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Abstract 

Problem: Pathological inflammation is causally linked to preterm labor and birth, the 

leading cause of neonatal morbidity and mortality worldwide. Our aims were to 

investigate whether: 1) the newly described family of innate lymphoid cells (ILCs) was 

present at the human maternal-fetal interface, and 2) ILC inflammatory subsets were 

associated with the pathological process of preterm labor.   

Methods of Study: Decidual leukocytes were isolated from women with preterm or 

term labor as well as from gestational age-matched non-labor controls. ILCs (CD15-

CD14-CD3-CD19-CD56-CD11b-CD127+ cells) and their subsets (ILC1, Tbet+ILCs; 

ILC2, GATA3+ILCs; and ILC3, RORγt+ILCs) and cytokine expression were identified in 

the decidual tissues using immunophenotyping. 
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Results: 1) The proportion of total ILCs was increased in the decidua parietalis of 

women with preterm labor; 2) ILC1s were a minor subset of decidual ILCs during 

preterm and term gestations; 3) ILC2s were the most abundant ILC subset in the 

decidua during preterm and term gestations; 4) the proportion of ILC2s was increased in 

the decidua basalis of women with preterm labor; 5) the proportion of ILC3s was 

increased in the decidua parietalis of women with preterm labor; and 6) during preterm 

labor, decidual ILC3s had higher expression of IL-22, IL-17A, IL-13, and IFNγ compared 

to ILC2s. 

Conclusions: ILC2s are the most abundant ILC subset at the human maternal-fetal 

interface during preterm and term gestations. Yet, during preterm labor, an increase in 

ILC2s and ILC3s is observed in the decidua basalis and decidua parietalis, respectively. 

These findings provide evidence demonstrating a role for ILCs at the maternal-fetal 

interface during the pathological process of preterm labor.  

 

Keywords: Inflammation, Pregnancy, Decidua, Parturition, Interleukin, Cytokine, Innate 

Immunity, Tolerance, Mucosal ImmunityIntroduction 

Preterm birth, defined as birth prior to 37 weeks of gestation, is one of the most 

common obstetrical syndromes1-3 and the leading cause of perinatal morbidity and 

mortality worldwide4-8. In 2013, 11.39% of all births in the United States were diagnosed 

as preterm9. Premature neonates are at an increased risk for short- and long-term 

morbidities which represent a substantial burden for society and the healthcare 

system10-13. Approximately 70% of all preterm births are preceded by spontaneous 

preterm labor1, 14, with multiple pathological processes involved15. Therefore, it is 

essential to determine the mechanisms implicated in spontaneous preterm labor and to 

develop novel therapies and strategies to prevent this syndrome.  

Inflammation is implicated in the pathological process of spontaneous preterm 

labor15-42. Pathological inflammation can result from the activation of innate immunity43-

55 by microorganisms29, 56-59 or endogenous signals derived from necrosis or cellular 

stress48, 51, 52, 60-65, termed damage-associated molecular patterns (DAMPs)66 or 

alarmins67. Moreover, it has been demonstrated that activation of the adaptive immune 
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system can also lead to pathological inflammation68. Hence, characterization of innate 

and adaptive immune cells and their mediators may provide an understanding into the 

mechanisms that lead to spontaneous preterm labor. 

Recently, a new family of immune cells which belongs to the lymphoid lineage 

without expressing antigen-specific receptors was described and termed innate 

lymphoid cells (ILCs)69, 70. Such cells are defined by three main features: 1) the absence 

of recombination activating gene (RAG)-dependent rearranged antigen receptors; 2) a 

lack of myeloid cell and dendritic cell phenotypical markers; and 3) their lymphoid 

morphology69, 70. Despite lacking antigen recognition capabilities, ILCs exhibit a 

functional diversity which resembles that of T cells71. Two prototypical members of the 

ILC family have been previously described: the natural killer (NK) cells72 and lymphoid 

tissue-inducer (LTi) cells73. These two cell types, while distinct, are related through 

shared requirement of the common cytokine receptor γ-chain (IL-2Rγ) and the 

transcriptional repressor inhibitor of DNA binding 2 (ID2) for development 70, 74. 

 Distinct ILC subsets have since been described which rely on signaling through 

the IL-7 receptor subunit α (IL-7Rα or CD127) in addition to the abovementioned 

markers70. These new members of the ILC family were classified based on their 

functional similarities to T-cell subsets70. Group 1 ILCs (ILC1) are based on expression 

of the transcription factor T-bet and include NK cells as well as other IFNγ-producing 

Th1-like ILCs75. Group 2 ILCs (ILC2) are characterized by Th2-like expression of the 

cytokines IL-5 and IL-13 and are dependent on the transcription factors GATA-binding 

protein 3 (GATA3) and retinoic acid receptor-related orphan receptor-α (RORα) for 

development 76, 77. Finally, group 3 ILCs (ILC3) includes cells which produce Th17-like 

cytokines including IL-17A and IL-22 and depend on expression of RORγt78. Yet, there 

is plasticity among ILC subsets, which makes their characterization and identification 

challenging79, 80.  

ILC subsets have been identified in the human decidua during early pregnancy81-

86; however, whether such cells are present at the human maternal-fetal interface 

(decidua basalis and decidua parietalis87) during preterm and term gestations and are 

implicated in the pathological process of preterm labor is unknown. 
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The aims of this study were: 1) to determine whether ILCs are present in the 

decidua of women at preterm and term gestations; 2) to investigate whether the 

proportions of ILC subsets in the decidua are altered in women who underwent 

spontaneous preterm labor; and 3) to characterize the cytokine signature of decidual 

ILCs in the pathological process of preterm labor. 

 

Materials and Methods 

Human subjects, clinical specimens, and definitions  

Human placental basal plate and chorioamniotic membrane samples were 

collected within 30 min after delivery at the Detroit Medical Center, Wayne State 

University, and the Perinatology Research Branch, an intramural program of the Eunice 

Kennedy Shriver National Institute of Child Health and Human Development, National 

Institutes of Health, US Department of Health and Human Services 

(NICHD/NIH/DHHS), Detroit, MI, USA. The collection and utilization of biological 

materials for research purposes was approved by the Institutional Review Boards of 

these institutions. All participating women provided written informed consent. The study 

groups included women who delivered at term with (TIL) or without (TNL) labor and 

women who delivered preterm with (PTL) or without (PTNL) labor. Two separate sets of 

samples were utilized in this study: an exploratory and a confirmatory set of samples. 

The demographic and clinical characteristics of the study populations are shown in 

Tables 1 and 2. Preterm birth was defined as delivery before 37 weeks of gestation. 

Labor was defined by the presence of regular uterine contractions at a frequency of at 

least two contractions every 10 minutes with cervical changes resulting in delivery. For 

each case, several tissue sections of the chorioamniotic membranes, umbilical cord, 

and placental disc were evaluated by pathologists who had been blinded to the clinical 

outcome, according to published criteria88. Patients with neonates having congenital or 

chromosomal abnormalities were excluded. 

 

 

Decidual leukocyte isolation 
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Decidual leukocytes were isolated from the decidual tissue of each study group 

as previously described87. Briefly, the decidua basalis was collected from the basal plate 

of the placenta and the decidua parietalis was separated from the chorioamniotic 

membranes. The decidual tissues were homogenized using a gentleMACS Dissociator 

(Miltenyi Biotec, San Diego, CA, USA) in StemPro Accutase Cell Dissociation Reagent 

(Life Technologies, Grand Island, NY, USA). Homogenized tissues were incubated in 

Accutase for 45 min at 37°C with gentle agitation. After incubation, tissues were washed 

in 1X phosphate-buffered saline (PBS) (Life Technologies) and filtered through a 100μm 

cell strainer (Fisher Scientific, Durham, NC, USA). The resulting cell suspensions were 

centrifuged at 300 x g for 10 min at 4°C. The decidual mononuclear cells were then 

separated using a density gradient (Ficoll-Paque Plus; GE Healthcare Biosciences, 

Uppsala, Sweden) following the manufacturer’s instructions. The cells collected from the 

mononuclear layer of the density gradient were washed with 1X PBS and immediately 

used for immunophenotyping. 

 

Immunophenotyping of decidual innate lymphoid cells 

Mononuclear cell suspensions from decidual tissues were stained with the BD 

Horizon Fixable Viability Stain 510 dye (BD Biosciences) prior to immunophenotyping. 

Mononuclear cell suspensions were then washed with FACS staining buffer 

(CAT#554656; BD Biosciences) and incubated with 20μl of human FcR Blocking 

Reagent (CAT#130-059-901; Miltenyi Biotec) in 80μl of FACS staining buffer (BD 

Biosciences) for 10 min at 4ºC. The cells were incubated with extracellular 

fluorochrome-conjugated anti-human monoclonal antibodies for 30 min at 4ºC in the 

dark (Supplementary Table 1). After extracellular staining, the cells were fixed and 

permeabilized using the Foxp3/Transcription Factor Staining Buffer Set (eBioscience, 

San Diego, CA, USA) prior to staining with intracellular and intranuclear antibodies 

(Supplementary Table 1). Stained cells were washed and re-suspended in 0.5 mL of 

FACS staining buffer and acquired using an LSRFortessa flow cytometer and 

FACSDiva 6.0 software (BD Biosciences). Data was analyzed using FlowJo software 

version 10 (TreeStar, Ashland, OR, USA). 
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Statistics 

 Statistical analyses were performed using SPSS v.19.0 software (SPSS Inc., IBM 

Corporation, Armonk, NY). The Mann-Whitney U-test was used for comparisons 

between study groups or different samples, and the Wilcoxon signed rank paired test 

was used for comparisons of different subpopulations from the same samples. A p-

value ≤ 0.05 was considered statistically significant. 

Results 

The proportion of ILCs is increased in the decidua parietalis of women with 

spontaneous preterm labor 

We first performed an exploratory study to determine the proportions and 

phenotypes of decidual ILCs in women with spontaneous term or preterm labor and 

non-labor gestational age-matched controls (Table 1). The gating strategy used to 

identify ILCs in the decidua parietalis and decidua basalis is shown in Figure 1A. ILCs 

were identified as CD15-CD14-CD3-CD19-CD56-CD11b-CD127+ cells within the 

viability gate (Figure 1A). A higher proportion of total ILCs was observed in the decidua 

parietalis from women who underwent spontaneous preterm labor when compared to 

patients who delivered preterm without labor (Figure 1B). However, no significant 

differences were observed in ILCs in the decidua parietalis between women who 

underwent spontaneous labor at term compared to those who delivered at term in the 

absence of labor (Figure 1B). No significant differences were observed in the proportion 

of total ILCs in the decidua parietalis between women who underwent spontaneous 

preterm labor and those with labor at term (Figure 1B). There were no differences in the 

proportion of total ILCs in the decidua basalis among the study groups; yet, ILCs tended 

to be more abundant in the decidua basalis of women with preterm labor than in those 

who delivered preterm in the absence of labor (Figure 1C). These results show that 

ILCs are present at the human maternal-fetal interface during preterm and term 

gestations and an increase in these cells is associated with spontaneous preterm labor. 
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ILC1s are a minor subset of decidual ILCs during preterm and term gestations 

We continued our exploratory study by characterizing the populations of ILC1s, 

ILC2s, and ILC3s in the decidua parietalis and decidua basalis (Table 1). ILC1s were 

distinguished by the expression of the ILC1-associated transcription factor T-bet (Figure 

2A). A very small proportion of ILC1s were identified in both the decidua parietalis 

(median < 2%) and basalis (median < 3%) (Figure 2B-C). No significant differences in 

the proportion of decidual ILC1s were found among study groups (Figure 2B-C). These 

data indicate that ILC1s may not have a significant role in the decidua during preterm 

and term gestations. Due to the small proportion of ILC1s detected in the decidua, we 

did not pursue further examination of this population.  

 

ILC2s are the most abundant ILC subset in the decidua during preterm and term 

gestations 

Our exploratory study revealed that ILC2s were the most abundant ILC subset in 

the human decidua (data not shown); therefore, we performed a subsequent 

confirmatory study using a different and larger set of samples (Table 2). Decidual ILC2s 

were determined by the expression of GATA3 on CD127+ ILCs (Figure 3A). In this 

second cohort, the ILC2 subset was also the most abundant population of ILCs in both 

the decidua parietalis and decidua basalis (Figure 3B-C). The proportion of ILC2s was 

higher in the decidua parietalis (median 60-80%) than in the decidua basalis (median 

35-60%) of women from each study group (Figure 3B-C). No differences were observed 

among the proportions of ILC2s in the decidua parietalis of women from each study 

group; yet, ILC2s tended to be more abundant in preterm than in term gestations 

(Figure 3B). However, a higher proportion of ILC2s was found in the decidua basalis of 

women who underwent spontaneous preterm labor compared to non-labor controls 

(Figure 3C). There were no differences in the proportion of ILC2s in the decidua basalis 

of women who underwent spontaneous labor at term compared to those who delivered 

at term in the absence of labor or those who underwent spontaneous preterm labor 

(Figure 3C). These data show that ILC2s are the dominant ILC population in the 
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decidua parietalis and basalis and that an increase in these cells in the decidua basalis 

is associated with spontaneous preterm labor. 

 

The proportion of ILC3s is increased in the decidua parietalis of women who 

underwent spontaneous preterm labor 

 Next, we evaluated the presence of ILC3s in the decidual tissues (Table 2). The 

gating strategy used to determine the proportion of decidual ILC3s by the expression of 

RORγt is shown in Figure 4A. The proportion of ILC3s was significantly increased in the 

decidua parietalis of women who underwent spontaneous preterm labor compared to 

that of women who delivered preterm in the absence of labor or those who delivered at 

term (Figure 4B). The proportion of ILC3s in the decidua basalis did not seem to vary 

among study groups (Figure 4C). These findings indicate that an increase in ILC3s in 

the decidua parietalis is associated with spontaneous preterm labor. 

 

 

 

Decidual ILC3s express high levels of IL-22, IL17A, IL-13, and IFNγ in women with 

spontaneous preterm labor 

 In order to further characterize decidual ILC2s and ILC3s from women with 

spontaneous preterm labor, we evaluated the expression of cytokines associated with 

the three ILC subsets (Figure 5A). The mean fluorescence intensity (MFI) of IL-22 

(Figure 5B&C), IL-13 (Figure 5F&G), and IFNγ (Figure 5H&I) was higher on ILC3s from 

the decidua parietalis and basalis compared to that of ILC2s. The MFI of IL-17A was 

solely increased on ILC3s in the decidua parietalis compared to that of ILC2s (Figure 

5D). No differences were observed in the expression of IL-5 between ILC2s and ILC3s 

(data not shown). Together, these data show that decidual ILC3s expressed higher 

levels of IL-22, IL-17A, IL-13, and IFNγ than ILC2s during the pathological process of 

preterm labor. 
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Discussion 

Principle findings of the study: 1) The proportion of total CD127+ ILCs was increased 

in the decidua parietalis of women who underwent spontaneous preterm labor; 2) ILC1s 

were a minor subset of decidual ILCs during preterm and term gestations; 3) ILC2s 

were the most abundant ILC subset in the decidua during preterm and term gestations; 

4) the proportion of ILC2s was increased in the decidua basalis of women who 

underwent spontaneous preterm labor; 5) the proportion of ILC3s was increased in the 

decidua parietalis of women who underwent spontaneous preterm labor; 6) ILC3s had 

higher expression of IL-22, IL-17A, IL-13, and IFNγ compared to ILC2s in the decidua of 

women who underwent spontaneous preterm labor; and 7) decidual ILC2s and ILC3s 

had similar expression of IL-5 in the decidua of women who underwent spontaneous 

preterm labor. Collectively, these findings show that, although ILC2s are the most 

abundant ILC subset at the human maternal-fetal interface during preterm and term 

gestations, an increase in ILC2s and ILC3s in the decidua basalis and parietalis is 

observed during the pathological process of preterm labor.  

 

ILCs at the human maternal-fetal interface during preterm and term gestations 

ILCs have been described in mucosal tissues such as the lung, where they 

contribute to asthma and allergy-related processes89-91, and the gastrointestinal tract, 

where they provide defense against parasitic and microbial infections92-95. The 

discovery of enriched ILCs in mucosal tissues has led to the implication of these cells in 

chronic intestinal inflammatory disorders such as Crohn’s disease96. The association 
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between ILCs and inflammatory diseases has led to the search for these cells at other 

sites of mucosal immunity, such as the reproductive tissues81. The three conventional 

ILC subsets have been described in the murine uterus during early- and mid-gestation, 

although there is controversy as to which ILC subset is dominant during this period75, 78, 

81, 82. Indeed, ILC subsets have also been identified in the non-pregnant state in mice97 

and humans82. During early pregnancy, ILC1s and ILC3s are present at the human 

maternal-fetal interface, where such lymphoid cells crosstalk with neutrophils in order to 

modulate their migration and function81, 85. In the study herein, we extended these 

observations by demonstrating that ILCs are present at the human maternal-fetal 

interface during term and preterm gestations (i.e. third trimester). Together, these 

results indicate that ILCs are present at the human maternal-fetal interface; yet, their 

subsets are dynamically changing throughout gestation and with the onset of preterm 

labor. 

 

A role for ILC2s at the human maternal-fetal interface during the third trimester 

and in preterm labor 

 ILC2s are a distinct subset of ILCs which bear a functional resemblance to Th2 

cells and were first described in a mouse model of helminth parasitic infection as novel 

producers of the Th2-like cytokines IL-4, IL-5, and IL-1392. ILC2s have been identified in 

the mesenteric lymph nodes, spleen, liver, intestines, and airways98. More recently, 

ILC2s were abundantly found in the murine uterus during early pregnancy97, where their 

presence may be regulated by female sex hormones (e.g. estrogen)99. Herein, we show 

that ILC2s are the most abundant ILC subset at the human maternal-fetal interface 

(decidua basalis and decidua parietalis). Tissue ILC2s display homeostatic functions 

through the secretion of tissue repair factors such as amphiregulin and IL-13100-102, 

which properties resemble those exhibited by M2 decidual macrophages in term and 

preterm gestations50. Therefore, we suggest that ILC2s, as well as M2 macrophages103, 

display homeostatic roles at the human maternal-fetal interface during the third 

trimester. 
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 Besides displaying homeostatic functions, ILC2s also exhibit pro-inflammatory 

functions. For example, ILC2s can contribute to the pathogenesis of ulcerative colitis, a 

chronic disease which is characterized by the elevated concentrations of Th2 cytokines 

such as IL-4, IL-5, and IL-13104, 105. Herein, we found that the proportion of ILC2s was 

increased in the decidua basalis of women who underwent spontaneous preterm labor. 

Interestingly, preterm labor is associated with chronic inflammatory lesions of the 

placenta106 (e.g. chronic deciduitis, infiltration of lymphocytes or plasma cells in the 

basal plate of the placenta107), which provides evidence that preterm labor can also be a 

chronic inflammatory disease. These data indicate that ILC2s may participate in the 

chronic inflammatory microenvironment that accompanies the pathological process of 

preterm labor in the decidua basalis. 

 

A role for ILC3s at the human maternal-fetal interface during preterm labor 

 ILC3s were first described in the small intestine as unique innate cells that 

express the transcription factor RORγt and the cytokine IL-22108, 109, and were later 

shown to produce IL-17A110, 111. ILC3s have been studied primarily in the context of 

inflammatory bowel disorders and other gastrointestinal diseases due to their presence 

in the gut mucosa and interactions with commensal bacteria93, 112. Moreover, RORγt+ 

ILC3s can express MHC class II and process and present microbial antigens to gut T 

cells113. This presentation of microbial peptides in the gut results in diminished 

commensal bacteria-specific T cell responses113. In addition, IL-23-responsive ILC3s 

producing IL-17A and IL-22 have been implicated in the development of colitis in mouse 

models and in human studies96. In the current study, ILC3s were enriched in the 

decidua parietalis (decidua attached to the chorioamniotic membranes87) of women who 

underwent spontaneous preterm labor. Such ILCs expressed high levels of IL-22 and 

IL17A, suggesting that this subset is implicated in the localized inflammatory milieu that 

accompanies the pathological process of preterm labor.  

Herein, we found that decidual ILCs expressed high levels of IL-13 (a cytokine 

mainly produced by ILC2s91, 92) during the process of preterm labor. In line with this 

observation, previous studies have demonstrated that IL-13 is expressed by the 
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placental114 and decidual tissues115, 116. IL-13 promotes the activation and migration of 

dendritic cells into the draining lymph nodes, leading to the differentiation of Th2 

cells117. This cytokine is also important for tissue repair responses, reduction of ILC3-

mediated inflammation, and defense against parasitic infections101, 118. Together, these 

results allow us to propose that decidual ILC3s express high levels of the anti-

inflammatory cytokine IL-13 in order to regulate the inflammatory responses exhibited 

by such cells.  

Interestingly, ILC3s are also capable of expressing IFNγ when exposed to IL-12, 

IL-18, and/or IL-1β by upregulating T-bet, suggesting that a small proportion of ILC1s 

are derived from ILC3s79. In the current study, we found that decidual ILC3s expressed 

high levels of IFNγ, besides expressing ILC3 cytokines. Collectively, these results 

indicate that decidual ILC3s express ILC1 and ILC2 cytokines, supporting the concept 

that immune cells at the maternal-fetal interface display unique phenotypical 

characteristics119. 

 

Summary 

In the current study, we provide evidence that ILCs are present at the human 

maternal-fetal interface; yet, their subsets are dynamically changing throughout late 

gestation and with the onset of preterm labor. First, we found that ILC2s are the most 

abundant ILC subset at the human maternal-fetal interface and that their proportions in 

the decidua basalis (decidua attached to the placenta) increased in women who 

underwent spontaneous preterm labor. Next, we showed that ILC3s are enriched in the 

decidua parietalis (decidua attached to the chorioamniotic membranes) in women who 

underwent spontaneous preterm labor. Lastly, we demonstrated that ILC3s expressed 

high levels of IL-22, IL-17A, IL-13, and IFNγ at the human maternal-fetal interface 

during preterm labor. Collectively, these data provide the first evidence demonstrating a 

role for ILCs at the human maternal-fetal interface during the pathological process of 

preterm labor. References 
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Figure Legends 

Figure 1. ILCs are present at the human maternal-fetal interface. (A) Mononuclear cells 

were isolated from the decidua parietalis and decidua basalis. Flow cytometry gating 

strategy for immunophenotyping of ILCs. ILCs (CD127+) were initially gated within the 

viability gate and linage negative (Lin-; CD15-CD14-CD3-CD19-CD56-CD11b-) gate. 

Red boxes represent the lineage negative populations. Representative flow cytometry 

contour plots show the expression of CD127 by ILCs from the decidua parietalis and 
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decidua basalis. The proportion of total ILCs in the decidua parietalis (B) and decidua 

basalis (C) of women who underwent spontaneous preterm (PTL) or term (TIL) labor 

and those who delivered preterm (PTNL) or term (TNL) without labor. n=8-25 per group. 

 

Figure 2. ILC1s are a minor population in the decidua. (A) Mononuclear cells were 

isolated from the decidua parietalis and decidua basalis. Flow cytometry gating strategy 

for immunophenotyping of ILC1s. ILCs (CD127+) were initially gated within the viability 

gate and linage negative (Lin-; CD15-CD14-CD3-CD19-CD56-CD11b-) gate. 

Representative flow cytometry contour plots show the expression of T-bet by ILC1s 

from the decidua parietalis and decidua basalis (red dots). Isotype controls are shown 

as black dots. The proportion of ILC1s in the decidua parietalis (B) and decidua basalis 

(C) of women who underwent spontaneous preterm (PTL) or term (TIL) labor and those 

who delivered preterm (PTNL) or term (TNL) without labor. n=8-25 per group. 

 

Figure 3. ILC2s are the most abundant ILC subset in the decidua. (A) Mononuclear 

cells were isolated from the decidua parietalis and decidua basalis. Flow cytometry 

gating strategy for immunophenotyping of ILC2s. ILCs (CD127+) were initially gated 

within the viability gate and the linage negative (Lin-; CD15-CD14-CD3-CD19-CD56-

CD11b-) gate. Red boxes represent the lineage negative populations. Representative 

flow cytometry contour plots show the expression of GATA3 by ILC2s from the decidua 

parietalis and decidua basalis (red dots). Isotype controls are shown as black dots. The 

proportion of ILC2s in the decidua parietalis (B) and decidua basalis (C) of women who 

underwent spontaneous preterm (PTL) or term (TIL) labor and those who delivered 

preterm (PTNL) or term (TNL) without labor. n=11-39 per group. 

 

Figure 4. ILC3s are increased in the decidua parietalis of women who underwent 

spontaneous preterm labor. (A) Mononuclear cells were isolated from the decidua 

parietalis and decidua basalis. Flow cytometry gating strategy for immunophenotyping 

of ILC3s. ILCs (CD127+) were initially gated within the viability gate and linage negative 

(Lin-; CD15-CD14-CD3-CD19-CD56-CD11b-) gate. Representative flow cytometry 
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contour plots show the expression of RORγt by ILC3s from the decidua parietalis and 

decidua basalis (red dots). Isotype controls are shown as black dots. The proportion of 

ILC3s in the decidua parietalis (B) and decidua basalis (C) of women who underwent 

spontaneous preterm (PTL) or term (TIL) labor and those who delivered preterm (PTNL) 

or term (TNL) without labor. n=11-39 per group. 

 

Figure 5. Decidual ILC3s express IL-13 and IL-22 in women who underwent 

spontaneous preterm labor. (A) Mononuclear cells were isolated from the decidua 

parietalis and decidua basalis. Representative flow cytometry histograms show the 

mean fluorescence intensity (MFI) expression of IFNγ (red histograms), IL-13 (green 

histograms), IL-17A (orange histograms), and IL-22 (blue histograms) by decidual ILC2s 

and ILC3s (red dots). Isotype controls are shown as black outline histograms or as 

black dots. The MFI of IFNγ (B&F), IL-13 (C&G), IL-17A (D&H), and IL-22 (E&I) 

expression by ILC2s and ILC3s in the decidua parietalis (upper row) and the decidua 

basalis (bottom row) of women who underwent spontaneous preterm labor. n=23.  
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Table 1. Demographic and clinical characteristics of the study population (exploratory set of samples) 
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 TNL 

(n=8) 

TIL 

(n=25) 

PTNL 

(n=8) 

PTL 

(n=17) 
p value 

Age (y; median [IQR])
a
 

26 

(23-32) 

24 

(22-27) 

31.5 

(24.3-34.5) 

22 

(21-25) 
NS 

Body mass index (kg/m
2
; median [IQR])

a
 

28.5 

(22.5-28.5) 

29.2 

(24.4-34) 

22.5 

(22.1-33.2) 

27.3 

(20.2-32.1) 
NS 

Gestational age at delivery (wk; median 

[IQR])
a
 

39 

(38.6-39.3) 

39.3 

(38.3-40) 

34.4 

(31.3-36.5) 

33.9 

(31.3-34.9) 
p<0.001 

Race (n[%])
b
 

African-American 

Caucasian 

Other 

 

8 (100%) 

0 (0%) 

0 (0%) 

 

25 (100%) 

0 (0%) 

0 (0%) 

 

7 (87.5%) 

1 (12.5%) 

0 (0%) 

 

15 (88.2%) 

1 (5.9%) 

1 (5.9%) 

NS 

Primiparity (n[%])
b
 0 (0%) 5 (20%) 2 (25%) 1 (5.9%) NS 

Cesarean section (n[%])
b
 8 (100%) 2 (8%) 8 (100%) 4 (23.5%) p<0.001 

 

Acute chorioamnionitis (n[%])
b
 

 

Acute Subchorionitis/Chorionitis 

 

Acute Chorioamnionitis 

 

Necrotizing Chorioamnionitis 

 

 

 

 

0/8 (0%) 

 

0/8 (0%) 

 

0/8 (0%) 

 

 

 

4/25 (16%) 

 

7/25 (28%) 

 

0/25 (0%) 

 

 

 

0/8 (0%) 

 

1/8 (12.5%) 

 

0/8 (0%) 

 

 

 

3/17 (17.6%) 

 

2/17 (11.8%) 

 

3/17 (17.6%) 

 

 

 

NS 

 

p=0.01 

 

NS 

Umbilical cord pathology (n[%])
b
 

 

Umbilical phlebitis 

 

Umbilical arteritis 

 

Necrotizing funisitis 

 

0/8 (0%) 

 

0/8 (0%) 

 

0/8 (0%) 

 

9/25 (36%) 

 

1/25 (4%) 

 

0/25 (%) 

 

0/8 (0%) 

 

1/8 (12.5%) 

 

0/8 (0%) 

 

4/17 (23.5%) 

 

1/17 (5.9%) 

 

0/17 (0%) 

 

 

p=0.002 

 

NS 

 

NS 
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a
Kruskal-Wallis test 

b
Chi square test 

IQR = interquartile range 
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Table 2. Demographic and clinical characteristics of the study population (confirmatory set of samples) 
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TNL 

(n=11) 

TIL 

(n=39) 

PTNL 

(n=12) 

PTL 

(n=28) 
p value 

Age (y; median [IQR])
a
 

26 

(23-31) 

24 

(20-26) 

31 

(27.8-32.5) 

27 

(22.5-30) 
p=0.002 

Body mass index (kg/m
2
; median [IQR])

a
 

35.1 

(29.2-39) 

26.1 

(23.1-30.7) 

35.1 

(29.4-36.3) 

31.1 

(25.4-39.6) 
p=0.009 

Gestational age at delivery (wk; median 

[IQR])
a
 

39.1 

(39-39.3) 

39.3 

(38.6-40.2) 

34.1 

(31.5-36.5) 

34.6 

(33.6-35.8) 
p<0.001 

Birth weight (g; median [IQR])
a
 

3370 

(3125-3705) 

3190 

(2960-3352.5) 

2017.5 

(1393.8-2760) 

2223 

(1760-2420) 
p<0.001 

Race (n[%])
b
 

African-American 

Caucasian 

Other 

 

9 (81.8%) 

2 (18.2%) 

0 (0%) 

 

35 (89.7%) 

2 (5.1%) 

2 (5.1%) 

 

11 (91.7%) 

1 (8.3%) 

0 (0%) 

 

20 (71.4%) 

5 (17.9%) 

3 (10.7%) 

 

NS 

Primiparity (n[%])
b
 0 (0%) 4 (10.3%) 1 (8.3%) 6 (21.4%) NS 

Cesarean section (n[%])
b
 11 (100%) 2 (5.1%) 12 (100%) 12 (42.9%) p<0.001 

Acute chorioamnionitis (n[%])
b 

 

Acute Subchorionitis/Chorionitis 

 

Acute Chorioamnionitis 

 

Necrotizing Chorioamnionitis 

 

 

1/11 (9.1%) 

 

0/11 (0%) 

 

0/11 (0%) 

 

13/38 (34.2%)* 

 

9/38 (23.7%)* 

 

0/38 (0%)* 

 

1/11 (9.1%)* 

 

0/11 (0%)* 

 

0/11 (0%)* 

 

4/28 (14.3%) 

 

4/28 (14.3%) 

 

1/28 (3.6%) 

 

NS 

 

NS 

 

NS 

Umbilical cord pathology (n[%])
b
 

 

Umbilical phlebitis 

 

Umbilical arteritis 

 

 

0/11 (0%) 

 

0/11 (0%) 

 

0/11 (0%) 

 

10/38 (26.3%)* 

 

2/38 (5.3%)* 

 

0/38 (0%)* 

 

0/11 (0%)* 

 

0/11 (0%)* 

 

0/11 (0%)* 

 

1/28 (3.6%) 

 

4/28 (14.3%) 

 

2/28 (7.1%) 

 

p=0.01 

 

NS 

 

NS 
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a
Kruskal-Wallis test 

b
Chi-square test 

IQR = interquartile range 

*Calculated based on available placental pathology information 

Necrotizing funisitis 
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