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Abstract 

The endoplasmic reticulum (ER) is broadly distributed throughout the cytoplasm of 

pancreatic beta cells, and this is where all proinsulin is initially made.  Healthy beta cells can 

synthesize 6000 proinsulin molecules per second.  Ordinarily, nascent proinsulin entering the 

ER rapidly folds via the formation of three evolutionarily conserved disulfide bonds (B7–A7, 

B19–A20, and A6–A11).  A modest amount of proinsulin misfolding, including both 

intramolecular disulfide mispairing and intermolecular disulfide-linked protein complexes, is 

a natural by-product of proinsulin biosynthesis, as is the case for many proteins.  The steady-

state level of misfolded proinsulin — a potential ER stressor — is linked to (1) production 

rate, (2) ER environment, (3) presence or absence of naturally occurring (mutational) defects 

in proinsulin, and (4) clearance of misfolded proinsulin molecules.  Accumulation of 

misfolded proinsulin beyond a certain threshold begins to interfere with the normal 

intracellular transport of bystander proinsulin, leading to diminished insulin production and 

hyperglycemia, as well as exacerbating ER stress.  This is most obvious in mutant INS gene–

induced diabetes of youth (MIDY; an autosomal dominant disease) but also likely to occur in 

type 2 diabetes owing to dysregulation in proinsulin synthesis, ER folding environment, or 

clearance.   
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Introduction  
 

Growing evidence suggests that, during progression of type 2 diabetes, loss of pancreatic beta 

cell function and eventual loss of beta cell mass is accompanied by endoplasmic reticulum 

(ER) stress.
1–4

  Many factors may contribute to ER stress, but one of the most well recognized 

of these factors are conditions that promote misfolding of secretory proteins within the ER 

lumen.
5
  The beta cell secretory proteins most cited as prone to misfolding are islet amyloid 

polypeptide (IAPP) and proinsulin.
6,7

  In rodent models of type 2 diabetes, endogenous IAPP 

does not misfold, and, even in felines, nonhuman primates, and humans, there is little 

convincing data to establish that nascent pro-IAPP is amyloidogenic during its passage 

through the ER compartment.
8
  By contrast, there is a growing body of evidence to suggest 

that proinsulin misfolding may occur in the ER, triggering beta cell ER stress.  As we discuss 

below, proinsulin misfolding in the ER is most readily detected by the presence of mispaired 

disulfide bonds, including both intramolecular and intermolecular disulfide mispairings.   

To date, there has been vastly more study of insulin misfolding (a pharmaceutical 

problem) than proinsulin misfolding (a cell biological problem).
9
  As the C-peptide of 

proinsulin is largely unstructured, the conformational state of proinsulin is dominated by its 

insulin moiety, comprised of the 30-residue B-chain and the 21 residue A-chain.  In the 

insulin crystal structure, the N-terminal B-chain offers a central α helix and the A-chain 

provides two additional short α helices.  Amino acids L(A16), Y(A19), L(B11), L(B15), and 

R(B22) have been reported to be the five most importantly positioned residues in stabilizing 

the folded state of the insulin monomer.
10

  Distinct crystallographic structures known as R 

and T states reflect dynamic differences in amino terminal portion of the B-chain, which can 

be mostly α-helical (R state) or extended (T state).
11

  Like many globular proteins, insulin has 

a number of buried hydrophobic residues in the native state that may become solvent exposed 

in incompletely folded states.
12

  Such improperly exposed peptide sequences, especially those 

including the central B-chain helix LVEALYL, are thought to be aggregation 

prone/amyloidogenic
13

 and can associate with neighboring insulin moieties, even when they 

are in the native state.
14

  In the native state, two of the insulin disulfide bonds––C(A6)–

C(A11) and C(B19)–C(A20)––are no longer exposed to  solvent, and both burying and 

consumption of the C(A11) thiol are particularly important for the proinsulin folding 

pathway.
15

   

In beta cells, proinsulin synthesis begins as preproinsulin polyribosomes dock at the 



 

 

 
This article is protected by copyright. All rights reserved. 

4 
 

ER membrane such that the nascent translation product is translocated into the ER lumen, 

followed by cleavage of its signal peptide.
16,17

  Upon entry into the ER lumen, proinsulin 

becomes exposed to an oxidizing environment in which cysteine thiols are highly reactive.
18

  

Proinsulin contains only six cysteine residues,
19

 and, like most members of the insulin 

superfamily, proinsulin forms three evolutionarily conserved native disulfide bonds (Fig. 1), 

including proinsulin Cys(B7)–Cys(A7), Cys(B19)–Cys(A20), and Cys(A6)–Cys(A11).   

The first evidence that things might go wrong in proinsulin disulfide pairing in the ER 

resulted from  Tris–tricine–urea–SDS-PAGE analysis of proinsulin variants bearing 

genetically engineered S(B9)D, H(B10)D, or V(B12)E substitutions: all proinsulin molecules 

migrated similarly under reducing conditions, but a significant subfraction of the variant 

proinsulin molecules migrated as an anomalously shifted (less compact) form under 

nonreducing conditions.
20

  Additionally, it was noted that one contribution of the C-peptide is 

to permit the proinsulin polypeptide chain to fold back on itself, such that genetically 

engineered foreshortening of the C-peptide interfered with the B-chain properly aligning with 

the A-chain for formation of the Cys(B7)–Cys(A7) and Cys(B19)–Cys(A20) disulfide 

bonds.
21

   

In the course of these analyses, the observation emerged that small quantities of 

nonnative proinsulin disulfide isomers were also formed during the synthesis of wild-type 

proinsulin in isolated, normal pancreatic islets,
22

 and the most predominant non-native form 

in these islets showed selectively increased recognition by the ER HSP70 chaperone known 

as BiP (Fig. 2); this nonnative form was recovered at increased levels from islets incubated 

under high-glucose conditions
22

 that promote translatability of the preproinsulin mRNA.
23

  

Thus, production of a small fraction of misfolded proinsulin monomers occurs as a natural 

by-product in the synthesis of native proinsulin.   

Proinsulin dimerizes
24

 within the ER,
25,26

 and this has interesting ramifications in cells 

expressing misfolded proinsulin that remains trapped in this compartment because of ER 

quality control.
27

  Indeed, when expressing a proinsulin that is C-terminally tagged with 

KDEL (to prevent successful anterograde trafficking because of retention/retrieval via KDEL 

receptors), co-expressed untagged proinsulin is retained in trans, whereas some unrelated 

secretory proteins can continue to proceed unimpeded through the secretory pathway.
28

  

These data indicate that an ER-retained proinsulin can transfer the property of being retained 

(i.e., unsuccessful anterograde traffic) to other bystander proinsulin molecules within the ER.   

The Akita mouse develops beta cell failure and diabetes caused by misfolded 
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proinsulin.  Interestingly, this animal expresses three wild-type INS alleles and a fourth allele 

encoding mutant proinsulin-C(A7)Y that is retained in the ER and triggers ER stress.
29,30

  

However, because ER-retained proinsulin can transfer its retention property to bystander 

proinsulin molecules, Akita-proinsulin causes co-retention of endogenous wild-type 

proinsulin.
31

  Curiously, by SDS-PAGE and western blotting, a (GFP-tagged) Akita proinsulin 

was predominantly recovered under nonreducing conditions not as a monomer but as a 

disulfide-linked complex (Fig. 3A, arrows).  Immunoprecipitation of tagged Akita proinsulin 

co-precipitates endogenous (untagged) bystander proinsulin molecules that also become 

engaged in disulfide-linked protein complexes but can be recovered as a monomer upon 

SDS-PAGE under reducing conditions (Fig. 3B).   

Increasing evidence suggests that an abundance of disulfide-linked proinsulin 

aggregates is likely to contribute to beta cell ER stress and diabetes, thereby raising the 

question: What are the factors that promote increased abundance of disulfide-linked 

proinsulin aggregates?  We reason (Fig. 4) that, in the steady state, proinsulin aggregates 

accumulate on the basis of (1) the rate of their formation that is linked to the rate of 

proinsulin synthesis, which is upregulated in states of increased metabolic demand; (2) the 

prevailing ER environment, which may not be homeostatically maintained to provide both 

optimal oxidative capacity and functional helper proteins for proinsulin folding; (3) the 

presence or absence of primary structural defects intrinsic to the proinsulin molecule itself; 

and (4) the disposal (or, conversely, the stability/resistance to disposal) of both misfolded 

proinsulin monomers and aggregates, primarily by ER-associated degradation (ERAD).  Both 

the formation and prevention of accumulation of these aggregates are the subjects of the 

current review.   

 

 

Misfolded proinsulin molecules occur in conjunction with proinsulin synthesis  

In addition to increased proinsulin synthesis observed upon metabolic demand leading to 

increased abundance of misfolded proinsulin monomers,
22

 there is an additional increase of 

proinsulin synthesis if islet beta cells fail to deliver sufficient signaling from one of their 

major ER stress sensors, known as PERK.
32

  PERK is a negative regulator of general 

translation and is highly expressed in islets.  Deficiency of pancreatic PERK-mediated 

phosphorylation of eIF2α, the regulatory subunit (that controls the guanine nucleotide 

exchange activity) of eIF2B, results in enhanced proinsulin synthesis that is detectable at all 
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glucose levels but may contribute particularly under prolonged hyperglycemic conditions, in 

which increased ER stress response, including eIF2α phosphorylation, would normally be 

expected.
32

  Conversely, a dephosphorylated state of eIF2α has been reported to be stimulated 

by short-term increases in extracellular glucose,
33

 and this correlates at least partially with 

increased protein synthesis in beta cells
34

 (Fig. 5).  Loss of PERK function with an exuberant 

proinsulin synthetic response, even at lower glucose levels, has been directly linked to 

proinsulin misfolding.  PERK deficiency in beta cells causes ER distention
32,35

 with 

proinsulin abnormally retained therein.
36,37

  Indeed, when pancreatic beta cells are lysed, and 

the detergent-solubilized cytoplasmic proteins are spun for 450,000 g-min onto a 20% 

glycerol cushion, proinsulin does not ordinarily penetrate the glycerol cushion.  However, 

within a few hours after beta cells are treated with a chemical inhibitor of PERK, proinsulin 

synthesis is augmented, and the proinsulin that begins to accumulate in these cells is able to 

pellet through the glycerol cushion, indicating the formation of abnormally high-molecular-

weight protein complexes.
38

  When analyzed by SDS-PAGE under nonreducing conditions, 

some of the proinsulin (molecular mass ~ 9 kDa) can be recovered in complexes up to ~100 

kDa—although the same protein is recovered at its usual expected molecular mass by SDS-

PAGE under reducing conditions.
38

  Moreover, the accumulated proinsulin that was 

synthesized at increased levels under PERK-deficient conditions is defective for anterograde 

trafficking to the Golgi complex,
39

 leading to deficient insulin production and secretion.  This 

behavior appears to explain the phenotype of patients with Wolcott-Rallison syndrome,
40

 a 

disease caused by naturally occurring loss-of-function mutations in PERK leading to neonatal 

diabetes attributable to beta cell failure
32

 as well as multiple other tissue defects.
41

 

PERK is one of four kinases that can specifically phosphorylate eIF2α at Ser51 and 

thereby negatively regulate global protein synthesis as part of the integrated stress response.
42

  

Defects in eIF2α phosphorylation can be emulated by expression of the eIF2α-S51A mutant 

that can no longer be phosphorylated at this site.  Global eIF2α-S51A heterozygous animals 

have been found to be sensitive to high-fat diet–induced diabetes with diminished insulin 

secretion accompanied by distention of the ER lumen in pancreatic beta cells (similar to that 

seen in PERK deficiency) along with increased proinsulin binding to the HSP70 family 

member of the ER (known as BiP) in conjunction with defective anterograde proinsulin 

trafficking.
43

  Global homozygous eIF2α-S51A expression (i.e., unregulated overactivity of 

the eIF2B complex) is a lethal condition
44

 that can be rescued by global expression of a wild-

type floxed eIF2α transgene, which restores eIF2α phosphorylation and negative regulation of 
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proinsulin synthesis in islet beta cells and prevents lethality.  In such animals, superimposed 

beta cell–specific expression of Cre recombinase deletes this transgene (in beta cells), 

causing proinsulin synthesis to increase in a manner that cannot be suppressed despite ER 

stress—and, once again, this leads to distention of the beta cell ER accompanied by insulin-

deficient diabetes.
45

  All of these findings suggest that excessive synthesis of proinsulin 

promotes its misfolding to a level that impairs insulin production, leading to insulin 

deficiency.  Could excessive proinsulin biosynthesis predispose to beta cell dysfunction in 

type 2 diabetes?  Using db/db mice as a model, the answer is yes, as it has recently been 

demonstrated that glucose-stimulated proinsulin biosynthesis is 14- to 15-fold increased over 

that in otherwise congenic animals lacking the db allele (basal proinsulin biosynthesis is also 

increased, as is the intracellular proinsulin-to-insulin ratio), and the increased proinsulin no 

longer exhibits a typical Golgi-like distribution pattern but rather a steady-state distribution 

suggestive of enhanced accumulation in the ER.
46

  Of course, the relevance of these findings 

to beta cell failure in human obesity–related type 2 diabetes still remains to be proven.
47

   

Curiously, in contrast with loss of PERK-mediated phosphorylation of eIF2α, 

activation of PERK-mediated phosphorylation of eIF2α, despite initial protein synthesis 

repression, can ultimately lead to downstream activation of transcription factors ATF4, 

CHOP, and GADD34, which themselves may promote a rebound increase of protein 

synthesis through enhanced amino acid uptake, tRNA synthesis, and even dephosphorylation 

of eIF2α
48–50

—these rebound conditions can also potentially add to cellular stress and protein 

misfolding.  Additionally, increased glucose stimulates the Ire1-spliced XBP pathway to 

expand ER capacity and accelerate proinsulin translation
51

 while also promoting the 

formation of ubiquitylated protein aggregates in beta cells.
52

 

 

 

Misfolded proinsulin molecules occur in conjunction with perturbations of the ER 

folding environment   

Accumulation of misfolded proinsulin is thought to occur under conditions of molecular 

crowding within the limited ER luminal space.
53,54

  The ER luminal environment has been 

estimated to bear a protein concentration of ~ 100 mg/mL; such a concentration could not 

permit proinsulin solubility without the support of ER-resident chaperone and foldase 

activity.
55

  Presumably, beta cells are more optimized than other cells to promote proinsulin 
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folding and solubility, as recombinant proinsulin expression in heterologous cell types is 

thought to fare worse than endogenous proinsulin expressed in beta cells.
56

  Nevertheless, as 

described throughout this review, beta cells remain quite susceptible to proinsulin misfolding.  

In the last decade, it has been suggested that a portion of proinsulin in beta cells may be 

recovered in non-native oligomers or aggregate, the formation of which is susceptible to 

disturbances in beta cell energy production, calcium changes, reductive stress, and 

inflammatory cytokine exposure.
57

  The relative abundance of misfolded proinsulin 

molecules, through dominant-negative behavior, further influences the success of folding of 

additional bystander proinsulin molecules.
28

  Additionally, several resident proteins have 

been found to be more abundant in the ER of glucose-responsive (compared with 

unresponsive) beta cells, including ERp29 (PDIA9), protein disulfide isomerase (PDI), BiP, 

and the HSP90 family member of the ER known as GRP94.
58

  Each of these proteins has 

been found by ER-specific proteomic analyses of pancreatic beta cells.
59

  An area of intense 

interest involves treatments that may allow beta cells to alter their ER luminal environment in 

ways that may allow for improved function in the face of increased misfolded proinsulin.  

One of the most straightforward ways to document success or failure of proinsulin 

folding to the native state is by evaluating the status of its three disulfide bonds.
15

  There is 

evidence to support the view that formation of these disulfide bonds may be catalyzed 

directly or indirectly within the ER environment.
60,61

  Peroxiredoxin-4 (PRDX4) has the 

potential to contribute to proinsulin disulfide bond formation, but ordinarily its expression 

level in pancreatic beta cells is thought to be very low.
62

  One of the main ER oxidases that 

functions upstream of ER oxidoreductases is ER oxidoreductin 1 (ERO1).  First discovered in 

yeast cells, ERO1 can receive reducing equivalents from PDI, which in turn can receive 

reducing equivalents from the cysteine thiols of substrate proteins.
63

  Pancreatic beta cells 

express two ERO1 homologs: the ubiquitously expressed ERO1α and the more narrowly 

expressed ERO1β;
64

 evidence suggests that ERO1 activity participates in proinsulin 

folding,
65,66

 and loss of ERO1β gene expression exacerbates the disease phenotype observed 

in Akita diabetic mice
65

 (as noted above, these animals express wild-type proinsulin from 

three normal alleles and misfolded proinsulin-C(A7)Y from one mutant Ins2 allele
30, 67

).   

In the oxidation chain downstream of ERO1 are a wide array of ER oxidoreductases.
68

  

Whereas PDI is the flagship member, and PDI has been found to help beta cells 

overexpressing human IAPP,
69

 evidence is still lacking that PDI participates directly in 
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productive proinsulin folding.
70

  Indeed, overexpression of PDI in cultured beta cells 

promotes ER accumulation of proinsulin and decreased glucose-stimulated insulin 

secretion.
71

  However, oxidized PDI may still be valuable in the ER to oxidize other 

oxidoreductases of the ER lumen; indeed, in equilibrium, one ER oxidoreductase may 

distribute its oxidation power to the other intraluminal ER catalysts of disulfide bond 

formation.
72,73

  Moreover, rather than playing a direct role in proinsulin folding, PDI may 

participate in ERAD of proinsulin
74

 in conjunction with other ER luminal components.
75

  As 

discussed further below, this could have significant indirect consequences for the folding of 

newly synthesized proinsulin in the ER of pancreatic beta cells.   

Two other major ER oxidoreductases––P5 (PDIA6) and ERp46 (PDIA15)––have 

been reported to be preferential oxidation substrates for PRDX4
73

 (which is not thought to be 

highly expressed in beta cells), yet they may have potential to promote insulin production.
76,77

  

The action of P5 (PDIA6) in beta cells might not involve a direct effect on proinsulin 

folding
78

 and might similarly be involved in proinsulin ERAD
79

 or in physiological ER stress 

signaling via interactions with IRE1.
80

  ERp44 (PDIA10) has also been suggested to be a 

proinsulin-interacting protein,
81

 but its function in proinsulin folding is unknown.  

Additionally, ERp72 (PDIA4) has been implicated indirectly in proinsulin misfolding.
82

 

ER molecular chaperones (lacking oxidoreductase activity) have also been strongly 

linked to proinsulin folding.  The ER luminal chaperone BiP is not only upregulated in 

response to beta cell ER stress, but BiP is routinely found in complexes with misfolded 

proinsulin molecules.
30,83

  Transgenic BiP overexpression in islet beta cells did not change 

islet insulin content but did protect against high-fat diet–induced diabetes, suggesting 

improvement in proinsulin folding.
84

  BiP overexpression similarly improved glucose-

stimulated insulin secretion in cultured beta cells exposed to chronic hyperglycemia.
71

  BiP 

activity to promote insulin production in beta cells is likely to be supported by helper 

proteins, such as co-chaperone ERdj4,
85

 the nucleotide exchange factor SIL1,
86

 the DnaJ 

homolog p58IPK,
87

 and GRP170 (discussed below).   

ER calcium concentration is another homeostatically regulated parameter of the ER 

luminal environment that is attuned to optimize the performance of many ER-resident 

proteins.  Cytokine activity can result in the depletion of ER luminal calcium and can activate 

ER stress
88

 that may be mediated by proinsulin misfolding—possibly because ER luminal 

calcium deficiency creates secondary deficiency in the maintenance of the ER oxidative 

environment needed for disulfide bond formation.
89

  Cytosol-to-ER lumen calcium pumping 
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in various tissues is driven by members of the SERCA protein family,
90

 of which SERCA2b 

is a major contributor to ER calcium as well as a contributor to the differentiated function of 

beta cells,
91,92

 which may account for the observation that thapsigargin, a pan-SERCA pump 

inhibitor, impairs proinsulin export from the ER
93

 and induces beta cell ER stress.
94

 

Other resident proteins in the beta cell ER luminal environment are less well defined 

but may also be important, including SDF2L1, which may affect the ERAD rate of misfolded 

proinsulin,
95

 as well as numerous other proteins, such as Torsin 1–3, that are present in the 

beta cell ER
59

 but remain uncharacterized outside of the nervous system.
96

   

Overall, the ER luminal microenvironment is homeostatically regulated via 

physiological ER stress-response signaling, also known as the unfolded protein response 

(UPR).  A detailed discussion of UPR signaling is beyond the scope of this review, but there 

is reason to think that each of the major ER stress–sensor proteins contributes to fine-tuning 

the composition of the proinsulin folding environment.  Adult mice lacking IRE1 in beta cells 

exhibit normal general secretory pathway morphology and normal proinsulin mRNA levels 

but decreased proinsulin synthesis, with some ER-resident protein mRNAs decreased as well 

(such as ERdj4), plus decreased ATF6 (at the mRNA level) and spliced XBP1—these are all 

genes needed for adequate beta cell biosynthetic response to glucose—and the net result is 

diminished insulin secretory granules leading to hypoinsulinemia and hyperglycemia.
51,97,98

  

Mice lacking XBP1 (downstream of IRE1) in beta cells also exhibit impaired proinsulin 

processing, decreased insulin content in beta cells, and hyperglycemia.
99

  Mice lacking ATF6 

exhibit a swollen beta cell ER, accompanied by diminished pancreatic insulin content.
100

  

And, as noted above, mice deficient for PERK in beta cells develop a swollen ER with 

accumulated proinsulin and diabetes.
32

   

 

 

Misfolded proinsulin molecules occur in conjunction with proinsulin coding sequence 

mutations  

Based on proton NMR and additional biophysical analyses, the solution structure of 

proinsulin reveals a folded insulin moiety (sharing the same three disulfide bridges as that of 

native insulin) and a largely unstructured connecting peptide, except at the cleavage 

junctions.
101

  Two of the three disulfide bonds of proinsulin are largely buried within the 

globular protein, whereas the Cys(B7)–Cys(A7) bond lies closer to the protein surface.
102

  

Within the ER, formation of the latter disulfide bond demonstrates cooperativity with the 
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formation of the critical Cys(B19)–Cys(A20 linkage.
15

  In mouse pancreatic islets pulsed 

with 
35

S-amino acids, within a 60-s labeling period (and no chase), a large fraction of newly 

synthesized preproinsulin molecules have completed the nascent chain, cleaved the signal 

peptide utilized for entry into the ER, and already formed all three of the native proinsulin 

disulfide bonds (Fig. 6)— thus, the native folding of proinsulin is ordinarily a very rapid 

process.
25

   

A large subset (approximately 30) of the reported INS mutations are known to trigger 

a form of diabetes known as mutant INS gene–induced diabetes of youth (MIDY);
103

 which 

masquerades as several different diabetic syndromes but is often linked to neonatal diabetes 

(first 6 months of life);  about a dozen other mutations lead to diabetes diagnosed after 6 

months (sometimes referred to as MODY-10).  Published data indicate that all of the distinct 

MIDY alleles, to greater or lesser degrees, encode a misfolded proinsulin protein.
104

  Since 

humans have only one INS gene (one paternally inherited and one maternally inherited 

allele), it is a reasonable first approximation that 50% of the proinsulin molecules synthesized 

in MIDY patients represent the misfolded mutant protein.  This fraction of misfolded 

proinsulin may be much greater than the fraction of proinsulin misfolding caused by mere 

upregulation of the synthesis of wild-type proinsulin,
22,43

 such as may exist in type 2 

diabetes.
105

  On this basis alone, it should not be surprising that, in families transmitting the 

mutant gene through the germ line, the disease is inherited as an autosomal dominant (i.e., 

expression of the heterozygous mutant allele tracks with the diabetes phenotype).
106,107

  By 

contrast, insulin haploinsufficiency is inherited as a recessive trait and thus does not, in single 

copy, cause insulin-deficient diabetes.
108

   

The mutant proinsulin proteins encoded by different MIDY alleles have been 

characterized in a variety of ways.  One method exploits the fact that the C-peptide of 

proinsulin is an unstructured domain;
101

 researchers have taken advantage of this property by 

inserting an epitope tag or even the entire green fluorescent protein (GFP) into the C-peptide, 

which allows for normal insulin production in beta cells while providing special recognition 

of the gene product from the tagged allele.
109

  It is not surprising that all of the expressed 

MIDY mutants, to varying degrees, show an increase in ER 

localization/accumulation.
31,110,111

   

Importantly, the onset of diabetes from the MIDY gene product is attributed to a gain-

of-toxic-function the results in diminished insulin production and secretion from the wild-

type gene product.  In Akita mice that carry the proinsulin-C(A7)Y mutation in one of two 
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Ins2 alleles, by 4 weeks of age, islet areas are normal, but insulin immunostaining of beta 

cells is markedly decreased, accompanied by a markedly expanded beta cell ER 

compartment, misfolded proinsulin associated with BiP, indications of chronic ER stress, 

decreased islet insulin secretion, and decreased insulin levels in the bloodstream.
30,67,112

  The 

initial decreased islet insulin production occurs because the misfolded proinsulin engages 

directly in protein complexes with bystander proinsulin molecules, impairing the egress of 

wild-type proinsulin from the ER and thereby blocking wild-type insulin production.
31

   

Eventually, stress in the secretory pathway gives way to progressive perturbation of 

organelle architecture
113

 and beta cell death.
114

  Although these may be secondary events, 

they are no less important; indeed it might be possible to circumvent or suppress some of 

these secondary phenotypes
87,114–121

 even without relief from the primary problem (dominant-

negative suppression of wild-type proinsulin anterograde export from the ER).  One example 

of such secondary suppression may be achieved by lowering the body’s need for pancreatic 

insulin by agents that help to lower blood glucose,
122,123

 including exogenous insulin.
124,125

  

Another pharmacologic approach may be to develop compounds that could attenuate 

proinsulin oligomerization
126,127

 and thereby limit dominant-negative effects of misfolded 

proinsulin on bystander proinsulin molecules.   

 

 

Misfolded proinsulin clearance  

Two main mechanisms of clearance of misfolded proinsulin molecules are ERAD and 

autophagy.  The principles underlying ERAD involve recognition of misfolded proteins, 

targeting such proteins to the ERAD complex, retrotranslocation across the ER membrane, 

ubiquitylation of target proteins, extraction of ubiquitylated target proteins from the cytosolic 

face of the ER membrane, and degradation by 26S proteasomes.
128

  The two core molecules 

of the ERAD machinery are the partner proteins HRD1 and SEL1/HRD3, which are 

conserved even in yeast.
129

  The polytopic HRD1 membrane protein functions in both 

retrotranslocation and as an E3 ubiquitin ligase, whereas the single membrane–spanning 

SEL1 physically associates with HRD1 and is required for HRD1 protein stability, while also 

helping to present ERAD substrates to HRD1; many other ancillary proteins interact with the 

core complex, and these topics are reviewed in detail elsewhere.
130

  The ERAD core complex 

is upregulated by the ER stress response,
36,131

 suggesting that one of its key functions is to 

help cells adapt to the ER load of misfolded proteins.  Failure of the anterograde transport 
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pathway carrying proinsulin is a likely trigger for enhanced proinsulin ERAD.
132

 

There is strong reason to believe that misfolded proinsulin is an ERAD substrate.  

First, as noted above, islet beta cells that have misfolded proinsulin exhibit upregulated 

expression of HRD1 and SEL1/HRD3.
133,134

  Second, treatment of beta cells with a variety of 

perturbants that poison the ER folding environment has been found to increase both 

proinsulin misfolding and proinsulin disappearance by pulse-chase analysis.
57,135

  Third, 

many MIDY mutant proinsulins have been shown to be degraded, at least in part, via 

proteasomal disposal mechanisms.
104

  Fourth, short hairpin RNA (shRNA)-mediated 

knockdown of HRD1 and the p97 ATPase (involved in ER extraction of ubiquitylated 

proteins for proteasomal disposal) were both reported to increase steady-state levels of 

proinsulin in beta cells.
136

   

Recent studies of the proinsulin-C(A7)Y mutant, which causes diabetes in the Akita 

mouse, have confirmed that the misfolded proinsulin utilizes the HRD1–SEL1L core ERAD 

complex and further requires p97 for its proteasomal degradation.
74

  Intriguingly, PDI was 

also found to engage the misfolded mutant proinsulin, and the absence of PDI activity 

triggered enhanced proinsulin aggregation into aberrant disulfide-bonded proinsulin 

complexes, clarifying one of the upstream elements involved in recognition or targeting 

misfolded proinsulin to the ERAD core complex.
74

  Additional work has revealed that the ER 

chaperone GRP170 also acts in the upstream ERAD pathway of misfolded proinsulin in such 

a way as to decrease the abundance of high-molecular-weight proinsulin aggregates, 

promoting smaller proinsulin complexes that have better competence for retrotranslocation 

and proteasomal disposal.
75

  Interestingly, GRP170 is particularly highly expressed in islet 

beta cells, and its expression seems to parallel that of proinsulin.
137

  Most remarkable, in cells 

expressing both wild-type proinsulin and the proinsulin-C(A7)Y mutant, GRP170 

overexpression assisted in the selective degradation of the mutant, liberating the wild-type 

proinsulin for export from the ER and production of native insulin.
75

  This is of obvious 

potential interest in limiting proinsulin aggregation in order to improve beta cell function for 

the prevention of diabetes.   

There is also reason to suspect that ER-phagy may be an important pathway of 

misfolded proinsulin disposal.
7
  First, proinsulin misfolding has been observed to stimulate 

autophagy.
117

  Second, mice with beta cell-specific deletion of the ATG7 autophagy gene 

showed accumulation of intracellular ubiquitinated protein aggregates and ER distention 

associated with hypoinsulinemia, decreased pancreatic insulin content, and decreased beta 
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cell mass leading to hyperglycemia.
138

  Third, treatment of female Akita mice with rapamycin 

(an mTOR inhibitor), which stimulated autophagosome formation and autophagic flux in beta 

cells, also increased pancreatic insulin content and decreased measures of beta cell ER 

stress.
139

  However, proinsulin that has undergone anterograde trafficking beyond the ER may 

also reach autophagosomes, and such molecules are unlikely to be misfolded.
140

   

 

 

Clinical implications  

Type 2 diabetes is the most common form of diabetes mellitus worldwide, and it is still 

debated whether stimulating beta cell insulin secretion or providing beta cell rest is the 

optimum therapy for the disease.
141

  Before onset of disease, beta cells increase their insulin 

production in response to increased demand driven by insulin resistance.  Under states of 

pancreatic insulin depletion, increasingly active beta cell exocytosis is also accompanied by 

hyperproinsulinemia,
142,143

 which decreases available substrate for conversion to insulin and 

adds more pressure on beta cells to increase active hormone production through proinsulin 

biosynthesis.  Exposure to cytokines
144,145

 and environmental toxins
146

 could further 

exacerbate this problem (Fig. 7).  Both hyperlipidemia and hyperglycemia may initially 

promote more proinsulin biosynthesis, but they ultimately trigger severe beta cell ER 

stress.
147

   

It is generally recognized that type 2 diabetes does not develop until there is a 

significant deficiency of insulin secretion.
148

  While the initiating/inciting origin of this 

common insulin secretory defect remains obscure in garden-variety type 2 diabetes, evidence 

from rare (monogenic) forms of diabetes are shedding light on basic processes essential for 

healthy insulin production.  Indeed, even as complex diseases, such as diabetes, have a 

multifactorial etiology (including both genetic and environmental predisposition), a number 

of rare forms of diabetes exhibiting Mendelian inheritance (including autosomal dominant 

inheritance) may provide highly fruitful clues to the intracellular organelles and pathways 

that are most susceptible to breakdown in beta cell dysfunction.  Some of these rare diseases 

include Wolfram syndrome,
149

 which involves a protein (WFS1) that influences the beta cell 

ER environment;
150–152

 Wolcott-Rallison syndrome,
41,153

 which, as noted above, causes loss 

of PERK function in the ER and thereby tends to enhance preproinsulin translation;
154

 and 

MIDY,
103

 which is a direct cause of proinsulin misfolding in the ER and insulin-deficient 

diabetes.
7
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In garden-variety type 2 diabetes, it is increasingly recognized that genetic 

perturbation of islet regulatory elements can alter islet transcriptional responses to ER 

stress,
155

 to which beta cells are highly susceptible.
156

  Genome-wide association studies may 

also suggest that allelic variants encoding proteins involved in ER-related processes can 

confer increased type 2 diabetes susceptibility.
157

  Indeed, islet beta cells from human type 2 

diabetes patients have an increased ER volume density that is plausibly consistent with 

increased proinsulin synthesis; at the same time, isolated islets from type 2 diabetic 

individuals exhibit decreased insulin secretion, and these islets exhibit a more easily induced 

ER stress response to hyperglycemic conditions.
158

   

Increased proinsulin production in type 2 diabetes accompanied by decreased 

intrapancreatic insulin stores is also present in animal models.
159

  There is increasing 

evidence of islet beta cells with vigorously active ongoing proinsulin biosynthesis that are 

nevertheless insulin deficient (by immunofluorescence).
46

  There is also evidence that 

attenuating beta cell proinsulin synthesis can improve proinsulin maturation, insulin 

production, and insulin secretion in vivo
124

 and in vitro.
46

  However, additional work is still 

needed to establish a direct link between proinsulin misfolding and pancreatic beta cell 

failure in human type 2 diabetes and to develop therapies to limit accumulation of misfolded 

proinsulin.
66,75

   

In this review, we highlighted features that promote proinsulin misfolding, including 

its increased synthesis, altered ER environment, the presence of proinsulin structural defects, 

and deficiency of clearance of misfolded proinsulin.  We propose that these processes are 

fertile areas for studies of molecular and cellular mechanisms that may predispose to beta cell 

failure during the onset and progression of diabetes mellitus.   
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Figure legends 

 

Figure 1.  Pattern of disulfide bond formation throughout the insulin/IGF superfamily.  (A) 

Reproduced from Ref. 19, with permission from the publisher.  (B) The human insulin 

peptide sequence is inserted into the disulfide pattern shown in panel A.  The first two Cys 

residues fall within the insulin B-chain (in red), and the remaining four Cys residues fall 

within the insulin A-chain (in blue).  The conversion of the single-chain proinsulin to the two-

chain insulin molecule involves excision of the connecting C-peptide (shown in orange) via 

endoproteolytic cleavage followed by carboxypeptidase cleavage at dibasic sites (green 

letters).   
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Figure 2.  Non-native isomer of newly synthesized proinsulin shows enhanced binding to the 

ER HSP70 chaperone BiP.  Fifty isolated rat pancreatic islets were pulse labeled with 
35

S-

labeled amino acids and then lysed immediately and either immunoprecipitated with a 

polyclonal antibody to insulin that recognizes all proinsulin forms or co-immunoprecipitated 

with anti-BiP.  The immunoprecipitates were analyzed by nonreducing Tris–Tricine–urea–

SDS-PAGE.  In addition to native disulfide-bonded proinsulin, a more slowly migrating 

proinsulin disulfide isomer is preferentially associated with BiP.  Reproduced from Ref. 15 

with permission from the publisher.  

 
Figure 3.  Protein interactions of proinsulin-C(A7)Y.  (A) The INS1 pancreatic beta cell line 

was used, either untransfected (control) or transfected to express hPro-CpepGFP or 

hProC(A7)Y-CpepGFP (the latter bearing the Akita proinsulin mutation).  Cell lysates were 

subjected to western blotting with anti-GFP after SDS-PAGE under reduced or nonreduced 

conditions.  Not only is hProC(A7)Y-CpepGFP not endoproteolytically processed in beta 

cells, but the protein is recovered in higher-molecular-mass protein complexes (open arrows) 

that are detected only under nonreduced conditions. (B) The same cells from panel A were 

pulse labeled with 
35

S-labeled amino acids for 30 min and lysed, then GFP-containing 

peptides were immunoprecipitated, and the samples were analyzed by Tris–tricine–urea–

SDS-PAGE under reducing conditions to detect coimmunoprecipitation of endogenous 

proinsulin. Reproduced from Ref. 24 (© 2007; National Academy of Sciences).   
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Figure 4.  Steps contributing to proinsulin aggregation in the ER folding environment.  

Upper panel: under healthy conditions, proinsulin synthesis is limited to physiological levels 

(small font) and folds within a generally favorable folding environment leading to successful 

export from the ER (thick green arrow).  The misfolded proinsulin that is generated in 

parallel with native folding is actively disposed of, including monomer disposal (thick brown 

arrow) and aggregate disposal (thick blue arrow).  Through each of these mechanisms, the 

steady-state level of misfolded proinsulin is held to low levels.  Lower panel: under unhealthy 

conditions, proinsulin synthesis is exuberant to a level that may be considered 

supraphysiological; the increased supply of unfolded monomers leads to the production of 

more proinsulin aggregates, exceeding the disposal of misfolded proinsulin, such that the 

steady-state level of misfolded proinsulin is increased.   
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Figure 5.  Glucose-related changes in eIF2 phosphorylation in MIN6 cells.  MIN6 cells (i.e., 

cells of a mouse pancreatic beta cell line) were preincubated in no glucose (1 h) before 

incubation in the indicated concentrations of glucose for 1 h in the presence of 

[
35

S]methionine.  Upper panel: cell lysates were analyzed by SDS-PAGE and western 

blotting with anti-phospho-eIF2α (P-eIF2α) and anti-eIF2α. Lower panel: incorporation of 

[
35

S]methionine into total protein, as a percent of control (0 mm glucose).  Adapted from Ref. 

27 with permission from the publisher.   

 
Figure 6.  Rapid formation of native proinsulin disulfide bonds.  Isolated mouse pancreatic 

islets were pulse labeled for 60 s with 
35

S-labeled amino acids and either lysed without chase 

or chased in the presence of cycloheximide (100 µg/mL) to prevent further proinsulin 

synthesis.  The islets were lysed and analyzed by Tris–-tricine–urea–SDS-PAGE and 

phosphorimaging; the position of oxidized native proinsulin is shown.  Reproduced from Ref. 

18 with permission from the publisher.   
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Figure 7.  Hypothesis: relevance of proinsulin misfolding to insulin deficiency/beta cell 

dysfunction in garden-variety diabetes mellitus.   This figure has been adapted and altered 

from Fig. 1 of Ref. 47; permission from publisher is pending.   

 

 
 


