
Online Appendices

A Alternative Stochastic Programming Model Formulations

A.1 Three-Stage Stochastic Formulation

In §3.2, we considered two-stage models in which the demand scenario for each clinic is realized at

the beginning of the malaria season. Recourse actions address the disparity between the realized

demand and the initial inventory of ACTs at each clinic. One drawback of the two-stage model

is that the recourse actions are aggregate-level surrogates for the actual periodic decisions. This

assumption allows for a tractable solution at the cost of ignoring the temporal (e.g., bi-monthly,

monthly, weekly, etc.) fluctuations in demand. When temporal demand fluctuations are high,

the two-stage models may underestimate the actual shortage in each period.

Model accuracy can be improved by increasing the granularity of the recourse actions. For

instance, the transshipments or delayed shipments can be delivered periodically so the model

can better estimate the actual shortage in each period. However, as the granularity of the model

increases, the computation time increases dramatically. Moreover, collecting and processing the

demand data at a very detailed level is often not feasible in a developing nation.
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Figure 14: Event timelines for three-stage stochastic models.

In §A.2 we explore the benefits of increasing the granularity of the recourse actions by ex-

tending the former analysis to a three-stage stochastic program, using a revised timeline shown

in Figure 14.

A.2 Three-Stage Transshipment Model and Delayed Shipment Models

The first stage of the three-stage problem (initial distribution of medications) is identical to that

of the two-stage problem in §3.3. The second stage represents the initial round of transshipment;

therefore it includes an additional term (Q′) in the objective function (21) to represent the

third-stage problem - the final round of transshipment. We also define a new auxiliary decision

variable (lsi ) to represent the number of ACTs left at clinic i under scenario s after the second

stage and the term lsi is subtracted from the left-hand-side of the flow conservation constraints
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(27). Note that in the third-stage problem, lsi is calculated by the flow conservation constraint

of the second-stage problem (23) and thus is considered input data.

Q = min
∑
s∈S

ps
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cijy
s
ij +
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πiz
s
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)
+Q′ (21)

s.t. ∑
j:(i,j)∈AC

ysij ≤
∑

j:(j,i)∈AD
xij −

∑
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xij ∀i ∈ D, ∀s ∈ S (22)

∑
j:(j,i)∈AT ∪AC

ysji −
∑

j:(i,j)∈AT ∪AC
ysij + zsi − lsi = −

∑
j:(j,i)∈AC

xji + dsi ∀i ∈ C,∀s ∈ S (23)

ysij ≥ 0 ∀(i, j) ∈ AT ∪ AC,∀s ∈ S (24)

zsi ≥ 0, lsi ≥ 0 ∀i ∈ C, ∀s ∈ S. (25)

For the third-stage problem (Q′) represented by (26)-(29), we define y
′s
ij to be the decision on

the number of ACT units transshipped from clinic i to clinic j under scenario s in the third stage.

We allow the transshipment cost in the third stage, (c′ij), to be different from the second-stage

cost (cij).

Q′ = min
∑
s∈S
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′s
i
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s.t. ∑
j:(i,j)∈AT

y
′s
ij −

∑
j:(j,i)∈AT

y
′s
ji + z

′s
i ≥ −lsi + d

′s
i ∀i ∈ C,∀s ∈ S (27)

y
′s
ij ≥ 0 ∀(i, j) ∈ AT ,∀s ∈ S (28)

z
′s
i ≥ 0 ∀i ∈ C,∀s ∈ S. (29)

The third stage, Eq. 26-29 has the same structure and intuition as the second stage.

Delayed Shipment. The form of the three-stage delayed shipment model is analogous to the

three-stage transshipment model with the necessary changes illustrated in §3.4 for the two-stage

version. For brevity we do not repeat them here.

A.3 Two-Stage vs. Three-Stage Models

Through computational experiments, we also analyze the marginal benefit of adding another

recourse stage to the stochastic model. To focus on this impact given different uncertainty

profiles, we performed separate experiments focusing on two scenario subsets: (1) scenarios where

the majority of demand is realized in the second stage (LOW2, MED2, HIGH1, CONS2, and

VAR1); (2) scenarios where the majority of the demand is realized in the third stage (LOW1,

MED1, HIGH2, CONS1, and VAR2). The three-stage model provides more opportunities to

react to demand uncertainty, but adding more stages makes the problem harder to solve.

As observed in Figures 4, 6, and 15, three-stage models outperform two-stage and the differ-

ence is accentuated as supply increases. From Figure 15, the marginal benefit of moving from the
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baseline model to the two-stage model is higher in transshipment models. On the other hand,

the three-stage delayed shipment model is more effective at reducing shortage compared to the

three-stage transshipment model. Depending on parameters such as supply, shortage penalty,

and demand uncertainty profile, the magnitude of these marginal benefits can vary.

 200
 210
 220
 230
 240
 250
 260

Delayed Transshipment Delayed Transshipment

High Demand in Stage 3 Low Demand in Stage 3

Tr
an

sp
or
ta
tio

n 
Co

st
 

($
 M

ill
io
ns
)  
   8%↑

9%↑

5%↑6%↑
8%↑

11%↑

4%↑5%↑

 ‐
 100
 200
 300
 400
 500
 600
 700

Delayed Transshipment Delayed Transshipment

High Demand in Stage 3 Low Demand in Stage 3

Sh
or
ta
ge
 V
ol
um

e 
  

(T
ho

us
an

ds
)

Baseline 2‐stage Model 3‐stage Model

24%↓

65%↓

37%↓

60%↓

31%↓

69%↓

36%↓
53%↓

(a) Expected Transportation Cost (b) Expected Shortage Volume

Figure 15: Stochastic models compared to the baseline.

A.4 Supply Equity

When the total supply of malaria medication is less than the demand, shortage is inevitable. In

such a scenario, it is possible that some clinics may face significantly higher shortages than others.

An equitable policy, however, distributes ACTs in a manner that limits the shortage disparity

between clinics. Minimizing the sum of absolute differences between the shortage of each clinic

and the average shortage among all clinics can limit this disparity. Let z̄s be the average shortage

of ACTs in all the clinics in scenario s and z̃si be the absolute difference between the shortage in

clinic i and the average shortage. The following constraints capture this concept:

z̄s =
1

|C|
∑
i∈C

zsi ∀s ∈ S (30)

z̃si ≥ zsi − z̄s ∀s ∈ S,∀i ∈ C (31)

z̃si ≥ −zsi + z̄s ∀s ∈ S,∀i ∈ C (32)

z̃si ≥ 0. (33)

Equations (30) define the average shortage. Equations (31) - (33) linearize the absolute value

function. Based on the above definition of equity, we can modify the objective function in each

model by adding a new term
∑

s,i πiz̃
s
i . Other approaches can maintain equity without violating

linearity as well, such as minimizing the maximum shortage, or minimizing the difference between

the minimum and the maximum shortage values.

B Clinic Clustering.

The purpose of the paper was not to employ formal clustering approaches from the literature

or to provide proof for an optimal clustering method. Instead, we found a convenient clustering

structure based on the optimal solution of the strategic level stochastic program. This facilitated

the decomposition into clusters that allowed us to solve the operational problem. These clusters
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are heuristically defined, but make a lot of operational sense, because flows between clusters were

found to be sufficiently small as to not significantly affect the optimal solutions, as demonstrated

by our numerical studies of the optimal solution of the decomposition method versus the fully

integrated model (§4.3). We believe that this clustering method should work for problems with

a similar structure and that there is intuition from an epidemiological sense why this should be

so. Fig. 16 depicts an example of clustering results as a histogram of cluster sizes.
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Figure 16: Clinic clusters histogram.

C Proofs.

Theorem 4.1. Proof: We prove this theorem by induction.

Base Case: f0(Ξ) = 0 for all Ξ and therefore is trivially non-increasing.

Induction Step: Assumefn−1(Ξ) is non-increasing in Ξ.

fn(Ξ)− fn(Ξ− ej) =ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}}−

ΠT(−(Ξ− ej))+ − min
u∈UΞ−ej

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ− ej)+ + u− dn)}}.

ej is the unit vector with 1 in the jth dimension and 0’s elsewhere. We compare the Equation

term by term. First, the instantaneous cost is clearly greater in the system with less inventory:

ΠT((−Ξ)+ − (−(Ξ− ej))+) ≤ 0. (34)
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Next we compare the minimization term. If the optimal action, u∗, is the same in both fn(Ξ)

and fn(Ξ− ej), it follows from the induction hypothesis that:

E{fn−1((Ξ)+ + u∗ − dn)} − E{fn−1((Ξ− ej)+ + u∗ − dn)} ≤ 0.

If, on the other hand, the optimal actions for fn(Ξ) and fn(Ξ− ej) are different, without loss

of generality we assume that optimal action in state (Ξ− ei) is u0. We then have:

min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1(Ξ + u− dn)}} − c

∑
j∈Φ

(u0
j)

+ − E{fn−1((Ξ− ej)+ + u0 − dn)} ≤

c
∑
j∈Φ

(u0
j)

+ + E{fn−1((Ξ)+ + u0 − dn)− c
∑
j∈Φ

(u0
j)

+ − E{fn−1((Ξ− ej)+ + u0 − dn)} ≤ 0. (35)

Inequality (34) follows because the minimizing action at Ξ is clearly at least as small as action

u0. Inequality (35) follows directly from the induction hypothesis. This completes the proof. 2

Lemma 4.1. Proof: Without loss of generality let dn be distributed as qi,j for i, j = 1, . . . ,n

where qi,j = qj,i is the probability of observing i units of demand in clinic 1 and j units of

demand in clinic 2 and vice versa. For notational convenience, for any state Ξ = (ξ1, ξ2), define

∆Ξ = |ξ1 − ξ2| as the absolute difference between the inventory at the two clinics. Consider

two different states, Ξ and Ξ′, such that ξ1 + ξ2 = ξ′1 + ξ′2 and ∆Ξ ≤ ∆Ξ′. We now show that

E[fn(Ξ′ − dn)]− E[fn(Ξ− dn)] ≥ 0.

E[fn(Ξ′ − dn)]− E[fn(Ξ− dn)] =
n∑
i=1

n∑
j=1

qi,jfn(Ξ′ − ie1 − je2)−
n∑
i=1

n∑
j=1

qi,jfn(Ξ− ie1 − je2)

=
n∑
i=1

n∑
j=i

(
qi,j[fn(Ξ′ − ie1 − je2)− fn(Ξ− ie1 − je2)]+

qj,i[fn(Ξ′ − je1 − ie2)− fn(Ξ− je1 − ie2)]
)

. (36)

We now perform a term by term comparison of (36). Without loss of generality assume that

ξ1 < ξ2 and ξ′1 < ξ′2. First note that if j − i ≤ ∆Ξ then both terms within the sum are

positive. Otherwise it is possible that fn(ξ′1 − i, ξ′2 − j) − fn(ξ1 − i, ξ2 − j) is negative, while

fn(ξ′1− j, ξ′2− i)− fn(ξ1− j, ξ2− i) remains positive. What we show is that the magnitude of the

negative portion is smaller than the magnitude of the positive portion, which implies that the

sum of the negative and positive portions will be non-negative. To do so we consider two cases:

Case 1: ∆Ξ < j − i < ∆Ξ′.

First, when j is not too much larger than i we show that fn(ξ′1−i, ξ′2−j)−fn(ξ1−i, ξ2−j) ≥ 0

so the sum of all 4 terms will be positive. In the cases where fn(ξ′1−i, ξ′2−j)−fn(ξ1−i, ξ2−j) < 0,

we show that the imbalance between states (ξ′1 − i, ξ′2 − j) and (ξ1 − i, ξ2 − j) is smaller than

the imbalance between the states of the positive terms: (ξ′1 − j, ξ′2 − i) and (ξ1 − j, ξ2 − i). This

directly implies, by the fact that fn is balanced, that |fn(Ξ′ − ie1 − je2)− fn(Ξ− ie1 − je2)| <
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|fn(Ξ′ − je1 − ie2)− fn(Ξ− je1 − ie2)| and therefore fn(Ξ′ − ie1 − je2)− fn(Ξ− ie1 − je2) +

fn(Ξ′ − je1 − ie2) − fn(Ξ − je1 − ie2) ≥ 0. The imbalance for each term of the sum in (36) is

given below.
∆(Ξ′ − ie1 − je2) = ξ′2 − j − ξ′1 + i = ∆Ξ′ − (j − i), (37)

∆(Ξ− ie1 − je2) = ξ1 − i− ξ2 + j = −∆Ξ + (j − i), (38)

∆(Ξ′ − je1 − ie2) = ξ′2 − i− ξ′1 + j = ∆Ξ′ + (j − i), (39)

∆(Ξ− je1 − ie2) = ξ2 − i− ξ1 + j = ∆Ξ + (j − i). (40)

In Equations (37) and (38), if−∆Ξ+(j−i) ≤ ∆Ξ′−(j−i), then |ξ2−j−(ξ1−i)| < |ξ′2−j−(ξ′1−i)|
and since fn is balanced we have that fn(ξ′1− i, ξ′2− j)−fn(ξ1− i, ξ2− j) ≥ 0, so that term of the

sum in (36) will be positive. If, however, the opposite is true, then the amount of imbalance for

the negative term – which directly correlates with the magnitude – is given by subtracting (37)

from (38). In this situation, the state (ξ′1 − i, ξ′2 − j) actually becomes more balanced than the

state (ξ1 − i, ξ2 − j). Therefore the difference in the amount of imbalance of the negative term

is given by:

0 ≤ −∆Ξ + (j − i)− (∆Ξ′ − (j − i)) < −∆Ξ + (j − i) < ∆Ξ′ −∆Ξ. (41)

The first inequality holds by the assumption that −∆Ξ + (j− i) ≥ (∆Ξ′− (j− i)). Then second

inequality holds because we have j − i < ∆Ξ′ ⇒ ∆Ξ′ − (j − i) > 0. The final inequality follows

from the fact that (j − i) < Ξ′.

Likewise we know that the difference in imbalance for the positive term, fn(ξ′1 − j, ξ′2 − i) −
fn(ξ1 − j, ξ2 − i), is at least as large as the difference in imbalance for the negative term by

subtracting (40) from (39).

0 ≤ ∆Ξ′ + (j − i)− (∆Ξ + (j − i)) = ∆Ξ′ −∆Ξ. (42)

Where the inequality follows from the fact that the Ξ′ term is more imbalanced than the Ξ

term and the equality follows directly. Clearly the negative term has less difference in imbalance

between its components than the positive term, and therefore |fn(Ξ′− ie1− je2)− fn(Ξ− ie1−
je2)| < |fn(Ξ′ − je1 − ie2)− fn(Ξ− je1 − ie2)|, which implies that fn(Ξ′ − ie1 − je2)− fn(Ξ−
ie1 − je2) + fn(Ξ′ − je1 − ie2)− fn(Ξ− je1 − ie2) ≥ 0.

Case 2: ∆Ξ′ ≤ j − i.

This case is straightforward, because we now have that for the pair of terms for the negative

term, fn(ξ′1 − i, ξ′2 − j) − fn(ξ1 − i, ξ2 − j), both ξ2 − j < ξ1 − i and ξ′2 − j < ξ′1 − i. Therefore

the imbalance for each component is now given by:

∆(Ξ′ − ie1 − je2) = ξ′1 − i− ξ′2 + j = −∆Ξ′ + (j − i) (43)

∆(Ξ− ie1 − je2) = ξ1 − i− ξ2 + j = −∆Ξ + (j − i) (44)

∆(Ξ′ − je1 − ie2) = ξ′2 − i− ξ′1 + j = ∆Ξ′ + (j − i) (45)

∆(Ξ− je1 − ie2) = ξ2 − i− ξ1 + j = ∆Ξ + (j − i) (46)
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For the negative term from (36), fn(Ξ′ − ie1 − je2)− fn(Ξ− ie1 − je2), the Ξ′ component is

more balanced, (43), than the Ξ component, (44). The difference in imbalance between the two

terms is given by:

−∆Ξ + (j − i)− (−∆Ξ′ + (j − i) = ∆Ξ′ −∆Ξ. (47)

For the positive term, the difference in imbalance remains the same:

∆Ξ′ + (j − i)− (∆Ξ + (j − i)) = ∆Ξ′ −∆Ξ. (48)

Therefore in Case 2, the difference in imbalance between the components of the negative term

and the difference in the imbalance between the components of the positive term are equal and

thus the subtraction will be 0. 2

Lemma 4.2. Proof: To prove this, we show that the action of “do nothing” will result in

less cost than shipping from the clinic with a lower inventory level to the one with a higher

stock of medication. Let ξ1 ≤ ξ2. If the action is to do nothing, the cost function will be

J0
n = ΠT(−Ξ)+ + 0 +E{fn−1((Ξ)+−dn)}, otherwise the amount of û medication is moved from

clinic 1 to clinic 2 (û = (−û, û)), we have J û
n = ΠT(−Ξ)+ + cû + E{fn−1((Ξ)+ − û − dn)}.

Comparing the two term by term:

cû ≥ 0, (49)

E{fn−1((Ξ− ûe1 + ûe2)+ − dn)} ≥ E{fn−1((Ξ)+ − dn)} (50)

Equation (50) follows from the fact that |ξ2 − ξ1| ≤ |ξ2 + û− ξ1 + û| and that fn is balanced,

which carries through to the expectation via Lemma 4.1. From (49) and (50), f ûn (Ξ) ≥ f 0
n(Ξ)

follows directly. 2

Lemma 4.3. Proof: Consider Ξ∗ where ξ∗1 = ξ∗2 versus Ξ where ξ1 6= ξ2.

fn(Ξ) = ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E[fn−1((Ξ)+ + u− dn)]},

fn(Ξ∗) = ΠT(−Ξ∗)+ + min
u∈UΞ∗

{c
∑
j∈Φ

(uj)
+ + E[fn−1((Ξ∗)+ + u− dn)]}.

We know that fn(·) is balanced, thus by Lemma 4.1 for all n, E{fn−1((Ξ)+ + u − dn)} is also

balanced. Therefore the optimal action at Ξ∗ is u∗ = 0, which achieves the lowest possible value

for the expectation. Thus we have:

E{fn−1((Ξ∗)+ − dn)} ≤ E{fn−1((Ξ)+ + u− dn)}, (51)

and because the optimal policy at Ξ∗ has no penalty because u∗ = 0 it is clear that:

min
u∈UΞ∗

{c
∑
j∈Φ

(uj)
+ + E[fn−1((Ξ∗)+ + u− dn)]} ≤ min

u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E[fn−1((Ξ)+ + u− dn)]}.

(52)
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Finally, it can quickly be verified that the instantaneous cost is lower for the balanced inventory

(Ξ∗):

ΠT(−Ξ∗)+ ≤ ΠT(−Ξ)+. (53)

Thus we have shown that fn(Ξ∗) ≤ fn(Ξ). 2

Theorem 4.2. Proof:

Proof: Without loss of generality, we assume ξ1 ≤ ξ2 and ξ′1 ≤ ξ′2. This ordering along with

our assumption that ξ1 + ξ2 = ξ′1 + ξ′2 and ∆Ξ = |ξ1 − ξ2| ≤ |ξ′1 − ξ′2| = ∆Ξ′, implies that

ξ′1 ≤ ξ1 ≤ ξ2 ≤ ξ′2. We proceed to prove this theorem by using induction.

Base Case: Since f0(Ξ) = 0 for all Ξ. As a result, the induction hypothesis holds.

Induction Step: We assume that the induction hypothesis holds for stage n−1. In order to show

fn(Ξ) is less than or equal to fn(Ξ′), we first write the expressions for both cases:

fn(Ξ) = ΠT(−Ξ)+ + min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E[fn−1((Ξ)+ + u− dn)]},

fn(Ξ′) = ΠT(−Ξ′)+ + min
u∈UΞ′
{c
∑
j∈Φ

(uj)
+ + E[fn−1((Ξ′)+ + u− dn)]}.

Let ξ̄ = b ξ1+ξ2
2
c. Applying the inductive hypothesis that fn−1 is a balanced function, and

Lemma 4.1 and Lemma 4.3, at stage n − 1 the state [ξ̄, ξ1 + ξ2 − ξ̄] = [ξ̄′, ξ̄′] achieves the

minimum value for the expectation of the function fn−1(·). By the induction hypothesis we have

fn−1(Ξ′) ≥ fn−1(Ξ). Since ξ1 + ξ2 = ξ′1 + ξ′2, we can conjuncture that fn−1(Ξ̄) is the state which

reaches the minimum possible cost.

fn(Ξ′)− fn(Ξ) =ΠT(−Ξ′)+ + min
u∈UΞ′

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ′)+ + u− dn)}}−

ΠT(−Ξ)+ − min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}}.

First we compare the instant cost associated with the shortage penalties. As we mentioned

before, without loss of generality, we consider the cases where ξ1 ≤ ξ2 and ξ′1 ≤ ξ′2. Other cases

can be investigated similarly. There are the following cases:

1. ξ′1, ξ′2, ξ1, ξ2 ≥ 0: In this case both fn(Ξ) and fn(Ξ′) incur zero shortage penalties. As a

result ΠT(−Ξ′)+ − ΠT(−Ξ)+ = 0.

2. ξ′1 ≤ 0 and ξ2, ξ1, ξ′2 ≥ 0: In this case fn(Ξ′) has a positive shortage cost while fn(Ξ) incurs

zero shortage penalty. Therefore ΠT(−Ξ′)+ − ΠT(−Ξ)+ ≥ 0.

3. ξ′1, ξ1 ≤ 0 and ξ2, ξ′2 ≥ 0: In this case fn(Ξ′) and fn(Ξ) both have positive shortage cost but

since ξ′1 ≤ ξ1, fn(Ξ) has a greater shortage penalty. As a result ΠT(−Ξ′)+−ΠT(−Ξ)+ ≥ 0.
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4. ξ′1, ξ1, ξ2 ≤ 0 and ξ′2 ≥ 0: We conclude that having ξ′2 ≥ 0, will result in ξ′1 ≤ ξ1 + ξ2 as a

direct result of the assumption, since ξ1 +ξ2 = ξ′1 +ξ′2. Therefore ΠT(−Ξ′)+−ΠT(−Ξ)+ ≥ 0.

5. ξ′1, ξ1, ξ2, ξ′2 ≤ 0: this implies that ΠT(−Ξ′)+ = ΠT(−Ξ)+ ≥ 0.

The next step is to investigate the possible actions and compare the cost-to-go terms for both

fn(Ξ) and fn(Ξ′). Let assume the optimal action in state Ξ′ is u
′∗. Having ξ′1 ≤ ξ′2 and based

on the result of Lemma 4.2, u
′∗ ∈= {0, ...,uξ̄′} = UΞ′ and u

′∗ = (u
′∗,−u′∗) , the optimal action

either will be to ship from clinic 2 to clinic 1 or do nothing (result of Lemma 4.2). We also know

that ξ′2 − ξ′1 ≥ ξ2 − ξ1, as a result, the optimal action u∗ of the state Ξ′ will be a member of

{0, ...,uξ̄}. We have:

UΞ ⊂ UΞ′

There are two possible scenarios, either u
′∗ ∈ UΞ or u

′∗ ∈ UΞ′ \ UΞ′ .

1. Scenario 1: u
′∗ ∈ UΞ:

fn(Ξ′)− fn(Ξ) ≥

=Q1≥0︷ ︸︸ ︷
ΠT(−Ξ′)+ − ΠT(−Ξ)+ +

cu
′∗ + E{fn−1((Ξ′)+ + u

′∗ − dn)} − min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}} ≥

Q1 + cu
′∗ + E{fn−1((Ξ′)+ + u

′∗ − dn)} − cu′∗ + +E{fn−1((Ξ)+ + u
′∗ − dn)} =

E{fn−1((Ξ′)+ + u
′∗ − dn)} − E{fn−1((Ξ)+ + u

′∗ − dn)} ≥ 0. by induction hypothesis

2. Scenario 2: u
′∗ ∈ UΞ′ \ UΞ:

fn(Ξ′)− fn(Ξ) ≥

Q2≥0︷ ︸︸ ︷
ΠT(−Ξ′)+ − ΠT(−Ξ)+ +

cu
′∗ + E{fn−1((Ξ′)+ + u

′∗ − dn)} − min
u∈UΞ

{c
∑
j∈Φ

(uj)
+ + E{fn−1((Ξ)+ + u− dn)}} ≥

Q2 +

B≥0︷ ︸︸ ︷
cu
′∗ − cuξ +

C≥0︷ ︸︸ ︷
E{fn−1((Ξ′)+ + u∗ξ′ − dn)} − E{fn−1((Ξ)+ + uξ̄ − dn)} ≥ 0.

by induction hypothesis

We should note that B ≥ 0 since the total units shipped from clinic 2 to clinic 1 in scenario 2

is more than uξ̄. Also after transshipping uξ̄, fn−1(Ξ) is reaching its minimum (as a direct result

of Lemma 4.3), therefore C ≥ 0. This ends the proof. 2
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