
Online Appendix

Dynamic Pricing and Replenishment with Customer Upgrades

Online Appendix:

Glossary of Terms: Below, we provide a list of the main notation (in a rough order of appearance) used for the

proof of the main results presented in the Appendix. For i, j = {1,2},

xti : inventory position of product type-i at the beginning of period t where product type-1

refers to the higher quality product and product type-2 refers to the lower quality product

wti : intermediate inventory position of product type-i in period t after demand realization

wt : total intermediate inventory in period t after demand realization, i.e., wt =wt1 +wt2

uti : ending inventory position for product type-i after upgrades

dti : mean demand for product type-i

yti : replenishment level for product type-i

zti : target safety stock level for product type-i, i.e., zti = yti − dti
V t(xt1, x

t
2) : first-stage optimal value function starting at state (xt1, x

t
2) with t periods remaining

Gt(wt1,w
t
2) : second-stage optimal value function starting at state (wt1,w

t
2) with t periods remaining

V ti : partial derivative of V t(·) with respect to its ith argument (similarly defined for Gt(·))
V tij : second partial derivative of V t(·) with respect to its ith and jth arguments (similarly defined for Gt(·))

Ḡt(·) : second-stage profit as a function of the inventory position for product type-i after upgrades

Jt(·) : first stage profit as a function of the decision variables zti and dti

Jtdi : partial derivative of Jt(·) with respect to dti

Jtzi : partial derivative of Jt(·) with respect to zti

Jtdi,dj : second partial derivative of Jt(·) with respect to dti and dtj

Jtzi,zj : second partial derivative of Jt(·) with respect to zti and ztj

In order to derive the optimal policy structure, we first make an inductional assumption on the properties of the value

function V t(xt1, x
t
2). We will then show that these properties hold throughout the dynamic programming recursions.

In the following analysis, we assume that V t(xt1, x
t
2) is twice-continuously differentiable. As part of the inductional

step, assume that the value function in period t− 1, V t−1(xt−1
1 , xt−1

2 ) satisfies the following properties:

Induction Assumption: V t−1(xt−1
1 , xt−1

2 ) is jointly concave, submodular, and its Hessian is diagonally dominant:

V t−1
ii (xt−1

1 , xt−1
2 )≤ V t−1

ij (xt−1
1 , xt−1

2 )≤ 0 where V t−1
ij represents ∂2V t−1

∂xt−1
i ∂xt−1

j

for i, j = 1,2.

These properties enable us to derive the structure of the optimal upgrade policy in period t. After characterizing

the optimal upgrade policy, and later the optimal production and pricing policies, we will subsequently show in the

forthcoming Lemma 4 that these properties also hold for V t(xt1, x
t
2). Note that the induction assumption is trivially

satisfied for V 0(x0
1, x

0
2).

Proof of Theorem 1 (Optimal Upgrade Policy):

The optimal upgrade policy is determined by solving the second-stage problem described in (4), which we analyze

through a variable transformation. For any intermediate inventory position wt1 and wt2, with a total intermediate

1
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inventory position wt =wt1 +wt2, let Ḡt(ut1) be defined such that Ḡt(ut1) =−h1(ut1)−h2(wt−ut1)+βV t−1(ut1,w
t−ut1)

where ut1 and wt − ut1 represent, respectively, the period ending inventory positions for product type-1 and product

type-2 after upgrades. In particular, when ut units of upgrades are given, we have ut1 = wt1 − ut. Thus, the choice

of ut1 will immediately determine the upgrade quantity ut. The constraint ut1 ≤wt1, i.e., ut ≥ 0, guarantees that the

upgrade quantity is nonnegative, implying unidirectional product substitutions for the demand for the lower quality

product by a higher quality product and not vice versa.

The first derivative of Ḡt(ut1) with respect to ut1 is given by

dḠt(ut1)

dut1
=−h+

1 I(ut1>0) +h−1 I(ut1<0) +h+
2 I(w>ut1)−h

−
2 I(w<ut1)

+βV t−1
1 (ut1,w−ut1)−βV t−1

2 (ut1,w−ut1)
(8)

where I(·) denotes the indicator function and V t−1
1 (·, ·) denotes the partial derivative of V t−1(·, ·) with respect to

its first argument and V t−1
2 (·, ·) denotes the partial derivative of V t−1(·, ·) with respect to its second argument. For

expositional clarity, when a function’s arguments are evident, we suppress the notation and write for example, Ḡt, V t,

or V ti and V tij for i, j = 1,2. The second derivative of Ḡt(ut1) with respect to ut1 is β(V t−1
11 −V t−1

12 ) +β(V t−1
22 −V t−1

21 ).

By the induction assumption, V t−1 is concave, submodular and its Hessian has diagonal dominance property, i.e.,

V t−1
11 ≤ V t−1

12 ≤ 0 and V t−1
22 ≤ V t−1

21 ≤ 0. Hence, Ḡt is concave in ut1 and its first derivative with respect to ut1 is

decreasing. Let rt(wt) be defined such that, if for given wt,
dḠt(ut1)

dut1
> 0 for all ut1, then rt(wt) =∞. Else, rt(wt) =

min{ut1 |
dḠt(ut1)

dut1
≤ 0}. Then, given wt, rt(wt) is the optimal protection level for product type-1 and we can express

the optimal upgrade quantity, ut∗, through this protection level. Specifically, ut∗ = (wt1− rt(wt))+.

To show that rt(wt) is increasing with respect to wt, consider wt and wt such that wt >wt. We would like to show

that rt(wt) ≥ rt(wt). Let g(ut1,w
t) represent the first derivative given in (8) as a function of ut1 and wt. We have

∂g(ut1,w
t)

∂wt
= β(V t−1

12 −V t−1
22 ). Since V t−1

12 ≥ V t−1
22 by the induction assumption, we have g(ut1,w

t)− g(ut1,w
t)≥ 0. The

result then immediately follows from the definition of rt(wt) = min{ut1 |
dḠt(ut1)

dut1
≤ 0}. In order to show that rt(wt)−wt

is decreasing with respect to wt, we utilize a different variable transformation. Specifically, let ut2 = wt2 + ut denote

the ending inventory for product type-2 after ut units of upgrades. Hence, wt−ut2 will denote the inventory level for

product type-1 after upgrades. We can then rewrite Ḡt(ut2) =−h1(wt−ut2)−h2(ut2) +βV t−1(wt−ut2, ut2). Define ut∗2

as the optimal inventory position for product type-2 after upgrades. Note that since the total inventory after upgrades

equals total inventory prior to upgrades, we have ut∗2 + ut∗1 = wt. The first and second derivatives of Ḡt(ut2) with

respect to ut2 are given by h+
1 I(ut2<wt)−h

−
1 I(ut2>wt)−h

+
2 I(ut2>0) +h−2 I(ut2<0)−βV t−1

1 (wt−ut2, ut2)+βV t−1
2 (wt−ut2, ut2)

and β(V t−1
11 − V t−1

12 ) + β(V t−1
22 − V t−1

21 ), respectively. Due to the inductional assumption, Ḡt(ut2) is concave with

respect to ut2. Since the first derivative of Ḡt(ut2) is increasing with wt, we find ut∗2 is increasing with wt. This in turn

directly implies wt − ut∗1 is increasing in wt, or equivalently ut∗1 −wt is decreasing in wt. Note that when the first

derivative of Ḡt(ut2)< 0 for all ut2, we have ut∗2 =wt2 and thus ut∗1 =wt1, i.e., no upgrades are given and, as before, the

protection threshold can be stated as rt(wt) =∞. Otherwise, when the first derivative of Ḡt(ut2)≥ 0, the protection

level rt(wt) equals ut∗1 . Therefore, ut∗1 −wt decreasing in wt implies rt(wt)−wt is decreasing in wt. �

Proof of Theorem 2 (Optimal Replenishment Policy):

The outline for the proof of Theorem 2 is as follows. We first present a reformulation of the first-stage problem

with change of variables that facilitate the subsequent analysis. We then derive several structural properties on the

first-stage profit function. Finally, we complete the characterization of the optimal replenishment policy structure.

In order to simplify the analysis, we define a new set of variables (zt1, z
t
2) such that zti = yti − dti for i= 1,2, where,

as a reminder to the reader, yti and dti denote the replenish-up-to level and target mean demand for product type-i,

respectively. An economic interpretation of zti is that it represents the target safety-stock level for product type-i after

its current inventory position is augmented by the replenishment quantity and depleted by the expected demand for
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the product. In addition, rather than the prices (pt1, p
t
2), we work with the decision variable pair (dt1, d

t
2) referring

to mean demands. This choice simplifies the exposition of our results. The prices of both products can then be

determined from the expected demands for each product. Using (zt1, z
t
2) and (dt1, d

t
2), as the new decision variables,

we rewrite the first-stage problem equivalently as follows:

V t(xt1, x
t
2) = ct1x

t
1 + ct2x

t
2 + max

zti ,d
t
i

xti≤z
t
i+d

t
i≤x

t
i+Ki

Jt(zt1, z
t
2, d

t
1, d

t
2) (9)

where Jt(zt1, z
t
2, d

t
1, d

t
2) = dt1p

t
1(dt1, d

t
2) + dt2p

t
2(dt1, d

t
2)− (c1(zt1 + dt1) + c2(zt2 + dt2)) + Eεt1,εt2 [(Gt(zt1 − εt1, zt2 − εt2)]. The

following lemma provides several structural properties on the second partials of Jt(zt1, z
t
2, d

t
1, d

t
2) that will be utilized

to derive the optimal production and pricing policies. In the following analysis, we assume that Jt(zt1, z
t
2, d

t
1, d

t
2) is

twice-continuously differentiable. Let Jtz1,z2 refer to the second partials of Jt(zt1, z
t
2, d

t
1, d

t
2) with respect to the variables

zt1 and zt2 and Jtd1,d2
to refer to the second partials of Jt(zt1, z

t
2, d

t
1, d

t
2) with respect to the variables dt1 and dt2.

Lemma 1. Jt(zt1, z
t
2, d

t
1, d

t
2) is strictly concave and (a) Jt(zt1, z

t
2, d

t
1, d

t
2) is submodular in (dt1, d

t
2) and possesses the

following strict diagonal dominance property: Jtd1,d1
< Jtd1,d2

≤ 0 and Jtd2,d2
< Jtd2,d1

≤ 0; and (b) Jt(zt1, z
t
2, d

t
1, d

t
2)

is submodular in (zt1, z
t
2) and possesses the following strict diagonal dominance property: Jtz1,z1 < J tz1,z2 ≤ 0 and

Jtz2,z2 <J
t
z2,z1 ≤ 0.

Proof: We first note that Jt(zt1, z
t
2, d

t
1, d

t
2) is separable in (dt1, d

t
2) and (zt1, z

t
2). For part (a), first note that the inverse

price-demand relationships corresponding to (1) and (2) are given by p1(d1, d2) =
p̄(q1−q)+p(q̄−q1)

(q̄−q) − (q̄−q1)
δ(q̄−q)

[
(q1−q)d1 +

(q2 − q)d2

]
and p2(d1, d2) =

p̄(q2−q)+p(q̄−q2)

(q̄−q) − (q2−q)
δ(q̄−q)

[
(q̄ − q1)d1 + (q̄ − q2)d2

]
. We denote the partial derivative of

Jt(zt1, z
t
2, d

t
1, d

t
2) with respect to dti by Jtdi , and have Jtdi = ∂

∂dti

(
dt1p

t
1(dt1, d

t
2) + dt2p

t
2(dt1, d

t
2)− ct1dt1 − ct2dt2

)
for i= 1,2.

Written explicitly, we have

Jtd1
=
p̄(q1− q) + p(q̄− q1)

(q̄− q) − 2(q̄− q1)

δ(q̄− q)

[
(q1− q)d1 + (q2− q)d2

]
− ct1

Jtd2
=
p̄(q2− q) + p(q̄− q2)

(q̄− q) −
2(q2− q)
δ(q̄− q)

[
(q̄− q1)d1 + (q̄− q2)d2

]
− ct2

(10)

Further, the Hessian is given by − 2
δ(q̄−q)

[
(q̄− q1)(q1− q) (q̄− q1)(q2− q)
(q̄− q1)(q2− q) (q̄− q2)(q2− q)

]
. Since q̄ > q1 > q2 > q, J

t(zt1, z
t
2, d

t
1, d

t
2) is

strictly concave and submodular in (dt1, d
t
2), and possesses strict diagonal dominance property.

For part (b), since c1z
t
1 + c2z

t
2 is linear in (zt1, z

t
2), it suffices to show that the properties hold for Eεt1,εt2 [(Gt(zt1−εt1, zt2−

εt2)]. In order to show the strict concavity and diagonal dominance, consider a momentary partitioning of the function

Gt(zt1−εt1, zt2−εt2) such that Gt(zt1−εt1, zt2−εt2) =Ht(zt1−εt1, zt2−εt2)+Ĝt(zt1−εt1, zt2−εt2) where Ht(zt1−εt1, zt2−εt2) :=

−
(
ht+1 (zt1−εt1)+ +ht−1 (zt1−εt1)−+ht+2 (zt2−εt2)+ +ht−2 (zt2−εt2)−

)
and Ĝt(wt1,w

t
2) := maxut1 Ḡ

′t(wt1,w
t
2, u

t
1) s.t. wt1−ut1 ≥

0 where Ḡ′t(wt1,w
t
2) :=H ′t(wt1,w

t
2, u

t
1) + βV t−1(ut1,w

t
1 +wt2− ut1) and H ′t(wt1,w

t
2, u

t
1) :=

(
ht+1 (wt1− ut1)

)
I(wt1≥ut1>0) +(

ht+1 wt1 + ht−1 ut1
)
I(wt1>0>ut1) +

(
ht−1 (wt1 − ut1)

)
I(0>wt1≥ut1) +

(
ht+2 (wt1 − ut1)

)
I(wt2>0>ut1−w

t
1) +

(
− ht+2 (wt1 + wt2 − ut1)−

ht−2 wt2
)
I(0>wt2>ut1−wt1) +

(
ht−2 (wt1 − ut1)

)
I(0>ut1−wt1>wt2) with I(·) denoting the indicator function. In words, we are

partitioning the expected profit-to-go function Eεt1,εt2 [(Gt(zt1 − εt1, zt2 − εt2)] into two components, where the first

component Eεt1,εt2 [Ht(zt1 − εt1, zt2 − εt2)] refers to the expected holding and shortage cost if no upgrades were given

and the second component Eεt1,εt2 [Ĝt(zt1 − εt1, zt2 − εt2)] is the result of the maximization problem when the optimal

upgrade quantity is selected, and reflects the discounted profit-to-go function for the next period as well as the

adjustment to the holding and shortage costs due to upgrades. One can straightforwardly show that the Hessian of

Eεt1,εt2 [Ht(zt1− εt1, zt2− εt2)] is a diagonal matrix with elements −(ht+i +ht−i )fεi(z
t
i) for i= 1,2 and therefore is strictly

concave, submodular, and possesses the strict diagonal dominance property for positive unit holding and shortage

costs and continuously defined probability density functions fε1(·) and fε2(·) for the demand uncertainty terms εt1 and
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εt2. Next we show Eεt1,εt2 [Ĝt(zt1− εt1, zt2− εt2)] is weakly concave, submodular and possesses a weak diagonal dominance

property. Consider the Lagrangian function Ḡ′t(wt1,w
t
2, u

t
1)−µt1(ut1−wt1) for the second-stage optimization problem

given in (4) where µt1 ≥ 0 denotes the Lagrangian variable associated with constraint ut1−wt1 ≤ 0. For the case where

µt1 = 0, the envelope theorem yields Ĝti,j = Ḡ′ti,j = βV t−1
22 ≤ 0 for i, j = 1,2 where the inequality follows from the

inductional assumption. For the case where µt1 > 0, the envelope theorem results in Ĝtij = Ḡ′tij = βV t−1
ij for i, j = 1,2.

Based on the inductional assumption, we then have Ĝtii− Ĝtij ≤ 0 for i 6= j and i= 1,2. Hence, Ĝt(wt1,w
t
2) is concave,

submodular, and possesses the weak diagonal dominance property. As Jt(zt1, z
t
2, d

t
1, d

t
2) is an addition of three terms

one of which, Eεt1,εt2 [Ht(zt1 − εt1, zt2 − εt2)], is strictly concave and submodular in (zt1, z
t
2) with a Hessian possessing

strict diagonal dominance, the other, Eεt1,εt2 [Ĝt(zt1− εt1, zt2− εt2)], which is concave and submodular in (zt1, z
t
2) with a

Hessian possessing weak diagonal dominance, and the last c1z
t
1 + c2z

t
2 being linear in (zt1, z

t
2), itself is strictly concave

and submodular in (zt1, z
t
2) with a Hessian possessing strict diagonal dominance. �

To proceed with the characterization of the optimal policy, we first construct the first order conditions by introducing

Lagrange multipliers λtij ≥ 0 for i, j = {1,2} where λti1 and λti2 are associated with constraints −zti − dti ≤−xti and

zti +dti ≤ xti+Ki, respectively (i.e., yti ≥ xti and yti ≤ xti+Ki in the original formulation before the change of variables).

We note that these constraints form ‘box constraints’ and some may not be simultaneously active for positive capacity

parameters. We can exploit this special structure of constraints to represent the first-order optimality conditions in

simpler notation by defining λti := λti1−λti2. Note that λti uniquely determines λtij for j = 1,2 where (a) λti < 0 implies

λti1 = 0 and λti2 > 0, (b) λti > 0 implies λti1 > 0 and λti2 = 0; and (c) λti = 0 implies λti1 = λti2 = 0.

The first order optimality conditions for the first-stage problem can then be expressed as: Jtzi(z
t
1, z

t
2, d

t
1, d

t
2) +λti = 0,

and Jtdi(z
t
1, z

t
2, d

t
1, d

t
2) + λti = 0 for i= 1,2 where we again use the notation Jtzi , J

t
di

to denote the first derivative of

Jt(zt1, z
t
2, d

t
1, d

t
2) with respect to zti and dti, respectively.

Using Lemma 1 and the first order conditions presented earlier, we can write the decision variables (zt1, z
t
2) and (dt1, d

t
2)

in terms of λt1 and λt2. The following lemma formally presents this result.

Lemma 2. There exists implicit functions z′ti and d′ti such that zti = z′ti (λt1, λ
t
2) and dti = d′ti (λt1, λ

t
2). Further,

∂z′ti
∂λti

>

0,
∂z′ti
∂λtj

< 0, with
∂z′ti
∂λti

> | ∂z
′t
i

∂λtj
|, and ∂d′ti

∂λti
> 0,

∂d′ti
∂λtj

< 0, with
∂d′ti
∂λti

> | ∂d
′t
i

∂λtj
| for i 6= j and i, j = 1,2.

Proof: The proof follows from the Implicit Function Theorem, the first order conditions and Lemma 1. We first present

the proof for the existence and monotonicity of z′ti (λt1, λ
t
2). From the first order conditions, we have Jtz1 + λt1 = 0

and Jtz2 + λt2 = 0. Hence,
∂λt1
∂zt1

= −Jtz1,z1 ,
∂λt1
∂zt2

= −Jtz1,z2 ,
∂λt2
∂zt1

= −Jtz2,z1 , and
∂λt2
∂zt2

= −Jtz2,z2 . Therefore
(
∂λt

∂zt

)
=

−
[
Jtz1,z1 J

t
z1,z2

Jtz2,z1 J
t
z2,z2

]
. Since Jt is strictly concave in (zt1, z

t
2), this matrix is invertible and

(
∂zt

∂λt

)
=−

[
Jtz1,z1 J

t
z1,z2

Jtz2,z1 J
t
z2,z2

]−1

=

1

Ĵtz

[
−Jtz2,z2 Jtz1,z2
Jtz2,z1 −J

t
z2,z2

]
, where Ĵtz > 0 denotes the determinant. Thus there exists implicit functions z′ti (λt1, λ

t
2). The

properties outlined in Lemma 1 lead to
∂z′ti
∂λti

> 0,
∂z′ti
∂λtj

< 0, and
∂z′ti
∂λti

> | ∂z
′t
i

∂λtj
| for i 6= j and i, j = 1,2.

The proof for d′ti (λt1, λ
t
2) follows similarly. From the first order conditions, we have Jtd1

+ λt1 = 0 and Jtd2
+ λt2 = 0.

Hence,
∂λt1
∂dt1

=−Jtd1,d1
,
∂λt1
∂dt2

=−Jtd1,d2
,
∂λt2
∂dt1

=−Jtd2,d1
, and

∂λt2
∂dt2

=−Jtd2,d2
. Therefore

(
∂λt

∂dt

)
=−

[
Jtd1,d1

Jtd1,d2

Jtd2,d1
Jtd2,d2

]
. Since

Jt is strictly concave in (dt1, d
t
2), this matrix is invertible and

(
∂dt

∂λt

)
=−

[
Jtd1,d1

Jtd1,d2

Jtd2,d1
Jtd2,d2

]−1

. Thus there exists implicit

functions d′ti (λt1, λ
t
2). Substituting in the terms for Jtdi,dj as given in the corresponding Hessian in the proof of Lemma

1, −
[
Jtd1,d1

Jtd1,d2

Jtd2,d1
Jtd2,d2

]−1

reduces to δ
2(q1−q2)

[
q̄−q2
q̄−q1

−1

−1
q1−q
q2−q

]
. The results

∂d′ti
∂λti

> 0,
∂d′ti
∂λtj

< 0, with
∂d′ti
∂λti

> | ∂d
′t
i

∂λtj
| for i 6= j and

i, j = 1,2 directly follow as q̄ > q1 > q2 > q.



Ceryan, Duenyas, Sahin: Dynamic Pricing and Replenishment with Customer Upgrades
; 5

Lemma 3.
∂λti
∂xti
≥ ∂λti

∂xtj
≥ 0 for i 6= j and i, j = 1,2. Further, (a) for all (xt1, x

t
2) such that λti 6= 0 and λtj = 0, we have

∂λti
∂xti

> 0 and
∂λti
∂xtj

= 0, (b) for all (xt1, x
t
2) such that λt1 6= 0 and λt2 6= 0, we have

∂λti
∂xti

>
∂λti
∂xtj

> 0.

Proof: The signs of λt1 and λt2 segment the state space into nine different regions depending on whether each variable

is negative, zero, or positive. For the region where λt1 = λt2 = 0, we have
∂λti
∂xtj

= 0 for i, j = 1,2 and the result holds.

Consider the region for which λt1 > 0 and λt2 = 0, implying that the constraint xt1−z′∗t1 (λt1,0)−d′∗t1 (λt1,0)≤ 0 is active.

Specifically, in this region we’d like to show that λt1 is strictly increasing in xt1 and independent of xt2. Differentiating

the active constraint with respect to xt1 gives 1− ∂z∗t1

∂λt1

∂λt1
∂xt1
− ∂d∗t1

∂λt1

∂λt1
∂xt1

= 0, from which we find
∂λt1
∂xt1

= 1/(
∂z′t1
∂λt1

+
∂d′t1
∂λt1

)> 0

where the last inequality follows from Lemma 2. Similarly, differentiating the active constraint with respect to xt2

gives − ∂z
∗t
1

∂λt1

∂λt1
∂xt2
− ∂d∗t1

∂λt1

∂λt1
∂xt2

= 0. Through Lemma 2, we find
∂λt1
∂xt2

= 0.

Next, consider the region where λt1 > 0 and λt2 < 0, which implies that the constraints xt1−z′∗t1 (λt1, λ
t
2)−d′∗t1 (λt1, λ

t
1)≤

0 and z′∗t2 (λt1, λ
t
2) + d′∗t2 (λt1, λ

t
1) − xt2 −K2 ≤ 0 are active. First, differentiating each of the active constraints with

respect to xt1 and solving for
∂λti
∂xt1

for i= 1,2, we get
∂λt1
∂xt1

=
(
∂z∗t2

∂λt2
+

∂d∗t2

∂λt2

)
/Q where Q :=

(
∂z′∗t1

∂λt1

∂z′∗t2

∂λt2
− ∂z′∗t1

∂λt2

∂z′∗t2

∂λt1

)
+(

∂z′∗t1

∂λt1

∂d′∗t2

∂λt2
− ∂z′∗t1

∂λt2

∂d′∗t2

∂λt1

)
+
(
∂z′∗t2

∂λt2

∂d′∗t1

∂λt1
− ∂z′∗t2

∂λt1

∂d′∗t1

∂λt2

)
+
(
∂d′∗t1

∂λt1

∂d′∗t2

∂λt2
− ∂d′∗t1

∂λt2

∂d′∗t2

∂λt1

)
. The terms in each of the brackets

in Q collectively can be shown to be positive through Lemma 2, hence Q> 0. Also by Lemma 2, the numerator is

positive, thus
∂λt1
∂xt1

> 0. Similarly, we find
∂λt2
∂xt1

=−
(
∂z∗t2

∂λt1
+
∂d∗t2
∂λt1

)
/Q and

∂λt2
∂xt1

> 0 by Lemma 2. Next, differentiating the

active constraints with respect to xt2 this time and solving for
∂λti
∂xt1

for i= 1,2, we find
∂λt1
∂xt2

=−
(
∂z∗t1

∂λt2
+

∂d∗t1

∂λt2

)
/Q> 0

and
∂λt2
∂xt2

=
(
∂z∗t1

∂λt1
+
∂d∗t1

∂λt1

)
/Q> 0 by Lemma 2. The properties in Lemma 2 then also immediately lead to

∂λti
∂xti

>
∂λti
∂xtj

> 0

for i 6= j and i, j = 1,2.

The analysis for the remaining cases are very similar to the ones considered and are omitted for brevity. �

To complete the proof of Theorem 2, we examine each of the nine state-space regions defined by the signs of λt1

and λt2. First, consider the region corresponding to λt1 = λt2 = 0. In this region, we have y∗t1 = z′∗t1 (0,0) + d′∗t1 (0,0)

and y∗t2 = z′∗t2 (0,0) + d′∗t2 (0,0). For future reference, we denote this base-stock level pair by (x◦1
t, x◦2

t), i.e., x◦1
t :=

z′∗t1 (0,0)+d′∗t1 (0,0) and x◦2
t := z′∗t2 (0,0)+d′∗t2 (0,0). Hence, anywhere in this region, the optimal replenishment policy

brings the inventory level to the base-stock levels given by y∗ti = x◦1
t and the base-stock levels for each product is

independent of the initial inventory level of the other product.

Next, consider the region for which λt1 > 0 and λt2 = 0. Then, from complementary slackness, there is no replenishment

for item 1. The optimal base-stock level for item 2 is given by the expression y∗t2 = z′∗t2 (λt1,0) + d′∗t2 (λt1,0). We are

interested in how this optimal base-stock level changes with the initial inventory level of item 1 which is found by
∂y∗t2

∂xt1
=
(
∂z′∗t2 (λt1,0)

∂λt1
+

∂d′∗t2 (λt1,0)

∂λt1

)
∂λt1
∂xt1

. By Lemma 2, we have
∂z′∗t2 (λt1,0)

∂λt1
< 0 and

∂d′∗t2 (λt1,0)

∂λt1
< 0. By Lemma 3, in this

region we have
∂λt1
∂xt1

> 0. Thus
∂y∗t2

∂xt1
< 0.

Now, we consider the region for which λt1 < 0 and λt2 = 0. From complementary slackness, the available capacity for

product type-1 is used in its entirety to replenish this item. The optimal base-stock level for item 2 is again given by

the expression y∗t2 = z′∗t2 (λt1,0) + d′∗t2 (λt1,0). For the monotonicity of this base-stock level with respect to the initial

inventory of product type-1, we write
∂y∗t2

∂xt1
=
(
∂z′∗t2 (λt1,0)

∂λt1
+

∂d′∗t2 (λt1,0)

∂λt1

)
∂λt1
∂xt1

. By Lemma 2, we have
∂z′∗t2 (λt1,0)

∂λt1
< 0 and

∂d′∗t2 (λt1,0)

∂λt1
< 0. By Lemma 3,

∂λt1
∂xt1

> 0. Hence,
∂y∗t2

∂xt1
< 0. Since in this region λt1 < 0, we also find y∗t2 >x◦2

t.

In the region corresponding to λt1 = 0 and λt2 > 0, complementary slackness yields no replenishment for item 2. The

optimal base-stock level for product type-1 is given by the expression y∗t1 = z′∗t1 (0, λt2) + d′∗t1 (0, λt2). In terms of the

change of this base-stock level with respect to an increase in the initial inventory level of product type-2, we find
∂y∗t1

∂xt2
=
(
∂z′∗t1 (0,λt2)

∂λt2
+

∂d′∗t1 (0,λt2)

∂λt2

)
∂λt2
∂xt2

. By Lemma 2, we have
∂z′∗t1 (0,λt2)

∂λt2
< 0 and

∂d′∗t1 (0,λt2)

∂λt2
< 0. By Lemma 3,

∂λt2
∂xt2

> 0,

hence we find
∂y∗t1

∂xt2
< 0. Therefore, in this region we also have y∗t1 < x◦1

t. In the region where λt1 > 0 and λt2 > 0, no

replenishment takes place for either item. The analysis for the remaining four regions are similar. �
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Proof of Theorem 3 (Optimal Pricing Policy):

Solving for dt1 and dt2 in the first order conditions corresponding to the demand selection decisions, Jtd1
+λt1 = 0 and

Jtd2
+λt2 = 0, where Jtd1

and Jtd2
are as given in (10), and substituting the inverse demand-price relationships derived

in the proof of Lemma 1, we get:

pt1 =
p̄(q1− q) + p(q̄− q1)

2(q̄− q) +
ct1
2
− λt1

2

pt2 =
p̄(q2− q) + p(q̄− q2)

2(q̄− q) +
ct2
2
− λt2

2

(11)

First, consider the region for which λt1 = λt2 = 0. The expressions in (11) become pt1 =
p̄(q1−q)+p(q̄−q1)

2(q̄−q) +
ct1
2

, and

pt2 =
p̄(q2−q)+p(q̄−q2)

2(q̄−q) +
ct2
2

, where both prices are independent of the starting inventory levels within the region. We

refer to these prices as the “list prices” and let p0 t
1 =

p̄(q1−q)+p(q̄−q1)

2(q̄−q) +
ct1
2

and p0 t
2 =

p̄(q2−q)+p(q̄−q2)

2(q̄−q) +
ct2
2

denote the

list price for product 1 and product 2, respectively.

Next, consider the region defined by λt1 > 0 and λt2 = 0. We have pt1 = p0 t
1 −

λt1
2

and pt2 = p0 t
2 . Thus, pt1 < p

0 t
1 . Further,

as
∂pt1
∂xt1

= − 1
2

∂λt1
∂xt1

< 0, and
∂pt1
∂xt2

= − 1
2

∂λt1
∂xt2

= 0 (where the inequality and the equality follow from Lemma 3), pt1 is

decreasing with xt1 and is independent of xt2. Since pt2 = p0 t
2 , we also have pt2 independent of xt1 and xt2. The case for

which λt1 < 0 and λt2 = 0 is very similar and results in pt1 > p0 t
1 , and pt2 = p0 t

2 with the same monotonicity properties

as in the previous case.

When λt1 = 0 and λt2 > 0, we similarly have pt1 = p0 t
1 and pt2 = p0 t

2 −
λt2
2

. Since λt2 > 0, we have pt2 > p
0 t
2 . We also find

pt1 independent of xt1 and xt2, while pt2 independent of xt1 and decreasing in xt2. Again, the case with λt1 = 0 and λt2 < 0

is very similar and leads to pt1 = p0 t
1 and pt2 < p0 t

2 with the same monotonicity properties pt1 independent of xt1 and

xt2, and pt2 independent of xt1 and decreasing in xt2.

For λt1 > 0 and λt2 > 0, we have pt1 = p0 t
1 −

λt1
2

and pt2 = p0 t
2 −

λt2
2

. As both λt1 > 0 and λt2 > 0, this leads to pt1 < p0 t
1

and pt2 < p
0 t
2 . Regarding price monotonicities, recall from Lemma 3 that

∂λti
∂xti

>
∂λti
∂xtj

> 0 for i, j = 1,2 and i 6= j. Hence,

we find that
∂pti
∂xtj

< 0 for i, j = {1,2}, i.e., both pt1 and pt2 are decreasing in xt1 and xt2. These monotonicity results also

similarly carry to all other cases where λt1 6= 0 and λt2 6= 0. �

Preservation of the Structural Properties of the Value Function:

To complete the analysis of the optimal policy characterization, lastly we show that the value function V t(xt1, x
t
2)

retains the properties of V t−1(xt−1
1 , xt−1

2 ) that were assumed in the induction step as outlined in the Induction

Assumption.

Lemma 4 (Completing the Induction). V t(xt1, x
t
2) is jointly concave, submodular, and its Hessian possesses

weak diagonal dominance property: V t11(xt1, x
t
2)≤ V t12(xt1, x

t
2)≤ 0 and V t22(xt1, x

t
2)≤ V t21(xt1, x

t
2)≤ 0.

Proof: The proof follows from Lemma 3. By (9) and the envelope theorem, we have
∂V t(xt1,x

t
2)

∂xti
= ci − λti for i= 1,2.

Hence, V tij(x
t
1, x

t
2) = − ∂λti

∂xtj
for i, j = 1,2. By Lemma 3,

∂λti
∂xtj
≥ 0. Hence, V tij(x

t
1, x

t
2) ≤ 0 and therefore V t(xt1, x

t
2) is

submodular. For diagonal dominance, V tii(x
t
1, x

t
2)− V tij(xt1, xt2) =− ∂λ

t
i

∂xti
+

∂λti
∂xtj
≤ 0, where the inequality follows from

Lemma 3. V t(xt1, x
t
2) being concave follows immediately from V tij(x

t
1, x

t
2)≤ 0 and V tii(x

t
1, x

t
2)−V tij(xt1, xt2)≤ 0. �

Proof of Theorem 4 (Impact of Upgrades on Pricing and Replenishment):

As we discuss in Section 5.1, our preceding analysis to characterize the structure of the optimal policy can straight-

forwardly be extended to incorporate an upgrade limit ūt in the second-stage upgrade problem. For brevity, we omit

the replication of the derivation but would like to highlight that the optimal upgrade policy can now be stated as

ut∗ = min((wt1− rt(wt))+, ūt), while the structure of the optimal pricing and replenishment policies continue to hold

as stated in Theorems 2 and 3. The first order conditions outlined in the proof of Theorem 2 for the modified problem
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where we incorporate an upgrade limit ūt can be written explicitly by substituting in the structure of the optimal

second-stage upgrade decision as stated below:

− ct1 + Eεt1,εt2 [
∂

∂zt1
Gt(zt1− εt1, zt2− εt2)] +λt1 = 0

− ct2 + Eεt1,εt2 [
∂

∂zt2
Gt(zt1− εt1, zt2− εt2)] +λt2 = 0

p̄(q1− q) + p(q̄− q1)

(q̄− q) − 2(q̄− q1)

δ(q̄− q)

[
(q1− q)d1 + (q2− q)d2

]
− ct1 +λt1 = 0

p̄(q2− q) + p(q̄− q2)

(q̄− q) −
2(q2− q)
δ(q̄− q)

[
(q̄− q1)d1 + (q̄− q2)d2

]
− ct2 +λt2 = 0

(12)

where Gt(zt1− εt1, zt2− εt2) =

[−h1(zt1− εt1)−h2(zt2− εt2) +βV t−1(zt1− εt1, zt2− εt2)] · I(zt1−εt1<rt(zt1+zt2−ε
t
1−ε

t
2))

+ [−h1(rt(zt1 + zt2− εt1− εt2))−h2(zt1 + zt2− εt1− εt2− rt(zt1 + zt2− εt1− εt2))

+βV t−1(rt(zt1 + zt2− εt1− εt2), zt1 + zt2− εt1− εt2− rt(zt1 + zt2− εt1− εt2))] · I(zt1−εt1−ūt<rt(zt1+zt2−ε
t
1−ε

t
2)<zt1−ε

t
1)

+ [−h1(zt1− εt1− ūt)−h2(zt2− εt2 + ū) +βV t−1(zt1− εt1− ūt, zt2− εt2 + ūt)] · I(rt(zt1+zt2−ε
t
1−ε

t
2)<zt1−ε

t
1−ūt)

and I(·) is the indicator function.

Consider first the case for which λt1 = λt2 = 0. Differentiating the first two expressions in (12) with respect to ūt, we

get

Eεt1,εt2

[(
V t−1

11 (·, ·)
(
∂zt1
∂ūt
− 1
)

+V t−1
12 (·, ·)

(
∂zt2
∂ūt

+ 1
))
· I(rt(·)<zt1−εt1−ūt) + 0 · I(rt(·)>zt1−εt1−ūt)

]
= 0,

Eεt1,εt2

[(
V t−1

21 (·, ·)
(
∂zt1
∂ūt
− 1
)

+V t−1
22 (·, ·)

(
∂zt2
∂ūt

+ 1
))
· I(rt(·)<zt1−εt1−ūt) + 0 · I(rt(·)>zt1−εt1−ūt)

]
= 0.

Solving for
∂zt1
∂ūt

and
∂zt2
∂ūt

and using the concavity, submodularity and diagonal dominance properties of V t−1, we find
∂zt1
∂ūt
≥ 0 and

∂zt1
∂ūt
≤ 0.

Next, we differentiate the last two expressions in (12) with respect to ūt and have − 2(q̄−q1)(q1−q)
δ(q̄−q)

∂dt1
∂ūt
−

2(q̄−q1)(q2−q)
δ(q̄−q)

∂dt2
∂ūt

= 0 and − 2(q2−q)(q̄−q1)

δ(q̄−q)
∂dt1
∂ūt
− 2(q2−q)(q̄−q2)

δ(q̄−q)
∂dt2
∂ūt

= 0. Solving for
∂dt1
∂ūt

and
∂dt2
∂ūt

results in
∂dt1
∂ūt

=
∂dt2
∂ūt

= 0.

Consequently,
∂pt1
∂ūt

=
∂pt2
∂ūt

= 0. Since yti = zti + dti, we also have
∂yt1
∂ūt
≥ 0 and

∂yt2
∂ūt
≤ 0.

For the case where λt1 > 0 and λt2 = 0, we have the active constraint yt1 = xt1. Differentiating the expres-

sions in (12) and zt1 + dt1 = xt1 with respect to ūt and solving for
∂dti
∂ūt

and
∂zti
∂ūt

for i = 1,2 results in
∂dt1
∂ūt

=

−
δ(q̄−q2)

(q̄−q1)(q1−q2) (Ṽ t11Ṽ
t
22−Ṽ

t
12Ṽ

t
21)

δ(q̄−q2)
(q̄−q1)(q1−q2) (Ṽ t11Ṽ

t
22−Ṽ

t
12Ṽ

t
21)−2Ṽ t22

< 0 where Ṽ tij stands for Eεt1,εt2

[
V t−1
ij (·, ·) · I(rt(·)<zt1−εt1−ū) + 0 · I(rt(·)>zt1−εt1−ū)

]
.

The inequality follows due to δ(q̄−q2)
(q̄−q1)(q1−q2)

> 0, and the inductional assumption. Similarly, we find
∂dt2
∂ūt

=
δ

(q1−q2) (Ṽ t11Ṽ
t
22−Ṽ

t
12Ṽ

t
21)

δ(q̄−q2)
(q̄−q1)(q1−q2) (Ṽ t11Ṽ

t
22−Ṽ

t
12Ṽ

t
21)−2Ṽ t22

> 0,
∂zt1
∂ūt

=− ∂d
t
1

∂ūt
> 0, and

∂zt2
∂ūt

=−
δ(q̄−q2)

(q̄−q1)(q1−q2) (Ṽ t11Ṽ
t
22−Ṽ

t
12Ṽ

t
21)−2(Ṽ t22−Ṽ

t
21)

δ(q̄−q2)
(q̄−q1)(q1−q2) (Ṽ t11Ṽ

t
22−Ṽ

t
12Ṽ

t
21)−2Ṽ t22

> 0. Con-

sequently, we get
∂yt1
∂ūt

= 0 and
∂yt2
∂ūt

< 0. Substituting the corresponding demand parameter expressions, we also find
∂pt1
∂ūt

> 0 and
∂pt2
∂ūt

= 0.

Next, consider the case for which λt1 > 0 and λt2 > 0, where we have two active constraints, yt1 = xt1 and yt2 = xt2.

Differentiating the expressions in (12) and zt1 + dt1 = xt1, zt2 + dt2 = xt2 with respect to ūt, and solving for
∂dti
∂ūt

,
∂zti
∂ūt

,

and
∂λti
∂ūt

for i= 1,2, and through similar steps we find
∂pt1
∂ūt

> 0 and
∂pt2
∂ūt

< 0. The analysis for the remaining cases are

similar and hence omitted for brevity. �

Proof of Theorem 5 (Sensitivity to Quality Differential):

Recall from Theorem 3 that in this region we have p0 t
1 =

p̄(q1−q)+p(q̄−q1)

2(q̄−q) +
ct1
2

and p0 t
2 =

p̄(q2−q)+p(q̄−q2)

2(q̄−q) +
ct2
2

. Thus,

regarding the monotonicity of the list prices with respect to q1, we find
∂p0 t

1
∂q1

=
(p̄−p)
2(q̄−q) > 0 and

∂p0 t
2

∂q1
= 0, i.e. an increase

in the quality level of the higher quality product results in an increase in the list price of the higher quality product

but does not impact the optimal list price charged for the lower quality product. Similarly, with respect to an increase

in the quality level of the lower quality product, we find
∂p0 t

1
∂q1

= 0 and
∂p0 t

2
∂q1

=
(p̄−p)
2(q̄−q) > 0.
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Regarding the monotonicities of the base-stock levels, we first need to consider the monotonicities of the mean demand

selections, d∗t1 and d∗t2 , as an intermediate step. Solving for dt1 and dt2 in the first order conditions corresponding to the

demand selection decisions, Jtd1
+λt1 = 0 and Jtd2

+λt2 = 0, where Jtd1
and Jtd2

are as given in (10), and recalling that

in this region, we have λt1 = 0 and λt2 = 0, we get d∗t1 = δ
2
(
−ct1+ct2
q1−q2

+
p̄−ct1
q̄−q1

) and d∗t2 = δ
2
(
ct1−c

t
2

q1−q2
+
p−ct2
q2−q

). We first consider

the monotonicities with respect to q1. Differentiating, we find
∂d∗t1
∂q1

= δ
2
(
ct1−c

t
2

(q1−q2)2
+

p̄−ct1
(q̄−q1)2

)> 0 where the inequality

follows since ct1 > ct2 and p̄ > ct1 as p̄ > pt1 > ct1. Similarly, we find
∂d∗t2
∂q1

=− δ
2
(
ct1−c

t
2

(q1−q2)2
)< 0. Thus, an increase in the

quality level of the higher quality product leads the firm to select a higher mean demand value for the higher quality

product and a lower mean demand value for the lower quality product. Now, considering the first order conditions

with respect to zt1 and zt2, i.e., −ct1 + Eεt1,εt2 [ ∂
∂zt1

Gt(zt1 − εt1, zt2 − εt2)] = 0 and −ct2 + Eεt1,εt2 [ ∂
∂zt2

Gt(zt1 − εt1, zt2 − εt2)] = 0

with respect to q1, and solving for
∂z∗t1
∂q1

and
∂z∗t2
∂q1

, we get
∂z∗t1
∂q1

=
∂z∗t2
∂q1

= 0. Thus, the expected number of customers

subsequently receiving an upgrade does not change with a change in only the current-period value of q1. Lastly, since

y∗t1 = z∗t1 + d∗t1 and y∗t2 = z∗t2 + d∗t2 by definition, we find
∂y∗t1
∂q1

=
∂d∗t1
∂q1

> 0 and
∂y∗t2
∂q1

=
∂d∗t2
∂q1

< 0. Lastly, we consider

the monotonicities with respect to qt2. Through similar steps, we find that
∂y∗t1
∂q2

=
∂d∗t1
∂q2
≤ 0 and

∂y∗t2
∂q2

=
∂d∗t2
∂q2

< 0 when

p≤
(
q2−q
q1−q2

)2

(ct1− ct2) + ct2. �

Proof of Theorem 6 (Sensitivity to Cost Parameters):

The proof is similar to the proof of Theorem 5. Recall that our focus is limited to the region corresponding to λt1 =

λt2 = 0. Differentiating the first order conditions with respect to ct1, we obtain (i)
∂d∗t1

∂ct1
=− δ

2
( 1
q1−q2

+ 1
q̄−q1

), (ii)
∂d∗t2

∂ct1
=

δ
2
( 1
q1−q2

), (iii)
∂z∗t1

∂ct1
=

E[Gt22]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
, and (iv)

∂z∗t2

∂ct1
=− E[Gt21]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
. Thus,

∂y∗t1

∂ct1
=

∂d∗t1

∂ct1
+
∂z∗t1

∂ct1
=

− δ
2
( 1
q1−q2

+ 1
q̄−q1

)+
E[Gt22]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
< 0 (recall that E[Gt22]< 0, and E[Gt22]E[Gt11]−E[Gt12]E[Gt21]> 0) , hence

the base-stock level for product type-1 decreases, and
∂y∗t2

∂ct1
=

∂d∗t2

∂ct1
+

∂z∗t2

∂ct1
= δ

2
( 1
q1−q2

)− E[Gt21]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
> 0,

i.e., the base-stock level for product type-2 increases. Further, differentiating the expressions for the list prices, we

obtain
∂p∗t1

∂ct1
= 1

2
and

∂p∗t2

∂ct1
= 0, thus in this region, the list price of product type-1 increases while the list price for

product type-2 remains same. In addition, by (iii) and (iv), we have
∂z∗t1

∂ct1
+

∂z∗t2

∂ct1
=

E[Gt22]−E[Gt21]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
< 0,

which indicates (by Theorem 1) that the expected protection level decreases. Further, by (iv),
∂zt2
∂ct1

> 0, thus
∂zt1
∂ct1

<

∂zt1
∂ct1

+
∂zt2
∂ct1

, i.e., the decrease in the expected protection level is accompanied by an even greater decrease in the

expected intermediate inventory level of product type-1. Therefore, again by Theorem 1, the expected number of

subsequent upgrades decreases. The analysis for the sensitivity with respect to ct2 is similar.

For part (b), differentiating the list price expressions with respect to the underlying cost parameter ct gives
∂p0 t

1
∂ct

=

γ
2
> 0 and

∂p0 t
2

∂ct
= 1

2
> 0, thus the list price for both products increase. Note that since γ > 1, the increase in the

list price for product type-1 is larger than that for product type-2. Next, differentiation of the first order conditions

with respect to the underlying cost parameter ct leads to: (i)
∂d∗t1
∂ct

= −γ δ
2
( 1
q1−q2

+ 1
q̄−q1

) + δ
2
( 1
q1−q2

), (ii)
∂d∗t2
∂ct

=

γ δ
2
( 1
q1−q2

)− δ
2
( 1
q1−q2

+ 1
q2−q

), (iii)
∂z∗t1
∂ct

=
γE[Gt22]−E[Gt12]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
, and (iv)

∂z∗t2
∂ct

=
−γE[Gt21]+E[Gt11]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
. We have

∂y∗t1
∂ct

=
∂d∗t1
∂ct

+
∂z∗t1
∂ct

< 0 (as both
∂d∗t1
∂ct

< 0 and
∂z∗t1
∂ct

< 0), thus the base-stock level for product type-1 decreases.

The sign of
∂yt2
∂ct

can be either positive or negative depending on the magnitude of γ. Explicitly,
∂yt2
∂ct

= γ δ
2
( 1
q1−q2

)−
δ
2
( 1
q1−q2

+ 1
q2−q

) +
−γE[Gt21]+E[Gt11]

E[Gt11]E[Gt22]−E[Gt12]E[Gt21]
. Introduce and let γtr :=

δ( 1
q1−q2

+ 1
q2−q

)(E[Gt11]E[Gt22]−E[Gt12]E[Gt21])−2E[Gt11]

( δ
q1−q2

)(E[Gt11]E[Gt22]−E[Gt12]E[Gt21])−2E[Gt21]
.

Then,
∂y∗t2
∂ct

< 0 if γ < γtr, and
∂y∗t2
∂ct
≥ 0 if γ ≥ γtr. Regarding the upgrade policy, from (iii) and (iv), we find that

∂zt1
∂ct

+
∂zt2
∂ct

< 0, thus the expected protection level decreases. Introduce and let γtu := G̃11

G̃12
. Then for γ > γtu, we have

∂zt1
∂ct

<
∂zt1
∂ct

+
∂zt2
∂ct

< 0, i.e., the decrease in the expected protection level is accompanied by an even greater decrease in

the expected intermediate inventory level of product type-1, and thus the expected number of subsequent upgrades

decreases by Theorem 1. �



Ceryan, Duenyas, Sahin: Dynamic Pricing and Replenishment with Customer Upgrades
; 9

60

65

-4

70

75

-4

p1

80

0

Perfectly Positively Correlated

85

x1
0

90

x2
4 4

8 8

60

65

-4 -4

70

75

0 0

Independent

x1

80

x2
4

85

4

90

8 8

60

65

-4 -4

70

0 0

75

Perfectly Negatively Correlated

x1 x2

80

4 4

85

90

8 8

30

-4

35

-40

40
p2

x1
0

Perfectly Positively Correlated

45

x2
4

4

50

8 8

30

-4

35

0 -4

40

x1 0

Independent

4
x2

45

4

50

8 8

30

-4

35

-4

40

0
x1

Perfectly Negatively Correlated

0

45

x2
4

4

50

8 8

Figure 3 Price of Product 1 (top) and Price of Product 2 (bottom) in period 5 across perfectly positively

correlated demand (left), independent demand (center), and perfectly negatively correlated demand

(right)

Supplement to Numerical Study (Section 6):

Section 6.2 Impact of Demand Correlation: As described in the main text, our numerical studies indicate that the

optimal policy structure in the presence of demand correlation is similar to the optimal policy structure shown for

the independent demand setting. As an example, Figure 3 displays the similarity in the pricing policy for the higher

and lower quality products in period 5 for different correlations, namely, perfectly positively correlated demand,

independent demand, and perfectly positively correlated demand.

Section 6.3 A Heuristic Policy: We provide below the explicit representation of the single-period reduced problem

in which the firm with no capacity restrictions and no initial inventory determines optimal base-stock levels for the

two products.ŷ◦1 and ŷ◦2 , with expected demands d◦1 and d◦2 taking into account possible upgrades. The single-period

expected cost function C(y1, y2) consists of replenishment costs ci per unit of product type-i, holding and shortage

costs h+
i and h−i after demand realization and any subsequent upgrades, and a discounted cost βci for any negative

inventory (imitating the replacement cost to return to the original zero inventory position) or a reward −βci for any

remaining positive inventory for product type-i, i= {1,2}:

min
y1,y2

C(y1, y2) (13)

where
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C(y1, y2) = c1y1 + c2y2 +

∫∫
S1

(
(h+

1 −βc1)(y1−d◦1−ε1)+(h+
2 −βc2)(y2−d◦2−ε2)

)
f1(ε1)f2(ε2)dε2 dε1

+

∫∫
S2

(
(h−1 +βc1)(d◦1−y1+ ε1)+(h+

2 −βc2)(y2−d◦2−ε2)
)
f1(ε1)f2(ε2)dε2 dε1

+

∫∫
S3

(
(h−1 +βc1)(d◦1−y1+ ε1)+(h−2 +βc2)(d◦2−y2+ε2)

)
f1(ε1)f2(ε2)dε2 dε1

+

∫∫
S4

(
(h+

1 −βc1)(y1+y2−d◦1−d◦2−ε1−ε2)
)
f1(ε1)f2(ε2)dε2 dε1

+

∫∫
S5

(
(h−2 +βc2)(d◦1+d◦2−y1−y2+ ε1+ ε2)

)
f1(ε1)f2(ε2)dε2 dε1

with S1 = {(ε1, ε2) : ε1 ≤ y1 − d◦1 and ε2 ≤ y2 − d◦2}, S2 = {(ε1, ε2) : ε1 ≥ y1 − d◦1 and ε2 ≤ y2 − d◦2}, S3 = {(ε1, ε2) : ε1 ≥
y1 − d◦1 and ε2 ≥ y2 − d◦2}, S4 = {(ε1, ε2) : ε1 ≤ y1 − d◦1 and y2 − d◦2 ≤ ε2 ≤ y1 + y2 − d◦1 − d◦2 − ε1}, and S5 = {(ε1, ε2) :

ε1 ≤ y1− d◦1 and ε2 ≥ y1 + y2− d◦1 − d◦2 − ε1}.
In words, S1, S2, and S3 correspond to, respectively, demand uncertainty realizations that result in excess inventory

in both products, a shortage of the higher quality product and excess in the lower quality product, and shortages

in both types of products. Collectively, these three areas do not lead to upgrades. The next two areas, S4 and S5,

correspond to uncertainty realizations where there is excess in the higher quality product and a shortage in the lower

quality product, where in the former all demand for the lower quality product is upgraded, and in the latter, the

upgrade quantity is limited by the availability of the higher quality product.

It can be easily verified that C(y1, y2) is jointly convex in y1 and y2 when h−1 >h−2 , c1 > c2, and h+
1 +h−2 ≥ β(c1− c2),

and the optimal base-stock levels for this reduced problem, denoted by ŷ◦1 and ŷ◦2 , simultaneously satisfy the following

(as also presented in (5)):

F1(ŷ
◦
1−d◦1) =

h−1 −(1−β)c1 +
(
h+

1 +h−2 −β(c1−c2)
)∫ ŷ◦1−d

◦
1

ε1

(
1−F2(ŷ

◦
1+ŷ

◦
2−d◦1−d◦2−ε1)

)
f1(ε1)dε1

h+
1 +h−1

F2(ŷ
◦
2−d◦2) =

h−2 −(1−β)c2 +
(
h+

1 +h−2 −β(c1−c2)
)∫ ŷ◦1−d

◦
1

ε1

(
F2(ŷ

◦
1+ŷ

◦
2−d◦1−d◦2−ε1)−F2(ŷ

◦
2− d◦2)

)
f1(ε1)dε1

h+
2 +h−2

(14)

Proof of Theorem 7 (Optimal Upgrade Fee):

As in the proof of the earlier main results, we start with the inductional assumption that the value function in period

t− 1, V t−1(xt−1
1 , xt−1

2 ) is jointly concave, submodular, and its Hessian possesses the diagonally dominance property.

The preservation of these properties will however require a new additional condition that we will establish within the

subsequent proof of Theorem 8.

The second stage problem given by (7) is

Gt(wt1,w
t
2,D

t
2) = max

ut

0≤ut≤Dt2

Ḡt(wt1,w
t
2,D

t
2, u

t) (15)

where Ḡt(wt1,w
t
2,D

t
2, u

t) = Eζt
[(
p̄u− ut

Dt2
(p̄u− p

u
)
)(
ut + ζt

)
−h1(wt1−ut− ζt)−h2(wt2 +ut + ζt) + βV t−1(wt1−ut−

ζt,wt2 +ut + ζt)
]
. Differentiating Ḡt(wt1,w

t
2,D

t
2, u

t) with respect to ut yields:

∂Ḡt(·)
∂ut

= p̄u−
2(p̄u− p

u
)

Dt
2

ut +h+
1 I(wt1≥Dt2)−h

−
1 I(wt1≤0) +

(
(h+

1 +h−1 )F (wt1−ut)−h−1
)
I(0<wt1<Dt2)

−h+
2 I(wt2≥0) +h−2 I(wt2≤−Dt2) +

(
(h+

2 +h−2 )F (−wt2−ut)−h+
2

)
I(−Dt2<wt2<0)

−βEζt
[
V t−1

1 (wt1−ut− ζt,wt2 +ut + ζt) +V t−1
2 (wt1−ut− ζt,wt2 +ut + ζt)

] (16)
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where F (·) is the cumulative distribution function for ζt and and V t−1
j (·, ·) denotes the partial derivative of V t−1(·, ·)

with respect to its jth argument. (Note: The assumption that f(·) has zero density at the boundaries −ut and Dt
2−ut

is utilized in the derivation of the above expression, and together with the vanishing variance at ut = 0 or ut =Dt
2,

also guarantees continuity of the objective function at the boundaries.) As before, for expositional clarity, when a

function’s arguments are evident, we suppress the notation and write for example, Ḡt, V t, or V ti and V tij for i, j = 1,2.

We further have:

∂2Ḡt

∂ut2
=−

2(p̄u− p
u
)

Dt
2

− (h+
1 +h−1 )f(wt1−ut)I(0<wt1<Dt2)− (h+

2 +h−2 )f(−wt2−ut)−h+
2 I(−Dt2<wt2<0)

+βEζt
[
V t−1

11 −V t−1
12 −V t−1

21 +V t−1
22

]
< 0

(17)

where the strict inequality follows as the first three terms are strictly negative and the remaining term is nonpositive

due to the inductional assumptions of submodularity and diagonal dominance for V t−1(xt−1
1 , xt−1

2 ). Thus, Ḡt is

strictly concave in ut. Let µt1 ≥ 0 and µt2 ≥ 0 be the Lagrangian variables associated with the constraints ut ≥ 0 and

ut ≤Dt
2, respectively. Note that since we assume Dt

2 > 0, µt1 and µt2 cannot be simultaneously nonzero. Thus we need

to consider three cases.

First, consider the case µt∗1 = 0 and µt∗2 = 0. Then, the optimal ut∗ is the solution to ∂Ḡt

∂ut
= 0. To show how ut∗

changes with wt1, we differentiate the first order condition with respect to wt1 and solve for ∂ut∗

∂wt1
. We find:

∂ut∗

∂wt1
=

−(h+
1 +h−1 )f(wt1−u

t∗)I
(0<wt1<D

t
2)

+βEζt

[
V t−1

11 −V t−1
12

]
−

2(p̄u−pu)

Dt2
−(h+

1 +h−1 )f(wt1−ut∗)I(0<wt1<D
t
2)
−(h+

2 +h−2 )f(−wt2−ut∗)I(−Dt2<w
t
2<0)

+βEζt

[
V t−1

11 −V t−1
12 −V t−1

21 +V t−1
22

] . As both

the numerator and denominator are negative due to the inductional assumptions, we have ∂ut∗

∂wt1
> 0. Therefore, the

optimal target upgrade quantity ut∗ is increasing in wt1. Further, we have
∂pt∗u
∂wt1

=− (p̄u−pu)

Dt2

∂ut∗

∂wt1
< 0. Thus, the optimal

upgrade fee pt∗u is decreasing in wt1. A similar analysis results in:

∂ut∗

∂wt2
=

(h+
2 +h−2 )f(−wt2−u

t∗)I
(−Dt2<w

t
2<0)

+βEζt

[
V t−1

12 −V t−1
22

]
−

2(p̄u−pu)

Dt2
−(h+

1 +h−1 )f(wt1−ut∗)I(0<wt1<D
t
2)
−(h+

2 +h−2 )f(−wt2−ut∗)I(−Dt2<w
t
2<0)

+βEζt

[
V t−1

11 −V t−1
12 −V t−1

21 +V t−1
22

] < 0 where

the inequality follows as the numerator is strictly positive and the denominator is strictly neg-

ative due to the induction assumptions. Further, we have
∂pt∗u
∂wt2

= − (p̄u−pu)

Dt2

∂ut∗

∂wt2
> 0. Hence, the

optimal upgrade fee pt∗u is increasing in wt2. Through a similar analysis, we also find ∂ut∗

∂Dt2
=

2(p̄u−pu)ut∗/(Dt2)2

−
2(p̄u−pu)

Dt2
−(h+

1 +h−1 )f(wt1−ut∗)I(0<wt1<D
t
2)
−(h+

2 +h−2 )f(−wt2−ut∗)I(−Dt2<w
t
2<0)

+βEζt

[
V t−1

11 −V t−1
12 −V t−1

21 +V t−1
22

] < 0, and conse-

quently that
∂pt∗u
∂Dt2

> 0. Thus, the upgrade fee is increasing with the demand pool Dt
2.

Note that when the firms decides to upgrade ut∗ customers, it is in effect, also selecting a target protection level

wt1−ut∗ on the higher level product. We also provide several monotonicty results on this protection level. Following

the above analysis, one can also straightforwardly establish that (a) ∂ut∗

∂wt1
< 1 and (b) ∂ut∗

∂wt1
− ∂ut∗

∂wt2
< 1. Through (a),

we immediately find that the protection level wt1 − ut∗ is increasing in wt1. Through the previous result ∂ut∗

∂wt2
< 0,

we see that the protection level wt1 − ut∗ is also increasing in wt2, and through (b) we find that the increase in the

protection level with respect to wt1 is stronger than the increase in the protection level with respect to wt2. Thus, the

protection level is a function of wt1 and wt2 only through their sum, but is a function of wt1 and wt2 individually.

Finally, consider the case where µt∗1 > 0 and µt∗2 = 0. This indicates that the constraint ut ≥ 0 is active and we

immediately have pt∗u (ut∗1 ) = p̄u − (ut∗1 −u
t∗
1 )

Dt2
(p̄u − p

u
) = p̄u. Similarly, the case for which µt∗1 = 0 and µt∗2 > 0 implies

ut =Dt
2 and leads to pt∗u (ut∗1 ) = p̄u− Dt2

Dt2
(p̄u− p

u
) = p̄u. �

Supplement to Pricing and Replenishment with Upgrade Fees: As a supplement to the manuscript, the

below results summarize our findings regarding the optimal replenishment and pricing decisions when the firm selects

and charges an upgrade fee.
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Figure 4 Optimal pricing policy structure for the higher quality product (left) and the lower quality product

(right) when the firm sets upgrade fees

Theorem 8. (a) The optimal replenishment for both products follow the partially decoupled state-dependent base-

stock policy characterized by y∗ti (xtj) with x◦1
t = y∗t1 (x◦2

t) and x◦2
t = y∗t2 (x◦1

t) as described in Theorem 2 with all

monotonicity results preserved.

(b) Let p◦1
t and p◦2

t denote list prices in period t for products type-1 and type-2, respectively. The optimal price for

the higher quality product type-1 follows the structure of the pricing policy described in Theorem 3.

For the lower quality product type-2, it is optimal to apply its list price p◦2
t if y∗t1 (xt2) − Kt

1 ≤ xt1 ≤ y∗t1 (xt2) and

y∗t2 (xt1)−Kt
2 ≤ xt2 ≤ y∗t2 (xt1). A price discount is given if xt1 ≥ y∗t1 (xt2)−Kt

1 and xt2 ≥ y∗t2 (xt1), and a price surcharge is

given if xt1 ≤ y∗t1 (xt2) and xt2 ≤ y∗t2 (xt1)−Kt
2. When y∗t2 (xt1)−Kt

2 ≤ xt2 ≤ y∗t2 (xt1), either the list price or a price discount

may be optimal if xt1 ≥ y∗t1 (xt2), and either the list price or a price surcharge may be optimal if xt1 ≤ y∗t1 (xt2)−Kt
1.

In the two remaining regions corresponding to either xt1 < y∗t1 (xt2)−K1 and xt2 > y∗t2 (xt1), or xt1 > y∗t1 (xt2) and xt2 <

y∗t2 (xt1)−K2, a price discount or a price surcharge may be optimal for product type-2.

Furthermore, the price of either product is decreasing with respect to the inventory level of either product.

Proof of Theorem 8 (Pricing and Replenishment with Upgrade Fees):

As the proof methodology is similar to the proofs of Theorem 2 and Theorem 3, for brevity, we only highlight the

main arguments here and refer to earlier results where applicable. We start by introducing several properties of the

second stage profit-to-go function, Gt.

Lemma 5. The second-partials of Gt(wt1,w
t
2,D

t
2) satisfy the following: (i) Gt11(wt1,w

t
2,D

t
2)≤Gt12(wt1,w

t
2,D

t
2)≤ 0,

(ii) Gt22(wt1,w
t
2,D

t
2)≤Gt21(wt1,w

t
2,D

t
2)≤ 0, and (iii) Gt33(wt1,w

t
2,D

t
2)≤ 0.

Proof: For brevity, we only present the proof for property (iii). The properties (i) and (ii) are derived in a similar

manner and are analogous to their earlier versions established in Lemma 1. Consider the Lagrangian for the second-

stage problem, Ḡt(wt1,w
t
2,D

t
2, u

t) + µt1(ut)− µt2(ut −Dt
2), where, as before, µt1 ≥ 0 and µt2 ≥ 0 are the Lagrangian

variables associated with the constraints ut ≥ 0 and ut ≤Dt
2, respectively. We first consider the case corresponding to

µt∗1 = 0 and µt∗1 = 0. Through the envelope theorem, we have Gt33 =
2(p̄u−pu)ut∗

(Dt2)2

(
∂ut∗

∂Dt2
− ut∗

Dt2

)
< 0, where the inequality

follows from ∂ut∗

∂Dt2
< 0 established in the proof of Theorem 7. Next, consider the case where µt∗1 > 0 and µt∗2 = 0

corresponding to ut∗ = 0 due to the active constraint. Through the envelope theorem, we have Gt33 = 0. Similarly,
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the case µt∗1 = 0 and µt∗2 > 0 corresponding to ut∗ =Dt
2 leads to Gt33 = β(V t−1

11 −V t−1
12 −V t−1

21 +V t−1
22 )≤ 0 due to the

inductional assumption.

We make the same variable transformation introduced in the proof of Theorem 2 and rewrite the first-stage problem

equivalently as follows:

V t(xt1, x
t
2) = ct1x

t
1 + ct2x

t
2 + max

zti ,d
t
i

xti≤z
t
i+d

t
i≤x

t
i+Ki

Jt(zt1, z
t
2, d

t
1, d

t
2)

where Jt(zt1, z
t
2, d

t
1, d

t
2) = dt1p

t
1(dt1, d

t
2) + dt2p

t
2(dt1, d

t
2)− (c1(zt1 + dt1) + c2(zt2 + dt2)) + Eεt1,εt2 [(Gt(zt1− εt1, zt2− εt2, dt2 + εt2)].

The properties we establish for Gt(wt1,w
t
2,D

t
2) in Lemma 5 suffice to preserve the properties of Jt(zt1, z

t
2, d

t
1, d

t
2)

introduced in Lemma 1. (Note that Jt(zt1, z
t
2, d

t
1, d

t
2) is now separable in (dt1, d

t
2) and (zt1, z

t
2, d

t
2) and similar argu-

ments as those presented in the proof of Lemma 1 verify its strict concavity.) For example, we now have Jtd2,d1
=

− 2(q2−q)(q̄−q1)

δ(q̄−q) < 0, and Jtd2,d2
= − 2(q2−q)(q̄−q2)

δ(q̄−q) + Eεt1,εt2 [G33], which yields Jtd2,d2
− Jtd2,d1

= − 2(q2−q)(q1−q2)

δ(q̄−q) +

Eεt1,εt2 [G33]< 0 as the first term is strictly negative and G33 ≤ 0. Hence Lemma 2, Lemma 3, and the remaining argu-

ments in the proof of Theorem 2 also follow, resulting in the optimality of the partially decoupled state-dependent

base-stock policy.

The analysis of the optimal pricing decisions are similar to the proof of Theorem 3. We first note that as Jtd2
=

p̄(q2−q)+p(q̄−q2)

(q̄−q) − 2(q2−q)
δ(q̄−q)

[
(q̄−q1)d1 +(q̄−q2)d2

]
−ct2 +Eεt1,εt2 [G3(·)] now includes the term Eεt1,εt2 [G3(·)], the derivation

of the list prices through solving Jtd1
= 0 and Jtd2

= 0 no longer leads to a closed form solution of the problem

parameters. As the optimal pricing policy for the higher quality product otherwise follows an identical structure to

the one we derived for the original problem, for brevity, we limit our attention to only the pricing policy for the lower

quality product and to the regions where its structure deviates from the optimal policy for the original problem.

Specifically, consider the region where λt∗1 > 0 and λt∗1 = 0. Through similar steps as in the proof of Theorem 2, we

get
∂pt∗2
∂λt1

=
(

(q2−q)(q̄−q1)

δ(q̄−q)(Jt
d1,d1

Jt
d2,d2

−(Jt
d1,d2

)2)

)
Eεt1,εt2 [G33]≤ 0. Thus, pt∗2 ≤ p0 t

2 . Further, we also have
∂pt∗2
∂xt1

=
∂pt∗2
∂λt1

∂λt1
∂xt1
≤ 0

and
∂pt∗2
∂xt2

=
∂pt∗2
∂λt1

∂λt1
∂xt2

= 0 by Lemma 3, establishing the monotonicity of pt∗2 in this region. For the region with λt∗1 < 0

and λt∗1 > 0, a similar analysis shows that pt∗2 may be greater than or smaller than p0 t
2 , and that pt∗2 is decreasing

with xt1 and xt2. �


