE on each iteration
of each scenario drtabulated the frequency wiivhich each methouhcorrectly inferred state
dependentdiversification. In some scenarios, the find.mle optimizer from QdaigsHE.inder

the default'settings. In these cases, we used the optim function with the-Mebt#algorithm
using starting parameters estimated by Qua$3ioth optimization strategies failed for any
particular iteration, we treated the iteration as failed and excluded it from further analysis.

Trait-dependent diversification in Furnariidae

We evalated the results of different tests of t@dgjpendent diversification on an
empirical dataset previously found to exhibit tidépendent diversification dynamics
(Claramuntetal. 2011 .his dataset includes a tirgalibrated phylogenetic tree of birthsthe
family Furnariidae and measurementshaf handwing index(HWI), a morphological metric
that prediets dispersal abilitin continental settings, high dispersal ability is expected to inhibit
speciation in birds, because it allows populatimn®aintain genetic cohesion in the presence of
biogeographic barrierd\ccordingly,Claramunt et al. (2011) found thepecies with higdWI
had relatively*low speciation ratbased ora QuaSSEanalysis In fact, their best model (leg
Likelihood fink] = -1531.6) included a sigmoidal relationship in whickages witrhigh HWI
had low speciation rates, those witlwv-to-moderateHWI had high speciation rates, and those
with the smallesHWI again had somewhat lower speciation rgies, an‘intermediate
dispersal”’ modgl However, a simple linear model in whielWI| was negatively correlated with
speciation ratgvas still abetter fit (InL =-1535.6) than a model in which speciatiorswa
unrelated tadW1 (InL = 1539.7). Thus, we expect a significant negdtivearcorrelation
betweerHWI and speciation rate this dataset.

We first examined the Furnariid dataset using our best-performing TRC method
assuming Brownian trait evolution as described above. We removed one spstbmes
luizae) lacking HWI information, resulting in a final set of 282 species. Althdghwnian
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simulations perform reasonably wellTiRC testeven when the trait evolved under a different
model(see Resultscomparing the fit oélternative trait evolutiomodet may still be advisable

in analyses of empirical datasefge therefore compareithe fit of a model oBrownian motion,
anOU model, an early burst model, and a white noise model assuming no covariance among
species to the Furnariid datassingAICc scoresWe also usegarametric bootstrapping to
evaluiatemodel.adequacy by simulating 1008it datasets under the bdgtmodel and assessing
whetherthe'log'likelihood of the real data fell outside the 95% confidence interval of log
likelihoodsfrom he simulated dataset&/e compared the results of £8n using a Brownian

motion, ES-simiusing the best-fit trait evolution model, and QuaSSE.

Results

Comparison.of performance among TRC tests

The'most powerfutip-rate correlation (TRC) test for tradependent diversification
combinedeS (the inverse of the equal splits measure) wisinaulationbased significance test
(Fig. 1). Werrefer to this test hereafterleSsim. TB (the inverse oferminal branch length and
ND (node depthboth exhibied lower power tha&Sin tests using the simulatidrased
significance testPearson’s correlation performed similar to or better than other test statistics
the simulationtegfTable ). PGLSbased testhad lower power thasimulatiorbased tests in
ESandTB. PGLS withND actually performed bedt than the simulatiecbased teswith ND, but
was stillless powerful thakS-sim. All tests performed better on 25@-trees than on 50p
trees, with more modest improvements on 1@2p@rees relative to 250p trees Rates of false
positives were low across all tests wlieay were used to examidatasets simulated without
trait-dependent diversificatiofTable S3J.

All TRC tests examinetlad the greatest powat intermediate rates of trait chargjeen
a linear relationship between the trait and speciation rate with a slope of &0Bis. 2, S1).

In the simulatiortests all three metrics performed poorly at very slow rates (6>< 0.0006)
presumably due to minimal variation in speciation rate at this vatiead the highest power at

intermediate rates, af andTB performed similarly at very high rates (6> 6; Fig. 2. ES,
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therefore, may & the best metric for use in simulatibased tests of tratependent
diversification across a broad range oésabf trait evolution.

ES-simin which Brownian motion was used for trait simulations had lower power to
detect tratdependent diversification when the true model of trait evolution was an OU,model
particularly.as,the “pull” toward an optimum increa¢€dble 3. However, arESsimtest in
which the ‘earrect, OU model was used for simulations performed simila#$g som with the
Brownian 'motion modelkuggesting that mismatched trait evolution mode not the problem
but rathethat'the signal dfrait-dependent diversification is obscured by an OU model of trait
change. On a related note, alsofound that QuaSSE&howed similar reductions in power with
greater deviation from Brownian motion in the trait evolution m¢@able S3.

Comparison of performance relative to QuaSSE

QuaSSE had slightly more power to detect trait-dependent diversificatiorasetaof
50 and 250+tips thalBS-sim (Table 3. In the set of 63liversification and trait evolution
scenarios modelled after that®ébosky Goldberg (2017), we found false discovery rates were
substantially_higher (5% or more) in QuaSSE thaBSrsimin 43 of 63scenarios (Fig3). False
discovery.rates were similar (within 5%) irs&enarios, and were higher&s-smin 9
scenariosQuaSSE results failed adl iterations in the remainingscenariosTheES-smfalse
discovery'was 10% or lower in all but one scenario (it was 18% in the coral tree with trait
simulationsfinfwhich one clade had trait values with no phylogenetic signal). Ho\@a:a&3SE
false discovery rates were higher than 18% in 54 scend@hesscenarios with the highest false
discovery/(rates were those including émepiricalcarnivore tre@andthe simulated diversity
dependent multiprocess trees with a singlet sleifween decoupled diversification processes,

which werg (along with the coral supertree) the largest trees examined.

Trait-dependent diversification in Furnariidae

Consistent with the results of Claramunt et al. (2011)QuaSSHesults indicated a

model containing a lineassociation betwedhe hand-wing index (HWIRnd speciation rate
was a better fit than model in which speciation wasmstant with respect tdW!I in Furnariid
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birds (likelihood ratio testy? = 8.054, p = 0.005)Che besfit model of trait evolution foHWI

was an Ornstettyhlenbeck(OU) model (AlICc = 1467.1 versus AICc = 1481.7 with Brownian
motion, Table S%. However, OU models can be incorrectly favored over Brownian motion in
some cases (Cooper et al. 2016). Parametritstvapping indicated that the real data was not
distinguishabldrom datasets simulated der either a Brownian (p = 0.0pdr OU ({ = 0.108

model. We thereforeeonductedES-sim tests using both Brownian and OU models. We failed,
however, to'detect significant tralependent correlations in the Furnariid dataset Usggm

with eitherOU(p = 0.33) or Brownian motion (p = 0.40). The Pearson’s correlation caffici

[p] was-0.16, indicating 2.56% of the variance in speciation rate was explained by variation in
HWI. The slope of a linear model fit to tdata was0.02, which equates to modedksed
speciation‘rate8.11 species/My higher in species with the lowest HWI values versus the highest
(speciation rates observed across species in the dataset ranged from 0.04 to 1.37 species/My).
Although these effect size measures do not account for covariance among related species, they
do provide.additional evidence that diséedility is a weak predictor afpeciation rates in this
group. ThesFurnariid tree appears to slsmme heterogeneity mhiversification dynamics (Fig.

4a), which'mightexplain theinference of traidependent diversification witQuaSSEQuaSSE
analysisof:100traits simulated witmandom Brownian motion on the Furnariid tree revealed a
high rate 40%) of false positivesThe positive result in QuaSSE malgobe partly due to
phylogenetic pseudoreplication; many of the points with high values of HWI and low speciati

ratesare in.one clade, the Sclerurin&eg 4 a, b).

Discussion

We. assessed the performance of a serig®kafmethods for testing hypotheses about the
relationship between continucualued traits ath lineagediversification rates. We fased on
threemeasurements of tigpecific speciation rat@\D, ES, andTB) under two general
approachessfor signifamce testingPGLS and null simulationsPur results highlight
differences in performandmth amongl'RC testsand between TRC tesasid QuaSSE under a
set of simple evolutionary scenarios. Consistent with prior resultd¢finz2010, Machac 2014),
we found that QuaSSExhibitsa high rate of false positiveghen trees contain diversification
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rate variation unliked to the focal traiQuaSSE false discovery rates were especially high in
428 datasets containing large trees with heterogeneous diversification dynamics, such as the
carnivore treesNyakatura and BimdaEmonds 201pandthe diversitydependent multiprocess
430 trees from Rabosky (2014). The use of more sophisticated null models is an impagtant w
forward in addressing false positives in SSE methods and in phylogenetic compaeétigdsnm
432 generally (Beaulieu et al. and O’'Meara 2016, Uyeda et al. 2017). This approach may be possible
with QuaSSE;"but implementations are lacking and the computatbakénges associated with
434  fitting such'modelsn a QuaSSE framewokkre expected to be nontrivial.
We found that @imulationbasedestusingES (ES-sim) hadnearly as much power as
436 QuaSSE taletect traHdependence across trees of different gjZable 3)and was robust to
false inferences of tradependent diversification across a range of evolutionary scenarios (Fig
438 3).The null traitspeciation associations usecES-sim are simple to simulate amday be
sufficiently realistic to avert false positives in many evolutionary scen&$sm performed
440 Dbetter thasimulationbased tests using the otlspeciation rate metriase considered\ND and
TB. TB performed as well or slightly better the& at very high rates of trait evolution, andhy
442 bepreferrednanalyses of rapidly evolving traits, 6 performed better acrossaade range of
evolutionary, ratesTests that used PGLS to evaluate significance also were less powerful than
444  simulatiopbasedests a result that bears further investigation but may be related to the fact that
speciation rate metrics change in fi8mownian fashionEven when traits were simulated using
446 non-Brownianmodels, we found th&S-sim with Brownian motion simulationsad roughly
equivalentpower to an alternative approach whergrtieetrait evolutiormodel(OU) was used
448 to constructthe null distribution (Table 2). This suggtss like FISSE for discrete ctaaters
(Raboskyland Goldberg 201 BS-sim may be reasonably robustrteodel misspecificatiom
450 terms of statistical power as well fatse discovery rates (Fig. 3).
ES.simis.apowerfultestbecausét incorporates relatively fingcale variation in
452  speciatiorratesacross phylogenies. It is therefore usefudnmalltrees withfew dramdic
diversificatien‘rate gfts, in contrast to methods like STRAPP (Rabosky and Huang 2016).
454 However, the,sensitivity dS-sim needs to be taken into account in empirical styudied
researchers should evaluate the effect size as well as signifafahedr resultsEffect size in a
456 test likeES-sim could correspond either to the amount of variance in speciation rate explained by
trait variation (i.e., the spread of poiriway from thecorrelation line), or thenagnitude of the
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458 difference in speciation rates between lineages with the minimum and maximum trait values (the
slope of the correlation line). Although the Pearson’s correl&toion ES-sim does not account

460 for covariance between closely related species, it does praviddex ¢ the amount of
variance in speciation rate that might be explainedaoiation in the trait of interesthe slope

462 of a linear medel fit to the data c@novide an index of the magnitude of tieange in speciation
rates across thebservedange oftrait values. Wencourage researchers to report both the

464 variance explairetby the trait of interesand the slope of the correlation, as we did for the
Furnariid datasePlotting therelationship between a trait and tip ratasalsoprovideinformal

466 but usefulinsightgto effect sizeMoreover, sensitivity tests can provide quantitative
information: about the robustness of resultstazhastic noise, measurement error, and the

468 impact of phylegenetic pseudoreplication. Moving forward, it would be useful to defeefoal
measure of trait:diversification effect size that estimatee change in species richnessr

470 potentially, the amongtade variance in richnesghat is attributable to the correlation with
traits Such.a metric could compare the magnitude of the observed diffénespexies richness

472  to that whiehrwould be preseifithe clade evolved in the absence of a relationship between traits
and diversification rates

474 In"eur empirical analysis, wieund that the relationship between the hand-wing index
(HWI), a.measure of diersal ability, and speciation rate in Furnariid ovenbirds identified using

476 QuaSSE (Claramunt et al. 2011) was not supportdeSsym. However, this result does not
conclusively reject aassociation betweddWI and speciation in this group. The béstnodel

478 found by Claramunt et al. (2011) included a sigmoidal relationship between HWI andispgeciat
butwe tested.only for a linear relationship between speciation andusaitgeS-sim and may

480 have failedo capture a more complex relationship. QuaSSE has higher pow&iSisan based
on simulations, and is possibleour non-significanteS-sim result simply reflec inadequate

482 power.Researchers shoutgenerally bavary of overinterpretation when TR@&sts reveal a
negative resultEven a strong causedlationship between traits and speciatiatescould be

484  difficult to_detect with TRC methods if there is insufficient replicatenoss the phylogeny.
Nonetheless,.there is no clear visual signal of a relationship between HWS4RtyE4D).

486 Independent evidence supports the association between high dispersal abiiitytadd

divergence in birds (Burney and Brumfield 2009, Salisbury et al. 2012, Weeks and Claramunt
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2014), but additional studyil| surely reveal a more nuanced understanding of their association
and interactions with other predictors.

The methods examined in this stualgamenable to modification and extensiB&:sim
canreadily accommodate missitigit information The method¢aneven be used witkparséy
sampledrait.data acrosstaee providedthe sample reflects thepectrum ofrait variation across
the phylogeny.as a whole. Howevere estimation of tyspecific speciation rates will be biased
by incompletetaxon sampling. For phylogenies with substantial and/or non-randongmissi
taxa we suggest that researchers estimate speciation rates from distributions of phylogenies
where the unsampled species have lm@&red on the tree according to constraints, but
integrating.over,possible placememisthe unsampled lineages (e.g., Kuhn et al, 2011; Thomas
et al 2013)iThetrait values for thesensampled taxa should not be included in the analyses, due
to biases in the'rate dfait evolution that can emerge whensampled spees are placed
randomlyon trees with respect to trait valug&abosky 201p

TRC methods could also be devised that allow for inoear relationships between traits
and diversificationand potentiallymultiple predictor variablesn the presenarticle, we
assessed theperformancee&sim only under scenarios where speciation rates are a strict linear
function ofithe underlyingraits However, we should be clear that there are many potential
functionalrelationships between speciation rate and phenotypes, including unimodal (hum
functions, logistic/threshold functions, step functions, and otAsrsoted above for the
Furnariids,;.Qu8SE caralreadyaccommodatsigmoidal and other potential relationship&
sim could alsexbe modified to fit ndmear models to datasets and incorporate different test
statistics, far.example the absolute difference between the upper and lower |arsigmoid
function, to assess significan&¥e expect thaES-simwill perform better for someypes of
relationships than others, and for some functional relationships the method Ineayirilly. The
interpretation.oparameters froreS-sim may be difficult if the true evolutionary process
deviates substantially from a simple linear relationship, even if the method recovers a significant
relationshipsfhese concerns provide another argumenafimaysvisualizing the relationships
between tipwrates, phenotypes, and fitted values; simple visual inspection mayagetsdi
potential problems with the analyses.

In summaryES-sim provides a powerful test for tradependent speciation with
relatively low rates of false positivesS-simis also appealing because the inverse equal splits
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measure provides an intuitive metric of speciation rate that is closely connected to thengderl
data (e.g., the branch lengtlas)d lends itself to visual inspection of the tspeciation

relationship It may be an appropriate alternative or supplemelitébhood-basedstate

dependent speciatiaxtinctionanalysesparticularly in datasetsith heterogeneous
diversification,dynamics. Finally, the computational speeSxim makes it feasible for use

with very largedatasets that may be computationally intractable with other methods.
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Table 1 Trait-dependent diversification tests examimedhis study.

Test Reference

Joint model of trait evolution and diversification

1 QuaSSE FitzJohn 2010
Tip rate correlation (TRC) tests
PGLS Tests
2 ESpgls Jetz et al. 2012
3 ND-pgls Freckleton 2008
4 TB-pgls Gomes et al. 2016
Simulation-Tests
5 ESsm this study
6 ND-sim this study
7 TB-sim this study

Table 2 Performanceof ES-simwhen traitanalyzed wasimulated unde®U model.

ES-sim (Brownian) ES-sim (OU)

Power FDR Power FDR
OU withsalpha = 0.002 0.89 0.04 0.85 0.05
OU with alphay,= 0.02 0.33 0.01 0.36 0.01
OU with alpha = 0.2 0.01 0.00 0.04 0.03

FDR, false discovery rate

"Brownian" and "OU" in parentheses reflect the trait evolution model useleor
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simulationbased significance test

Table 3 Power'ofES-.simrelative to QuaSSE
50 tips 250 tips 1250 tips
ESsm 0.38 0.93 1.00
QuaSSE 0.45 0.98 1.00
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Figure 1. A'comparison of theqwer of tip rate correlation (TRC) tests of trdépendent
diversification‘differing in thespeciation rate metriexamined and in the approach for
significance testing. The diversification metrics examined weratieese of tie equal splits
metric (ES)nhede density (ND), and the inverse of the terminal branch length (TB). The
significance'tests examined were plgdaetic generalized least squares (PGLS) and a
simulation test in which the observed correlation was compared to a nubutistmi of trait-

diversification correlations.

Figure 2. Ascsomparison of the power sfmulatiorbased TRC tests witllternativespeciation
rate metrics acrogiifferent rates of trait evolution and associated rates of change in

diversification dynamics.

Figure 3. False discovery rates BS-sim compared to QuaSSieros3 diversification and

trait evolutionaryscenariosScenarios are numbered across the bottom ardvertical lines
connect the*false discovery ratedE58fsim and QuaSSE. The numbers above individual points
denote themnumber of iterations for that scenario (of 50) for which no QuaSSE cesiidt be
obtaned due to numerical failuresp mumbeis given for scenarios where QuaSSE worked for
all iterations. In the four scenarios furthest to the right, QuaSSE faildtreplecatesand no

point is presented for QuaSSE.

Figure 4. Plets of the empiricadataset from Furnariid ovenbirdg) The ime-calibrated
phylogeny of evenbirds with a bar graph indicating the value of a morphological measure of
dispersal abilityhand-wing indexHWI) for each tip (b) A scatterplot showing the association
betweerES and the HWI. An association between diversificationldid was significant based

on QuaSSE analysis, but rie&-sim. This is likelybecause thseimplenull model used in
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QuaSSE failed to account for the comptiversification dynamics evident acrdbe Furnariid
806 tree.In addition, many of the large valuesk¥Vl were confined to onglowly diversifying

clade (Sclerurinae), colored red on the phylogeny and in the scatter plot.
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