Online Appendix

Dynamic Pricing and Replenishment with Customer Upgrades

Online Appendix:

Glossary of Terms: Below, we provide a list of the main notation (in a rough order of appearance) used for the
proof of the main results presented in the Appendix. For i,j ={1,2},

xt : inventory position of product type-i at the beginning of period ¢ where product type-1

refers to the higher quality product and product type-2 refers to the lower quality product

w! : intermediate inventory position of product type-i in period t after demand realization

w? : total intermediate inventory in period t after demand realization, i.e., w’ = w! + w}
u; : ending inventory position for product type-i after upgrades
d! : mean demand for product type-i
y; : replenishment level for product type-i
zf . target safety stock level for product type-i, i.e., zf =yf —d!

V*'(z},2%) : first-stage optimal value function starting at state (z%,z%) with ¢ periods remaining

G'(wh,wh) : second-stage optimal value function starting at state (w},w}5) with ¢ periods remaining
V¢ . partial derivative of V*(-) with respect to its i*" argument (similarly defined for G*(-))
Vi ¢ second partial derivative of V*(-) with respect to its i*" and ;" arguments (similarly defined for G'(-))
G*(-) : second-stage profit as a function of the inventory position for product type-i after upgrades

JU(-) : first stage profit as a function of the decision variables 2} and d
J;i : partial derivative of J*(-) with respect to d!
JL, : partial derivative of J*(-) with respect to z}

ini’dj : second partial derivative of J*(-) with respect to d} and dj

J%,..; + second partial derivative of J'(-) with respect to z; and z;

In order to derive the optimal policy structure, we first make an inductional assumption on the properties of the value
function V*(z!, x5). We will then show that these properties hold throughout the dynamic programming recursions.
In the following analysis, we assume that V*(x%,z%) is twice-continuously differentiable. As part of the inductional

step, assume that the value function in period ¢t — 1, Vt_l(:c’i*l,x’;l) satisfies the following properties:

Induction Assumption: Vt_l(aci*l,xéfl) is jointly concave, submodular, and its Hessian is diagonally dominant:

t—1,,t—1 _t—1 t—1(,t—1 _t—1 t—1 2yttt .

Vi (zy L xy ) S VI (@) 25 ) <0 where Vi representsa?,‘l/a — fori,j=1,2.
xZ . T .
2 J

These properties enable us to derive the structure of the optimal upgrade policy in period t. After characterizing
the optimal upgrade policy, and later the optimal production and pricing policies, we will subsequently show in the
forthcoming Lemma 4 that these properties also hold for V!(x},z5%). Note that the induction assumption is trivially

satisfied for VO(z9,29).

Proof of Theorem 1 (Optimal Upgrade Policy):
The optimal upgrade policy is determined by solving the second-stage problem described in (4), which we analyze

through a variable transformation. For any intermediate inventory position wi and w}, with a total intermediate
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inventory position w® = w! 4w}, let G*(u}) be defined such that G*(ul) = —hq (ul) — he(w’ —ul) + BV (ul, w' —ul)
where v} and w® — u! represent, respectively, the period ending inventory positions for product type-1 and product
type-2 after upgrades. In particular, when ' units of upgrades are given, we have u} = w! — u’. Thus, the choice
of u} will immediately determine the upgrade quantity «’. The constraint u} < w!, i.e., u’ > 0, guarantees that the
upgrade quantity is nonnegative, implying unidirectional product substitutions for the demand for the lower quality
product by a higher quality product and not vice versa.

The first derivative of G*(u!) with respect to u} is given by

dGt (ut - 9
G (ui) _ —hi Lt 0y +ha Lt <oy +h3 Twsut) = ha Tascut) ()

T
i + BV T (ul, w —u) = BV, T (ul,w —ui)

where I, denotes the indicator function and V/'~'(-,-) denotes the partial derivative of V*~'(,-) with respect to

its first argument and Vy'(-,-) denotes the partial derivative of V*='(-,-) with respect to its second argument. For

expositional clarity, when a function’s arguments are evident, we suppress the notation and write for example, G*, V*,

or Vi' and Vj; for 4,j = 1,2. The second derivative of G*(u}) with respect to u} is B(V{{ " = V{5 )+ B(Vas " = Vo V).

By the induction assumption, V*~! is concave, submodular and its Hessian has diagonal dominance property, i.e.,

Vi<V <0 and Vit < VY < 0. Hence, G* is concave in u! and its first derivative with respect to u} is

~t t
decreasing. Let r‘(w") be defined such that, if for given w’, dGT(l”) > 0 for all u}, then r*(w') = co. Else, r(w') =
1
~t t
min{u! | CIGT(Z”) < 0}. Then, given w’, r*(w") is the optimal protection level for product type-1 and we can express
1

the optimal upgrade quantity, u**, through this protection level. Specifically, u* = (w! — rf(w®))*.
To show that r*(w") is increasing with respect to w’, consider w" and w' such that @' > w’. We would like to show
that r!(w") > rf(w'). Let g(uf,w") represent the first derivative given in (8) as a function of u} and w’. We have
t t
% =BVt = Vi), Since Viy ' > Vi by the induction assumption, we have g(u},w") — g(ul,w") > 0. The
At t

de ) < 0}. In order to show that r*(w") —w’
U1
is decreasing with respect to w’, we utilize a different variable transformation. Specifically, let ub = w + u’ denote

result then immediately follows from the definition of 7*(w") = min{u! |

the ending inventory for product type-2 after u’ units of upgrades. Hence, w’ — u} will denote the inventory level for
product type-1 after upgrades. We can then rewrite G*(ub) = —h1 (w' —ub) — ha(ub) + BV ™ (w' —ub, ub). Define ub*
as the optimal inventory position for product type-2 after upgrades. Note that since the total inventory after upgrades
equals total inventory prior to upgrades, we have u5* 4+ u{* = w’. The first and second derivatives of G*(u}) with
respect to u} are given by h{“I(quut) *hfl(u;>wt) — h;I(u§>0) +h;I(u§<o) — BV (W —ub, ub) + BV (wh — b, ub)
and BV — Vigh) 4+ B(VEy ! — Vi), respectively. Due to the inductional assumption, G*(ub) is concave with
respect to ub. Since the first derivative of G*(ub) is increasing with w’, we find u5* is increasing with w*. This in turn
directly implies w® — u}* is increasing in w’, or equivalently uf* —w’ is decreasing in w’. Note that when the first
derivative of G*(u5) < 0 for all u5, we have u5* = w} and thus u}* = w!, i.e., no upgrades are given and, as before, the
protection threshold can be stated as r’(w') = co. Otherwise, when the first derivative of G*(u%) >0, the protection
level rt(w") equals ui*. Therefore, u‘* —w’ decreasing in w’ implies r*(w') —w" is decreasing in w’. O

Proof of Theorem 2 (Optimal Replenishment Policy):

The outline for the proof of Theorem 2 is as follows. We first present a reformulation of the first-stage problem
with change of variables that facilitate the subsequent analysis. We then derive several structural properties on the
first-stage profit function. Finally, we complete the characterization of the optimal replenishment policy structure.
In order to simplify the analysis, we define a new set of variables (2%, 25) such that 2! =y} —d! for i = 1,2, where,
as a reminder to the reader, i} and d! denote the replenish-up-to level and target mean demand for product type-i,
respectively. An economic interpretation of 2! is that it represents the target safety-stock level for product type-i after

its current inventory position is augmented by the replenishment quantity and depleted by the expected demand for



Ceryan, Duenyas, Sahin: Dynamic Pricing and Replenishment with Customer Upgrades

3

the product. In addition, rather than the prices (p},p}), we work with the decision variable pair (di,d5) referring
to mean demands. This choice simplifies the exposition of our results. The prices of both products can then be
determined from the expected demands for each product. Using (2%, 25) and (d%,d5), as the new decision variables,

we rewrite the first-stage problem equivalently as follows:

Vit ah) =clal + chab + max JH (24, 25, d, db) 9)

i <zi4+di<ai+K;
where J'(z%, 25, dY, db) = diph(dt,ds) + dbph(di,d5) — (c1(zh + db) + ca(2h + db)) + Eeg,eg [(GH(2t — €i, 25 — €b)]. The
following lemma provides several structural properties on the second partials of J*(2%, 25, d%, d5) that will be utilized
to derive the optimal production and pricing policies. In the following analysis, we assume that J*(z}, 25, d%, d5) is

twice-continuously differentiable. Let J? refer to the second partials of J*(2%, 25, d}, d%) with respect to the variables

1,22

2% and 2§ and Jfll,dg to refer to the second partials of Jt(zf, P dé) with respect to the variables df and db.

LeEMMA 1. JY(2%,24,d%,db) is strictly concave and (a) J' (2%, 25,d4, d5) is submodular in (d%,d5) and possesses the
following strict diagonal dominance property: Jj, 4, < Ji, 4y <0 and J§, 4, < Ji, 4, <0; and (b) J*(25,25,di, d5)
is submodular in (2%,25) and possesses the following strict diagonal dominance property: Jﬁl,zl < JﬁLZQ <0 and

JL, . <Ji, ., <0.

Proof: We first note that J*(2%,25,d!,d}) is separable in (d},ds) and (z},25). For part (a), first note that the inverse

price-demand relationships corresponding to (1) and (2) are given by p1(d1,d2) = p(qr?;ﬂ;gq a) g‘z;f;; [(ql —q)d1 +

(g2 — g)dg] and po(dy,dy) = 22-0tplaa)  (a2-0) [((j— ql)dl + (7 — QQ)dz]. We denote the partial derivative of

(@—q) 3(q—q)
JU (24, 25, dL, db) with respect to df by Jd , and have Jd adf (dlpﬁ(dtl,dé) +diph(di,db) — cidl — céd’é) for i=1,2.

Written explicitly, we have

o _ P -9 +p@—a) 2(G-a) ¢
=g s g (@0 e 0] -
o Pe—gtpa-e) Ae—op 1 (10
(=7 Ikl ((RLAUEHCRT L B

2 [@—a)a—9) @—q1)(ez2—9)
D(@—q)(e2—9) (@—g2)(q2—9)

strictly concave and submodular in (df,d5), and possesses strict diagonal dominance property.

Further, the Hessian is given by — ST Z, ] Since ¢ > q1 > g2 > g, JH(E, 25, dbdb) is
For part (b), since c12% + c225 is linear in (2%, 24), it suffices to show that the properties hold for Eetl,eg [(GH(2E —éb, 25 —
€5)]. In order to show the strict concavity and diagonal dominance, consider a momentary partitioning of the function
G'(2} — €t 25 — €) such that G* (2} — €}, 25 —€b) = H' (2} — €}, 24 feé)Jrét(z’{ — e, 25 —€h) where H' (2} — €}, 25 — b)) :=

(ht+( 2 =TT (2 =) TR (25— b)) T HhL (2 é—eé)_) and ét(wf,wé) i=max,: G’ (wh, wh,ul) s.t. wh —ul >
0 where G’ (wh, wh) := H' (wh, w5, ul) + BV (ul, wi 4+ wh —uh) and H' (wh, wh, u}) := (h§+(w§—uﬁ))l<w§2u§>0)+
(R wh + B u) Tt sosaty + (B (@8 = D) oswtsuty + (RET(wh = u8)) Lugs ot —wt) + (= h5T (wh + wh —uf) —
h§7w5)1(0>w5>ui_w§) + (hgf (wi — uﬁ))[<0>ui_wi>w§) with Iy denoting the indicator function. In words, we are
partitioning the expected profit-to-go function E.: . [(G*(2} — €, 25 — €5)] into two components, where the first
component Eéfi’eé [H'(2% — €}, 25 — €4)] refers to the expected holding and shortage cost if no upgrades were given
and the second component E.¢ .o [Gt (2t — €, 25 — )] is the result of the maximization problem when the optimal
upgrade quantity is selected, and reflects the discounted profit-to-go function for the next period as well as the
adjustment to the holding and shortage costs due to upgrades. One can straightforwardly show that the Hessian of

E..

tet [H (2} — i, 25 — €})] is a diagonal matrix with elements —(hiT +h!7) f., (2!) for i = 1,2 and therefore is strictly
concave, submodular, and possesses the strict diagonal dominance property for positive unit holding and shortage

costs and continuously defined probability density functions fe, (-) and fe,(-) for the demand uncertainty terms €; and
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5. Next we show Egi <t [é’t(zf — €, 25 — €b)] is weakly concave, submodular and possesses a weak diagonal dominance
property. Consider the Lagrangian function G’*(w!, wh,u!) — pf (u} —w!) for the second-stage optimization problem
given in (4) where u} > 0 denotes the Lagrangian variable associated with constraint u} —w} < 0. For the case where
ut =0, the envelope theorem yields C;“? i = C_J'-tz = BV <0 for 4,5 = 1,2 where the inequality follows from the
inductional assumption. For the case where u} > 0, the envelope theorem results in Gt = G’ g ,BV.t.’l for i,j=1,2.
Based on the inductional assumption, we then have G, Gt <0 for ¢ # j and ¢ =1, 2. Hence, G (wt, wh) is concave,
submodular, and possesses the weak diagonal dominance property. As J* (2%, 25, d},d5) is an addition of three terms
one of which, Eeg,eg [H'(2t — €, 25 — €b)], is strictly concave and submodular in (2%, 24) with a Hessian possessing
strict diagonal dominance, the other, E ¢ . [GY(2% — ¢!, 24 — €b)], which is concave and submodular in (z!,25) with a
Hessian possessing weak diagonal dominance, and the last c12f + c225 being linear in (2%, 25), itself is strictly concave

and submodular in (2!, 24) with a Hessian possessing strict diagonal dominance. (J

To proceed with the characterization of the optimal policy, we first construct the first order conditions by introducing
Lagrange multipliers A}; > 0 for 4,j = {1,2} where A}; and A, are associated with constraints —z} — d} < —z} and
2t +d <zt 4 K, respectively (i.e., yf > x} and yf < 2!+ K; in the original formulation before the change of variables).
We note that these constraints form ‘box constraints’ and some may not be simultaneously active for positive capacity
parameters. We can exploit this special structure of constraints to represent the first-order optimality conditions in
simpler notation by defining A} := A{; — Al,. Note that A} uniquely determines A}; for j = 1,2 where (a) A} < 0 implies
Ay =0 and A, >0, (b) Al >0 implies A\y; >0 and A, =0; and (c) A} =0 implies \y; = A}y =

The first order optimality conditions for the first-stage problem can then be expressed as: J., (zl, 25 db db) + A =0,
and Jﬁi (24,25, d8,d5) + AL =0 for 4 = 1,2 where we again use the notation J;, Jﬁi to denote the first derivative of
JH(2h, 24, dY db) with respect to 2z} and df, respectively.

Using Lemma 1 and the first order conditions presented earlier, we can write the decision variables (2}, 24) and (d%, d5)

in terms of A} and A\5. The following lemma formally presents this result.

t
LEMMA 2. There e:vists implicit functions z{t and dif such that 2E =2\ AE) and df = dF (AL, L), Further, % >

0, 8)\, <0 with and 2 8)\, >0, mt <O with a)\f |C,M, | fori#j and i,57=1,2.

aw - > | aAf \,

Proof: The proof follows from the Implicit Function Theorem, the first order conditions and Lemma 1. We first present

the proof for the existence and monotonicity of z/*(A\:,A5). From the first order conditions, we have J§1 + A=

2N 2N IS 8)\ ot
and J§2 + A\, = 0. Hence, gil = _J;1x217 @1 = —J;LZQ, 8;‘ = J;2,217 and -=% = J; 25~ Therefore (azt) =
Tt Tt AR A
{ AR zl’zz]. Since J* is strictly concave in (z,25), this matrix is invertible and ((,»\t) =— { AL ’,’zl’zz] =
JZZsZI 227Z2t JZZsZI Z2,22
Jt J - . R .
jlt Jtz2’z2 F1E2 ], where J. > 0 denotes the determinant. Thus there exists implicit functions z/*(A\%, A5). The
z 22,21 22,22
properties outlined in Lemma 1 lead to 2 >\f "> 0, A‘ - < 0, and s> | 6,\f | fori#j and i,5=1,2.
The proof for df (A}, \5) follows similarly. From the first order condltlons, we have Jd1 + X =0 and Jd2 + 2=
ox at oL oL N Jdy d Jd d .
Hence, adf = Jdlvd17 aTlé = fJél’dQ, ath = *Jéz,dly and aTtg = fJé%dQ. Therefore (W) = [J 101 gt 1921 Since
- do,dy Jdg,ds
. . . J, J, e
Jt is strictly concave in (df,d5), this matrix is invertible and (f»\t) = {Jdl’dl Jdl’dQ] . Thus there exists implicit
dz,dy “da,d2

functions djf (A%, \5). Substituting in the terms for Jdi’d_ as given in the corresponding Hessian in the proof of Lemma
-1 4d—92
Jayar Jiy . ] s a—a
1, — | ¢0er Tgre? reduces to 5——— -
|:Jd2,d1 sz,dzr Hame) | -1 Z;—g
1,j = 1,2 directly follow as § > q1 > g2 > g.

. The results 2 At > 0, mf < 0, Wlth At | for ¢ # j and

>33
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LEMMA 3. g;‘% > gi% >0 fori#j and i,j=1,2. Further, (a) for all (z1,2%) such that A} #0 and A =0, we have
St , (b) for all (z}, %) such that X} #0 and \5 oot

Proof: The signs of A} and \; segment the state space into nine different regions depending on whether each variable

ox

t

is negative, zero, or positive. For the region where A! = A} =0, we have aAZ_ =0 for ¢,7 = 1,2 and the result holds.
J

Consider the region for which A > 0 and A, = 0, implying that the constraint x} — 2{**(\%,0) —d{**(\},0) <0 is active.

Specifically, in this region we’d like to show that A} is strictly increasing in 2} and independent of z%. Differentiating
*t t *1 1t
the active constraint with respect to x} gives 1 — % % - % % =0, from which we find Al =1/( ?;1, gili )>0
where the last inequality follows from Lemma 2. Similarly, differentiating the active COIlth‘all’lt with respect to xb
wt t *
az,\lg Z—ié — Z‘iﬂ g% =0. Through Lemma 2, we find aAl =0.
Next, consider the region where A\{ >0 and A5 < 0, which 1mphes that the constraints zf — 20" (AL, A5) — di* (A4, \h) <

0 and z'*t()\t )\t) d’*t()\t )\t) — 333 — K5 <0 are active. First, differentiating each of the active constraints with

gives —

axl _ [ 9=3t ad2 Azt 924t 92t 924t
ot ( axe T aag /Q where Q := axt oap  oap aaf ) T
9z1*t ddlyt 8zt adltt az’*f ady*t 02’*’ adyrt ady*t adlrt  adytt adbtt .
( AT 5L~ AL AT 8)\‘ aAt — WTAE AT oL W?)‘i . The terms in each of the brackets

in @ collectively can be shown to be positive through Lemma 2, hence @ > 0. Also by Lemma 2, the numerator is

axl aAQ _ 9z3t | ad3t axg . L
positive, thus > 0. Similarly, we find Y —+ Y /Q and =% > 0 by Lemma 2. Next, differentiating the
active constralnts with respect to zb ml = (ZZE %d/\lt ) /Q>0

t
and 8A2 = (%ilt + %d;t )/Q > 0 by Lemma 2. The properties in Lemma 2 then also 1mmed1ately lead t m g)‘; >0
2 1 1 IJ

for 175] and 7,7 =1,2.

The analysis for the remaining cases are very similar to the ones considered and are omitted for brevity. [J

To complete the proof of Theorem 2, we examine each of the nine state-space regions defined by the signs of A}

and )\E. First, consider the region corresponding to A\{ = A4 = 0. In this region, we have yi* = 2{**(0,0) + d;**(0,0)

and 33t = 2571(0,0) + d5(0,0). For future reference, we denote this base-stock level pair by (z5*,z3%), i.e., 25" :=
2171(0,0) 4+ di**(0,0) and 23° := 25*(0,0) + d5*(0,0). Hence, anywhere in this region, the optimal replenishment policy

brings the inventory level to the base-stock levels given by i = 25" and the base-stock levels for each product is

independent of the initial inventory level of the other product.

Next, consider the region for which A} > 0 and A5 = 0. Then, from complementary slackness, there is no replenishment

rxt

for item 1. The optimal base-stock level for item 2 is given by the expression y3° = 25" (A\},0) + d5*()\},0). We are

interested in how this optimal base-stock level changes with the initial inventory level of item 1 which is found by

dyst _ (023T(A\1,0) +ad/2*f(,\§,o) aNY 925t (\Y,0) nd adL (AI,O)
ozt XY XY ozt AT AT

By Lemma 2, we have <0 a < 0. By Lemma 3, in this

. 28 dy3?
region we have Bat > 0. Thus Bt <0.
Now, we consider the region for which A} < 0 and A% =0. From complementary slackness, the available capacity for

product type-1 is used in its entirety to replenish this item. The optimal base-stock level for item 2 is again given by

the expression 33" = 25" (A}, 0) 4 d5™ (A}, 0). For the monotonicity of this base-stock level with respect to the initial
*1 1%t t 1%t t t Ixt t
inventory of product type-1, we Write a?t = (822 62‘1’0) + 242 65\21’0)) g%. By Lemma 2, we have %?’O) <0 and

adyt (\t,0)

N t <0, we also find y3* > 25",
1

< 0. By Lemma 3, > 0. Hence7

In the region corresponding to )\tl =0 and A, > 0, complementary slackness yields no replenishment for item 2. The

1%t

optimal base-stock level for product type-1 is given by the expression yi* = 21**(0, \5) + di**(0,\%). In terms of the

change of this base-stock level with respect to an increase in the initial inventory level of product type-2, we ﬁnd

ayit _ Bzi*t(o,kg)_’_@d’l*t(O,Ag) a,\2 9zt (0,Ah) ady*t(0,Ah)
ozl 23 2V e a)\t E2Y3

. By Lemma 2, we have <0 and < 0. By Lemma 3 > 0,

7at

8y1

hence we find < 0. Therefore, in this region we also have yi* < z$*. In the region where \{ >0 and A > 0, no

replenishment takes place for either item. The analysis for the remaining four regions are similar. O
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Proof of Theorem 3 (Optimal Pricing Policy):
Solving for d} and db in the first order conditions corresponding to the demand selection decisions, J;l + A =0and
Jle + 5 =0, where Jél and J§2 are as given in (10), and substituting the inverse demand-price relationships derived

in the proof of Lemma 1, we get:

2(g—q) 2 2 1)
ot _plaz—a) +p(7—q2) n s A}
4 _ 2_22
2(q— g) 2 2

D — q— t
First, consider the region for which A} = A5 = 0. The expressions in (11) become p! = % + %17 and
o - 4 q
ph = % + 22, where both prices are independent of the starting inventory levels within the region. We

5 — 5— t 5 _ & t
refer to these prices as the “list prices” and let p§' = % + % and p3' = W + %2 denote the

list price for product 1 and product 2, respectively.

t
Next, consider the region defined by X! > 0 and A5 = 0. We have p! =p{* — % and pb =p3°. Thus, pi < pl®. Further,
t t t t
as % = —%% <0, and % = —%% =0 (where the inequality and the equality follow from Lemma 3), p! is
1 1 2 2

decreasing with z! and is independent of x5. Since ph = p3?, we also have p} independent of x} and z5. The case for

which A <0 and A5 =0 is very similar and results in p} >p??, and p5 = p3* with the same monotonicity properties

as in the previous case.

0t

When A} =0 and A, > 0, we similarly have p} = p{ 9t

t
and pb=p3t — %2 Since A5 > 0, we have p5 > p3¢. We also find
ph independent of z} and x5, while p} independent of 2% and decreasing in x%. Again, the case with A\! =0 and A5 <0
is very similar and leads to p} = p{? and p5 < p3* with the same monotonicity properties p} independent of z¢ and

x4, and pb independent of =¥ and decreasing in 5.

t t
For A >0 and A\, >0, we have p! =p?*t — %1 and pb=pSt — ’\2—2 As both A\{ >0 and A\ > 0, this leads to p} < p{*
t t
and pb < pd*. Regarding price monotonicities, recall from Lemma 3 that gii > gii’ >0 for 4,7 =1,2 and 7 # j. Hence,
i i

t
gzi <0 for 4, ={1,2}, i.e., both p! and p} are decreasing in =} and x5. These monotonicity results also
J

similarly carry to all other cases where A #0 and A, #0. O

we find that

Preservation of the Structural Properties of the Value Function:
To complete the analysis of the optimal policy characterization, lastly we show that the value function V*(x%,z5)
retains the properties of V'=!(zi™% z57) that were assumed in the induction step as outlined in the Induction

Assumption.

LEMMA 4 (Completing the Induction). V(z},x}) is jointly concave, submodular, and its Hessian possesses
weak diagonal dominance property: Vi (x4, x5) < Vi (xl,25) <0 and Vi (o}, z5) < Vi (24, 24) <0.

oV*(z,xh)
t
ox}

Proof: The proof follows from Lemma 3. By (9) and the envelope theorem, we have =c¢i— M fori=1,2.

H toot oAt . 2N to ot toot oty -

ence, Vi;(z1,23) = — 52+ for 4,5 =1,2. By Lemma 3, 37+ > 0. Hence, Vj;(21,23) <0 and therefore V'(21,23) is
J J t +

submodular. For diagonal dominance, Vii(zf,z5) — Vi5 (21, 25) = —gii + g;z’ <0, where the inequality follows from
i j

Lemma 3. V*(z!,2}) being concave follows immediately from ij (x%,25) <0 and Vi(z},25) — Vi’; (x},25) <0. 0

Proof of Theorem 4 (Impact of Upgrades on Pricing and Replenishment):

As we discuss in Section 5.1, our preceding analysis to characterize the structure of the optimal policy can straight-
forwardly be extended to incorporate an upgrade limit @' in the second-stage upgrade problem. For brevity, we omit
the replication of the derivation but would like to highlight that the optimal upgrade policy can now be stated as
u™* = min((w} —r*(w"))*,@"), while the structure of the optimal pricing and replenishment policies continue to hold

as stated in Theorems 2 and 3. The first order conditions outlined in the proof of Theorem 2 for the modified problem
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where we incorporate an upgrade limit @’ can be written explicitly by substituting in the structure of the optimal

second-stage upgrade decision as stated below:

1o}
—cf + Bt EQ[QGt(zf —€l, b —eb)]+ A =0
1
0
—ch+E Eé[th(zf —€l, b —eB)] A =0
2
_ _ _ 12)
plar—a)+p(@—q) 2(G- (
CED) - 5((2_(2)) [(ql —q)d1 + (g2 fg)dz] —ci+ A1 =0
Ple—a+p(@—w) 20e-97, _
) T 5= [(q—ql)d1+(q—Q2)d2}—C§+)\5=0

where G*(24 — €t , 25 —eb) =

[—hi(z1 —€1) = ha(zs —€5) + BV 7 (21 — €1, 20 — )] - Lot et cpt (st 42—t b))
Hha(r' (21 + 25 — €l — b)) —ha(z1 +22 — €1 — €3 — (21 + 25 — €1 —€2))
+ﬂVt71(rt(z§ +zh—el —eh), 2 2 —eh —eh—rt (2] + 25 — €l — b)) [(zi_ei_,at<rt(z{+zé_€i_€é)<zi_€i)
Fl-mzi—e—a') —ha(z—ex+ )+ BV (2l —er — ', 2 — e+ U] Lo (ot at et eyt — et _ary
and I is the indicator function.

Consider first the case for which A} = \5 = 0. Differentiating the first two expressions in (12) with respect to @', we

get
E V) (2 —1) + v e (25 +1)) 401 -0
et el 11 dut 12 5 dut (rt(-)<zi—el —at) (rt()>zf—ef—at) | =Y

E vl 0: 1)yt %25 1 1)) .1 0-1 -0
1l 21 ( ) Bﬂt + Vo (:) at T : (T‘t(~)<zifeifﬂt)+ “Lrt()>at—el—at)| = Y-

Solving for gu, and 8u, and using the concavity, submodularity and diagonal dominance properties of V*~1, we find

) )
a; >0 andﬁgo.

2(q—q1)(q1—~q) adl

Next, we differentiate the last two expressions in (12) with respect to @' and have — gy Bt —
2(g— —q) 8d} —9)(g—q1) ad}  2(q2—q)(d—q2) 9d} odj ads . 9dl _ 9d}
%};q) Z=%=0and — ng(g)(; a ok — (q25(§ <Z) 92) 5=+ =0. Solving for =+ and 3% results in 52+ = 52# =0.
Consequently, % = 222 =0. Since y! = 2! + d}, we also have agl >0 and 3?!2 <O0.

For the case where AY > 0 and A5 = 0, we have the active constraint y! = z%. Differentiating the expres-

. . . _ . adt 9zt . . ad}
sions in (12) and 2t + di = 2! with respect to @' and solving for 3¢ and 8;3 for i = 1,2 results in -} =

( 6(&)(_‘12) ) (Vltl V2f2 7‘71t2 VQfl) g 1
d—q1)(a1—a2 t =10 ). .
- Z(q)(_qqz)q (i V)2V, < 0 where Vj; stands for E.; 1 [Vw (-y4) Tt (y<at —et —ay) +0 I(Tt(A)>z{_Ei_ﬂ)].
—dq1 1—492
. . g— . . . - ad}
e inequali ollows due to —+1—12 , an e inductional assumption. Similarly, we find 7% =
Th lity foll due to ‘fzg‘g(qqf’qz) > 0, and the inductional t Similarly find 323
5 ot Tt ot ot 5(ad—aq2) Tt Tt vt ot \_o(Tt 1t
- (qlf)qz)(v11V22 V12V21) >0 Bzit' _ > 0, and 322 _ (5*41)((;1(1*@))(‘/11‘/22 V12V21) 2(V22 V21) > 0. Con-
a— ot Ut ot vt 5 » B i— Ut Tt b ot .
(§7q1q)(qq12*tz2) (Vltl Vi = Vi V2{1)72V2t2 “ (é*q1q)(qq12*qg) (Vlfl V2t27v1{2v2tl)72v2f2

t t
sequently, we get 3 ayl =0 and % < 0. Substituting the corresponding demand parameter expressions, we also find
8p1 >0 and p2 —0
Next, con31der the case for which A\{ >0 and A} > 0, where we have two active constraints, y! =z} and y% = 5.

t t
Differentiating the expressions in (12) and z} + d} =z}, 24 + db = x5 with respect to @', and solving for ggi, g;@,

apt ap} . ..
224 >0 and 522 < 0. The analysis for the remaining cases are

similar and hence omitted for brevity. [

Proof of Theorem 5 (Sensitivity to Quality Differential):

5 _ q— t 1 _ g— t
Recall from Theorem 3 that in this region we have pdt = % + %1 and p3¢ = % + %2 Thus
5 ot
regarding the monotonicity of the list prices with respect to ¢, we find 65’;1 = 2((1’(7};) > 0 and 85;1 =0, i.e. an increase

in the quality level of the higher quality product results in an increase in the list price of the higher quality product

but does not impact the optimal list price charged for the lower quality product. Similarly, with respect to an increase

in the quality level of the lower quality product, we find apl - =0 and 88”;1 = 2(57:% > 0.
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Regarding the monotonicities of the base-stock levels, we first need to consider the monotonicities of the mean demand
selections, di* and d3, as an intermediate step. Solving for d and db in the first order conditions corresponding to the

demand selection decisions, Jj, + A7 =0 and J§, + A5 =0, where J, and Jj, are as given in (10) and recalling that

. . . —ct +c p— ct S ct—c P ch

in this region, we have A} =0 and \; =0, we get d}’ ( q11—q22 +3 t 1 ) and d3’ 2(qi—q§ + q2_2 ). We first consider
the monotonicities with respect to ¢1. Differentiating, we find W = %(ﬁ + (qp ;11)2) > 0 where the inequality
Bdgt _ _é( Cl c2
dq1 (91 —92)2

follows since ¢} > cb and 5> ¢t as p> p! > ¢ Similarly, we find ) < 0. Thus, an increase in the
quality level of the higher quality product leads the firm to select a higher mean demand value for the higher quality

product and a lower mean demand value for the lower quality product. Now, considering the first order conditions

with respect to z¢ and 2%, ie., —c} +Eet, 62[a G (2} — 6172:2 )] =0 and —c} +Ee, 62[ 23 G'(z} — €,z —eb)] =0
*1 *t
with respect to ¢1, and solving for aqul %z , we get 8q1 = %221 = 0. Thus, the expected number of customers

subsequently receiving an upgrade does not change with a change in only the current-period value of ¢1. Lastly, since

yit = 23t + dit and y3t = 23t + 3 by definition, we find ‘2;21 = adl >0 and 8y2 = 8d2 < 0. Lastly, we consider
the monotonicities with respect to ¢5. Through similar steps, we ﬁnd that 6y1 8d1 < 0 and 6y2 = %‘222 < 0 when

ES((H g) (ci—c3)+c5. O

a1 —az
Proof of Theorem 6 (Sensitivity to Cost Parameters):

The proof is similar to the proof of Theorem 5. Recall that our focus is limited to the region corresponding to Af =

. C . L . .o 9dit ..\ 0d3t
A5 = 0. Differentiating the first order conditions with respect to i, we obtain (i) 51 = —%(qliqz + (jqu ), (1) 54 =
1 1
s 1 N A E[GS,] N A E[GS,] 9yt adyt | 92t
2 (Gr=g)» (@) def ~ BIGT,IBIGE,] - BIG],IRIGE, 7+ and (i) o = T BGIIBICL, —BIGI,BICE ] LRUS: B = Hor 5 =

E[G},]
42]—E[GL,]EIGE,]

< 0 (recall that E[G%,] < 0, and E[G4,]E[GY,] — E[G}5]E[G%:] > 0) , hence

q1—4a2 a—q1

st =) +E B[GT,TRIG

dy3t _ adit | 923t E[G}
the base-stock level for product type-1 decreases, and y2 = 8623 3C2'i = g(fhi‘IQ) - E[Gil]E[Géz[]—%gciz]E[Gél] >0
i.e., the base-stock level for product type-2 increases. Further, differentiating the expressions for the list prices, we
*t st
obtain 22 L =1 and Op 2- =0, thus in this region, the list price of product type-1 increases while the list price for
dc 2 dc
1 1
. .. . 9z;t 9z3t E[GL,]—E[GY,]
product type-2 remains same. In addition, by (i%) and (iv), we have acli + 6025 = E[G’il]E[Gm] E[GQl]E[G <0,
which indicates (by Theorem 1) that the expected protection level decreases. Further, by (w) t > 0, thus 621 <
t
% + %, i.e., the decrease in the expected protection level is accompanied by an even greater decrease in the
1 1

expected intermediate inventory level of product type-1. Therefore, again by Theorem 1, the expected number of

subsequent upgrades decreases. The analysis for the sensitivity with respect to cb is similar.

0t

For part (b), differentiating the list price expressions with respect to the underlying cost parameter ¢’ gives agclt =

2 >0 and 6p2

= % > 0, thus the list price for both products increase. Note that since v > 1, the increase in the

list price for product type-1 is larger than that for product type-2. Next, differentiation of the first order conditions

*t *t
with respect to the underlying cost parameter c' leads to: (i) a;clt = —fy%(qliqz + q_lql) + g(ﬁ), (21) %det =
s 1 s 1 1 NN A VE[GS,]-E[GY,] N —YE[G5]+E[GY]

73 (5a) ~3Gs T 5) ) Bor = sermiey, —wol, een 04 (W) 5 = e mier, sl kg, Ve have
®t * *t ¥
a;clt = aadclt + aazc‘t 0 (as both aadTlt < 0 and aalet < 0), thus the base-stock level for product type-1 decreases.

t

Y2 d

t
The sign of W can be either positive or negative depending on the magnitude of . Explicitly, % = 75(‘11i(12) —
s
G taa)

1 t t t t
*VE[GmH’E[Gtﬁ] . 5(ﬁ+q2 q)(E[GH]E[Gzz]_E[G12]E[G21])_2E[G11]
e " mg) T ECLIRGCE]- E[Gm]E[GmJ' Introduce and let 7. := (52 ) (BIGY,IBIGS, | E[GY,]BIGE, ) —2B[GE,

Then, af <0 if v <AL,

t
gi} + gz? < 0, thus the expected protection level decreases. Introduce and let 5 := G-“ Then for v > ~%, we have

if v > L. Regarding the upgrade pohcy, from (7i7) and (iv), we find that

. < Bc% + 822 <0, i.e., the decrease in the expected protection level is accompanied by an even greater decrease in
the expected intermediate inventory level of product type-1, and thus the expected number of subsequent upgrades

decreases by Theorem 1. [J
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Perfectly Positively Correlated Independent Perfectly Negatively Correlated

Perfectly Negatively Correlated

Figure 3  Price of Product 1 (top) and Price of Product 2 (bottom) in period 5 across perfectly positively

correlated demand (left), independent demand (center), and perfectly negatively correlated demand
(right)

Supplement to Numerical Study (Section 6):

Section 6.2 Impact of Demand Correlation: As described in the main text, our numerical studies indicate that the
optimal policy structure in the presence of demand correlation is similar to the optimal policy structure shown for
the independent demand setting. As an example, Figure 3 displays the similarity in the pricing policy for the higher
and lower quality products in period 5 for different correlations, namely, perfectly positively correlated demand,
independent demand, and perfectly positively correlated demand.

Section 6.3 A Heuristic Policy: We provide below the explicit representation of the single-period reduced problem
in which the firm with no capacity restrictions and no initial inventory determines optimal base-stock levels for the
two products.g] and g5, with expected demands df and d5 taking into account possible upgrades. The single-period
expected cost function C(y1,y2) consists of replenishment costs ¢; per unit of product type-i, holding and shortage
costs b and h; after demand realization and any subsequent upgrades, and a discounted cost S¢; for any negative
inventory (imitating the replacement cost to return to the original zero inventory position) or a reward —f¢; for any

remaining positive inventory for product type-i, i = {1,2}:

min  C(y1,y2) (13)

Y1,Y2

where
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C(y1,y2) = c1y1 +cay2 +// — Ber)(y1—ds —e1)+(h3 — 502)(92—d;—62))f1 (e1) f2(e2) dea dey
(hi +Bc1)d—y1+e1)+(hy — 502)(y2—d;—€2))f1 (e1) f2(e2) dea der

hi + Bc1)(ds —y1+e)+(hy +502)(d§—y2+62))f1(61)f2(62)d62 dey

+// (hy + Be2)(di+d3—y1 —y2+ 1+ EZ))fl(El)fQ(EQ)dEQdél

with S1 = {(e1,€2) 11 <y1 —df and e2 <y2 —ds}, Sa={(e1,€2) : 1 >y1 —df and e2 <ys —ds}, S3={(e1,€2) : €1 >
—df and €2 >y2 —d3}, Sa={(e1,e2):e1 <y1—df and y2 —d5 <ea <y1+y2 —df —d5 —e1}, and S5 = {(e1,€2) :
€1 <y1—dj and e2 >y1 +y2—di —ds —e1}.
In words, S1, S2, and S3 correspond to, respectively, demand uncertainty realizations that result in excess inventory
in both products, a shortage of the higher quality product and excess in the lower quality product, and shortages
in both types of products. Collectively, these three areas do not lead to upgrades. The next two areas, Ss and Ss,
correspond to uncertainty realizations where there is excess in the higher quality product and a shortage in the lower
quality product, where in the former all demand for the lower quality product is upgraded, and in the latter, the

upgrade quantity is limited by the availability of the higher quality product.
It can be easily verified that C(y1,y2) is jointly convex in g1 and y2 when h] > hy, ¢1 > ca, and h +hy > Blc1 —c2),
and the optimal base-stock levels for this reduced problem, denoted by §7 and ¢35, simultaneously satisfy the following

(as also presented in (5)):
= (=Ber+ (hf s ~Bler—ca)) [ (1= B +5-d5~d5-)) fuler)des

hi +hy

97 —dy

Fi(g1—dy) =

by —(1=B)es + (k7 +h ~8ler—c) [

(Fa(g5+95—d3 ~d3—er) ~ Fa(i3— d3) ) (1) dey
Py (g5 ~d3) =

hi +hy

(14)

Proof of Theorem 7 (Optimal Upgrade Fee):
As in the proof of the earlier main results, we start with the inductional assumption that the value function in period
t—1, Vi (2l 1,x§71) is jointly concave, submodular, and its Hessian possesses the diagonally dominance property.
The preservation of these properties will however require a new additional condition that we will establish within the
subsequent proof of Theorem 8.
The second stage problem given by (7) is

G'(w,wh, Ds) = max G'(wY,wh, Dy, u") (15)

O<u <D‘

where G (wf,wh, Db, u') = Ber [ (pu — 25 (B —p,)) (u' +¢') = (wf — ' =€) = ha(w ' +¢) + V' (uh — !
Ctwh +ul + (t)] Differentiating G*(w!, w4, D§,u") with respect to u' yields:

aG(- _ 2(pu_pu) - - -

Dj
—h3 Ty 50) + ha g <—pyy + (hE + b )P (—ws —u') = b ) [ pg <t <o) (16)
—BE+ [Vlt_l(wi —ut = wh Fut + ) VT (wh =t = ¢ wh +ut Cz)]
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where F(-) is the cumulative distribution function for ¢* and and Vjtf1 (-,-) denotes the partial derivative of V71(-, ")
with respect to its j* argument. (Note: The assumption that f(-) has zero density at the boundaries —u‘ and D — u?
is utilized in the derivation of the above expression, and together with the vanishing variance at u’ =0 or u' = D},
also guarantees continuity of the objective function at the boundaries.) As before, for expositional clarity, when a
function’s arguments are evident, we suppress the notation and write for example, G*, V*, or Vi and Vi’;- fori,j=1,2.

We further have:

o°G" 2(pu—p,) + - t_ ot + - t .t +
ouw? - Db (h +hy ) f(wi = u ) ocuwt <pg) = (ha +hy ) f(—wz —w') = ha I pt cwt <o) (17)

+BEt [Vltfl - V1t2_1 - 2t1_1 + V2t2_1] <0

where the strict inequality follows as the first three terms are strictly negative and the remaining term is nonpositive
due to the inductional assumptions of submodularity and diagonal dominance for thl(xi_l,wé_l). Thus, G* is
strictly concave in u’. Let pf >0 and pb > 0 be the Lagrangian variables associated with the constraints u > 0 and
u® < D§, respectively. Note that since we assume D5 > 0, p! and pb cannot be simultaneously nonzero. Thus we need
to consider three cases.

~t
gﬁt = 0. To show how u'*

First, consider the case pi* =0 and pb* = 0. Then, the optimal u** is the solution to

changes with w!, we differentiate the first order condition with respect to w} and solve for %ﬁ: . We find:
1

+ - t tx t—1 t—1
ut* —(hi{ +hy ) f(wl—u )I(0<w§<Dé)+6E§t [V11 —Via ]
Bwi - 72(1311*3”)

2
. . . . . Tk
the numerator and denominator are negative due to the inductional assumptions, we have 881;,5 > 0. Therefore, the
1

Bpf‘* _ (ﬁu*gu) ut* . .
owl = DL owl < 0. Thus, the optimal

. As both

+ .- T - t—1_t—1 b1 t—1
—(h] +h] )f(wf*ut*)1(0<w§<pé)*(h2 +hy )f(*wéfut*)l(fpg<wé<o)+BE<t [Vll Vi Vo Vo, ]

optimal target upgrade quantity u'* is increasing in w?. Further, we have

upgrade fee pt* is decreasing in w’. A similar analysis results in:

+ — t t t—1 t—1
outs (hf +hy ) F(—wh =)L _pr ot <o) +BEH [vig ' -vis ]
Bwt T 2(pu—>r,,) + _ + — « t—1 t—1 t—1 t—1

2 _ o u —(h1 +h] )f(wi_“t*)l(0<wi<D§)_(h2 +hy )f(—wé—ut )I(7D3<w£<0)+’8ECt [Vll —Vip =V T+ Vo, ]

the inequali%y follows as the numerator is strictly positive and the denominator is strictly neg-

< 0 where

. . . . aptr (Pu—p,) ut*
ative due to the induction assumptions. Further, we have aijlﬁ = f%‘?ﬁ}t > 0. Hence, the
2 2 2
optimal upgrade fee pl* is increasing in wj. Through a similar analysis, we also find gth =
2

2(pu—p, )u'*/(D})?

< 0, and conse-

2(Pu—p,) — _ _ _ _ _
_ P;éﬁuff(thrhl )f(wi7ut*)1<0<w§<Dé)—(h;+h2 )f(fwéfut*)1<7Dé<w5<0)+ﬁ}3<t [Vfl L_yt=l_yp—lyyts 1]
opt* . . .
quently that aZZ)ut > 0. Thus, the upgrade fee is increasing with the demand pool D5.
2

Note that when the firms decides to upgrade u'* customers, it is in effect, also selecting a target protection level

w} —u'* on the higher level product. We also provide several monotonicty results on this protection level. Following

the above analysis, one can also straightforwardly establish that (a) 9w’ -1 and (b) gu't _ 9wl -1 Through (a),

[3 3 7
owj owj Qwy
dut*

we immediately find that the protection level w! — u'* is increasing in w?. Through the previous result St
2

<0,
we see that the protection level wi —u'* is also increasing in w$, and through (b) we find that the increase in the
protection level with respect to w! is stronger than the increase in the protection level with respect to ws. Thus, the
protection level is a function of w} and w} only through their sum, but is a function of w! and w individually.

Finally, consider the case where pi* > 0 and p* = 0. This indicates that the constraint u' > 0 is active and we

(uf* —uf*)

immediately have pi"(u{*) = pu — “A57= (Pu — p,) = Pu. Similarly, the case for which 1t =0 and pb* > 0 implies

u® = D} and leads to p& (ul*) = py — g—z(ﬁu —p )=p.. O

—u

Supplement to Pricing and Replenishment with Upgrade Fees: As a supplement to the manuscript, the
below results summarize our findings regarding the optimal replenishment and pricing decisions when the firm selects

and charges an upgrade fee.
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Figure 4 Optimal pricing policy structure for the higher quality product (left) and the lower quality product
(right) when the firm sets upgrade fees

THEOREM 8. (a) The optimal replenishment for both products follow the partially decoupled state-dependent base-

8 with 23 = yit(z3") and 23" = 31 (23") as described in Theorem 2 with all

stock policy characterized by yft(gcJ

momnotonicity results preserved.

(b) Let p}t and p3t denote list prices in period t for products type-1 and type-2, respectively. The optimal price for
the higher quality product type-1 follows the structure of the pricing policy described in Theorem 3.

For the lower quality product type-2, it is optimal to apply its list price p3' if yit(zb) — Kt <zt < yit(zh) and
yat(xl) — K& <zb <yit(xl). A price discount is given if 2§ > yit(xh) — Ki and x5 > y3'(x}), and a price surcharge is
given if } <yit(xh) and xb <3t (xh) — K5 When y3' (2}) — K& < b <3t (x}), either the list price or a price discount
may be optimal if b > yit(xh), and either the list price or a price surcharge may be optimal if z} < yi'(zh) — K1.
In the two remaining regions corresponding to either x% < yi'(xh) — K1 and zb > y3'(2}), or 2} > yi*(2h) and 2} <
y3'(x}) — Ka, a price discount or a price surcharge may be optimal for product type-2.

Furthermore, the price of either product is decreasing with respect to the inventory level of either product.

Proof of Theorem 8 (Pricing and Replenishment with Upgrade Fees):
As the proof methodology is similar to the proofs of Theorem 2 and Theorem 3, for brevity, we only highlight the
main arguments here and refer to earlier results where applicable. We start by introducing several properties of the

second stage profit-to-go function, G*.

LEMMA 5. The second-partials of G*(w}, w5, D3) satisfy the following: (i) G}y (w},w, D§) < Gia(w},ws, D§) <0,

Proof: For brevity, we only present the proof for property (ii7). The properties (7) and (i¢) are derived in a similar
manner and are analogous to their earlier versions established in Lemma 1. Consider the Lagrangian for the second-
stage problem, G*(wi, w5, D5, u) + pb(u') — pb(ut — DY), where, as before, pui >0 and 5 > 0 are the Lagrangian

variables associated with the constraints ' > 0 and u’ < D%, respectively. We first consider the case corresponding to

2(Poy — ut* * * . .
p1t* =0 and pt* = 0. Through the envelope theorem, we have G53 = @(Dif%‘; (g“Dt,, - %) < 0, where the inequality
2 2 2
gtht < 0 established in the proof of Theorem 7. Next, consider the case where ui* >0 and ub* =0
2
corresponding to u™ =0 due to the active constraint. Through the envelope theorem, we have G5 = 0. Similarly,

follows from
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the case pi* =0 and pb* >0 corresponding to u'™ = D} leads to G4 = (V! — Vit = Vit 4+ V1) <0 due to the

inductional assumption.

We make the same variable transformation introduced in the proof of Theorem 2 and rewrite the first-stage problem

equivalently as follows:

Vi ah) =clal ebabt max Sl d)
Zir @
zfﬁzl«kdiﬁrﬁ#»}(l
where Jt(zivzévdthd%) = dipi(dtlvdg) +d5p%(dt17d5) - (C1(Z{ + dtl) +62(Z£ +d%)) + Eet ot [(Gt(zi - 6%725 - 657d§ + 65)]

The properties we establish for G*(w!, w4, D4) in Lemma 5 suffice to preserve t}lle 2p]rope]rties of Ji(zt, 25, d4,db)
introduced in Lemma 1. (Note that J'(z!,25,d%,d5) is now separable in (df,d5) and (z¢,25,d5) and similar argu-
ments as those presented in the proof of Lemma 1 verify its strict concavity.) For example, we now have Jl§2,d1 =
—% <0, and J§, 4, = —W + Ect ¢ [Gss], which yields iy ay — Jipay = —W +
Eeiyéé [G33] < 0 as the first term is strictly negative and G33 < 0. Hence Lemma 2, Lemma 3, and the remaining argu-
ments in the proof of Theorem 2 also follow, resulting in the optimality of the partially decoupled state-dependent
base-stock policy.

The analysis of the optimal pricing decisions are similar to the proof of Theorem 3. We first note that as Jéz =
plaz _%;-‘_—S)(lj_%) - 25(((1;__(1%) [(J—ql)dl +(g— QQ)d2:| —ch +Ect ot [Gs ()] now includes the term E¢ ¢ [G3(+)], the derivation
of the list prices through solving Jél =0 and Jfb =0 no longer leads to a closed form solution of the problem

parameters. As the optimal pricing policy for the higher quality product otherwise follows an identical structure to
the one we derived for the original problem, for brevity, we limit our attention to only the pricing policy for the lower
quality product and to the regions where its structure deviates from the optimal policy for the original problem.
Specifically, consider the region where A\{* >0 and A\{* =0. Through similar steps as in the proof of Theorem 2, we

aph* (92—9)(@—q1) Lt 0t ) opt* _ ophr ot

ﬁ = (5(67@(‘131@1 J§2,d27(J§1,d2>2))E€§’65 [G33] <0. Thus, p5* < py°. Further, we also have 6125 = Bﬁ aTti <0
I3 tx t

861;% = a;ft % =0 by Lemma 3, establishing the monotonicity of p5* in this region. For the region with A* <0
2 1 2

and A}* > 0, a similar analysis shows that p5* may be greater than or smaller than p3*, and that p4* is decreasing

with z¢ and 5. O
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