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Abstract 
 

Genome-wide association studies, which examine millions of genetic variants in thousands of 

individuals, have identified many complex trait associated loci. As sample sizes increase, 

particularly through meta-analysis, the number of disease associated loci has increased rapidly. 

The objective of this dissertation is to demonstrate the advantages of combining data across 

studies using summary statistics and to demonstrate methods that use publicly available 

information, such as functional annotation of the genome, to gain further insight into the genetics 

of human disease. 

In the first project, we analyze data from 188,578 individuals using genome-wide and custom 

genotyping arrays to identify new loci and refine known loci for lipid traits low-density 

lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and 

total cholesterol.  We identify and annotate 157 loci associated with lipid levels at P < 5x10
-8

, 

including 62 loci not previously associated with lipid levels in humans. Using dense genotyping 

in individuals of European, East Asian, South Asian, and African ancestry, we narrow 

association signals in 12 loci. We find that loci associated with blood lipids are often associated 

with cardiovascular and metabolic traits including coronary artery disease, type 2 diabetes, blood 

pressure, waist-hip ratio, and body mass index. Our results illustrate the value of genetic data 

from individuals of diverse ancestries and provide insights into biological mechanisms regulating 

blood lipids to guide future genetic, biological, and therapeutic research. 

In the second project, we propose that causal variants for a trait may share certain genomic 

features. Importantly, we show that when these genomic features can be identified, we can use 



 xv

them to help pinpoint likely causal variants among many trait associated variants. We develop a 

model that identifies genomic features enriched among the associated loci and uses this 

information to prioritize likely functional variants in each locus leading to narrower sets of 

variants for follow-up. Our models work for both quantitative and case-control data and can be 

used with summary statistics, making it convenient to incorporate in ongoing meta-analysis of 

genome-wide association studies that can include 100,000s of individuals. 

In the third project, we consider meta-analysis where studies may have overlapping sets of 

participants. In such scenarios, meta-analysis methods that do not account for overlap will 

perform poorly and have inflated Type I error. We propose a method to identify participant 

overlap between GWAS using only summary statistics, estimate the degree of overlap, and 

correctly meta-analyze studies taking into account the overlap. Our method builds upon and 

extends previous methods that allow meta-analysis of GWAS studies with known overlap 

proportions.  We illustrate our method using simulations and artificially created overlapping 

samples using real GWAS data. 
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Chapter 1: Introduction 
 

Conducting genome-wide association studies (GWAS) is an established way to identify 

genetic factors contributing to human traits and diseases. Typically, millions of single nucleotide 

polymorphisms (SNPs) are genotyped or imputed in large cohorts, and then each SNP is tested 

for association with the trait of interest (McCarthy et al. 2008; Hindorff et al. 2009). 

Developments in high throughput genotyping technology have led to decreases in the cost of 

conducting a GWAS, enabling increased sample sizes and the study of increasingly diverse 

traits. In recent years, GWAS have reproducibly identified thousands of variants associated with 

phenotypes as diverse as psychiatric diseases (Cross-Disorder Group of the Psychiatric 

Genomics Consortium 2013; Neale et al. 2010; Duncan et al. 2017), type 2 diabetes (Morris et al. 

2012), and food taste preferences (Pirastu et al. 2016), leading to discoveries about genes and 

pathways involved in common diseases and complex traits, providing new insights about their 

biology and disease etiology (Visscher et al. 2012). 

Contrary to early expectations, however, the variants identified by GWAS typically 

explain only a modest portion of risk for most complex diseases, as the genetic effects due to 

common alleles are typically quite small (Ioannidis et al 2006; Manolio et al 2009). Larger 

samples facilitate detection of small effect variants and have enabled gradual increases in the 

proportion of risk that can be explained (Moonesinghe et al. 2008; Burton et al. 2009; Chapman 

et al. 2011). A common strategy to enable these large sample sizes is to perform a meta-analysis 

– the statistical synthesis of information from multiple independent studies (Evangelou and 
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Ioannidis 2013). Currently, most meta-analyses are conducted using summary statistics of the 

association results on a per variant basis (see next section for details), which reduces logistical 

burdens of pooling data and mitigates risks associated with sharing individual level data 

(Solovieff et al. 2013). Most genetic risk variants discovered recently have come from large-

scale meta-analyses of GWAS (Zeggini and Ioannidis 2009; Panagiotou et al. 2013). 

With this increasing popularity of meta-analysis of GWAS, many consortia have been 

formed to investigate the genetics of various complex traits and diseases (Seminara et al. 2007) 

such as type 2 diabetes (DIAGRAM) (Morris et al. 2012), lipids (GLGC) (Global Lipids 

Genetics Consortium 2013), anthropomorphic traits like height and BMI (GIANT) (Wen et al. 

2012; Wood et al. 2014), and various psychiatric disorders (PGC) like ADHD and Schizophrenia 

(Demontis et al. 2017; Ripke et al. 2013). Many of these consortia make their summary statistics 

publicly available, so that newer studies can use their results in a meta-analysis, thus leveraging 

these large-scale efforts to power new discoveries or to refine known loci.  

An Overview of Meta-Analysis Methods for GWAS 

In a typical meta-analysis, individual level data are analyzed locally, and summary level 

results are shared with the coordinating meta-analysis team (Zeggini and Ioannidis 2009). The 

summary results may be odds ratios, standardized effect sizes or other metrics, with a measure of 

their uncertainty such as variance or p-values. Additionally, marker information such as alleles 

and allele frequencies are provided.  

Several models can be used for meta-analysis, and can be broadly categorized into three 

groupings: fixed effects, random effects, or Bayesian. Most models involve taking some 

weighted combination of estimators from individual studies. Fisher’s approach combines P-

values directly by taking the mean of −	log	(�) across studies, but fails to take the direction of 
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the effect into account. A similar approach is based on Z-scores, calculating the average Z-scores 

across studies, weighing them proportionally to the sample sizes (Stouffer et al. 1949). This 

approach does consider the direction of the effect and is useful in cases where only P-values are 

available (Cooper et al. 2009). 

Fixed effects meta-analysis assumes that the true effect of each risk allele is the same in 

all the datasets. A common method is to use inverse variance weighting for the effect sizes 

(Willer et al. 2010). This also requires that the trait be measured on the same scale for each 

study, with the same units and transformations so that the effect sizes are comparable across 

studies. This is the most powerful of the approaches; though there may be some questions 

regarding the assumption of fixed effects (Kavvoura and Ioannidis, 2008).  

In contrast, random effects models do not assume that the true effect sizes are constant 

across studies, which is a more realistic assumption especially if the samples are of mixed 

ancestry. While random effects models such as the DerSimonian and Laird estimator (1986) may 

be more appropriate, they generally have limited power and are not used in discovery efforts. 

Newer random effects models have been proposed that attempt to increase the power by making 

simplifying assumptions -- such as the assumption that there is no heterogeneity in genetic 

effects under the null hypothesis – and thus focusing analyses on the most interesting portions of 

the parameter space (Han and Eskin 2011). Another proposed alternative is to use a subset-based 

approach that uses a fixed effects model on a subset of the studies (Bhattacharjee et al. 2012). 

While these methods increase power when their specific assumptions are met, the fixed-effects 

model outperforms them when analyzing a single trait across homogeneous populations.  
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Bayesian methods have also been used for meta-analysis (Burton et al. 2007), but they 

are less common as they depend on assumptions made about the prior distributions of 

parameters, and can be computationally intensive to implement genome-wide. 

Regardless of which method is chosen, once the meta-analysis is conducted, the most 

significant variants are investigated. Generally, variants with P-values less than a genome-wide 

significant cut-off (typically p < 5 × 10
�) are flagged. Other secondary analyses such as 

conditional analysis may be conducted to gain insight into loci associated with the trait of 

interest. 

Prioritizing Variants for Follow-up 

Once a GWAS or meta-analysis is completed, it is important to sort through the flagged 

SNPs to examine interesting variants for follow-up studies or secondary analyses. Variants and 

genes can be prioritized for follow-up based on criteria such as literature review for biological 

plausibility (Minelli et al. 2013), evidence from other GWAS of the same or related traits, 

pathway analysis, regulation of mRNA expression levels, and presence of protein-altering 

variants. “Causal” variants are defined as the functional genetic variants that influence the risk 

for disease and explain the observed association. However, all variants in high linkage 

disequilibrium may show association with the trait or disease, and hence, it can be difficult to 

identify a specific causal variant. Fine mapping involves refining lists of potentially causal 

variants in regions with dense coverage where all the variants are genotyped or imputed with 

high quality genotypes. One of the goals of GWAS is to identify genes that are potentially causal 

for the trait of interest and thus fine mapping the associated loci is important for understanding 

the biological mechanisms involved in the trait under study. Variants in strong linkage 

disequilibrium with a causal SNP show strong association signals and thus the most significantly 
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associated variant is often not the causal one (Schaub et al. 2012; Faye et al. 2013). Fine 

mapping can be done through iterative conditional analysis or joint analysis at associated loci 

(Yang et al. 2012), ridge regression based methods (Malo et al. 2008), and Bayesian modeling 

(Maller et al. 2012; Hormozdiari et al. 2014). These methods focus on using the association 

results, that is, they do not consider biological plausibility, and generally require individual level 

data at the fine mapping loci. 

Large-scale initiatives such as The Encyclopedia of DNA Elements (ENCODE Project 

Consortium 2012) and the Roadmap Epigenomics Project (Bernstein et al. 2010) provide 

detailed maps of regulatory regions for more than 80% of the human genome. Functional 

annotations such as transcription factor binding sites and expression quantitative trait loci tend to 

be enriched in complex trait associated loci (Veyrieras et al. 2008; Gaffney et al. 2012; Trynka 

and Raychaudhuri 2013; Karczewski et al. 2013). A systematic investigation into the enrichment 

of these characteristics among associated loci can lend insight for future functional studies. 

With advances in sequencing technology, it is feasible to obtain the sequencing data or 

impute all common variants in associated regions with high quality. Thus, it is plausible to 

assume that the causal variant exists in the data (Chen et al. 2015) and attempt to narrow down a 

list of potentially causal variants by systematically modeling genomic features that they may 

share (Pickrell 2014; Kichaev et al. 2014). For example, a plausible assumption may be that 

causal variants for traits tend to be non-synonymous variants, which alter an amino acid in a 

protein-coding sequence, potentially resulting in a functionally impaired protein. There exist 

methods to integrate diverse annotations into one measure such as the CADD score which 

prioritizes functional, deleterious and pathogenic variants across many functional categories 
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(Kircher et al. 2014). Quantifying the enrichment of such genomic features can help 

systematically prioritize variants for follow-up.  

Overlapping Samples in Meta-Analysis Studies 

To date, more than 2,500 GWAS and meta-analyses have been published (MacArthur et 

al. 2017). For certain traits, several independent or partially overlapping consortia may exist 

(Evangelou and Ioannidis 2013), and meta-analyses combining data from the different consortia 

as well as using future studies can greatly increase the power to detect weak signals. However, a 

basic assumption in the meta-analysis methods discussed above is that the studies are 

independent; that is, the samples analyzed the studies are independent with no overlap of 

participants. If there is overlap between studies, using these methods may result in to inflated 

Type I error and, hence, increased false signals (Lin and Sullivan 2009).  

Moreover, due to GWAS requirements for large sample sizes, sometimes controls are 

shared among various studies. For example, many psychiatric GWAS have used controls 

ascertained and sampled by P.V. Gejman (Shi et al. 2009) and many case-control studies use 

publicly available genotype data for large sets of population-based controls such as WTCCC 

(Burton et al. 2007). Additionally, same cohorts may contribute to different meta-analysis 

efforts. For example, for Type 2 Diabetes (http://www.type2diabetesgenetics.org/), data from 

FUSION was used in both GoT2D GWAS (Fuchsberger et al. 2016) and 70KforT2D GWAS 

(Bonàs-Guarch et al. 2017). 

If studies have overlapping samples, covariance between studies needs to be accounted 

for when analyzing them together through meta-analysis. Methods exist for this purpose when 

individual level data are available, or if the number of overlapping samples is known (Lin and 
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Sullivan 2009). However, precise sample overlap numbers are not always known, and it is 

difficult to obtain individual level data to determine the overlap. 

Thesis Overview 

The scope of this dissertation is to show diverse uses of summary level genetic 

association data to gain insight into the genetics of diseases and complex traits. I first conduct a 

large-scale meta-analysis and demonstrate the challenges inherent in trying to interpret the 

results. I then show how publicly available data, such as genomic features, can be used to 

prioritize variants for follow-up using summary statistics from published GWAS or meta-

analyses. I finally develop a method to allow for meta-analysis when studies have potentially 

overlapping samples without requiring individual level data. 

In the second chapter, we conducted a large-scale meta-analysis of 188,578 individuals 

for the lipid traits of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C), triglycerides and total cholesterol. We identified sixty-two novel loci in 

addition to the 95 loci already known in literature. There are 240 genes within 100 kb of the 62 

novel loci, which is a daunting challenge for future functional studies. We prioritized variants 

based on literature review, pathway analysis, protein altering variants and overlap with regulators 

of transcription in liver and tested enrichment using different tests including permutation based 

ones. We found lipid associated loci to be strongly associated with Coronary Artery Disease 

(CAD), Type 2 Diabetes (T2D), Body Mass Index (BMI) and blood pressure.  Additionally, we 

investigated fine mapped loci for different ancestries and identified several loci where the fine 

mapped signal was clearly different from the known GWAS signal.  

In the third chapter, I assume that causal variants are likely to share certain genomic 

features and model and estimate the enrichment of the genomic feature among trait associated 
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loci. If the enrichment parameter is found to be statistically significant, we use it to weight the 

association signals to generate posterior probabilities of each variant being causal. I make an 

assumption that every locus has at most one causal variant and propose two different approaches: 

(i) a Bayesian approach that divides the entire genome into loci with each locus having some 

probability of being causal and there being 0 or 1 causal variant at each locus, and (ii) assuming 

that variants outside the associated loci cannot be causal and thus considering only associated 

loci and assuming that there is exactly 1 causal variant at each locus. While the Bayesian 

approach may be more realistic, it requires summary level data across the whole genome 

whereas the second approach only requires summary level data for the associated loci and the 

number of variants with and without the genomic feature of interest outside the associated loci. 

The second approach is thus computationally faster. After testing the enrichment parameter for 

significance, we calculate the posterior probability of each variant being causal and use that to 

construct 95% credible sets of potentially causal variants. 

In the fourth chapter, I propose a method to use summary level data to estimate the 

overlap proportions between a pair of studies. While independent studies are likely to have 

positively correlated Z-scores due to trait associated loci showing similar effect sizes, truncating 

the Z-scores and estimating the correlation leads to accurate estimates of overlap proportion. 

Thus, my method identifies if there is overlap between a pair of studies, estimates it and corrects 

for it to conduct a meta-analysis where covariance due to overlap is accounted for. 
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Chapter 2 : Discovery and Refinement of Loci Associated with Lipid Levels
1
 

 

Introduction 

Blood lipids are heritable, modifiable, risk factors for coronary artery disease (CAD) 

(Kannel et al. 1961; Castelli et al. 1988), a leading cause of death (Lloyd-Jones et al. 1988). 

Human genetic studies of lipid levels can identify targets for new therapies for cholesterol 

management and prevention of heart disease, and can complement animal studies (Teslovich et 

al. 2010; Barter et al. 2012). Studies of naturally occurring genetic variation can proceed through 

large-scale association analyses focused on unrelated individuals or through investigation of 

Mendelian forms of dyslipidemia in families (Rahalkar et al. 2008). We previously identified 95 

loci associated with blood lipids, accounting for ~10-12% of the total trait variance (Teslovich et 

al. 2010) and showed that variants with small effects can point to pathways and therapeutic 

targets that enable clinically-important changes in blood lipids (Teslovich et al. 2010; Musunuru 

et al. 2010). 

Here, we report on studies of naturally occurring variation in 188,578 European-ancestry 

individuals and 7,898 non-European ancestry individuals. Our analyses identify 157 loci 

associated with lipid levels at P < 5x10
-8

, including 62 new loci. Thirty of the 62 loci do not 

include genes implicated in lipid biology by previous literature. We tested lipid-associated SNPs 

for association with mRNA expression levels, carried out pathway analyses to uncover 

                                                 
1 This work was published in Nature Genetics as Discovery and Refinement of Loci Associated with Lipid Levels (2013) 45(11), 

pp.1274-1283. I was joint first author and contributed in performing the meta-analysis, bioinformatics analyses, preparing the 

tables, figures and supplementary information as well as discussing the analysis, results, interpretation and presentation of the 

results. The full list of authors is at the end of the chapter as well as in the supplementary information. 
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relationships between loci, and compared the locations of lipid-associated SNPs with those of 

genes and other functional elements in the genome. These results provide direction for biological 

and therapeutic research into risk factors for CAD. 

Results 

Novel loci associated with blood lipid levels 

We examined subjects of European ancestry, including 94,595 individuals from 23 

studies genotyped with GWAS arrays (Teslovich et al. 2010) and 93,982 individuals from 37 

studies genotyped with the Metabochip array (Voight et al. 2012) (Supplementary Table S2.1 

and Supplementary Fig. S2.1). The Metabochip includes variants representing promising loci 

from our previous GWAS (14,886 SNPs) and from GWAS of other CAD risk factors and related 

traits (50,459 SNPs), variants from the 1000 Genomes Project (2010) and focused resequencing 

(Sanna et al. 2011) efforts in 64 previously associated loci (28,923 SNPs), and fine-mapping 

variants in 181 loci associated with other traits (93,308 SNPs). In cases where Metabochip and 

GWAS array data were available for the same individuals, we used Metabochip data to ensure 

key variants were directly genotyped, rather than imputed. 

We excluded individuals known to be on lipid lowering medications and evaluated the 

additive effects of each SNP on blood lipid levels after adjusting for age and sex. Genomic 

control values (Devlin and Roeder, 1999) for the initial meta-analyses were 1.10 – 1.15, low for 

a sample of this size, indicating that population stratification should have only a minor impact on 

our results (Supplementary Fig. S2.2). After genomic control correction, 157 loci associated 

with blood lipid levels were identified (P < 5x10
-8

), including 62 new loci (Tables 2A-D, Figure 

2.1, Supplementary Tables S2.2 and S2.3).  Loci were >1 Mb apart and nearly independent (r
2
 

< 0.10). Of the 62 novel loci, 24 demonstrated the strongest evidence of association with HDL 
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cholesterol, 15 with LDL cholesterol, 8 with triglyceride levels, and 15 with total cholesterol 

(Supplementary Fig. S2.3). Several of these loci were validated by a similar extension based on 

GLGC GWAS results (Asselbergs et al. 2012). 

The effects of newly identified loci were generally smaller than in earlier GWAS 

(Supplementary Fig. S2.4).  For the 62 newly identified variants, trait variance explained in the 

Framingham offspring were 1.6% for HDL cholesterol, 2.1% for triglycerides, 2.4% for LDL 

cholesterol, and 2.6% for total cholesterol.   

Overlap of genetic discoveries and prior knowledge 

To investigate connections between our new loci and known lipid biology, we first 

catalogued genes within 100 kb of the peak associated SNPs and searched PubMed and OMIM 

for occurrences of these gene names and their aliases in the context of relevant keywords. After 

manual curation, we identified at least one strong candidate in 32 of the 62 loci (52%) 

(Supplementary Table S2.4). For the remaining 30 loci, we found no literature support for the 

role of a nearby gene on blood lipid levels. This search highlighted genes whose connections to 

lipid metabolism have been extensively documented in mouse models (such as VLDLR  and 

LRPAP1
 
(Welch et al. 1996)) and human cell lines (such as VIM (Sarria et al. 1992)), as well as 

candidates whose connection to lipid levels is more recent, such as VEGFA. For the latter, recent 

studies of VEGFB have suggested that vascular endothelial growth factors have an unexpected 

role in the targeting of lipids to peripheral tissues (Hagberg et al. 2010), which we corroborate by 

associating variants near VEGFA with blood triglyceride and HDL levels. 

Multiple types of evidence supported several literature candidates (Supplementary 

Table S2.2). For example, VLDLR is categorized by Gene Ontology (Ashburner et al. 2000) in 

the retinoid X nuclear receptor (RXR) activation pathway, which also includes genes (APOB, 
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APOE, CYP7A1, APOA1, HNF1A, HNF4A) in previously implicated loci (Teslovich et al. 2010). 

However, since these additional sources of evidence build on overlapping knowledge they are 

not truly independent.   

To estimate the probability of finding ≥32 literature supported candidates after automated 

search and manual review of results, we repeated our text-mining literature search using 100 

permutations of SNPs matched for allele frequency, distance to the nearest gene, and number of 

linkage disequilibrium proxies.  To approximate hand-curation of the text-mining results, we 

focused on genes implicated by 3 or more publications (25 in observed data, 8.7 on average in 

control SNP sets, P = 8x10
-8

). 

Pathway analyses 

We performed a gene-set enrichment analysis, using MAGENTA (Segre et al. 2010), to 

evaluate over-representation of biological pathways among associated loci. Across the 157 loci, 

MAGENTA identified 71 enriched pathways. These pathways included at least one gene in 20 of 

our newly identified loci (Supplementary Table S2.5). Examples include DAGLB (connected to 

previously associated loci by genes in the triglyceride lipase activity pathway), INSIG2 

(connected by the cholesterol and steroid metabolic process pathways), AKR1C4 (connected by 

the steroid metabolic process and bile acid biosynthesis pathways), VLDLR (connected by the 

retinoic X receptor activation and lipid transport pathways, among others), PPARA, ABCB11, 

and UGT1A1 (three genes assigned to pathways implicated in activation of nuclear hormone 

receptors, which play an important role in lipid metabolism through the transcriptional regulation 

of genes in sterol metabolic pathways (Fitzgerald et al. 2001)). Among the 16 loci where 

literature review and pathway analysis both suggested a candidate, the predictions overlapped 14 

times (Supplementary Table S2.2; by chance, we expect 6.6 overlapping predictions, 
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 P = 1x10
-5

). 

Protein-protein interactions 

We assessed evidence for physical interactions between proteins encoded near our 

associated SNPs using DAPPLE (Rossin et al. 2011).  We found an excess of direct protein-

protein interactions for genes in loci associated with LDL (10 interactions, P = 0.0002), HDL (8 

interactions, P = 0.002), and total cholesterol (6 interactions, P = 0.017), but not for triglycerides 

(2 interactions, P = 0.27) (Supplementary Fig. S2.5). Most of the interactions involved genes at 

known loci (such as the interaction network connecting PLTP, APOE, APOB, and LIPC) or 

highlighted the same genes as literature and pathway analyses (such as those connecting VLDLR, 

APOE, APOB, CETP, and LPL). Among novel loci, we identified a link between AKT1 and 

GSK3B. GSK3B has been shown to play a role in energy metabolism (Plyte et al. 1992) and its 

activity is regulated by AKT1 through phosphorylation (Toker and Cantley 1997). Literature 

review also supported a role in blood lipid levels for these two genes. 

Regulation of gene expression by associated variants 

Many complex trait associated variants act through the regulation of gene expression. We 

examined whether our 62 novel variants were associated with expression levels of nearby genes 

in liver, omental fat, or subcutaneous fat. Fifteen were associated with expression of a nearby 

transcript with P < 5x10
-8 

(Supplementary Table S2.6) and, in seven, the lipid-associated 

variant was in strong disequilibrium with the strongest expression-quantitative trait locus (eQTL) 

for the region (r
2
 > 0.8). In three of these loci, literature search also prioritized candidate genes. 

In all three, eQTL analysis and literature review identified the same candidate (DAGLB, 

SPTLC3, and PXK, P = 0.05). For the remaining four loci (near RBM5, ADH5, TMEM176A, and 
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GPR146), analysis of expression levels identified candidates that were not supported by 

literature or pathway analyses. 

Coding variation 

In some loci where previous coding variant association studies were inconclusive, we 

now find convincing evidence of association, demonstrating the benefits of the large sample 

sizes achievable by collaboration. For example, in the APOH locus (Kaprio et al. 1991), our most 

strongly associated variant is rs1801689 (APOH C325G, P = 1x10
-11

 for LDL cholesterol). 

Overall, at 15 of the 62 new loci, there is at least one nonsynonymous variant within 100kb and 

in strong (r
2
>0.8) linkage disequilibrium with the index SNP (Supplementary Table S2.7) (18 

loci with no restrictions on distance). This ~30% overlap between associated loci and coding 

variation is similar to that in other complex traits (The 1000 Genomes Project 2010). 

Unexpectedly, in the 11 loci where a candidate was suggested by literature review and by coding 

variation, the two coincided seven times (P = 0.03 compared to expected chance overlap of 3.8 

times); thus, agreement between literature and coding variation was less significant than for 

eQTL and pathway analysis or protein-protein interactions. 

Overlap between association signals and regulators of transcription in liver 

Despite our efforts, 18 of the 62 new loci remain without prioritized candidate genes. The 

liver is an important hub of lipid biosynthesis and there is evidence that lipid loci might be 

associated with changes in gene regulation in liver cells (Ernst et al. 2011). Using ENCODE data 

(Ernst et al. 2011), we evaluated whether associated SNPs overlapped experimentally annotated 

functional elements identified in HepG2 cells, a commonly used model of human hepatocytes.  

To determine significance, we generated 100,000 lists of permuted SNPs, matched for minor 

allele frequency, distance to the nearest gene, and number of SNPs in r
2
 > 0.8 (described in 
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Methods). In HepG2 cells, lipid-associated SNPs were enriched in eight of the 15 functional 

chromatin states defined by Ernst et al. (The ENCODE Project Consortium 2011) (P < 1x10
-5

; 

Supplementary Table S2.8).  The strongest enrichment was in regions with “strong enhancer 

activity” (3.7-fold enrichment, P = 2x10
-25

; Supplementary Table S2.9). In the other eight cell 

types examined by Ernst et al., no more than three functional chromatin states showed evidence 

for enrichment (and, when present, enrichment was weaker). 

We proceeded to investigate the overlap between lipid loci and functional marks in 

HepG2 cells in more detail (Supplementary Table S2.9). Notable regulatory elements showing 

significant overlap with lipid loci included histone marks associated with active regulatory 

regions (H3K27ac, P = 3x10
-20

; H3K9ac, P = 3x10
-22

), promoters (H3K4me3, P = 2x10
-15

, 

H3K4me2, P = 8x10
-12

), transcribed regions (H3K36me3, P = 4x10
-14

), indicators of open 

chromatin (FAIRE, P = 5x10
-9

; DNase, P = 2x10
-4

), and regions that interact with transcription 

factors HNF4A (P = 6x10
-10

) and CEBP/B (P = 1x10
-5

). Overall, 56 of our 62 new loci contained 

at least one SNP that overlaps a functional mark (The ENCODE Project Consortium 2011) 

and/or chromatin state (Ernst et al. 2011) highlighted in Supplementary Table S2.9, including 

all but 3 of the loci where no candidates were suggested by literature review or analyses of 

pathways, coding variation, or gene expression (Supplementary Table S2.10).  
 

Initial fine-mapping of 65 lipid-associated loci 

Previous fine-mapping of five LDL-associated lipid loci found that variants showing the 

strongest association were often substantially different in frequency and effect size from those 

identified in GWAS (Sanna et al. 2011). Metabochip genotypes enabled us to carry out an initial 

fine-mapping analysis for 65 loci: 60 selected for fine-mapping based on our previous study
4
 and 

5 nominated for fine-mapping because of association to other traits.  
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For each of these loci, we identified the most strongly associated Metabochip variant and 

evaluated whether it (a) reached genome-wide significant evidence for association (to avoid 

chance fluctuations in regions where the signal was relatively weak) and (b) was different from 

the GWAS index SNP in terms of frequency and effect size (operationalized to r
2 

< 0.8 with the 

GWAS index SNP). In the European samples, fine-mapping identified eight loci where the fine-

mapping signal was clearly different from the GWAS signal (Supplementary Table S2.11). The 

two largest differences were at the loci near PCSK9 (top GWAS variant with minor allele 

frequency f = 0.24 and P = 9x10
-24

; fine-mapping variant with f = 0.03, P = 2x10
-136

) and APOE 

(GWAS variant f = 0.20, P = 3x10
-44

, fine-mapping variant f = 0.07, P = 3x10
-651

), consistent 

with Sanna et al (2011). Large differences were also observed near LRP4 (GWAS f = 0.17, P = 

8x10
-14

; fine-mapping f = 0.35, P = 1x10
-26

), IGF2R (GWAS f = 0.16, P = 7x10
-9

; fine-mapping 

f = 0.37, P = 2x10
-13

), NPC1L1 (GWAS f = 0.27, P = 2x10
-5

; fine-mapping f = 0.24, P = 1x10
-

12
), ST3GAL4 (GWAS f = 0.26, P = 2x10

-6
; fine-mapping f = 0.07, P = 6x10

-11
), MED1 (GWAS 

f = 0.37, P = 3x10
-5

; fine-mapping f = 0.24, P = 2x10
-10

), and COBLL1 (GWAS f = 0.12, P = 

2x10
-6

; fine-mapping f = 0.11, P = 6x10
-9

). Thus, although the large changes observed by Sanna 

et al (2011) after fine-mapping are by no means unique, they are not typical. Except for the 

R46L variant in PCSK9, the variants showing strongest association in fine-mapped loci all had 

minor allele frequency > .05.  

We also attempted fine-mapping in African (N=3,263), East Asian (N=1,771), and South 

Asian (N=4,901) ancestry samples. Despite comparatively small samples, ancestry-specific 

analyses identified SNPs clearly distinct from the original GWAS variant in five loci 

(Supplementary Table S2.11). These were: APOE, consistent with European ancestry analyses 

above; three loci where differences in linkage disequilibrium between populations enabled fine-
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mapping in African (SORT1, LDLR) or East Asian (APOA5) ancestry samples; and CETP, where 

an African-specific variant was present. For CETP, SORT1, and APOA5, results are consistent 

with other fine-mapping and functional studies (Musunuru et al. 2010; Buyske et al. 2012; 

Palmen et al. 2012).  

Association of lipid loci with metabolic and cardiovascular traits 

To evaluate the role of the 157 loci identified here on related traits, we evaluated the most 

strongly associated SNPs for each locus in genetic studies of coronary artery disease (CAD, 

N=114,590 including 37,653 cases) (Schunkert et al. 2011; The Coronary Artery Disease (C4D) 

Consortium 2010), type 2 diabetes (T2D, N=47,117 including 8,130 cases) (Voight et al. 2010), 

body mass index (BMI, N=123,865 individuals) (Speliotes et al. 2010) and waist-hip ratio 

(WHR, N=77,167 individuals) (Heid et al. 2010), systolic and diastolic blood pressure (SBP and 

DBP, N=69,395 individuals) (International Consortium for Blood Pressure Genome-Wide 

Association Studies 2011), and fasting glucose (N=46,186 non-diabetics) (Dupuis et al. 2010). 

We observed an excess of SNPs nominally associated (P < 0.05) with all these traits: a 5.1 fold 

excess for CAD (40 nominally significant loci, P = 2x10
-19

), a 4.1 fold excess for BMI (32 loci, 

P = 1x10
-11

), 3.7 fold excesses for DBP (29 loci, P = 1x10
-9

), a 3.4 fold excess for WHR (27 loci, 

P = 1x10
-9

), a 2.5 fold excess for SBP (20 loci, P = 1x10
-4

), a 2.3 fold excess for T2D (18 loci, P 

= 0.001), and a 2.2 fold excess for fasting glucose (17 loci, P = 3x10
-3

) (Supplementary Table 

S2.12). Interestingly, among the novel loci, we observed greater overlap with BMI, SBP, and 

DBP (9 overlapping loci each) than with CAD (8 overlapping loci). Among new loci, the two 

SNPs showing strongest association to CAD map near RBM5 (rs2013208, PHDL = 9x10
-12

, PCAD 

= 7x10
-5

) and CMTM6 (rs7640978, PLDL = 1x10
-8

, PCAD = 4x10
-4

). 
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We tested whether the LDL-, total cholesterol- or triglyceride- increasing allele, or HDL-

decreasing allele was associated with increased risk of cardiovascular disease or related 

metabolic outcomes; the direction of effect of each locus was categorized according to the 

primary association signal at the locus, as in Tables 2A-D.  We observed association with 

increased CAD risk (104/149, P = 1x10
-6

), SBP (96/155, P = 2.7x10
-3

) and WHR adjusted for 

BMI (92/154, P = 0.019). There were many instances where a single locus was associated with 

many traits. These included variants near FTO, consistent with previous reports (Freathy et al. 

2008); near VEGFA (associated with triglyceride levels, CAD, T2D, SBP, and DBP), near 

SLC39A8 (associated with HDL cholesterol, BMI, SBP, and DBP), and near MIR581 (associated 

with HDL cholesterol, BMI, T2D, and DBP). In some cases, like FTO, a strong association with 

BMI or another phenotype generates weaker association signals for other metabolic traits 

(Freathy et al. 2008). In other cases, like SORT1, a primary effect on lipid levels may mediate 

secondary association with other traits, like CAD (Musunuru et al. 2010).  

Association of individual lipids with coronary artery disease 

Epidemiological studies consistently show high total cholesterol and LDL cholesterol 

levels are associated with increased risk of CAD, whereas high HDL cholesterol levels are 

associated with reduced risk of CAD (Clarke et al. 2007). In genetic studies, the connection 

between LDL cholesterol and CAD is clear, whereas the results for HDL cholesterol levels are 

more equivocal (Willer et al. 2008; Voight et al. 2012; Frikke-Schmidt et al. 2008). In our data, 

trait increasing alleles at the loci showing strongest association with LDL cholesterol (31 loci), 

triglycerides (30 loci), or total cholesterol (38 loci) were associated with increased risk of CAD 

(P = 2x10
-12

, P = 2x10
-16

, and P = 0.006). Conversely, trait decreasing alleles at loci showing the 

strongest association with HDL cholesterol (64 loci), were associated with increased CAD risk 
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with P = 0.02. When we focused on loci uniquely associated with LDL cholesterol (12 loci 

where P > .05 for other lipids), triglycerides (6 loci), or HDL cholesterol (14 loci), only the LDL 

association remained significant (P = 0.03).  

To better explore how associations with individual lipid levels related to CAD risk, we 

used linear regression to test whether association with lipid levels could predict impact on CAD 

risk. In this analysis, the effect on CAD of 149 lipid loci (CAD results were not available for 8 

SNPs) was correlated with LDL (Pearson r=0.74, P = 7x10
-6

) and triglyceride (Pearson r=0.46, P 

= 0.02) effect sizes, but not HDL effect sizes (Pearson r=-9x10
-4

, P = 0.99; Supplementary Fig. 

S2.6). Since most variants affect multiple lipid fractions (Figure 2.1), dissecting the relationship 

between lipid level and CAD effects requires multivariate analysis. In a companion manuscript, 

we use multivariate analysis and detailed examination of triglyceride associated loci to show that 

increased LDL and triglyceride levels, but not HDL, appear causally related to CAD risk.  

Evidence for additional loci, not yet reaching genome-wide significance 

To evaluate evidence for loci not yet reaching genome-wide significance, we compared 

direction of effect in GWAS and Metabochip analyses of non-overlapping samples, outside the 

157 genome-wide significant loci. Among independent variants (r
2 

< 0.1) with P < 0.1 in the 

GWAS-only analysis, a significant excess were concordant in direction of effect for HDL 

(62.9% in 1,847 SNPs, P < 10
-16

), LDL (58.6% of 1,730 SNPs, P < 10
-16

), triglyceride levels 

(59.1% of 1,783 SNPs, P < 10
-16

), and total cholesterol (61.0% of 1,904 SNPs, P < 10
-16

), 

suggesting many additional loci to be discovered in future studies. 
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Discussion 

Molecular understanding of the genes and pathways that modify blood lipid levels in 

humans will facilitate the design of new therapies for cardiovascular and metabolic disease. This 

understanding can be gained from studies of model organisms, in vitro experiments, 

bioinformatic analyses, and human genetic studies. Here, we demonstrate association between 

blood lipid levels and 62 new loci, bringing the total number of lipid-associated loci to 157 (See 

Tables 2A-D and Figure 2.1). All but one of the loci identified here include protein-coding 

genes within 100 kb of the SNP showing strongest association. While 38 of the 62 new loci 

include genes whose role in blood lipid levels is supported by literature review or analysis of 

curated pathway databases, the remainder includes only genes whose role on blood lipid levels 

has not been documented. 

In total, there are 240 genes within 100 kb of one of our 62 new lipid-associated loci – 

providing a daunting challenge for future functional studies. Prioritizing on the basis of literature 

review, pathway analysis, regulation of mRNA expression levels, and protein altering variants 

suggests that 70 genes in 44 of the 62 new loci might be the focus of the first round of functional 

studies (summarized in Supplementary Table S2.2). While we found significant overlap, 

different sources of prioritization sometimes disagreed. This result suggests that truly 

understanding causality will be very challenging.  The Supplementary Note includes an 

interpreted digest of genes highlighted by our study. Clearly, a range of approaches will be 

needed to follow-up these findings. To illustrate possibilities, consider U. S. Patent Application 

#20,090,036,394 disclosing that, in the mouse, knockout of Gpr146 modifies blood lipid levels. 

Here, we show that variants near the human homologue of this gene, GPR146, are associated 

with levels of total cholesterol – providing an added incentive for studies of GPR146 inhibitors 
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in humans. GPR146 encodes a G-protein coupled receptor – an attractive pharmaceutical target – 

so it is tempting to speculate that, one day, pharmaceutical inhibition of GPR146 may modify 

cholesterol levels and reduce risk of heart disease. 

Each locus typically includes many strongly associated (and potentially causal) variants. 

Our fine-mapping results illustrate how genetic analysis of large samples and individuals of 

diverse ancestry can help focus the search for causal variants. In our fine-mapping analysis of 65 

lipid-associated loci, we were able to separate the strongest signal in a region from the prior 

GWAS signal in 12 instances. In three of these 12 instances, fine-mapping was enabled by 

analysis of a few thousand African or East Asian ancestry individuals, whereas in the remaining 

instances, fine-mapping was possible through examination of nearly 100,000 European ancestry 

samples. A more detailed fine-mapping exercise, including imputation of variants from emerging 

very large reference panels, may help refine the location of additional signals. 

Lipid-associated loci were strongly associated with CAD, T2D, BMI, SBP, and DBP. In 

univariate analyses, we found that impact on LDL and triglycerides all predicted association with 

CAD, but HDL did not.  In a more detailed multivariate investigation, a companion manuscript 

shows that our data is consistent with the hypothesis that both LDL and triglycerides, but not 

HDL, are causally related to CAD risk. HDL, LDL, and triglycerides levels summarize aggregate 

levels of different lipid particles, each with potentially distinct consequences for CAD risk. We 

evaluated association of our loci with lipid subfractions in 2,900 individuals from the 

Framingham Heart Study (Supplementary Table S2.13, Supplementary Fig. S2.7) and with 

sphingolipids, which are components of lipid membranes in cells, in 4,034 individuals from five 

samples of European ancestry (Demirkan et al. 2012) (Supplementary Table S2.14). The results 

suggest HDL-associated variants can have a markedly different impact on these sub-phenotypes. 
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For example, among HDL loci, variants near LIPC were strongly associated with plasmalogen 

levels (P < 10
-40

), variants near ABCA1 were associated with sphingomyelin levels (P < 10
-5

), 

and variants near CETP – which show the strongest association with HDL cholesterol overall – 

were associated with neither of these. Detailed genetic dissection of these sub-phenotypes in 

larger samples, could lead to functional groupings of HDL-associated variants that reconcile the 

results of genetic studies (which show no clear connection between HDL cholesterol-associated 

variants and CAD risk) and epidemiologic studies (which show clear association between plasma 

HDL levels and CAD risk). 

In summary, we report the largest genetic association study of blood lipid levels yet 

conducted. The large number of loci identified, the many candidate genes they contain, and the 

diverse proteins they encode generate new leads and insights into lipid biology. It is our hope 

that the next round of genetic studies will build on these results, using new sequencing, 

genotyping, and imputation technologies to examine rare loss-of-function alleles and other 

variants of clear functional impact to accelerate the translation of these leads into mechanistic 

insights and improved treatments for CAD. 
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URLs 

Summary results for our studies are available. We hope that they will facilitate continued 

research into the genetics of blood lipid levels and, eventually, help identify improved treatments 

for CAD. To browse the full result set, go to http:/www.sph.umich.edu/csg/abecasis/lipids2013/  
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Figure 2.1 Overlap between loci associated with different lipid traits 

This Venn diagram illustrates the number of loci that show association with multiple lipid traits.  The number of loci 

primarily associated with only one trait is listed in parentheses after the trait name and the locus name is listed below 

in italics.  Loci that show association with two or more traits are shown in the appropriate section. 
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Table 2-A Novel Loci Primarily Associated with HDL Cholesterol Obtained from Joint GWAS and Metabochip Meta-analysis  

 

Locus MarkerName Chr 

hg19  

Position (Mb) Associated trait(s) MAF 

Minor/major 

Allele Effect of A1 

Joint N 

(in 1000s) Joint P-value 

PIGV-NR0B2 rs12748152 1 27.14 HDL, LDL, TG .09 T/C -.051/.050/.037 187/173/178 1x10
-15

/3x10
-12

/1x10
-9

 

HDGF-PMVK rs12145743 1 156.70 HDL .34 G/T .020 181 2x10
-8

 

ANGPTL1 rs4650994 1 178.52 HDL .49 G/A .021 187 7x10
-9

 

CPS1 rs1047891 2 211.54 HDL .33 A/C -.027 182 9x10
-10

 

ATG7 rs2606736 3 11.40 HDL .39 C/T .025 129 5x10
-8

 

SETD2 rs2290547 3 47.06 HDL .20 A/G -.030 187 4x10
-9

 

RBM5 rs2013208 3 50.13 HDL .50 T/C .025 170 9x10
-12

 

STAB1 rs13326165 3 52.53 HDL .21 A/G .029 187 9x10
-11

 

GSK3B rs6805251 3 119.56 HDL .39 T/C .020 186 1x10
-8

 

C4orf52 rs10019888 4 26.06 HDL .18 G/A -.027 187 5x10
-8

 

FAM13A rs3822072 4 89.74 HDL .46 A/G -.025 187 4x10
-12

 

ADH5 rs2602836 4 100.01 HDL .44 A/G .019 187 5x10
-8

 

RSPO3 rs1936800 6 127.44 HDL, TG
a
 .49 C/T .020/-.020 187/168 3x10

-10
/3x10

-8
 

DAGLB rs702485 7 6.45 HDL .45 G/A .024 187 7x10
-12

 

SNX13 rs4142995 7 17.92 HDL .38 T/G -.026 165 9x10
-12

 

IKZF1 rs4917014 7 50.31 HDL .32 G/T .022 187 1x10
-8

 

TMEM176A rs17173637 7 150.53 HDL .12 C/T -.036 184 2x10
-8

 

MARCH8-ALOX5 rs970548 10 46.01 HDL, TC .26 C/A .026/-.026 187/187 2x10
-10

/8x10
-9

 

OR4C46 rs11246602 11 51.51 HDL .15 C/T .034 176 2x10
-10

 

KAT5 rs12801636 11 65.39 HDL .23 A/G .024 187 3x10
-8

 

MOGAT2-DGAT2 rs499974 11 75.46 HDL .19 A/C -.026 187 1x10
-8

 

ZBTB42-AKT1 rs4983559 14 105.28 HDL .40 G/A .020 184 1x10
-8

 

FTO rs1121980 16 53.81 HDL, TG .43 A/G -.020/-.021 186/155 7x10
-9

/3x10
-8

 

HAS1 rs17695224 19 52.32 HDL .26 A/G -.029 185 2x10
-13

 

 
Chr, chromosome; MAF, minor allele frequency; A1, minor allele; A2, major allele. Effect sizes are given with respect to the minor allele (A1) in SD units.  For loci associated 

with two or more traits at genome-wide significance, the trait corresponding to the strongest P-value is listed first.  At one locus, the secondary trait was most strongly associated 

with a different SNP: 
a
rs719726 (within 1Mb of rs1936800, r

2
 = 0.74).  
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Table 2-B Novel Loci Primarily Associated with LDL Cholesterol Obtained from Joint GWAS and Metabochip Meta-analysis 

 

Locus MarkerName Chr 

hg19  

Position 

(Mb) 

Associated 

trait(s) MAF 

Minor/major 

Allele Effect of A1 

Joint N 

(in 1000s) Joint P-value 

ANXA9-CERS2 rs267733 1 150.96 LDL .16 G/A -.033 165 5x10
-9

 

EHBP1 rs2710642 2 63.15 LDL .35 G/A -.024 173 6x10
-9

 

INSIG2 rs10490626 2 118.84 LDL, TC
b
 .08 A/G -.051/.042 173/184 2x10

-12
/6x10

-9
 

LOC84931 rs2030746 2 121.31 LDL, TC .40 T/C .021/.020 173/187 9x10
-9

/4x10
-8

 

FN1 rs1250229 2 216.30 LDL .27 T/C -.024 173 3x10
-8

 

CMTM6 rs7640978 3 32.53 LDL, TC .09 T/C -.039/-.038 172/186 1x10
-8

 

ACAD11 rs17404153 3 132.16 LDL, HDL
c
 .14 T/G -.034/.028 172/187 2x10

-9
/5x10

-9
 

CSNK1G3 rs4530754 5 122.86 LDL, TC .46 G/A -.028/-.023 173/187 4x10
-12

/2x10
-9

 

MIR148A rs4722551 7 25.99 LDL, TG
d
, TC .20 C/T .039/.029/.023 173/187/178 4x10

-14
/9x10

-11
/7.0x10

-9
 

SOX17 rs10102164 8 55.42 LDL, TC .21 A/G .032/.030 173/187 4x10
-11

/5x10
-11

 

BRCA2 rs4942486 13 32.95 LDL .48 T/C .024 172 2x10
-11

 

APOH-PRXCA rs1801689 17 64.21 LDL .04 C/A .103 111 1x10
-11

 

SPTLC3 rs364585 20 12.96 LDL .38 A/G -.025 172 4x10
-10

 

SNX5 rs2328223 20 17.85 LDL .21 C/A .03 171 6x10
-9

 

MTMR3 rs5763662 22 30.38 LDL .04 T/C .077 163 1x10
-8

 

 
Chr, chromosome; MAF, minor allele frequency; A1, minor allele; A2, major allele. Effect sizes are given with respect to the minor allele (A1) in SD units.  For loci associated with two or more traits 

at genome-wide significance, the trait corresponding to the strongest P-value is listed first.  At three loci, secondary traits were most strongly associated with different SNPs. 
b
rs17526895 (within 

1Mb of rs10490626, r
2
 = 0.98); 

c
rs13076253 (within 1Mb of rs17404153, r

2
 = 0.00); 

d
rs4719841 (within 1Mb of rs4722551, r

2
 = 0.10).  
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Table 2-C Novel Loci Primarily Associated with Total Cholesterol Obtained from Joint GWAS and Metabochip Meta-analysis 

 

 

Locus MarkerName Chr 

hg19  

Position 

(Mb) 

Associated 

trait(s) MAF 

Minor/major 

Allele Effect of A1 

Joint N 

(in 1000s) Joint P-value 

ASAP3 rs1077514 1 23.77 TC .15 C/T -0.03 184 6x10
-9

 

ABCB11 rs2287623 2 169.83 TC .41 G/A 0.027 184 4x10
-12

 

FAM117B rs11694172 2 203.53 TC .25 G/A 0.028 187 2x10
-9

 

UGT1A1 rs11563251 2 234.68 TC, LDL .12 T/C 0.037/0.034 187/173 1x10
-9

/5x10
-8

 

PXK rs13315871 3 58.38 TC .10 A/G -0.036 187 4x10
-8

 

KCNK17 rs2758886 6 39.25 TC .30 A/G 0.023 187 3x10
-8

 

HBS1L rs9376090 6 135.41 TC .28 T/C -0.025 187 3x10
-9

 

GPR146 rs1997243 7 1.08 TC .16 G/A 0.033 183 3x10
-10

 

VLDLR rs3780181 9 2.64 TC, LDL .08 G/A -0.044/-0.044 186/172 7x10
-10

/2x10
-9

 

VIM-CUBN rs10904908 10 17.26 TC .43 G/A 0.025 187 3x10
-11

 

PHLDB1 rs11603023 11 118.49 TC .42 T/C 0.022 187 1x10
-8

 

PHC1-A2ML1 rs4883201 12 9.08 TC .12 G/A -0.035 187 2x10
-9

 

DLG4 rs314253 17 7.09 TC, LDL .37 C/T -0.023/-0.024 184/170 3x10
-10

/3x10
-10

 

TOM1 rs138777 22 35.71 TC .36 A/G 0.021 185 5x10
-8

 

PPARA rs4253772 22 46.63 TC, LDL
e
 .11 T/C 0.032/-0.031 185/171 1x10

-8
/3x10

-8
 

 
Chr, chromosome; MAF, minor allele frequency; A1, minor allele; A2, major allele. Effect sizes are given with respect to the minor allele (A1) in SD units.  For loci associated with two or more traits 

at genome-wide significance, the trait corresponding to the strongest P-value is listed first.  At one locus, the secondary trait was most strongly associated with a different SNP: 
e
rs4253776 (within 

1Mb of rs4253772, r
2
 = 0.95). 
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Table 2-D Novel Loci Primarily Associated with Triglycerides Obtained from Joint GWAS and Metabochip Meta-analysis 
 

Locus MarkerName Chr 

hg19  

Position 

(Mb) 

Associated 

trait(s) MAF 

Minor/major 

Allele Effect of A1 

Joint N 

(in 1000s) Joint P-value 

LRPAP1 rs6831256 4 3.47 TG, TC
f
,LDL

f
 .42 G/A 0.026/-0.022/-

0.025 

177/173/187 2x10
-12

/1x10
-10

/2x10
-8

 

VEGFA rs998584 6 43.76 TG, HDL .49 A/C 0.029/-0.026 175/184 3x10
-15

/2x10
-11

 

MET rs38855 7 116.36 TG .47 G/A -0.019 178 2x10
-8

 

AKR1C4 rs1832007 10 5.25 TG .18 G/A -0.033 178 2x10
-12

 

PDXDC1 rs3198697 16 15.13 TG .43 T/C -0.020 176 2x10
-8

 

MPP3 rs8077889 17 41.88 TG .22 C/A 0.025 176 1x10
-8

 

INSR rs7248104 19 7.22 TG .42 A/G -0.022 176 5x10
-10

 

PEPD rs731839 19 33.90 TG, HDL .35 G/A 0.022/-0.022 176/185 3x10
-9

/3x10
-9

 

 

Chr, chromosome; MAF, minor allele frequency; A1, minor allele; A2, major allele. Effect sizes are given with respect to the minor allele (A1) in SD units.  For loci associated with two or more traits 

at genome-wide significance, the trait corresponding to the strongest P-value is listed first.  At one locus, secondary traits were most strongly associated with a different SNP: 
f
rs6818397 (within 1 

Mb of rs6831256, r
2
 = 0.18).  
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Online Methods 

Samples studied: We collected summary statistics for Metabochip SNPs from 45 studies. Among 

these, 37 studies consisted primarily of individuals of European ancestry (see Supplementary 

Table 1 and Supplementary Note for details), including both population-based studies and 

case-control studies of CAD and T2D. Another 8 studies consisted primarily of individuals with 

non-European ancestry: two studies of South Asian descent,  AIDHS/SDS (N=1,516) and 

PROMIS (N=3,385); two studies of East Asian descent, CLHNS (N=1,771) and TAI-CHI 

(N=7044); and five studies of recent African ancestry, MRC/UVRI GPC (N=1,687) from 

Uganda, SEY (N=426) from the Caribbean, and FBPP (N=1,614, TG results unavailable), GXE 

(N=397), and SPT (N=838) from the United States (more details in Supplementary Table 1 and 

Supplementary Note). 

Genotyping:  We genotyped 196,710 genetic variants prioritized on the basis of prior GWAS for 

cardiovascular and metabolic phenotypes using the Illumina iSelect Metabochip (Voight et al. 

2012) genotyping array. To design the Metabochip, we used our previous GWAS of ~100,000 

individuals (Teslovich et al. 2010) to prioritize 5,023 SNPs for HDL cholesterol, 5,055 for LDL 

cholesterol, 5,056 for triglycerides, and 938 for total cholesterol. These independent SNPs 

represent most loci with P < .005 in our original GWAS for HDL cholesterol, LDL cholesterol 

and triglycerides and with P < .0005 for total cholesterol. An additional 28,923 SNPs were 

selected for fine-mapping of 65 previously identified lipid loci. The Metabochip also included 

50,459 SNPs prioritized based on GWAS of non-lipid traits and 93,308 SNPs selected for fine-

mapping of loci associated with non-lipid traits (5 of these loci were associated with blood lipids 

by the analyses described here). 
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Phenotypes:  Blood lipid levels were typically measured after > 8 hours of fasting. Individuals 

known to be on lipid-lowering medication were excluded when possible. LDL cholesterol levels 

were directly measured in 10 studies (24% of total study individuals) and estimated using the 

Friedewald formula (Friedewald et al. 1972) in the remaining studies. Trait residuals within each 

study cohort were adjusted for age, age
2
, and sex, and then quantile normalized. Explicit 

adjustments for population structure using principal component (Price et al. 2006) or mixed 

model approaches (Kang et al. 2010) were carried out in 24 studies (35% of individuals); all 

studies were adjusted using genomic control prior to meta-analysis (Devlin and Roeder 2012). In 

studies ascertained on diabetes or CVD status, cases and controls were analyzed separately 

(Supplementary Table 1). All meta-analyses were limited to a single ancestral group (e.g. 

European only). 

Primary statistical analysis:  Individual SNP association tests were performed using linear 

regression with the inverse normal transformed trait values as the dependent variable and the 

expected allele count for each individual as the independent variable. These analyses were 

performed using PLINK (26 samples, 53% of the total number of individuals), SNPTEST (4 

samples, 20% of individuals), EMMAX (9 samples, 14% of individuals), Merlin (4 samples, 9% 

of individuals), GENABEL (1 sample, 3% of individuals), and MMAP (1 sample, 1% of 

individuals) (Supplementary Table 1). 

Meta-analysis:  Meta-analysis was performed using the Stouffer method (Stouffer et al. 1949; 

Willer et al. 2010), with weights proportional to the square root of the sample size for each 

sample. To correct for inflated test statistics due to potential population stratification, we first 

applied genomic control to each sample and then repeated the procedure with initial meta-

analysis results. For GWAS samples, we used all available SNPs when estimating the median 
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test statistic and inflation factor λ. For Metabochip samples, we used a subset of SNPs (N = 

7,168) that had P-values > 0.50 for all lipid traits in the original GWAS, expecting that the 

majority of these would not be associated with lipids and would behave as null variants in the 

Metabochip samples. Signals were considered to be novel if they reached a P-value < 5x10
-8

 in 

the combined GWAS and Metabochip meta-analysis and were >1 Mb away from the nearest 

previously described lipid locus and other novel loci. We used only European samples for the 

discovery of novel genome-wide significant loci. The non-European samples were meta-

analyzed and examined only for fine-mapping analyses.  

Quality control: To flag potentially erroneous analyses, we carried out a series of quality control 

steps. Average standard errors for association statistics from each study were plotted against 

study sample size to identify outlier studies. We inspected allele frequencies to ensure all 

analyses used the same strand assignment of alleles. We evaluated whether reported statistics and 

allelic effects were consistent with published findings for known loci. Genomic control values 

for study specific analyses were inspected, and all were <1.20. Finally, within each study, we 

excluded variants for which the minor allele was observed <7 times. 

Proportion of trait variance explained: We estimated the increase in trait variance explained by 

novel loci in the Framingham cohort (N=7,132) using three models for each trait-residual: 1) 

lead and secondary SNPs from the previously published loci (Teslovich et al. 2010) and 2) 

previously published lipid loci plus newly reported loci; and 3) newly reported loci.  We 

regressed lipid residuals on these sets of SNPs using the lme kinship package in R. 

Initial automated review of the published literature: An initial list of candidates within each 

locus was generated with Snipper (http://csg.sph.umich.edu/boehnke/snipper/) and then 

subjected to manual review. For each locus, Snipper first generates a list of nearby genes and 
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then checks for the co-occurrence of the corresponding gene names and selected search terms 

(“cholesterol”, “lipids”, “HDL”, “LDL”, or “triglycerides”) in published literature and OMIM.  

We supplemented this approach with traditional literature searches using PubMed and Google. 

Generating permuted sets of non-associated SNPs: To estimate the expected chance overlap 

between literature searches and our loci, we generated lists of permuted SNPs.  To generate these 

lists, we first identified all non-associated lipid SNPs (P > 0.10 for any of the 4 lipid traits) and 

created bins based on 3 statistics: minor allele frequency, distance to the nearest gene, and 

number of SNPs with r
2
 > 0.8.  For each index SNP, we identified 500 non lipid-associated SNPs 

that fell within the same 3 bins and randomly selected one SNP for each permuted list. 

Pathway analyses: To investigate if lipid-associated variants overlapped previously annotated 

pathways, we used gene set enrichment analysis (GSEA), as implemented in MAGENTA (Segre 

et al. 2010) using the meta-analysis of all studies, including GWAS and Metabochip SNPs. 

Briefly, MAGENTA first assigns SNPs to a given gene when within 110 kb upstream or 40 kb 

downstream of transcript boundaries. The most significant SNP P-value within this interval is 

then adjusted for confounders (gene size, marker density, LD) to create a gene association score. 

When the same SNP is assigned to multiple genes, only the gene with the lowest score is kept for 

downstream analyses. Subsequently, MAGENTA attaches pathway terms to each gene using 

several annotation resources, including GO, PANTHER, Ingenuity, and KEGG. Finally, the 

genes are ranked on their gene association score, and a modified GSEA test is used to test the 

null hypothesis that all gene score ranks above a given rank cutoff are randomly distributed with 

regard to a given pathway term (and compared to multiple randomly sampled gene sets of 

identical size). We evaluated enrichment by using a rank cutoff of 5% of the total number of 
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genes. A minimum of 10,000 gene set permutations were performed, and up to 1,000,000 

permutations for GSEA P-values below 1x10
-4

.   

We used the Disease Association Protein–Protein Link Evaluator package (DAPPLE; 

http://www.broadinstitute.org/mpg/dapple/dapple.php) to examine evidence for protein-protein 

interaction networks connecting genes across different lipid loci.  This analysis included the 62 

novel loci as well as the 95 previously known loci; we focus our discussion on pathways that 

included one or more genes from novel loci.   

Cis-expression quantitative trait locus analysis: To determine whether lipid-associated SNPs 

might act as cis-regulators of nearby genes, we examined association with expression levels of 

39,280 transcripts in 960 human liver samples, 741 human omental fat samples, and 609 human 

subcutaneous fat samples. Tissue samples were collected postmortem or during surgical 

resection from donors; tissue collection, DNA and RNA isolation, expression profiling, and 

genotyping were performed as described (Keating et al. 2008). MACH was used to obtain 

imputed genotypes for ~2.6 million SNPs in the HapMap release 22 for each of the samples. We 

examined the correlation between each of the 62 new index SNPs and all transcripts within 500 

kb of the SNP position, performing association analyses as previously described (Schadt et al. 

2008).  

Functional annotation of associated variants:  We attempted to identify lipid-associated SNPs 

that fall in important regulatory domains. We initially created a list of all potentially causal 

variants by selecting index SNPs at loci identified in this study or in Teslovich et al (2010). We 

then selected any variant in strong linkage disequilibrium (r
2 

> 0.8 from 1000 Genomes or 

HapMap) with each index SNP. We compared the position of the index SNPs and their proxies 

to previously described functional marks (Ernst et al. 2011; The ENCODE Project Consortium 
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2011). To assess the expected overlap with functional marks, we created 100,000 permuted sets 

of non-associated SNPs (see above) and evaluated permuted SNP lists for overlap with 

functional domains.  We estimated a P-value for each functional domain as the proportion of 

permuted sets with an equal or greater number of loci overlapping functional domains (for large 

P-values).  For small P-values we used a normal approximation to the empirical overlap 

distribution to estimate P-values. 

Association with lipid subfractions: Lipoprotein fractions for Women’s Genome Health Study 

(WGHS) samples (N = 23170) were measured using the LipoProtein-II assay (Liposcience Inc. 

Raleigh, NC) and Framingham Heart Study Offspring samples (N = 2900) were measured with 

the LipoProtein-I assay (Liposcience Inc. Raleigh, NC) (Chasman et al. 2009). Additional 

information on sub-fraction measurements can be found in Supplementary Fig. 7.  Log 

transformations were used for non-normalized traits.  All models were adjusted for age, sex, and 

PCs.  The genetic association analysis of WGHS used SNP genotypes imputed from the HapMap 

r22 CEU reference panel using MACH.  16,730 out of 23,170 WGHS participants were fasting 

for 8 hours prior to blood draw (72.2%). 
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Supplementary Tables 

Supplementary Table S2.1: Phenotypic Summary of Samples with Metabochip Genotype Results 

Short study name N 

% 

Female 

Mean age  

(SD) 

Mean 

HDL 

(SD) 

mg/dL 

Mean LDL 

(SD) mg/dL 

Mean TC 

(SD) mg/dL 

Mean TG 

(SD) mg/dL 

Excluded  

individuals  

on  

lipid-

lowering 

medication 

LDL-C 

estimated 

using 

Friedewald 

(F)  

or measured 

(M) 

Fasting > 8 hrs 

(F)  

or non-fasting  

(NF)  

blood draw 

Adjustment  

for 

population 

structure 

with PCA 

Analysis 

software  

used 

Study 

Reference 

(PMID) 

ADVANCE 505 40.6 65.7 (2.9) 54.6 (16.5) 128.3 (29.9) 209.7 (34.5) 137.7 (87.6) Yes F F Yes PLINK 18443000 

AIDHS/SDS a 1516 47.2 53.0 (12.1) 38.8 (13.8) 108.9 (38.7) 181.5 (49.2) 181.5 (116.7) Yes F F Yes PLINK 18598350 

AMC-PAS 304 25.0 43.0 (5.4) 44.2 (14.8) 148.9 (46) 234.2 (59.9) 167.1 (112.9) Yes F F No PLINK 19164808 

AMISH 1081 50.0 46.7 (15.1) 54.2 (11.6) 135.5 (38.7) 209 (42.6) 74.4 (44.3) Yes F F No MMAP 17261661 

BC58 2136 57.8 45.0 (0) 60 (15.1) 134.7 (35.6) 230.3 (41.8) 185.2 (130.2) Yes M NF No SNPTest 16155052 

CLHNS a 1771 47.3 21.5 (0.3) 42.3 (11.2) 94 (29.2) 157.2 (36.6) 105.5 (65.6) Yes F F Yes PLINK 20507864 

D2D 2007 (T2D) 287 43.6 62.3 (7.8) 50.8 (12.4) 132.4 (34.5) 213.2 (41.2) 151.1 (90.8) Yes F F Yes EMMAX 20459722 

D2D 2007 (controls) 1821 56.3 58.3 (8.3) 57.4 (13.4) 138 (31.3) 218 (35.9) 114.6 (70.6) Yes F F Yes EMMAX 20459722 

deCODE 15612 62.8 60.9 (17.1) 56 (17.9) 135.2 (39.9) 217.3 (43.8) 134.7 (81.8) Yes F F No SNPTEST 17478679 

DIAGEN (T2D) 439 50.3 66.0 (11.9) 47.5 (16) 114 (38.4) 198.7 (48.2) 199.6 (176.4) No F F Yes EMMAX 16801592 

DIAGEN (controls) 1093 56.7 62.4 (15.2) 59.3 (17.9) 127.7 (38.4) 207.2 (46.4) 135 (170.3) No F F Yes EMMAX 16801592 

DILGOM 3738 58.1 51.6 (13.5) 56.1 (13.5) 122.3 (32.1) 202 (36.8) 104.5 (62.9) Yes M F No PLINK 19959603 

DPS (T2D) 85 63.5 55.1 (6.4) 44 (11.7) 134.4 (32.8) 212.2 (37.7) 172.3 (85.5) Yes F F Yes EMMAX 11333990 

DPS (controls) 362 69.6 55.2 (7.3) 47.9 (11.1) 141.5 (31.2) 218.3 (34.2) 147.2 (61.8) Yes F F Yes EMMAX 11333990 

DRAGON (TAICHI) a 1052 41.7 62.9 (14.6) 43.3 (16.3) 101.9 (40.6) 174.5 (47.8) 146.6 (100.1) Yes F F Yes PLINK 18632180 

DR'S EXTRA (T2D) 121 50.4 68.7 (5.8) 58.3 (17.4) 112.1 (33.6) 181.1 (36.4) 142.6 (73.3) No M F Yes EMMAX 21186108 

DR'S EXTRA 

(controls) 1174 53.8 66.4 (5.3) 66.8 (18.6) 125.6 (32.2) 198.7 (35.9) 115.5 (58.9) No M F Yes EMMAX 21186108 

EAS 733 53.0 64.4 (5.7) 55.7 (13.2) 206.7 (47.2) 274.4 (51.1) 461.6 (152.4) Yes F F Yes PLINK 1917239 

EGCUT 1240 53.5 64.2 (10.9) 53.8 (27.9) 136.6 (44.1) 211.3 (46.8) 161.3 (111.6) Yes M F Yes SNPTest 19424496 

Ely 1602 53.6 61.1 (9.2) 56.5 (15.5) 135.5 (36.8) 215.6 (41) 128.5 (74.4) No F F No PLINK 7712700 

EPIC-CAD cases 

(EPIC-Norfolk CAD 

set) 1529 35.1 65.2 (7.9) 49.9 (14.3) 164.1 (40.2) 250.8 (46.4) 192.3 (108.1) No F NF No PLINK 10466767 

EPIC-T2D cases 

(EPIC-Norfolk T2D 

set) 700 40.3 62.2 (8.3) 46.4 (12.8) 153.3 (40.2) 245.4 (48.4) 243.7 (140.9) No F NF No PLINK 14693662 
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EPIC-T2D controls 

(EPIC-Norfolk T2D 

set) 994 56.8 59.4 (9.4) 55 (16.3) 154 (38.3) 239.2 (43) 156.8 (89.5) No F NF No PLINK 14693662 

FBPP a 1614 64.0 43.9 (12.5) 53.6 (15.8) 118.4 (37.8) 193.2 (43.5) NA Yes F F No Merlin 11799070 

Fenland 3186 53.3 46.9 (7.1) 58.8 (15.1) 129.3 (34.8) 207 (39.5) 103.7 (71.8) No F F No PLINK  

FINCAVAS 1201 44.4 58.5 (12.6) 54.6 (17.8) 113 (33.3) 191.2 (38.7) 119.6 (65.6) Yes F F Yes SNPTest 16515696 

FRISCII 2963 30.6 66.2 (9.7) 46.7 (15.2) 145.7 (38.2) 228.1 (43.1) 185.7 (119.5) Yes F F No GenABEL 10892758 

FUSION2 (T2D) 843 43.3 59.5 (8.5) 51.1 (14.8) 123.1 (36.2) 217.6 (47.3) 163.3 (92.8) Yes F F Yes EMMAX 17463248 

FUSION2 (controls) 1880 44.7 56.2 (8.2) 58.1 (15.8) 137.9 (34.9) 225.7 (42.5) 114.8 (68.5) Yes F F Yes EMMAX 17463248 

GLACIER 5764b 61.4 b 54.2 (8.0) b 56.3 (13.4) 173 (45.3) 232.5 (47.4) 142.6 (47.4) Yes F F Yes PLINK 20870969 

Go-DARTs 6759 46.1 57.8 (10.3) 55 (17) 120.7 (35.2) 216.7 (46.8) 177.2 (126.7) No F F No PLINK 17429603 

GXE a 397 76.8 39.8 (8.2) 50.9 (12) 146.1 (41.6) 204.3 (43.7) 84.7 (50.1) Yes F F Yes PLINK 21347282 

HALST (TAICHI) a 2375 49.4 68.9 (8.3) 52.6 (13.5) 120.0 (31.8) 197.7 (36.8) 123.1 (76.2) Yes F F Yes PLINK  

HUNT (T2D) 588 49.5 69.3 (11.3) 45.8 (14.6) 151.9 (42) 241.7 (51.8) 238.7 (163.4) No F NF Yes EMMAX 22879362 

HUNT (controls) 784 49.0 66.3 (14.4) 50.9 (14.3) 163.4 (44.1) 249.7 (48.3) 183.8 (101.1) No F NF Yes EMMAX 22879362 

IMPROVE 1769 50.0 64.4 (5.3) 48.8 (14.7) 148.6 (36.4) 224.1 (42.2) 139.1 (96.6) Yes F F Yes PLINK 19952003 

KORA F3 2816 52.1 56.3 (12.8) 59.2 (18.2) 129.6 (32.1) 220.2 (39.5) 163.9 (124.9) Yes M NF No PLINK 16032514 

KORA F4 2678 53.1 54.5 (13.1) 56.5 (14.7) 138.5 (34.8) 218.3 (39.5) 122.3 (86.8) Yes M F No PLINK 16032514 

MRC/UVRIGPCad 1687 56.7 35.0 (19.1) 39.9 (14.3) 78.6 (29) 138.9 (36.8) 104.5 (55.8) No M NF No EMMAX  

LURIC (cases) 983 26.4 64.9 (9.7) 38.5 (10.7) 124.5 (33.4) 201.2 (37.3) 170 (99.9) Yes M F No PLINK 11258203 

LURIC (controls) 523 46.1 57.9 (12.5) 42.8 (11.5) 121.2 (29.4) 198.8 (35) 154.5 (100.9) Yes M F No PLINK 11258203 

MDC 2125 51.3 57.4 (6.0) 53.9 (13.9) 160 (36.6) 235.5 (40.2) 109.2 (50.5) No F F Yes PLINK 8429286 

METSIM (T2D) 634 0.0 59.7 (6.8) 52.1 (16.1) 134.6 (36.2) 212.8 (44.4) 167 (111.8) Yes M F Yes EMMAX 19223598 

METSIM (controls) 829 0.0 53.7 (5) 57.3 (14.7) 138.4 (29.9) 215.3 (34) 120.1 (76.2) Yes M F Yes EMMAX 19223598 

NFBC86 4164 52.0 16.0 (0.4) 54.6 (11.2) 87.1 (22.4) 164.9 (30.2) 73.5 (36.3) No F F No PLINK  

NSHD 941 52.8 53.0 63.5 (19.7) 136.2 (38.3) 237.2 (43) 206.4 (154.2) No F NF No PLINK 16204333 

PIVUS 854 51.0 70.0 (0.2) 58.1 (15.5) 135.5 (31) 216.7 (38.7) 106.3 (44.3) Yes F F Yes PLINK 18489581 

PROMIS a 3385 18.0 52.5 (9.9) 35.5 (9.9) 122.3 (43.7) 192.7 (50.7) 210.2 (128.8) No M NF Yes PLINK 19404752 

SAPPHIRe (TAICHI) a 251 49.4 54.6 (10.5) 44.2 (12.6) 127.1 (38.2) 200.4 (43.4) 143.0 (80.0) Yes F F Yes PLINK 22839215 

SardiNIA 5378 56.8 43.2 (17.4) 64.3 (14.9) 127.1 (35.5) 208.4 (42.6) 86.9 (68.3) Yes F F No Merlin 16934002 

SCARFSHEEP 2973 0.3 58.3 (7.2) 45.7 (13.9) 156.3 (37.5) 230.7 (42.2) 148 (101) Yes F F No PLINK  

SEY a 426 54.7 48.7 (14.1) 48.3 (13.1) 141.4 (44.1) 213.3 (49.1) 117.8 (80.1) Yes F F No Merlin 15610228 
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SPT a 838c 61.8c 46.7 (0.5)c 48.8 (13) 133.7 (41.3) 192.8 (42.1) 89.1 (53.8) Yes F F Yes PLINK 9103091 

STR 2543 57.0 75.0 (10.2) 54.2 (15.5) 150.9 (42.6) 243.8 (50.3) 150.6 (79.7) Yes F F No Merlin 19606474 

TACT (TAICHI) a 173 31.2 64.1 (10.7) 34.3 (8.0) 103.5 (24.3) 180.1 (36.8) 130.0 (74.2) Yes F F Yes PLINK 19050055 

TCAD (TAICHI) a 2284 23.3 65.8 (11.7) 44.0 (12.5) 112.3 (40.7) 182.6 (42.4) 133.2 (84.7) Yes F F Yes PLINK 17967444 

TCAGEN (TAICHI) a 383 34.7 64.3 (13.3) 45.5 (17.7) 112.1 (37.0) 185.5 (44.6) 166.9 (131.6) Yes F F Yes PLINK 21184753 

THISEAS 929 50.7 58.6 (13.5) 52.7 (15.7) 134.5 (38.1) 211.9 (42.6) 127.1 (77.9) Yes F F No PLINK 20167083 

TROMSO (T2D) 710 50.4 60.0 (12.5) 51.2 (14.8) 168.4 (42.2) 260.5 (46.9) 223.3 (141.5) No F NF Yes EMMAX 21422063 

TROMSO (controls) 711 50.2 60.0 (12.5) 59.5 (16.4) 166.9 (43.7) 254.9 (48.3) 145.3 (89.9) No F NF Yes EMMAX 21422063 

TUDR (TAICHI) a 669 45.7 64.6 (12.1) 42.0 (15.0) 105.5 (40.5) 178.2 (52.7) 151.5 (97.6) Yes F F Yes PLINK 18632180 

ULSAM 1113 0.0 71.0 (0.6) 50.3 (11.6) 150.9 (34.8) 224.5 (38.7) 124 (70.9) Yes F F Yes PLINK 16030278 

WHII 3212 23.0 48.9 (6.0) 53.4 (28.3) 160.2 (78.6) 249.2 (43.3) 129.4 (101.9) Yes F F No PLINK 15576467  
 

a
 Studies of non-European ancestry

 

b
 GLACIER sample sizes differ by trait: TC 5,764, HDL 3,052, LDL 2,034, TG 3,365; %Female: TC 61.1, HDL 61.4, LDL 59.4, TG 59.6; mean age (SD): TC 49.5 (8.7), HDL 53.3 (8.4), LDL 54.2 (8.0), TG 50.9 (8.5) 

c
 SPT sample sizes differ by trait: TC 826, HDL 757, LDL 691, TG 838; % Female: TC 60.7, HDL 61.8, LDL 60.9, TG 61.3; mean age (SD): TC 46.7 (0.5), HDL 46.4 (0.5), LDL 46.5 (0.5), TG 46.7 (0.5) 

d
MRC/UVRI GPC is a GWAS cohort from which ~19,800 Metabochipfine-mapping SNPs were used in analysis 
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Supplementary Table S2.2: Biological Candidate Genes at Novel Loci based on Literature Search, Nonsynonymous Variants, Gene Expression Levels (eQTLs) 

and Pathway Analysis 

Locus Lead SNP Chr 

hg19 

Position 

(Mb) Traits GWS 

 

 

Nearest 

Gene 
Nearest  

Gene (kb) 

No. of Genes 

within 100kb 

Literature 

Candidate 

Gene with 

Nonsynonymous SNP 

(r
2
>0.8) 

eQTL Gene 

(P<5x10
-8

)  

Pathway 

Analysis 

 

Loci Primarily Associated with HDL Cholesterol 

PIGV-NR0B2 rs12748152 1 27.14 HDL, LDL, TG PIGV 13.5 7 PIGV, NR0B2 NUDC*, C1orf172*, 

NR0B2 

 NR0B2  

HDGF-PMVK* rs12145743 1 156.70 HDL RRNAD1 0 10 HDGF, CRABP2 HDGF     

ANGPTL1* rs4650994 1 178.52 HDL C1orf220 0 3      

CPS1 rs1047891 2 211.54 HDL CPS1 0 2  CPS1  CPS1 

ATG7 rs2606736 3 11.40 HDL ATG7 0 2       

SETD2 rs2290547 3 47.06 HDL SETD2 0 4  NBEAL2     

RBM5 rs2013208 3 50.13 HDL RBM5 0 4  MST1R* RBM5   

STAB1 rs13326165 3 52.53 HDL STAB1 0 10 STAB1, NISCH NISCH    

GSK3B rs6805251 3 119.56 HDL GSK3B 0 3 GSK3B, NR1I2     GSK3B 

C4orf52* rs10019888 4 26.06 HDL C4orf52* 131.5 0        

FAM13A rs3822072 4 89.74 HDL FAM13A 0 2        

ADH5 rs2602836 4 100.01 HDL ADH5 4.9 4   ADH5   

RSPO3 rs1936800 6 127.44 HDL, TG RSPO3 4 1        

DAGLB rs702485 7 6.42 HDL DAGLB 0 5 DAGLB  DAGLB DAGLB 

SNX13 rs4142995 7 17.92 HDL SNX13 0 1 SNX13      

IKZF1 rs4917014 7 50.31 HDL IKZF1 0 1 IKZF1      

TMEM176A rs17173637 7 150.53 HDL ABP1 20.1 5    TMEM176A   

MARCH8-ALOX5 rs970548 10 46.01 HDL, TC MARCH8 0 3 ALOX5 MARCH8     

OR4C46 rs11246602 11 51.51 HDL OR4C46 3.2 2   OR5W2*, OR5D13*, 

OR5AS1* 

    

KAT5 rs12801636 11 65.39 HDL PCNXL3 0 12 KAT5      

MOGAT2-DGAT2 rs499974 11 75.46 HDL MOGAT2 12.7 4 MOGAT2, 

DGAT2 

    

ZBTB42-AKT1 rs4983559 14 105.28 HDL ZBTB42 6.2 7 AKT1     AKT1 

FTO rs1121980 16 53.81 HDL, TG FTO 0 2       

HAS1 rs17695224 19 52.32 HDL FPR3 0 6 HAS1      
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Supplementary Table S2.2 (continued) 

Locus Lead SNP Chr 

hg19 

Position 

(Mb) Traits GWS 

 

 

Nearest 

Gene 
Nearest  

Gene (kb) 

No. of Genes 

within 100kb 

Literature 

Candidate 

Gene with 

Nonsynonymous SNP 

(r
2
>0.8) 

eQTL Gene 

(P<5x10
-8

)  

Pathway 

Analysis 

Loci Primarily Associated with LDL Cholesterol 

ANXA9-CERS2 rs267733 1 150.96 LDL ANXA9 0 10 CERS2 ANXA9    ANXA9 

EHBP1 rs2710642 2 63.15 LDL EHBP1 0 1 EHBP1     

INSIG2 rs10490626 2 118.84 LDL, TC INSIG2 10.2 2 INSIG2 CCDC93   INSIG2 

LOC84931 rs2030746 2 121.31 LDL, TC LOC84931 85.6 1        

FN1 rs1250229 2 216.30 LDL FN1 3.6 2 FN1 FN1     

CMTM6 rs7640978 3 32.53 LDL, TC CMTM6 0 3   DYNC1LI1     

ACAD11 rs17404153 3 132.16 LDL, HDL DNAJC13 0 2  ACAD11*     

CSNK1G3 rs4530754 5 122.86 LDL, TC CSNK1G3 0 2        

MIR148A rs4722551 7 25.99 LDL, TC, TG MIR148A 2.2 1        

SOX17 rs10102164 8 55.42 LDL, TC SOX17 48.2 1        

BRCA2 rs4942486 13 32.95 LDL BRCA2 0 5     BRCA2 

APOH-PRXCA rs1801689 17 64.21 LDL APOH 0 3 APOH, PRKCA APOH    APOH 

SPTLC3 rs364585 20 12.96 LDL SPTLC3 26.9 1 SPTLC3  SPTLC3   

SNX5 rs2328223 20 17.85 LDL SNX5 76.3 2 SNX5      

MTMR3 rs5763662 22 30.38 LDL MTMR3 0 2       
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Supplementary Table S2.2 (continued) 

Locus Lead SNP Chr 

hg19 

Position 

(Mb) Traits GWS 

 

 

Nearest 

Gene 
Nearest  

Gene (kb) 

No. of Genes 

within 100kb 

Literature 

Candidate 

Gene with 

Nonsynonymous SNP 

(r
2
>0.8) 

eQTL Gene 

(P<5x10
-8

)  

Pathway 

Analysis 

Loci Primarily Associated with Total Cholesterol 

ASAP3 rs1077514 1 23.77 TC ASAP3 0 6      

ABCB11 rs2287623 2 169.83 TC ABCB11 0 4 ABCB11 ABCB11   ABCB11 

FAM117B rs11694172 2 203.53 TC FAM117B 0 2      

UGT1A1 rs11563251 2 234.68 TC, LDL UGT1A1 0 12 UGT1A1/3/4/5 

UGT1A6/7/8/9 

   UGT1A1 

PXK rs13315871 3 58.38 TC PXK 0 4 PXK  PXK   

KCNK17 rs2758886 6 39.25 TC KCNK17 15.9 4       

HBS1L rs9376090 6 135.41 TC HBS1L 35.2 2        

GPR146 rs1997243 7 1.08 TC C7orf50 0 7  GPR146 GPR146   

VLDLR rs3780181 9 2.64 TC, LDL VLDLR 0 3 VLDLR    VLDLR 

VIM-CUBN rs10904908 10 17.26 TC VIM 10.0 3 VIM, CUBN     CUBN 

PHLDB1 rs11603023 11 118.49 TC PHLDB1 0 7       

PHC1-A2ML1 rs4883201 12 9.08 TC PHC1 0 4 A2ML1     

DLG4 rs314253 17 7.09 TC, LDL DLG4 1.6 13 ACADVL, 

CTDNEP1, 

SLC2A4 

   DLG4  

TOM1 rs138777 22 35.71 TC TOM1 0 4 HMOX1 HMGXB4     

PPARA rs4253772 22 46.63 TC, LDL PPARA 0 6 PPARA    PPARA 
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Supplementary Table S2.2 (continued) 

Locus Lead SNP Chr 

hg19 

Position 

(Mb) Traits GWS 

 

 

Nearest 

Gene 
Nearest  

Gene (kb) 

No. of Genes 

within 100kb 

Literature 

Candidate 

Gene with 

Nonsynonymous SNP 

(r
2
>0.8) 

eQTL Gene 

(P<5x10
-8

)  

Pathway 

Analysis 

Loci Primarily Associated with Triglycerides 

LRPAP1 rs6831256 4 3.47 TG, LDL, TC DOK7 0 4 LRPAP1    LRPAP1 

VEGFA rs998584 6 43.76 TG, HDL VEGFA 3.7 1 VEGFA    VEGFA 

MET rs38855 7 116.36 TG MET 0 1       

AKR1C4 rs1832007 10 5.25 TG AKR1C4 0 2 AKR1C4 AKR1C4   AKR1C4 

PDXDC1 rs3198697 16 15.13 TG PDXDC1 0 4       

MPP3 rs8077889 17 41.88 TG MPP3 0 6      MPP3 

INSR rs7248104 19 7.22 TG INSR 0 1     INSR 

PEPD rs731839 19 33.90 TG, HDL PEPD 0 2 CEBPG     

 

Supplementary Table S2.2 summarizes results of our search for candidates at each locus. The locus label includes a gene used to refer to the locus 

throughout the text. Except for loci labeled * (PMVK, ANGPTL1 and C4orf52) the locus label always refers to a gene within 100kb of the SNP with 

strongest association; in these three cases, the gene selected as the locus label was judged to be an especially worthy candidate >100kb or no genes within 

100kb of the lead SNP were available. The columns labeled literature candidate, non-synonymous SNP, eQTL and pathway analysis candidate indicate 

genes flagged in our various searches for candidate genes, further detailed in the text and in supplementary tables. Genes with a non-synonymous SNP in 

disequilibrium with the lead SNP for the locus but more than 100kb away are also labeled *. 
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Supplementary Table S2.3: Summary of Joint Meta-Analysis Association Results for 95 Previously Discovered Lipid Loci 

 
 

 

Nearest gene 

 

 

 

MarkerName 

 

 

 

Chr 

 

hg19 

Position 

(Mb) 

Primary 

trait, 

Secondary  

trait(s) 

 

 

MAF 

 

Alleles  

minor/ 

major 

 

 

 

Effect 

 

 

Joint N 

(in 1000s) 

 

 

 

Joint P-value 

Loci Primarily Associated with HDL Cholesterol 

PABPC4 rs4660293 1 40.03 HDL .24 G/A -.035 187 3x10-18 

ZNF648 rs1689800 1 182.17 HDL .35 G/A -.034 187 5x10-20 

GALNT2 rs4846914 1 230.30 HDL,TG .41 G/A -.048/.040 187/178 4x10-41/7x10-31 

COBLL1 rs12328675 2 165.54 HDL .13 C/T .045 187 2x10-15 

IRS1 rs2972146 2 227.10 HDL,TG .37 G/T .032/-.028 184/175 2x10-17/3x10-15 

SLC39A8 rs13107325 4 103.19 HDL .08 T/C -.071 179 1x10-15 

ARL15 rs6450176 5 53.30 HDL .26 A/G -.025 187 7x10-10 

CITED2 rs605066 6 139.83 HDL .42 C/T -.028 94 3x10-8 

KLF14 rs4731702 7 130.43 HDL .49 T/C .029 187 5x10-17 

PPP1R3B rs9987289 8 9.18 HDL,TC,LDL .10 A/G -.082/-

.084/-.071 

169/174/160 2x10-41/2x10-36/9x10-24 

TRPS1 rs2293889 8 116.60 HDL .41 T/G -.031 180102 4x10-17 

TTC39B rs581080 9 15.31 HDL,TC .21 G/C -.042/-.038 187/187 1x10-19/1x10-13 

ABCA1 rs1883025 9 107.66 HDL,TC .25 T/C -.07/-.067 186/187 2x10-65/6x10-53 

AMPD3 rs2923084 11 10.39 HDL .18 G/A -.026 187 5x10-8 

LRP4 rs3136441 11 46.74 HDL .18 C/T .054 187 7x10-29 

PDE3A rs7134375 12 20.47 HDL .43 A/C .021 187 1x10-8 

MVK rs7134594 12 110.00 HDL .48 C/T -.035 94 2x10-13 

SBNO1 rs4759375 12 123.80 HDL .08 T/C .056 94 3x10-8 

ZNF664 rs4765127 12 124.46 HDL .35 T/G .032/-.029 94/91 8x10-10/2x10-8 

SCARB1 rs838880 12 125.26 HDL .34 C/T .048 173 6x10-32 

LIPC rs1532085 15 58.68 HDL,TC,TG .40 A/G .107/.054/.

031 

185/186/176 1x10-188/7x10-47/2x10-18 

LACTB rs2652834 15 63.40 HDL .21 A/G -.028 186 4x10-11 

CETP rs3764261 16 56.99 HDL,LDL,TC,TG .32 A/C .241/-

.053/.050/-

.040 

178/165/177/169 1x10-769/2x10-34/4x10-31/2x10-25 

LCAT rs16942887 16 67.93 HDL .14 A/G .083 186 8x10-54 

CMIP rs2925979 16 81.53 HDL .31 T/C -.035 186 1x10-19 

STARD3 rs11869286 17 37.81 HDL .35 G/C -.032 178 3x10-17 

ABCA8 rs4148008 17 66.88 HDL .33 G/C -.028 166 1x10-12 

PGS1 rs4129767 17 76.40 HDL .48 G/A -.024 185 2x10-11 

LIPG rs7241918 18 47.16 HDL,TC .19 G/T -.09/-.058 93/93 1x10-44/4x10-18 

MC4R rs12967135 18 57.85 HDL .25 A/G -.026 154 4x10-8 

ANGPTL4 rs7255436 19 8.43 HDL .47 C/A -.032 93 2x10-8 

ANGPTL8 rs737337 19 11.35 HDL .11 C/T -.056 185 5x10-17 

LILRA3 rs386000 19 54.79 HDL .26 C/G .048 165 3x10-23 

HNF4A rs1800961 20 43.04 HDL,TC .05 T/C -.127/-.106 158/156 2x10-34/1x10-24 

PLTP rs6065906 20 44.55 HDL,TG .19 C/T -.059/.053 186/176 5x10-40/2x10-34 

UBE2L3 rs181362 22 21.93 HDL .23 T/C -.038 178 4x10-18 
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Supplementary Table S2.3 (continued) 

Loci Primarily Associated with LDL Cholesterol 

PCSK9 rs2479409 1 55.50 LDL,TC .32 G/A .064/.054 173/187 3x10-50/2x10-39 

SORT1 rs629301 1 109.82 LDL,TC .24 G/T -.167/-.134 143/156 5x10-241/2x10-170 

APOB rs1367117 2 21.26 LDL,TC .32 A/G .119/.100 173/187 1x10-182/3x10-139 

ABCG5/8 rs4299376 2 44.07 LDL,TC .31 G/T .081/.079 145/158 4x10-72/3x10-73 

MYLIP rs3757354 6 16.13 LDL,TC .24 T/C -.038/-.035 173/187 2x10-17/2x10-15 

HFE rs1800562 6 26.09 LDL,TC .07 A/G -.062/-.056 171/185 8x10-14/2x10-12 

LPA rs1564348 6 160.58 LDL,TC .18 C/T .048/.049 173/187 3x10-21/3x10-23 

PLEC1 rs11136341 8 145.04 LDL,TC .40 G/A .045/.038 83/87 7x10-12/6x10-9 

ABO rs9411489 9 136.155 LDL,TC .21 T/C .077/.069 119/130 2x10-41/3x10-35 

ST3GAL4 rs11220462 11 126.24 LDL,TC .14 A/G .059/.047 145/157 7x10-21/6x10-15 

NYNRIN rs8017377 14 24.88 LDL .46 A/G .030 173 3x10-15 

OSBPL7 rs7206971 17 45.43 LDL,TC .49 A/G .029/.030 81/85 3x10-7/1x10-7 

LDLR rs6511720 19 11.20 LDL,TC .12 T/G -.221/-.185 171/185 4x10-262/5x10-202 

APOE rs4420638 19 45.42 LDL,TC,HDL .19 G/A .225/.197/-.067 93/104/100 2x10-178/1x10-149/2x10-21 

TOP1 rs6029526 20 39.67 LDL,TC .47 A/T .044/.040 88/93 5x10-18/1x10-16 

Loci Primarily Associated with Total Cholesterol 

LDLRAP1 rs12027135 1 25.78 TC,LDL .46 A/T -.027/-.030 178/165 5x10-12/2x10-14 

EVI5 rs7515577 1 93.01 TC .23 C/A -.037 95 2x10-8 

MOSC1 rs2642442 1 220.97 TC,LDL .33 C/T -.035/-.036 111/102 3x10-11/5x10-11 

IRF2BP2 rs514230 1 234.86 TC,LDL .48 A/T -.039/-.036 95/90 5x10-14/9x10-12 

RAB3GAP1 rs7570971 2 135.84 TC .35 A/C .030 185 1x10-13 

RAF1 rs2290159 3 12.63 TC .23 C/G -.037 94 2x10-9 

HMGCR rs12916 5 74.66 TC,LDL .40 C/T .068/.073 183/168 5x10-74/8x10-78 

TIMD4 rs6882076 5 156.39 TC,TG,LDL .36 T/C -.051/-.029/-.046 187/178/173 5x10-41/2x10-15/3x10-31 

HLA rs3177928 6 32.41 TC,LDL .17 A/G .048/.045 180/166 1x10-21/3x10-17 

C6orf106 rs2814982 6 34.55 TC .12 T/C -.044 187 4x10-15 

FRK rs9488822 6 116.31 TC,LDL .36 T/A .034/.031 95/90 1x10-9/2x10-7 

DNAH11 rs12670798 7 21.61 TC,LDL .25 C/T .036/.034 187/173 1x10-16/5x10-14 

NPC1L1 rs2072183 7 44.58 TC,LDL .29 C/G .036/.039 184/170 4x10-15/7x10-16 

CYP7A1 rs2081687 8 59.39 TC,LDL .36 T/C .038/.031 95/90 9x10-12/1x10-7 

GPAM rs2255141 10 113.93 TC,LDL .30 A/G .031/.030 187/173 7x10-16/1x10-13 

SPTY2D1 rs10128711 11 18.63 TC .30 T/C -.031 157 1x10-11 

UBASH3B rs7941030 11 122.52 TC,HDL .39 C/T .028/.027 187/187 2x10-14/1x10-14 

BRAP rs11065987 12 112.07 TC,LDL .41 G/A -.031/-.027 187/173 2x10-16/1x10-11 

HNF1A rs1169288 12 121.42 TC,LDL .34 C/A .032/.038 176/163 4x10-17/6x10-21 

HPR rs2000999 16 72.11 TC,LDL .20 A/G .062/.065 186/172 7x10-41/4x10-41 

CILP2 rs10401969 19 19.41 TC,TG,LDL .09 C/T -.137/-.121/-.118 186/176/171 4x10-77/1x10-69/3x10-54 

FLJ36070 rs492602 19 49.21 TC .47 G/A .031 184 1x10-16 

ERGIC3 rs2277862 20 34.15 TC .15 T/C -.035 186 5x10-11 

MAFB rs2902940 20 39.09 TC,LDL .30 G/A -.024/-.027 186/172 9x10-10/2x10-11 
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Supplementary Table S2.3 (continued) 

Loci Primarily Associated with Triglycerides 

ANGPTL3 rs2131925 1 63.03 TG,LDL,TC .34 G/T -.066/-.049/-.075 178/173/187 3x10-74/3x10-32/4x10-80 

GCKR rs1260326 2 27.73 TG,TC .39 T/C .115/.051 178/187 2x10-239/3x10-42 

MSL2L1 rs645040 3 135.93 TG .23 G/T -.029 178 2x10-12 

KLHL8 rs442177 4 88.03 TG .42 G/T -.031 178 1x10-18 

MAP3K1 rs9686661 5 55.86 TG .20 T/C .038 177 3x10-16 

TYW1B rs13238203 7 72.13 TG .04 T/C -.059 102 3x10-6 

MLXIPL rs17145738 7 72.98 TG,HDL .13 T/C -.115/.041 176/185 9x10-99/5x10-13 

PINX1 rs11776767 8 10.68 TG .37 C/G .022 177 3x10-11 

NAT2 rs1495741 8 18.27 TG,TC .26 G/A .040/.032 88/92 3x10-12/3x10-8 

LPL rs12678919 8 19.84 TG,HDL .13 G/A -.170/.155 178/187 2x10-199/1x10-149 

TRIB1 rs2954029 8 126.49 TG,TC,LDL,HDL .47 T/A -.076/-.062/-.056/.040 178/187/173/187 1x10-107/2x10-65/2x10-50/3x10-29 

JMJD1C rs10761731 10 65.03 TG .44 T/A -.031 91 8x10-12 

CYP26A1 rs2068888 10 94.84 TG .45 A/G -.024 178 2x10-11 

FADS1-2-3 rs174546 11 61.57 TG,LDL,TC,HDL .36 T/C .045/-.051/-.048/-.039 178/173/187/187 7x10-38/2x10-39/3x10-37/8x10-28 

APOA1 rs964184 11 116.65 TG,TC,HDL,LDL .84 C/G -.234/-.121/.106/-.086 91/95/94/90 7x10-224/3x10-55/6x10-48/2x10-26 

LRP1 rs11613352 12 57.79 TG,HDL .26 T/C -.028/.028 178/187 9x10-14/2x10-13 

CAPN3 rs2412710 15 42.68 TG .04 A/G .099 154 2x10-11 

FRMD5 rs2929282 15 44.25 TG .07 T/A .072 84 2x10-9 

CTF1 rs11649653 16 30.92 TG .40 G/C -.027 90 2x10-7 

PLA2G6 rs5756931 22 38.55 TG .40 C/T -.020 174 3x10-8 
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Supplementary Table S2.4: Overlap of Novel Loci and Literature 
 

 

 

Locus 

 

 

 

Lead SNP 

 

 

 

Chr 

 

hg19 

Position 

(Mb) 

 

 

 

Traits GWS 

 

 

 

Literature 

Candidate 

 

 

 

Complete Gene Name 

 

 

 

Reference 

Loci Primarily Associated with HDL Cholesterol 

PIGV-NR0B2 rs12748152 1 27.14 HDL, LDL, TG PIGV phosphatidylinositol glycan anchor biosynthesis, class V PMID 20802478 

PMID 15623507 

PIGV-NR0B2 rs12748152 1 27.14 HDL, LDL, TG NR0B2 nuclear receptor subfamily 0, group B, member 2 PMID 22577560 

PMID 20375098 

HDGF-PMVK rs12145743 1 156.70 HDL HDGF hepatoma-derived growth factor PMID 14635185 

HDGF-PMVK rs12145743 1 156.70 HDL CRABP2 cellular retinoic acid binding protein 2 PMID 17484622  

ANGPTL1 rs4650994 1 178.52 HDL    

CPS1 rs1047891 2 211.54 HDL    

ATG7 rs2606736 3 11.40 HDL    

SETD2 rs2290547 3 47.06 HDL    

RBM5 rs2013208 3 50.13 HDL    

STAB1 rs13326165 3 52.53 HDL STAB1 stabilin 1 PMID 21480214 

PMID 19726632 

PMID 21030611 

STAB1 rs13326165 3 52.53 HDL NISCH nischarin PMID 21484668  

GSK3B rs6805251 3 119.56 HDL GSK3B glycogen synthase kinase 3 beta PMID 21334395 

PMID 21328461 

GSK3B rs6805251 3 119.56 HDL NR1I2 nuclear receptor subfamily 1, group I, member 2 PMID 21295138 

C4orf52 rs10019888 4 26.06 HDL    

FAM13A rs3822072 4 89.74 HDL    

ADH5 rs2602836 4 100.01 HDL    

RSPO3 rs1936800 6 127.44 HDL, TG    

DAGLB rs702485 7 6.45 HDL DAGLB diacylglycerol lipase, beta PMID 21949825  

SNX13 rs4142995 7 17.92 HDL SNX13 sorting nexin 13 PMID 12461558 

IKZF1 rs4917014 7 50.31 HDL IKZF1 IKAROS family zinc finger 1 (Ikaros) PMID 18483254 

TMEM176A rs17173637 7 150.53 HDL    

MARCH8-ALOX5 rs970548 10 46.01 HDL, TC ALOX5 arachidonate 5-lipoxygenase PMID 22293202 

OR4C46 rs11246602 11 51.51 HDL    

KAT5 rs12801636 11 65.39 HDL KAT5 K(lysine) acetyltransferase 5 PMID 18096664  

PMID 17996965 

MOGAT2-DGAT2 rs499974 11 75.46 HDL MOGAT2 monoacylglycerol O-acyltransferase 2 PMID 21734185 

PMID 14966132 
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Supplementary Table S2.4 (continued)        

MOGAT2-DGAT2 rs499974 11 75.46 HDL DGAT2 diacylglycerol O-acyltransferase 2 PMID 22493088 

PMID 21317108 

PMID 22155452 

ZBTB42-AKT1 rs4983559 14 105.28 HDL  AKT1 v-akt murine thymoma viral oncogene homolog 1 PMID 18054314  

PMID 20054340 

FTO rs1121980 16 53.81 HDL, TG    

HAS1 rs17695224 19 52.32 HDL HAS1 hyaluronan synthase 1 PMID 9933623 
Loci Primarily Associated with LDL Cholesterol 

ANXA9-CERS2 rs267733 1 150.96 LDL CERS2 ceramide synthase 2 PMID 20940143 

PMID 20110363 

PMID 19801672 

EHBP1 rs2710642 2 63.15 LDL EHBP1 EH domain binding protein 1 PMID 21332221 

INSIG2 rs10490626 2 118.84 LDL, TC INSIG2 insulin induced gene 2 PMID 22143767 

PMID 20817058 

PMID 20090767 

LOC84931 rs2030746 2 121.31 LDL, TC    

FN1 rs1250229 2 216.30 LDL FN1 fibronectin 1 PMID 16150826 

CMTM6 rs7640978 3 32.53 LDL, TC    

ACAD11 rs17404153 3 132.16 LDL, HDL    

CSNK1G3 rs4530754 5 122.86 LDL, TC    

MIR148A rs4722551 7 25.99 LDL, TC, TG    

SOX17 rs10102164 8 55.42 LDL, TC    

BRCA2 rs4942486 13 32.95 LDL    

APOH-PRXCA rs1801689 17 64.21 LDL APOH apolipoprotein H PMID 12740481 

APOH-PRXCA rs1801689 17 64.21 LDL PRKCA protein kinase C, alpha PMID 20692055 

PMID 12952980 

SPTLC3 rs364585 20 12.96 LDL SPTLC3 serine palmitoyltransferase, long chain base subunit 3 PMID 19648650 

SNX5 rs2328223 20 17.85 LDL SNX5 sorting nexin 5 PMID 15561769 

MTMR3 rs5763662 22 30.38 LDL    
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Supplementary Table S2.4 (continued) 

 
Loci Primarily Associated with Total Cholesterol 

ASAP3 rs1077514 1 23.77 TC    

ABCB11 rs2287623 2 169.83 TC ABCB11 ATP-binding cassette, sub-family B (MDR/TAP), member 11 PMID 21726512 

PMID 19228692 

FAM117B rs11694172 2 203.53 TC    

UGT1A1 rs11563251 2 234.68 TC, LDL UGT1A1/3/4/5/6/7/8/9/20 UDP glucuronosyltransferase 1 family, polypeptide A1 PMID 17908920 

PXK rs13315871 3 58.38 TC PXK PX domain containing serine/threonine kinase PMID 20086096 

PMID 17178602 

KCNK17 rs2758886 6 39.25 TC    

HBS1L rs9376090 6 135.41 TC    

GPR146 rs1997243 7 1.08 TC    

VLDLR rs3780181 9 2.64 TC, LDL VLDLR very low density lipoprotein receptor PMID 8827514 

VIM-CUBN rs10904908 10 17.26 TC VIM vimentin PMID 22535769 

PMID 7706405 

PMID 1527066 

VIM-CUBN rs10904908 10 17.26 TC CUBN cubilin PMID 10371504 

PHLDB1 rs11603023 11 118.49 TC    

PHC1-A2ML1 rs4883201 12 9.08 TC A2ML1 alpha-2-macroglobulin-like 1 PMID 18648652 

DLG4 rs314253 17 7.09 TC, LDL ACADVL acyl-CoA dehydrogenase, very long chain PMID 19889959 

DLG4 rs314253 17 7.09 TC, LDL CTDNEP1 CTD nuclear envelope phosphatase 1 PMID 22134922 

DLG4 rs314253 17 7.09 TC, LDL SLC2A4 solute carrier family 2, member 4 PMID 16096283  

TOM1 rs138777 22 35.71 TC HMOX1 hemeoxygenase (decycling) 1 PMID 22004613 

PPARA rs4253772 22 46.63 TC, LDL PPARA peroxisome proliferator-activated receptor alpha PMID 21540177 

PMID 21487230 

Loci Primarily Associated with Triglycerides 

LRPAP1 rs6831256 4 3.47 TG, LDL, TC LRPAP1 low density lipoprotein receptor-related protein associated protein 1 PMID 16973241 

VEGFA rs998584 6 43.76 TG, HDL VEGFA vascular endothelial growth factor A PMID 21348596 

PMID 18789802 

MET rs38855 7 116.36 TG    

AKR1C4 rs1832007 10 5.25 TG AKR1C4 aldo-ketoreductase family 1, member C4 PMID 18024509 

PDXDC1 rs3198697 16 15.13 TG    

MPP3 rs8077889 17 41.88 TG    

INSR rs7248104 19 7.22 TG    

PEPD rs731839 19 33.90 TG, HDL CEBPG CCAAT/enhancer binding protein (C/EBP), gamma PMID 12177065 
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Supplementary Table S2.5: Pathways that Show Enrichment of Genes at Novel Loci by MAGENTA analysis 

 
Supplementary Tables 5A-D.Database and Gene Set define the source of the gene set with evidence for enrichment;  Effective Gene Set Size, the 

number of genes in a pathway independently assigned a score, after clustering nearby genes and excluding genes in regions with no SNP data; 

Expected Number of Hits, the number of genes expected to have a score in the top 5% of all scores given the gene set size; Observed Number of Hits, 

the number of genes observed in the top 5% of all gene scores; FDR P-value, the false discovery rate incurred by rejecting the null for this gene set 

and all others with more extreme enrichment using all GWAS+Metabochip results; Genome-wide Significant Genes, genes in the pathway labeled as 

hits by MAGENTA (Known and Novel refer to association evidence reported by this study); Other Enriched Genes, genes with scores in the top 5% 

of all gene scores but that do not reach genome-wide significance. We show here significant pathways (FDR p< .05) which contain at least one gene 

from one of the 62 Novel loci. 
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Supplementary Table S2.5-A: Pathways that Show Enrichment of Genes at Novel HDL Associated Loci by MAGENTA analysis 

Database Gene Set 

Effective 

Gene Set 

Size 

No. of 

Expected 

Genes 

(>95% 

Cutoff) 

No. of 

Observe

d Genes 

(>95% 

Cutoff) 

FDR  

P-value 

Genome-wide Significant Genes 

Novel Known Other Enriched Genes 

HDL Cholesterol 

Ingenuity FXR RXR activation 54 3 13 6.0x10
-4

 NR0B2 

SCARB1,LIPC,HNF4A,PLTP, 

APOB,APOE,MLXIPL,APOA1 APOC3,NR1H3,APOC2,NR1I2 

GOTERM Cholesterol metabolic process 52 3 11 1.3x10
-2

 NR0B2 

CETP,LCAT,STARD3,APOB, 

APOE,APOA1 ABCA1,APOA4,APOC3,APOC1 

Ingenuity 

LPS IL-1 mediated inhibition 

of RXR function 52 3 9 2.0x10
-2

 NR0B2 

ABCA1,SCARB1,LIPC,CETP, 

PLTP,APOE APOC2,NR1I2 

KEGG Neurotrophin signaling 116 6 16 2.1x10
-2

 

AKT1,GSK3

B SORT1 

RAC1,RPS6KA1,SH2B3,NFKB1, 

NTRK1,MAP2K7,RELA,PLCG2, 

PRKCD,PTPN11,MAP2K2,TP53, 

MAPK10 

Ingenuity PXR RXR activation 45 2 8 2.4x10
-2

 NR0B2 HNF4A 

RELA,NR1I2,ABCB9,GSTM1, 

INSR,CPT1A 

KEGG Adipocytokine signaling 63 3 11 2.5x10
-2

 AKT1   

AGRP,TRADD,SOCS3,ACSL5, 

NFKB1,RELA,PTPN11,CHUK, 

CPT1A,MAPK10 

GOTERM Triglyceride lipase activity 15 1 5 2.5x10
-2

 DAGLB LIPC,LIPG,LPL DAGLA 

Ingenuity NFKB signaling 39 2 7 2.9x10
-2

 GSK3B   

RELB,CD40,NFKB1,RELA, 

PLCG2,CHUK 

Ingenuity PPARaRXRa activation 50 3 8 3.4x10
-2

 NR0B2 ABCA1,LPL,APOA1 CKAP5,MED1,NCOA6,INSR 

GOTERM Enzyme binding 108 5 16 3.8x10
-2

 AKT1 

UBE2L3,SORT1,APOB, 

APOA1 

APOA5,RAC1,CSF3,CD40, 

PRKCD,PLAUR,DNM2,CBX1, 

TP53,MIZF,HMGA1 

GOTERM Phospholipid binding 47 2 9 4.2x10
-2

 CPS1 ABCA1,APOB,APOE,APOA1 

APOA5,LYPLA3,APOC3, 

MAP1LC3A 
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Supplementary Table S2.5-B: Pathways that Show Enrichment of Genes at Novel LDL Associated Loci by MAGENTA analysis 

Database Gene Set 

Effective 

Gene Set 

Size 

No. of 

Expected 

Genes 

(>95% 

Cutoff) 

No. of 

Observed 

Genes 

(>95% 

Cutoff) 

FDR  

P-value 

Genome-wide Significant Genes 

Novel Known Other Enriched Genes 

LDL Cholesterol 

GOTERM Cholesterol metabolic process 53 3 18 < 3.3x10-5 

NR0B2,INSIG2, 

VLDLR,CUBN 

ABCA1,CETP,PCSK9,APOB, 

LDLR,APOE,LDLRAP1,HNF1A, 

ANGPTL3,APOA1 APOC1,APOA4,APOC3,PPARD 

Ingenuity FXR RXR activation 54 3 16 < 3.3x10-5 

NR0B2,PPARA,

VLDLR, 

ABCB11 

HNF4A,APOB,APOE,CYP7A1,H

NF1A,APOA1 

PPARG,APOC2,ABCG5,ABCG8,APO

C3,MTTP 

GOTERM Lipoprotein metabolic process 15 1 7 1.7x10-4 PPARA PCSK9,NPC1L1 APOC1,APOA5,APOA4,APOC3 

GOTERM Lipid transport 61 3 14 1.6x10-3 VLDLR 

CETP,APOB,LPA,LDLR,APOE,A

POA1 

APOC1,APOC2,APOC4,COL4A3BP, 

APOA5,APOA4,APOC3 

Ingenuity 

LPS I-1 mediated inhibition of RXR 

function 53 3 11 2.2x10-3 

NR0B2,PPARA, 

ABCB11 ABCA1,CETP,APOE,CYP7A1 APOC2,ABCG5,ABCG8,LY96 

GOTERM 

Low-density lipoprotein receptor 

binding 11 1 5 2.9x10-3 LRPAP1 PCSK9,APOB,APOE APOA5 

GOTERM 

Negative regulation of macrophage 

derived foam cell differentiation 12 1 5 3.4x10-3 PPARA ABCA1,CETP ITGB3,PPARG 

Ingenuity Hepatic cholestasis 58 3 11 3.4x10-3 

NR0B2,PPARA, 

ABCB11 

CETP,HNF4A,CYP7A1, 

HNF1A TIRAP,MAP3K4,LY96,NR1H4 

GOTERM Steroid metabolic process 67 3 13 6.5x10-3 

INSIG2,VLDLR, 

CUBN 

ABCA1,CETP,PCSK9,APOB, 

OSBPL7,LDLR,LDLRAP1, 

NPC1L1,CYP7A1 SORL1 

Ingenuity PPAR Signaling 18 1 5 7.9x10-3 NR0B2,PPARA RAF1 PPARG,PPARD 

GOTERM Phosphatidylserine binding 10 1 4 1.3x10-2 ANXA9 SCARB1 CPNE1,TRIM72 

Ingenuity PXR RXR activation 46 2 8 1.7x10-2 

NR0B2,PPARA, 

ABCB11, 

UGT1A1 HNF4A,CYP7A1 GSTM1,UGT1A9 

GOTERM Lipoprotein transport 10 1 4 1.7x10-2 CUBN APOB PPARG,MTTP 

GOTERM Steroid hormone receptor activity 45 2 9 3.3x10-2 NR0B2,PPARA HNF4A 

PPARG,PPARD,NR1H4,RARB, 

NR4A3,THRA 

GOTERM Organ regeneration 24 1 6 3.5x10-2 APOH   PPARG,ATIC,GAS6,NR4A3,LIF 

GOTERM Receptor-mediated endocytosis 39 2 8 3.6x10-2 CUBN HFE,APOE 

IGF2R,ASGR1,M6PR,SORL1, 

ARHGAP27 
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Supplementary Table S2.5-C: Pathways that Show Enrichment of Genes at Novel Total Cholesterol Associated Loci by MAGENTA analysis 

Database Gene Set 

Effective 

Gene Set 

Size 

No. of 

Expected 

Genes 

(>95% 

Cutoff) 

No. of 

Observed 

Genes 

(>95% 

Cutoff) 

FDR  

P-value 

Genome-wide Significant Genes 

Novel Known Other Enriched Genes 

Total Cholesterol 

GOTERM Cholesterol metabolic process 52 3 18 < 3.3x10-5 

CUBN,INSIG2,VL

DLR 

ABCA1,CETP,LCAT,PCSK9, 

APOB,LDLR,APOE,LDLRAP1, 

HNF1A,ANGPTL3,APOA1 APOC1,APOA4,APOC3,PPARD 

Ingenuity FXR RXR activation 54 3 18 < 3.3x10-5 

ABCB11,PPARA,V

LDLR,NR0B2 

SCARB1,LIPC,HNF4A,APOB, 

APOE,CYP7A1,HNF1A,APOA1 

APOC2,ABCG5,ABCG8,APOC3, 

PPARG,SDC1 

Ingenuity 

LPS IL-1 Mediated Inhibition of 

RXR Function 53 3 14 6.7x10-5 

ABCB11,PPARA,

NR0B2 

ABCA1,SCARB1,LIPC,CETP, 

APOE,CYP7A1 

APOC2,ABCG5,ABCG8,LY96, 

ABCB9 

GOTERM 

Low-density lipoprotein receptor 

binding 11 1 6 1.6x10-4 LRPAP1 PCSK9,APOB,APOE APOA5,SNX17 

Ingenuity Hepatic cholestasis 56 3 12 7.5x10-4 

ABCB11,PPARA,

NR0B2 CETP,HNF4A,CYP7A1,HNF1A 

LY96,NR1I2,MAP3K4,NR1H4, 

HSD3B7 

Ingenuity PXR RXR activation 46 2 10 1.1x10-3 

ABCB11,PPARA,

UGT1A1,NR0B2 HNF4A,CYP7A1 GSTM1,UGT1A9,ABCB9,NR1I2 

GOTERM 

Negative regulation of macrophage-

derived foam cell differentiation 12 1 5 4.2x10-3 PPARA ABCA1,CETP PPARG,ITGB3 

Ingenuity PPAR signaling 18 1 5 7.7x10-3 PPARA,NR0B2 RAF1 PPARG,PPARD 

GOTERM Steroid metabolic process 68 3 13 9.8x10-3 

CUBN,INSIG2, 

VLDLR 

ABCA1,CETP,LCAT,PCSK9,APO

B,LDLR,LDLRAP1,NPC1L1 

,CYP7A1 NR1I2 

GOTERM Gamma-tubulin binding 10 1 4 1.6x10-2 BRCA2   SPATC1,MARK4,BLOC1S2 

GOTERM Phosphatidylserine binding 10 1 4 2.0x10-2 ANXA9 SCARB1 CPNE1,TRIM72 

Ingenuity 

NRF2-mediated oxidative stress 

Response 50 3 8 3.3x10-2 GSK3B SCARB1,RAF1 

HERPUD1,KEAP1,ERP29, 

HMOX1,FTH1 

Ingenuity Axonal guidance signaling 65 3 9 3.3x10-2 GSK3B RAF1 

SDCBP,VASP,PTPN11,CXCR4, 

ARHGEF15,GDF7,ERBB2 

Ingenuity Neuregulin signaling 25 1 5 3.4x10-2 DLG4 RAF1 

PTPN11,RPS6,GRB7 

Ingenuity Estrogen receptor signaling 30 2 5 4.4x10-2 NR0B2 RAF1 

SMARCA4,CARM1,PELP1 

Ingenuity PPARaRXRa activation 50 3 7 4.5x10-2 PPARA,NR0B2 ABCA1,RAF1,APOA1 

MED24,MED1 

GOTERM Receptor-mediated endocytosis 39 2 8 4.7x10-2 CUBN APOE 

IGF2R,ASGR1,M6PR,CXCL16, 

PLD2,SNX17 
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Supplementary Table S2.5-D: Pathways that Show Enrichment of Genes at Novel Triglyceride Associated Loci by MAGENTA analysis 

Database Gene Set 

Effectiv

e Gene 

Set Size 

No. of 

Expecte

d Genes 

(>95% 

Cutoff) 

No. of 

Observe

d Genes 

(>95% 

Cutoff) 

FDR  

P-value 

Genome-wide Significant Genes 

Novel Known Other Enriched Genes 

Triglycerides 

Ingenuity FXR RXR activation 54 3 15 < 3.3x10
-5

 NR0B2 

SCARB1,LIPC,PLTP,APOB, 

APOE,CYP7A1,MLXIPL 

,APOA1 

APOC2,APOC3,PPARG,CYP27

A1,NR1H3,SLCO1B1 

GOTERM 

Low-density lipoprotein receptor 

binding 11 1 5 2.3x10
-3

 LRPAP1 APOB,APOE SNX17,APOA5 

KEGG Primary bile acid biosynthesis 16 1 5 1.0x10
-2

 AKR1C4 CYP7A1 HSD3B7,CYP27A1,HSD17B4 

GOTERM Cholesterol metabolic process 52 3 11 1.2x10
-2

 NR0B2 

ABCA1,CETP,APOB, 

APOE,ANGPTL3,APOA1 

APOA4,APOC1,APOC3,CYP27

A1 

Ingenuity PPAR signaling 18 1 5 1.4x10
-2

 INSR,NR0B2 RAF1 PPARG,NR1H3 

GOTERM Cell surface 184 9 23 3.0x10
-2

 

VEGFA 

,LRPAP1,MPP3 SCARB1 

PVRL2,EDG4,BACE1,STX4,BC

AM,STRC,FLT3LG,MPP2,TME

M102,PCSK6,DSCAML1 

,HSPB1,CD6,C9orf127,BMPR2,

IGF2R ,ITGAL,SDC1,HFE2 

Ingenuity 

LPS IL-1 mediated inhibition of 

RXR function 51 3 8 5.0x10
-2

 NR0B2 

ABCA1,LIPC,CETP,PLTP, 

APOE,CYP7A1 APOC2 
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Supplementary Table S2.6: Overlap Between eQTL Loci and New Lipid Associated Loci 

 

Index SNP 

 

Position Transcript 

Index 

SNP 

P-value 

Expression 

Increasing 

Allele 

Top eQTL 

SNP 

Top 

eQTL 

SNP 

P-value 

r
2
 

Conditional 

P-value 

(Index 

SNP) 

Conditional 

P-value 

(Top eQTL 

SNP) 
           

 eQTLs in Loci Primarily Associated with HDL 

rs2013208  chr3 at 50.1Mb RBM5 in Omental Fat 3x10
-30

 T rs2353579 7x10
-33

 0.93 1.00 0.60 

rs2013208  chr3 at 50.1Mb RBM5 in Subcutaneous Fat 5x10
-22

 T rs4688758 2x10
-23

 0.93 0.93 0.63 

rs2602836  chr4 at 100.2Mb ADH5 in Omental Fat 7x10
-27

 G rs1800759 4x10
-47

 0.82 0.09 7x10
-9

 

rs2602836  chr4 at 100.2Mb ADH5 in Subcutaneous Fat 5x10
-17

 G rs1800759 7x10
-31

 0.80 0.20 6x10
-4

 

rs702485  chr7 at 6.4Mb DAGLB in Omental Fat 6x10
-26

 G rs13238780 3x10
-27

 0.94 0.99 0.79 

rs702485  chr7 at 6.4Mb DAGLB in Subcutaneous Fat 2x10
-13

 G rs836556 1x10
-15

 0.92 0.93 0.61 

rs17173637  chr7 at 150.2Mb TMEM176A in 

Subcutaneous Fat 

2x10
-13

 C Index SNP     

           

 eQTLs in Loci Primarily Associated with LDL 

rs364585  chr20 at 12.9Mb SPTLC3 in Liver 8x10
-37

 A rs168622 1x10
-38

 0.97 0.95 0.88 

           

 eQTLs in Loci Primarily Associated with Total Cholesterol 

rs13315871  chr3 at 58.4Mb PXK in Liver 7x10
-17

 A rs13066269 7x10
-17 

0.99 1.00 1.00 

rs1997243  chr7 at 1.1Mb GPR146 in Omental Fat 7x10
-33

 A Index SNP     

rs1997243  chr7 at 1.1Mb GPR146 in Subcutaneous 

Fat 

9x10
-18

 A rs2363286 9x10
-18

 1.00 1.00 1.00 

The table lists index SNPs for new lipid-associated loci that are also eQTLs (with P< 5x10
-8

) for a nearby transcript in liver, omentalfat, or subcutaneous fat. The top eQTL-

associated SNP in the region is also listed, together with its eQTL association P-value and linkage disequilibrium with the lipid-associated SNP. Conditional P-values for the index 

SNP are from an analysis that includes the top eQTL SNP as a covariate (and vice-versa). Only loci for which the r
2
 linkage disequilibrium coefficient between the index GWAS 

SNP and top eQTL SNP was >0.50 are listed. 
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Supplementary Table S2.7: Nonsynonymous Variants in Linkage Disequilibrium with Index SNPs at Novel Loci 

 

Lead SNP Chr 

hg19 

Position 

(Mb) 

Lead 

Trait 

Nonsynonymous 

SNP 
r

2
 

Gene with 

Nonsynonymous 

SNP 

Amino 

Acid 

Change 

PolyPhen-2 
Classifier

a
 

rs12748152 1 27.14 HDL rs17360994 1.00 C1orf172 Gln100Arg 0.20 

    rs7545442 .90 NUDC Thr68Met NA 

    rs6659176 1.00 NR0B2 Gly171Ala 0.99 

rs12145743 1 156.70 HDL rs4399146 1.00 HDGF Pro201Leu 0.00 

rs1047891 2 211.54 HDL rs1047891 -- CPS1 Thr1412Asn 0.01 

rs2290547 3 47.06 HDL rs2305637 .94 NBEAL2 Ser2054Phe 0.99 

rs2013208 3 50.13 HDL rs2230590 .89 MST1R Gln523Arg 0.00 

    rs1062633 .93 MST1R Arg1335Gly 0.00 

rs13326165 3 52.53 HDL rs887515 .85 NISCH Ala1056Val 0.00 

rs970548 10 46.01 HDL rs2291429 .95 MARCH8 Leu269Trp NA 

    rs2291428 .95 MARCH8 Phe277Leu NA 

rs11246602 11 55.20 HDL rs12419022 .97 OR5W2 His65Arg 0.01 

    rs11230983 .97 OR5D13 Arg124His 0.02 

    rs12224086 .94 OR5AS1 Arg122Leu 0.90 

rs267733 1 150.96 LDL rs267733 -- ANXA9 Asp166Gly 0.99 

rs10490626 2 118.84 LDL rs17512204 1.00 CCDC93 Pro228Leu 0.01 

rs1250229 2 216.30 LDL rs1250259 1.00 FN1 Gln15Leu 0.00 

rs7640978 3 32.53 LDL rs2303857 .91 DYNC1LI1 Gln277Arg 0.02 

rs17404153 3 132.16 LDL rs41272321 .85 ACAD11 Lys414Thr NA 

rs1801689 17 64.21 LDL rs1801689 -- APOH Cys325Gly 1.00 

rs2287623 2 169.83 TC rs2287622 1.00 ABCB11 Val444Ala 0.00 

rs1997243 7 1.08 TC rs11761941 1.00 GPR146 Gly11Glu NA 

rs138777 22 35.71 TC rs1053593 .92 HMGXB4 Gly165Val 0.01 

rs1832007 10 5.25 TG rs3829125 1.00 AKR1C4 Ser145Cys 0.00 

    rs17134592 1.00 AKR1C4 Leu311Val 0.00 
a
The PolyPhen-2 classifier estimates the probability that the amino-acid change is damaging to the encoded protein. For markers labeled NA, PolyPhen scores were not available 

from the PolyPhenwebservice at: http://genetics.bwh.harvard.edu/pph2/bgi.shtml 
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Supplementary Table S2.8: Overlap of SNPs at Known and Novel Lipid Loci with Chromatin 

States in 9 Different Cell Types 
 

Cell Type 

Observed Number of 

Chromatin States* Showing 

Excess Overlap with Lipid 

Loci  

(of 13 tested, P< 1x10
-5

) 

Chromatin States* Showing Excess Overlap 

with Lipid Loci (P< 1x10
-5

) 

H1 embryonic stem cells (H1 ES) 2 
Transcription Transition (HMM9) P =4x10

-10
 

Transcription Elongation (HMM10) P =5x10
-10

 

B-lymphoblastoid cells (GM12878) 0  

Umbilical vein endothelial cells 

(HUVEC) 
2 

Transcription Transition (HMM9) P =2x10
-7

 

Transcription Elongation (HMM10) P =6x10
-7

 

Skeletal muscle myoblasts (HSMM) 1 Transcription Elongation (HMM10) P =6x10
-8

 

Mammary epithelial cells (HMEC) 2 
Transcription Transition (HMM9) P =6x10

-11
 

Transcription Elongation (HMM10) P =2x10
-9

 

Normal epidermal keratinocytes 

(NHEK) 
2 

Transcription Elongation (HMM10) P =2x10
-8

 

Weak Transcription (HMM11) P =3x10
-6

 

Normal lung fibroblasts (NHLF) 2 
Transcription Elongation (HMM10) P =2x10

-10
 

Transcription Transition (HMM9) P =8x10
-8

 

Erythrocyticleukaemia cells (K562) 3 

Weak Transcription (HMM11) P =1x10
-11

 

Weak Enhancer (HMM7) P =2x10
-10

 

Strong Enhancer (HMM5) P =4x10
-8

 

Hepatocellular carcinoma cells 

(HepG2) 
8 

Strong Enhancer (HMM4) P =2x10
-25

 

Weak Enhancer (HMM7) P =4x10
-14

 

Weak Transcription (HMM11) P =2x10
-11

 

Strong Enhancer (HMM5) P =5x10
-11

 

Transcription Elongation (HMM10) P =3x10
-10

 

Weak Enhancer (HMM6) P =1x10
-7

 

Active Promoter (HMM1) P =4x10
-7

 

Weak Promoter (HMM2) P =7x10
-7 

 

*Chromatin states were described previously (Ernst J et al. Nature 473, 43-9, 2011) based on 

hidden Markov models of histone methylation and acetylation marks from 9 cell types. SNPs in 

high linkage disequilibrium (r
2
> 0.8 in 1000 Genomes Project European ancestry samples) with 

known or novel lipid loci was compared to matched sets of HapMap SNPs (see Methods) 
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Supplementary Table S2.9: Overlap with Chromatin States, Histone Marks and Transcription Factor ChIP-

Seq in HepG2 Cells 

 

 Known and Novel Lipid Loci (N=157) Only Novel Lipid Loci (N=62) 

 

Observed 

Number of 

Loci with 

≥1 SNP in 

a 

Regulatory 

Region 

Expected 

Number of 

Loci 

P-value 

Observed 

Number of 

Loci with 

≥1 SNP in a 

Regulatory 

Region 

Expected 

Number of 

Loci 

P-value 

Overlap with Chromatin States from Ernst et al.* (13 tested) 

Strong Enhancer (HMM4) 49 13.7 2x10
-25

 20 6.2 9x10
-10

 

Weak Enhancer (HMM7) 60 26.9 4x10
-14

 25 11.9 3x10
-5

 

Weak Transcription 

(HMM11) 
99 62.1 2x10

-11
 41 26.4 9x10

-5
 

Strong Enhancer (HMM5) 34 12.8 5x10
-11

 10 5.6 5x10
-2

 

Transcription Elongation 

(HMM10) 
65 35.4 3x10

-10
 26 15.4 1x10

-3
 

Weak Enhancer (HMM6) 57 33.5 1x10
-7

 21 14.5 .013 

Active Promoter (HMM1) 39 20.3 4x10
-7

 14 8.8 .039 

Weak Promoter (HMM2) 45 24.8 7x10
-7

 15 10.6 .088 

Transcription Transition 

(HMM9) 
37 18.7 3x10

-5
 18 8.0 4x10

-4
 

Overlap with Histone Marks (5 tested) 

H3K9ac 97 47.3 3x10
-22

 37 20.1 6x10
-8

 

H3K27ac 84 39.2 3x10
-20

 34 16.7 4x10
-8

 

H3K4me3 88 47.9 2x10
-15

 34 20.1 7x10
-5

 

H3K36me3 104 62.3 4x10
-14

 41 26.1 2x10
-5

 

H3K4me2 111 74.3 8x10
-12

 44 31.1 7x10
-5

 

Overlap with Open Chromatin (2 tested) 

FAIRE 51 26.5 5x10
-9

 19 11.3 8x10
-3

 

DNase hypersensitivity 33 18.3 2x10
-4

 12 8.1 .09 

Overlap with Transcription Factor ChIP-Seq (11 tested) 

HNF4Α 38 16.2 6x10
-10

 14 7.1 6x10
-3

 

CEBP/Β 40 20.4 1x10
-5

 16 9.1 .010 

CTCF 55 37.6 4x10
-4

 21 16.2 .055 

HSF1 9 2.6 1x10
-3

 4 1.1 .024 

*Chromatin states were described previously (Ernst J et al. Nature 473, 43-9, 2011) based on hidden Markov models 

of histone methylation and acetylation marks from 9 cell types. Data for histone marks, open chromatin, and 

transcription factor ChIP-seq were obtained from the ENCODE Project (ENCODE Project Consortium, PLoS Biol. 

9:e1001046, 2011).  SNPs in high linkage disequilibrium (r
2
> .8 in 1000 Genomes Project European ancestry 

samples) with known or novel lipid loci were compared to matched sets of HapMap SNPs (see Methods). The table 

lists only regulatory elements that exhibited a significant excess overlap (P< 1x10
-3

 to account for 31 HepG2 

regulatory elements tested). 
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Supplementary Table S2.10: Overlap of Regulatory Features and Associated SNPs at Novel Lipid Loci 
  Hidden Markov model-defined regulatory domains from histone methylation marks Histone methylation marks Markers of open 

chromatin 

Transcription factor binding (ChIP-Seq) 

Locus Lead SNP Strong 

Enhancer 

(HMM4) 

Weak 

Enhancer 

(HMM7) 

WeakTxn 

(HMM11) 

Strong 

Enhancer 

(HMM5) 

Txn 

Elongation 

(HMM10) 

Weak 

Enhancer 

(HMM6) 

Active 

Promoter 

(HMM1) 

Weak 

Promoter 

(HMM2) 

Txn 

Transition 

(HMM9) 

H3k9ac H3k27ac H3k4me3 H3k36me3 H3k4me2 FAIRE DNase 

 

Hnf4A 

(Forskolin) 

Cebpb 

(Forskolin) 

CTCF Hsf1 

Loci Primarily Associated with HDL Cholesterol 

PIGV- 

NR0B2 
rs12748152 

x x x x x x x x x x x x x x x x x x x x 

HDGF- 

PMVK 
rs12145743 

x  x x x x  x  x x x x x x x x x  x 

ANGPTL1 rs4650994 
x x x x x     x x x x x x x x x   

CPS1 rs1047891 
  x          x        

ATG7 rs2606736 
 x x  x  x   x  x x x x x x x x  

SETD2 rs2290547 
  x   x   x x x  x x       

RBM5 rs2013208 
 x x  x x x x x x x x x x x x   x  

STAB1 rs13326165 
     x       x        

GSK3B rs6805251 
 x x   x   x    x x   x  x  

C4orf52 rs10019888 
                  x  

FAM13A rs3822072 
x x x  x x x  x x x x x x x    x  

ADH5 rs2602836 
 x x     x  x x x x x x x x x   

RSPO3 rs1936800 
           x  x     x  

DAGLB rs702485 
  x   x   x x x  x x     x  

SNX13 rs4142995 
  x          x        

IKZF1 rs4917014 
                    

TMEM176A rs17173637 
x         x x x  x       

MARCH8- 

ALOX5 
rs970548 

 x x  x x    x x x x x       

OR4C46 rs11246602 
  x       x x x x x     x  

KAT5 rs12801636 
x  x   x x   x x x x x     x  

MOGAT2- 

DGAT2 
rs499974 

 x   x  x   x  x  x x   x   

ZBTB42- 

AKT1 
rs4983559 

  x           x       

FTO rs1121980 
x x x x x x    x x x x x  x     

HAS1 rs17695224 
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Supplementary Table S2.10 (continued) 

Loci Primarily Associated with LDL Cholesterol 

ANXA9- 

CERS2 
rs267733 

  x          x        

EHBP1 rs2710642 
x  x   x   x x X x x x   x    

INSIG2 rs10490626 
x  x x x x x x x x X x x x x  x x x  

LOC84931 rs2030746 
x x x  x  x   x X x  x     x  

FN1 rs1250229 
x x x  x  x x x x X x x x       

CMTM6 rs7640978 
 x x    x   x X x x x       

ACAD11 rs17404153 
 x x   x x x x x X x x x       

CSNK1G3 rs4530754 
  x     x  x X x x x x      

MIR148A rs4722551 
       x  x X x  x       

SOX17 rs10102164 
                    

BRCA2 rs4942486 
  x   x       x        

APOH- 

PRXCA 
rs1801689 

       x x x X x x x       

SPTLC3 rs364585 
x  x       x X x  x  x     

SNX5 rs2328223 
x         x X x  x   x x   

MTMR3 rs5763662 
x x x x x x   x x X x x x x  x  x  
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Supplementary Table S2.10 (continued) 

Loci Primarily Associated with Total Cholesterol 

ASAP3 rs1077514 
x x x x  x   x x X x x x       

ABCB11 rs2287623 
  x                  

FAM117B rs11694172 
 x x   x  x x x X x x x x  x    

UGT1A1 rs11563251 
                    

PXK rs13315871 
x x x  x x x x  x X x x x x  x x x  

KCNK17 rs2758886 
                    

HBS1L rs9376090 
                    

GPR146 rs1997243 
x x x x x x x x x x X x x x x x x x x x 

VLDLR rs3780181 
  x          x  x      

VIM-CUBN rs10904908 
                  x  

PHLDB1 rs11603023 
 x x  x x    x X  x x       

PHC1- 

A2ML1 
rs4883201 

            x        

DLG4 rs314253 
  x  x  x   x  x  x     x  

TOM1 rs138777 
x x x x  x x x x x X x x x x x  x   

PPARA rs4253772 
 x x  x x       x x       
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Supplementary Table S2.10 (continued) 

Loci Primarily Associated with Triglycerides 

LRPAP1 rs6831256 
    x         x    x x  

VEGFA rs998584 
             x   x    

MET rs38855 
  x   x       x        

AKR1C4 rs1832007 
 x x x      x X  x x x x   x  

PDXDC1 rs3198697 
     x       x        

MPP3 rs8077889 
x x x  x x   x x X x x x x  x x x  

INSR rs7248104 
        x    x x  x     

PEPD rs731839 
x x   x     x X x  x x  x x x x 

Supplementary Table S2.10 annotates overlap (denoted as x) between regulatory features and either the index SNP or a variant in high linkage disequilibrium (r
2
>0.8) with the 

index SNP.  Regulatory features were obtained from Ernst J et al. Nature 473, 43-9, 2011, and the ENCODE Project (ENCODE Project Consortium, PLoS Biol. 9:e1001046, 

2011). The corresponding BED file available on the UCSC Genome Browser for each regulatory feature is listed below. 

Strong Enhancer (HMM4): wgEncodeBroadHmmHepg2HMM.bed.4_Strong_Enhancer.bed 

Weak Enhancer (HMM7): wgEncodeBroadHmmHepg2HMM.bed.7_Weak_Enhancer.bed 

WeakTxn (HMM11): wgEncodeBroadHmmHepg2HMM.bed.11_Weak_Txn.bed 

Strong Enhancer (HMM5): wgEncodeBroadHmmHepg2HMM5_Strong_Enhancer.bed 

Txn Elongation (HMM10): wgEncodeBroadHmmHepg2HMM.bed.10_Txn_Elongation.bed 

Weak Enhancer (HMM6): wgEncodeBroadHmmHepg2HMM.bed.6_Weak_Enhancer.bed 

Active Promoter (HMM1): wgEncodeBroadHmmHepg2HMM1_Active_Promoter.bed 

Weak Promoter (HMM2): wgEncodeBroadHmmHepg2HMM.bed.2_Weak_Promoter.bed 

Txn Transition (HMM9): wgEncodeBroadHmmHepg2HMM.bed.9_Txn_Transition.bed 

H3k9ac: wgEncodeBroadChipSeqPeaksHepg2H3k9ac.bed 

H3k27ac: wgEncodeBroadChipSeqPeaksHepg2H3k27ac.bed 

H3k4me3: wgEncodeBroadChipSeqPeaksHepg2H3k4me3.bed 

H3k36me3: wgEncodeBroadChipSeqPeaksHepg2H3k36me3.bed 

H3k4me2: wgEncodeBroadChipSeqPeaksHepg2H3k4me2.bed 

FAIRE: wgEncodeUncFAIRESeqPeaksHepg2V3.bed 

DNase: wgEncodeUwDnaseSeqPeaksRep1Hepg2.bed 

Hnf4a-Forskln: wgEncodeYaleChIPseqPeaksHepg2Hnf4aForskln.narrowPeak 

Cebpb-Forskln: wgEncodeYaleChIPseqPeaksHepg2CebpbForskln.narrowPeak 

CTCF: wgEncodeBroadChipSeqPeaksHepg2Ctcf 

HSF1: wgEncodeYaleChIPseqPeaksHepg2Hsf1Forskln.narrowPeak  
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Supplementary Table S2.11: Fine-Mapping Results in Different Ancestries 

 

     
Estimates from GWAS Samples for 

Top GWAS SNP 

Estimates from Ancestry-specific 

Metabochip Samples for Top 

GWAS SNP 

    

Estimates from Ancestry-specific 

Metabochip Samples for Top MC 

SNP 

Chr 

Fine 

Mapping 

Interval 

(hg19 Mb) 

Locus Name 

Top 

GWAS 

SNP 

# LD 

Proxies 

in 

Europe 

P N 
% 

Var 
Freq P N 

% 

Var 
Freq 

Top 

Metabochip 

SNP 

# LD  

Proxie

s 

EUR 

r2 

with 
GWA 

SNP 

Other 

r2 

with 

GWA 

SNP 

P N 
% 

Var 
Freq 

HDL Cholesterol 

African 

16 56.98-57.02 CETP rs173539 12 9x10-370 92,820 2.48 0.34 3x10-3 2,738 0.37 0.38 
rs17231520 

 
3 NA 0.11 2x10-16 4,420 3.03 0.08 

European 

2 165.5-165.73 COBLL1 rs12328675 9 1x10-10 94,311 0.06 0.86 2x10-6 92,781 0.03 0.88 rs355863 13 0.43 0.43 6x10-9 90,652 0.04 0.11 

11 46.33-47.35 LRP4 rs3136441 80 7x10-18 94,311 0.10 0.81 8x10-14 92,664 0.08 0.83 rs10838692 55 0.28 0.28 1x10-26 92,742 0.16 0.65 

17 37.39-38.07 
MED1 

(PPP1R1B) 
rs881844 55 3x10-14 92,820 0.06 0.34 3x10-5 92,574 0.02 0.37 rs10445306 270 0.44 0.44 2x10-10 92,699 0.05 0.24 

LDL Cholesterol 

African 

1 109.66-110.31 SORT1 rs629301 11 2x10-168 89,888 1.19 0.75 4x10-5 3,940 0.93 0.65 rs12740374 2 1 0.63 3x10-10 2,555 1.84 0.24 

19 11.18-11.26 LDLR rs6511720 43 3x10-115 87,565 1.05 0.13 8x10-6 2,652 0.89 0.13 
rs11559476

6 
17 0.97 0.6 9x10-10 2,636 1.73 0.81 

19 45.40-45.44 
APOE-C1-

C2-C4 
rs4420638 6 1x10-140 77,643 1.52 0.81 0.697 2,628 0.01 0.81 rs7412 (�2) 1 0.02 0.02 1x10-50 2,594 9.64 0.11 

European 

1 55.50-55.51 PCSK9 rs17111503 1 2x10-27 89,888 0.22 0.75 9x10-24 83,102 0.14 0.76 
rs11591147 

(R46L) 
1 0 0 2x10-136 77,417 1.38 0.03 

6 
160.47 - 

160.58 
IGF2R rs1564348 4 2x10-16 89,873 0.11 0.81 7x10-9 83,116 0.05 0.84 rs2297374 15 0.11 0.11 2x10-13 83,090 0.07 0.37 

7 44.37-44.68 NPC1L1 rs217406 6 6x10-11 86,806 0.12 0.79 2x10-5 82,799 0.03 0.73 rs2073547 5 0.39 0.39 1x10-12 83,083 0.08 0.76 

11 
126.22 - 

126.27 
ST3GAL4 rs11220463 24 4x10-15 89,888 0.12 0.85 2x10-6 83,068 0.04 0.74 rs59379014 11 0.35 0.35 6x10-11 83,083 0.06 0.07 

19 45.40-45.44 
APOE-C1-

C2-C4 
rs4420638 6 1x10-140 77,643 1.52 0.81 3x10-44 15,460 1.71 0.8 rs7412 (e2) 2 0.02 0.02 2x10-651 82,533 4.63 0.07 
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Supplementary Table S2.11 (continued) 

 

     
Estimates from GWAS Samples for 

Top GWAS SNP 

Estimates from Ancestry-specific 

Metabochip Samples for Top 

GWAS SNP 

    

Estimates from Ancestry-specific 

Metabochip Samples for Top MC 

SNP 

Chr 

Fine 

Mapping 

Interval 

(hg19 Mb) 

Locus Name 

Top 

GWAS 

SNP 

# LD 

Proxies 

in 

Europe 

P N 
% 

Var 
Freq P N 

% 

Var 
Freq 

Top 

Metabochip 

SNP 

# LD  

Proxie

s 

EUR 

r2 

with 
GWA 

SNP 

Other 

r2 

with 

GWA 

SNP 

P N 
% 

Var 
Freq 

Triglycerides 

East Asian 

11 116.53-116.67 
APOA5-A4-

C3-A1 
rs2160669 20 3x10-128 91,013 0.96 0.9 3x10-27 8,743 1.37 0.79 rs651821 16 0.85 0.76 2x10-55 8,743 2.83 0.73 

 

Supplementary Table S2.11: Locus labels are from Teslovich et al. (2010).  # LD Proxies in Europe, the number of SNPs r
2
> 0.7 with GWAS SNP in 1000 Genomes European 

Ancestry samples; # Ancestry-Specific LD Proxies, number of SNPs r
2
> 0.7 with top Metabochip SNP in the relevant ancestry group; EUR r

2
, LD between top GWAS SNP and 

top Metabochip SNP in European ancestry samples; Other r
2
, LD between top GWAS SNP and top Metabochip SNP in the relevant ancestry group. 
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Supplementary Table S2.12: Novel and Known Lipid Loci Associated with BMI, CAD, DBP, SBP, Fasting Glucose, T2D, and 

WHR adj BMI 

 
In silico Association Results (P< .05) at Lipid Associated Loci for A. Body Mass Index (BMI), B. Coronary Artery Disease (CAD), C. 

Diastolic Blood Pressure (DBP), D. Systolic Blood Pressure (SBP), E. Fasting Glucose (FG), F. Type 2 Diabetes (T2D), and G. Waist-

Hip Ratio adjusted for BMI (WHRadjBMI) 

 

Supplementary Table S12.12-A: Novel and Known Lipid Loci with BMI P-value < 0.05 from GIANT* 

 

Locus SNP Chr 
hg19 

Pos (Mb) 
Type Trait A1/A2 

Lipid 

Direction 
Lipid N 

Lipid 

P-value 

BMI 

Direction 
BMI N 

BMI 

P-value 

FTO rs1121980 16 53.81 novel HDL A/G - 185,524 6.8x10
-9

 + 123,845 1.8x10
-57

 

MC4R rs12967135 18 57.85 known HDL A/G - 153,533 3.6x10
-8

 + 123,864 5.3x10
-22

 

SLC39A8 rs13107325 4 103.19 known HDL T/C - 179,316 1.1x10
-15

 + 123,348 1.4x10
-7

 

ARL15 rs6450176 5 53.3 known HDL A/G - 187,132 6.9x10
-10

 - 123,861 7.7x10
-5

 

BRAP rs11065987 12 112.07 known TC A/G + 187,309 2.1x10
-16

 + 123,855 1.2x10
-4

 

HMGCR rs12916 5 74.66 known TC T/C - 182,530 4.6x10
-74

 + 123,863 1.5x10
-4

 

UBASH3B rs7941030 11 122.52 known TC T/C - 187,106 2.4x10
-14

 - 123,819 6.6x10
-4

 

JMJD1C rs10761731 10 65.03 known TG A/T + 91,013 8.4x10
-12

 + 123,863 9.9x10
-4

 

RBM5 rs2013208 3 50.13 novel HDL T/C + 169,708 8.9x10
-12

 - 123,864 1.4x10
-3

 

ZNF664 rs4765127 12 124.46 known HDL T/G + 94,198 7.8x10
-10

 + 123,737 1.7x10
-3

 

RAB3GAP1 rs7570971 2 135.84 known TC A/C + 184,956 1.2x10
-13

 - 123,850 3.3x10
-3

 

HPR rs2000999 16 72.11 known TC A/G + 185,692 6.8x10
-41

 + 123,673 4.9x10
-3

 

PDE3A rs7134375 12 20.47 known HDL A/C + 187,088 1.1x10
-8

 + 123,830 4.9x10
-3

 

PEPD rs731839 19 33.9 novel TG A/G - 176,161 2.7x10
-9

 + 123,854 5.2x10
-3

 

PGS1 rs4129767 17 76.4 known HDL A/G + 185,469 2.1x10
-11

 - 123,798 6.1x10
-3

 

IRS1 rs2972146 2 227.1 known HDL T/G - 184,044 1.9x10
-17

 - 123,855 7.2x10
-3

 

TOP1 rs6029526 20 39.67 known LDL A/T + 88,433 4.8x10
-18

 - 123,862 7.2x10
-3

 

FRMD5 rs2929282 15 44.25 known TG A/T - 83,616 2.0x10
-9

 + 122,284 1.1x10
-2

 

ZBTB42-AKT1 rs4983559 14 105.28 novel HDL A/G - 183,672 9.6x10
-9

 + 119,958 1.6x10
-2

 

KCNK17 rs2758886 6 39.25 novel TC A/G + 187,266 3.0x10
-8

 - 123,863 1.6x10
-2

 

LRP1 rs11613352 12 57.79 known TG T/C - 177,799 9.4x10
-14

 + 123,865 1.9x10
-2

 

EHBP1 rs2710642 2 63.15 novel LDL A/G + 172,994 6.1x10
-9

 + 123,853 2.1x10
-2

 

TRPS1 rs2293889 8 116.6 known HDL T/G - 180,102 4.3x10
-17

 + 123,863 2.1x10
-2

 

C6orf106 rs2814982 6 34.55 known TC T/C - 187,263 3.7x10
-15

 + 123,848 3.1x10
-2

 

VEGFA rs998584 6 43.76 novel TG A/C + 174,573 3.4x10
-15

 - 119,481 3.3x10
-2

 

COBLL1 rs12328675 2 165.54 known HDL T/C - 187,092 2.1x10
-15

 - 123,856 3.4x10
-2

 

CTF1 rs11649653 16 30.92 known TG C/G + 89,449 1.6x10
-7

 + 123,819 3.6x10
-2

 

PDXDC1 rs3198697 16 15.13 novel TG T/C - 175,934 2.2x10
-8

 + 123,669 3.7x10
-2

 

SETD2 rs2290547 3 47.06 novel HDL A/G - 187,142 3.7x10
-9

 - 118,647 3.8x10
-2

 

UBE2L3 rs181362 22 21.93 known HDL T/C - 178,283 4.3x10
-18

 + 123,910 4.7x10
-2

 

LRP4 rs3136441 11 46.74 known HDL T/C - 186,975 6.8x10
-29

 + 123,866 4.7x10
-2

 

FLJ36070 rs492602 19 49.21 known TC A/G - 184,180 1.1x10
-16

 + 120,451 4.9x10
-2

 

 

*Speliotes EK et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42, 937-948 
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Supplementary Table S12.12-B: Novel and Known Lipid Loci with CAD P-value < 0.05 from CARDIOGRAM+C4D Meta-analysis* 

 

Locus SNP Chr 
hg19 Pos 

(Mb) 
Type Trait A1/A2 

Lipid 

Direction 
Lipid N 

Lipid 

P-value 

CAD 

Direction 
CAD N 

CAD 

P-value 

APOA1 rs964184 11 116.65 known TG C/G - 90,991 6.6x10
-224

 - 110,492 4.8x10-11 

SORT1 rs629301 1 109.82 known LDL T/G + 142,643 5.4x10
-241

 + 82,222 6.1x10-10 

BRAP rs11065987 12 112.07 known TC A/G + 187,308 2.1x10
-16

 - 73,578 2.4x10-9 

LDLR rs6511720 19 11.2 known LDL T/G - 170,607 3.9x10
-262

 - 86,870 1.2x10-7 

ABCG5/8 rs4299376 2 44.07 known LDL T/G - 144,861 3.9x10
-72

 - 106,016 3.7x10-7 

HNF1A rs1169288 12 121.42 known TC A/C - 175,774 3.9x10
-17

 - 80,633 3.5x10-6 

NAT2 rs1495741 8 18.27 known TG A/G - 87,977 2.7x10
-12

 - 109,804 1.2x10-5 

TRIB1 rs2954029 8 126.49 known TG A/T + 177,729 1.0x10
-107

 + 81,977 2.8x10-5 

LPL rs12678919 8 19.84 known TG A/G + 177,749 1.8x10
-199

 + 111,065 4.7x10-5 

RBM5 rs2013208 3 50.13 novel HDL T/C + 169,708 8.9x10
-12

 - 82,470 7.0x10-5 

LPA rs1564348 6 160.58 known LDL T/C - 172,988 2.8x10
-21

 - 108,431 1.8x10-4 

APOE rs4420638 19 45.42 known LDL A/G - 93,103 1.5x10
-178

 - 36,066 2.1x10-4 

CILP2 rs10401969 19 19.41 known TC T/C + 185,666 4.1x10
-77

 + 81,644 2.4x10-4 

IRS1 rs2972146 2 227.1 known HDL T/G - 184,044 1.9x10
-17

 + 82,540 3.8x10-4 

CMTM6 rs7640978 3 32.53 novel LDL T/C - 172,227 9.8x10
-9

 - 81,843 4.1x10-4 

C6orf106 rs2814982 6 34.55 known TC T/C - 187,262 3.7x10
-15

 + 99,096 1.6x10-3 

 ACAD1 rs17404153 3 132.16 novel LDL T/G - 172,898 1.8x10
-9

 - 83,225 1.8x10-3 

CETP rs3764261 16 56.99 known HDL A/C + 177,533 1.4x10
-769

 - 83,626 2.2x10-3 

FRMD5 rs2929282 15 44.25 known TG A/T - 83,616 2.0x10
-9

 - 81,446 2.8x10-3 

MAP3K1 rs9686661 5 55.86 known TG T/C + 177,050 2.5x10
-16

 + 81,234 3.2x10-3 

KLF14 rs4731702 7 130.43 known HDL T/C + 187,085 4.8x10
-17

 - 99,195 3.2x10-3 

ZNF664 rs4765127 12 124.46 known HDL T/G + 94,198 7.8x10
-10

 - 83,532 3.6x10-3 

SPTY2D1 rs10128711 11 18.63 known TC T/C - 157,199 1.1x10
-11

 - 80,934 3.9x10-3 

CAPN3 rs2412710 15 42.68 known TG A/G + 153,909 1.7x10
-11

 + 79,267 5.3x10-3 

HMGCR rs12916 5 74.66 known TC T/C - 182,529 4.6x10
-74

 - 81,050 5.3x10-3 

CYP26A1 rs2068888 10 94.84 known TG A/G - 177,712 1.7x10
-11

 - 83,627 7.2x10-3 

ST3GAL4 rs11220462 11 126.24 known LDL A/G + 145,030 6.6x10
-21

 + 109,031 7.4x10-3 

VEGFA rs998584 6 43.76 novel TG A/C + 174,573 3.4x10
-15

 + 66,823 9.0x10-3 

PCSK9 rs2479409 1 55.5 known LDL A/G - 172,970 2.5x10
-50

 - 83,207 1.1x10-2 

PINX1 rs11776767 8 10.68 known TG C/G + 177,360 2.9x10
-11

 - 81,760 1.2x10-2 

CITED2 rs605066 6 139.83 known HDL T/C + 94,311 2.8x10
-8

 - 81,709 1.5x10-2 

ABCA8 rs4148008 17 66.88 known HDL C/G + 165,732 1.1x10
-12

 - 96,645 2.0x10-2 

HBS1L rs9376090 6 135.41 novel TC T/C + 187,263 2.6x10
-9

 + 81,664 2.1x10-2 

APOB rs1367117 2 21.26 known LDL A/G + 173,007 9.5x10
-183

 + 79,823 2.3x10-2 

IKZF1 rs4917014 7 50.31 novel HDL T/G - 186,868 1.0x10
-8

 + 111,434 3.4x10-2 

KAT5 rs12801636 11 65.39 novel HDL A/G + 187,099 3.2x10
-8

 - 74,817 3.8x10-2 

HPR rs2000999 16 72.11 known TC A/G + 185,692 6.8x10
-41

 + 97,651 4.1x10-2 

GALNT2 rs4846914 1 230.3 known HDL A/G + 186,995 3.5x10
-41

 - 84,068 4.1x10-2 

ASAP3 rs1077514 1 23.77 novel TC T/C + 184,079 6.4x10
-9

 + 84,078 4.4x10-2 

KLHL8 rs442177 4 88.03 known TG T/G + 177,798 1.3x10
-18

 + 82,034 4.6x10-2 

Supplementary Table S2.12B: 

*Schunkert H et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 

2011;43(4):333-8 

*Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five 

new loci for coronary artery disease. Nat Genet. 2011; 43(4):339-44 



 65

Supplementary Table S2.12-C: Novel and Known Lipid Loci with DBP P-value < 0.05 from ICBP** 

 

Locus SNP Chr 
hg19 Pos 

(Mb) 
Type Trait A1/A2 

Lipid 

Direction 
Lipid N Lipid P-value 

DBP 

Direction 
DBP N DBP P-value 

BRAP rs11065987 12 112.07 known TC A/G + 187,309 2.1x10-16 - 62,481 3.4x10-12 

SLC39A8 rs13107325 4 103.19 known HDL T/C - 179,316 1.1x10-15 - 58,926 7.5x10-7 

VEGFA rs998584 6 43.76 novel TG A/C + 174,573 3.4x10-15 + 49,589 1.6x10-4 

HFE rs1800562 6 26.09 known LDL A/G - 171,209 8.3x10-14 + 65,399 3.2x10-4 

CITED2 rs605066 6 139.83 known HDL T/C + 94,311 2.8x10-8 - 68,145 9.9x10-4 

LACTB rs2652834 15 63.4 known HDL A/G - 185,613 3.6x10-11 + 61,977 1.4x10-3 

PABPC4 rs4660293 1 40.03 known HDL A/G + 187,027 2.9x10-18 - 69,815 1.8x10-3 

LOC55908 rs737337 19 11.35 known HDL T/C + 185,432 4.6x10-17 - 61,569 2.1x10-3 

PDE3A rs7134375 12 20.47 known HDL A/C + 187,088 1.1x10-8 - 63,231 2.3x10-3 

FAM13A rs3822072 4 89.74 novel HDL A/G - 187,115 4.1x10-12 + 66,600 2.8x10-3 

FADS1-2-3 rs174546 11 61.57 known TG T/C + 177,785 7.4x10-38 + 69,718 6.9x10-3 

RSPO3 rs1936800 6 127.44 novel HDL T/C - 187,111 3.1x10-10 - 67,494 7.3x10-3 

JMJD1C rs10761731 10 65.03 known TG A/T + 91,013 8.4x10-12 + 68,336 8.3x10-3 

PINX1 rs11776767 8 10.68 known TG C/G + 177,360 2.9x10-11 - 68,201 1.2x10-2 

TOM1 rs138777 22 35.71 novel TC A/G + 185,274 4.7x10-8 + 67,303 1.4x10-2 

 KAT5 rs12801636 11 65.39 novel HDL A/G + 187,099 3.2x10-8 - 62,171 1.7x10-2 

KCNK17 rs2758886 6 39.25 novel TC A/G + 187,266 3.0x10-8 + 69,242 1.9x10-2 

ABCA1 rs1883025 9 107.66 known HDL T/C - 186,365 1.5x10-65 + 61,161 1.9x10-2 

FTO rs1121980 16 53.81 novel HDL A/G - 185,524 6.8x10-9 - 67,121 2.7x10-2 

MAFB rs2902940 20 39.09 known TC A/G + 185,716 8.8x10-10 + 67,497 2.7x10-2 

SBNO1 rs4759375 12 123.8 known HDL T/C + 94,311 3.0x10-8 + 62,022 2.9x10-2 

APOE rs4420638 19 45.42 known LDL A/G - 93,103 1.5x10-178 + 43,118 3.2x10-2 

ARL15 rs6450176 5 53.3 known HDL A/G - 187,132 6.9x10-10 + 65,297 3.3x10-2 

KLF14 rs4731702 7 130.43 known HDL T/C + 187,085 4.8x10-17 - 68,636 3.5x10-2 

PEPD rs731839 19 33.9 novel TG A/G - 176,161 2.7x10-9 - 62,641 3.9x10-2 

CYP26A1 rs2068888 10 94.84 known TG A/G - 177,712 1.7x10-11 - 56,303 3.9x10-2 

MTMR3 rs5763662 22 30.38 novel LDL T/C + 162,777 1.2x10-8 + 58,243 4.4x10-2 

TYW1B rs13238203 7 72.13 known TG T/C - 101,951 3.1x10-6 - 34,202 4.6x10-2 

CMIP rs2925979 16 81.53 known HDL T/C - 185,553 1.3x10-19 + 65,526 4.7x10-2 

 
**International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB et al. Genetic variants in novel 

pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103-9 
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Supplementary Table S2.12-D: Novel and Known Lipid Loci with SBP P-value < 0.05 from ICBP* 

 

Locus SNP Chr 
hg19 Pos 

(Mb) 
Type Trait A1/A2 

Lipid 

Direction 
Lipid N Lipid P-value 

SBP 

Direction 
SBP N SBP P-value 

BRAP rs11065987 12 112.07 known TC A/G + 187,309 2.1x10-16 - 62,444 2.1x10-8 

SLC39A8 rs13107325 4 103.19 known HDL T/C - 179,316 1.1x10-15 - 58,910 2.6x10-7 

VEGFA rs998584 6 43.76 novel TG A/C + 174,573 3.4x10-15 + 49,585 9.3x10-5 

CITED2 rs605066 6 139.83 known HDL T/C + 94,311 2.8x10-8 - 68,154 1.1x10-3 

LACTB rs2652834 15 63.4 known HDL A/G - 185,613 3.6x10-11 + 61,931 2.6x10-3 

KCNK17 rs2758886 6 39.25 novel TC A/G + 187,266 3.0x10-8 + 69,249 2.9x10-3 

PABPC4 rs4660293 1 40.03 known HDL A/G + 187,027 2.9x10-18 - 69,821 3.0x10-3 

 KAT5 rs12801636 11 65.39 novel HDL A/G + 187,099 3.2x10-8 - 62,173 3.7x10-3 

KLF14 rs4731702 7 130.43 known HDL T/C + 187,085 4.8x10-17 - 68,646 7.0x10-3 

MTMR3 rs5763662 22 30.38 novel LDL T/C + 162,777 1.2x10-8 + 58,275 1.8x10-2 

DAGLB rs702485 7 6.45 novel HDL A/G - 186,974 6.5x10-12 + 67,622 2.2x10-2 

RSPO3 rs1936800 6 127.44 novel HDL T/C - 187,111 3.1x10-10 - 67,485 2.5x10-2 

PLEC1 rs11136341 8 145.04 known LDL A/G - 82,810 7.1x10-12 + 45,602 2.7x10-2 

TOM1 rs138777 22 35.71 novel TC A/G + 185,274 4.7x10-8 + 67,285 3.0x10-2 

CSNK1G3 rs4530754 5 122.86 novel LDL A/G + 173,003 3.6x10-12 - 69,174 3.3x10-2 

HFE rs1800562 6 26.09 known LDL A/G - 171,209 8.3x10-14 + 65,402 3.3x10-2 

MVK rs7134594 12 110 known HDL T/C + 94,311 1.8x10-13 + 69,719 3.9x10-2 

PEPD rs731839 19 33.9 novel TG A/G - 176,161 2.7x10-9 - 62,643 4.1x10-2 

LOC55908 rs737337 19 11.35 known HDL T/C + 185,432 4.6x10-17 - 61,587 4.1x10-2 

PDE3A rs7134375 12 20.47 known HDL A/C + 187,088 1.1x10-8 - 63,215 4.3x10-2 

 
*International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB et al. Genetic variants in novel pathways 

influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103-9 
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Supplementary Table S2.12-E: Novel and Known Lipid Loci with Fasting Glucose P-value < 0.05 from MAGIC* 

 

Locus SNP Chr hg19 Pos (Mb) Type Trait A1/A2 
Lipid 

Direction 
Lipid N 

Lipid 

P-value 

FG 

Effect 

FG 

P-value 

GCKR rs1260326 2 27.73 known TG T/C + 177,765 2.3x10
-239

 -0.027 4.3x10
-13

 

FADS1-2-3 rs174546 11 61.57 known TG T/C + 177,785 7.4x10
-38

 -0.021 2.7x10
-8

 

PPP1R3B rs9987289 8 9.18 known HDL A/G - 169,235 2.0x10
-41

 0.028 7.5x10
-6

 

HBS1L rs9376090 6 135.41 novel TC T/C + 187,263 2.6x10
-9

 0.014 1.1x10
-3

 

DNAH11 rs12670798 7 21.61 known TC T/C - 187,287 9.5x10
-17

 0.014 1.5x10
-3

 

TRPS1 rs2293889 8 116.6 known HDL T/G - 180,102 4.3x10
-17

 0.011 2.3x10
-3

 

TOM1 rs138777 22 35.71 novel TC A/G + 185,274 4.7x10
-8

 0.012 3.1x10
-3

 

LIPC rs1532085 15 58.68 known HDL A/G + 185,482 1.2x10
-188

 -0.011 4.9x10
-3

 

LRP1 rs11613352 12 57.79 known TG T/C - 177,799 9.4x10
-14

 -0.012 5.8x10
-3

 

INSR rs7248104 19 7.22 novel TG A/G - 176,083 5.1x10
-10

 0.0085 2.1x10
-2

 

NPC1L1 rs2072183 7 44.58 known TC C/G + 183,969 4.2x10
-15

 -0.012 2.1x10
-2

 

ABCA1 rs1883025 9 107.66 known HDL T/C - 186,365 1.5x10
-65

 0.01 2.2x10
-2

 

APOB rs1367117 2 21.26 known LDL A/G + 173,007 9.5x10
-183

 -0.009 2.8x10
-2

 

UGT1A1 rs11563251 2 234.68 novel TC T/C + 187,107 1.3x10
-9

 0.014 3.1x10
-2

 

STARD3 rs11869286 17 37.81 known HDL C/G + 177,918 2.7x10
-17

 -0.0078 4.1x10
-2

 

MVK rs7134594 12 110 known HDL T/C + 94,311 1.7x10
-13

 0.0075 4.4x10
-2

 

PABPC4 rs4660293 1 40.03 known HDL A/G + 187,027 2.9x10
-18

 -0.0087 4.5x10
-2

 

 

*Data on glycaemic traits have been contributed by MAGIC investigators and have been downloaded from 

www.magicinvestigators.org; Dupuis J et al. New genetic loci implicated in fasting glucose homeostasis and 

their impact on type 2 diabetes risk. Nat Genet. 2010;42:105-16 
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Supplementary Table S2.12-F: Novel and Known Lipid Loci with T2D P-value < 0.05 from DIAGRAM* 

 

Locus SNP chr 
hg19 Pos 

(Mb) 
Type Trait A1/A2 

Lipid 

Direction 
Lipid N 

Lipid 

P-value 
T2D N 

T2D OR 

(95% CI) 

T2D 

P-value 

FTO rs1121980 16 53.81 novel HDL A/G - 185,524 6.8x10
-9

 22,570 1.12 (1.07,1.26) 1.4x10
-7

 

KLF14 rs4731702 7 130.43 known HDL T/C + 187,085 4.8x10
-17

 22,570 -1.10 (-1.06,-1.15) 2.1x10
-6

 

APOE rs4420638 19 45.42 known LDL A/G - 93,103 1.5x10
-178

 18,352 1.15 (1.07,1.23) 5.4x10
-5

 

IRS1 rs2972146 2 227.1 known HDL T/G - 184,044 1.9x10
-17

 22,570 1.09 (1.04,1.13) 9.0x10
-5

 

ARL15 rs6450176 5 53.3 known HDL A/G - 187,132 6.9x10
-10

 22,570 1.09 (1.04,1.14) 4.0x10
-4

 

MAP3K1 rs9686661 5 55.86 known TG T/C + 177,050 2.5x10
-16

 22,570 1.09 (1.03,1.14) 1.7x10
-3

 

CILP2 rs10401969 19 19.41 known TC T/C + 185,667 4.1x10
-77

 22,570 -1.14 (-1.04,-1.24) 3.1x10
-3

 

HNF1A rs1169288 12 121.42 known TC A/C - 175,774 3.9x10
-17

 22,570 -1.06 (-1.02,-1.11) 4.7x10
-3

 

CMIP rs2925979 16 81.53 known HDL T/C - 185,553 1.3x10
-19

 21,198 1.07 (1.02,1.12) 4.9x10
-3

 

NPC1L1 rs2072183 7 44.58 known TC C/G + 183,969 4.2x10
-15

 17,302 -1.10 (-1.03,-1.18) 5.0x10
-3

 

COBLL1 rs12328675 2 165.54 known HDL T/C - 187,092 2.1x10
-15

 22,570 1.08 (1.02,1.16) 1.2x10
-2

 

ABO rs9411489 9 136.155 known LDL T/C + 119,312 1.8x10
-41

 21,520 1.07 (1.01,1.13) 1.5x10
-2

 

VEGFA rs998584 6 43.76 novel TG A/C + 174,573 3.4x10
-15

 17,302 1.07 (1.01,1.13) 1.8x10
-2

 

GPAM rs2255141 10 113.93 known TC A/G + 187,266 6.5x10
-16

 22,570 -1.05 (-1.01,-1.10) 2.1x10
-2

 

FADS1-2-3 rs174546 11 61.57 known TG T/C + 177,785 7.4x10
-38

 22,570 -1.04 (-1.01,-1.09) 2.6x10
-2

 

MC4R rs12967135 18 57.85 known HDL A/G - 153,533 3.6x10
-8

 22,570 1.05 (1.01,1.10) 2.9x10
-2

 

LIPC rs1532085 15 58.68 known HDL A/G + 185,482 1.2x10
-188

 22,570 -1.05 (-1.00,-1.09) 2.9x10
-2

 

HNF4A rs1800961 20 43.04 known HDL T/C - 157,871 1.6x10
-34

 13,971 1.14 (1.00,1.30) 4.7x10
-2

 

*Voight BF et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. 

Nat Genet. 2010;42:579–589 
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Supplementary Table S2.12-G: Novel and Known Lipid Loci with WHR adj BMI P-value < 0.05 from GIANT* 

 

Locus SNP Chr 

hg19 Pos 

(Mb) Type Trait A1/A2 

Lipid 

Direction Lipid N 

Lipid  

P-value 

WHR 

Direction WHR N 

WHR  

P-value 

RSPO3 rs1936800 6 127.44 novel HDL T/C - 187,111 3.1x10-10 + 77,164 5.0x10-14 

VEGFA rs998584 6 43.76 novel TG A/C + 174,573 3.4x10-15 + 72,804 3.2x10-9 

ZNF664 rs4765127 12 124.46 known HDL T/G + 94,198 7.8x10-10 - 77,048 1.8x10-5 

COBLL1 rs12328675 2 165.54 known HDL T/C - 187,092 2.1x10-15 + 77,160 2.8x10-5 

C4orf52 rs10019888 4 26.06 novel HDL A/G + 187,077 4.9x10-8 - 77,165 5.1x10-5 

MAP3K1 rs9686661 5 55.86 known TG T/C + 177,050 2.5x10-16 + 77,164 8.0x10-5 

CITED2 rs605066 6 139.83 known HDL T/C + 94,311 2.8x10-8 - 77,164 1.3x10-4 

TOM1 rs138777 22 35.71 novel TC A/G + 185,274 4.7x10-8 + 77,218 2.8x10-4 

GCKR rs1260326 2 27.73 known TG T/C + 177,765 2.3x10-239 + 77,128 3.4x10-4 

FAM13A rs3822072 4 89.74 novel HDL A/G - 187,115 4.1x10-12 + 77,163 3.5x10-4 

FN1 rs1250229 2 216.3 novel LDL T/C - 173,032 3.1x10-8 + 77,155 6.6x10-4 

APOE rs4420638 19 45.42 known LDL A/G - 93,103 1.5x10-178 + 69,832 8.5x10-4 

STAB1 rs13326165 3 52.53 novel HDL A/G + 187,134 9.0x10-11 - 77,168 1.0x10-3 

CILP2 rs10401969 19 19.41 known TC T/C + 185,666 4.1x10-77 - 77,160 2.5x10-3 

ERGIC3 rs2277862 20 34.15 known TC T/C - 185,738 5.3x10-11 - 77,165 9.9x10-3 

TOP1 rs6029526 20 39.67 known LDL A/T + 88,433 4.8x10-18 + 77,165 1.0x10-2 

KCNK17 rs2758886 6 39.25 novel TC A/G + 187,266 3.0x10-8 + 77,167 1.2x10-2 

CMIP rs2925979 16 81.53 known HDL T/C - 185,553 1.3x10-19 + 77,164 1.5x10-2 

ARL15 rs6450176 5 53.3 known HDL A/G - 187,131 6.9x10-10 - 77,165 1.8x10-2 

ACAD1 rs17404153 3 132.16 novel LDL T/G - 172,898 1.8x10-9 - 77,166 1.9x10-2 

PPP1R3B rs9987289 8 9.18 known HDL A/G - 169,234 1.9x10-41 + 77,170 2.0x10-2 

MYLIP rs3757354 6 16.13 known LDL T/C - 172,986 2.1x10-17 - 72,863 2.6x10-2 

HBS1L rs9376090 6 135.41 novel TC T/C + 187,263 2.6x10-9 - 77,165 3.3x10-2 

ANXA9-CERS2 rs267733 1 150.96 novel LDL A/G + 164,562 5.3x10-9 - 77,162 4.1x10-2 

 LRPAP1 rs6831256 4 3.47 novel TG A/G - 177,494 1.6x10-12 - 77,141 4.1x10-2 

NAT2 rs1495741 8 18.27 known TG A/G - 87,977 2.7x10-12 + 77,166 4.6x10-2 

TTC39B rs581080 9 15.31 known HDL C/G + 186,937 1.0x10-19 + 77,165 4.9x10-2 

*Heid IM et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of 

fat distribution. Nat Genet 2010;42, 949-960. 

 

 

 

 

 

 

 

 

 



 70

Supplementary Table S2.13: Overlap of Lipid Subfractions in Framingham with Novel and Known Lipid Associated Loci 

(P<1.4x10-5) 

Locus SNP Lipid Subfraction Trait* A1/A2 N MAF Beta P-value 

Novel 

Lipid 

Locus 

Lipid P-

value 

Overlap of Lipid Subfractions with HDL Loci 

LIPC rs1532085 HDL2 cholesterol subfraction A/G 2,900 0.38 0.13 2x10
-06

 N 1x10
-188

 

LIPC rs1532085 HDL size A/G 2,742 0.38 0.17 4x10
-09

 N 1x10
-188

 

LIPC rs1532085 Large particles of HDL A/G 2,742 0.38 0.16 6x10
-08

 N 1x10
-188

 

CETP rs3764261 Intermediate density lipoprotein A/C 2,742 0.31 -0.16 9x10
-08

 N 1x10
-769

 

CETP rs3764261 HDL2 cholesterol subfraction A/C 2,900 0.31 0.18 1x10
-09

 N 1x10
-769

 

CETP rs3764261 LDL size A/C 2,742 0.31 0.17 7x10
-08

 N 1x10
-769

 

CETP rs3764261 Large particles of LDL A/C 2,742 0.31 0.14 9x10
-06

 N 1x10
-769

 

CETP rs3764261 HDL size A/C 2,742 0.31 0.19 6x10
-10

 N 1x10
-769

 

CETP rs3764261 Large particles of HDL A/C 2,742 0.31 0.22 4x10
-13

 N 1x10
-769

 

CETP rs3764261 HDL3 cholesterol subfraction A/C 2,900 0.31 0.23 1x10
-14

 N 1x10
-769

 

CETP rs3764261 Apoliprotein AI concentration A/C 2,885 0.31 0.19 4x10
-10

 N 1x10
-769

 

LIPG rs7241918 Apoliprotein AI concentration G/T 2,885 0.17 -0.19 2x10
-07

 N 1x10
-44

 

PLTP rs6065906 Large particles of HDL C/T 2,742 0.18 -0.18 1x10
-06

 N 5x10
-40

 

PLTP rs6065906 Medium particles of HDL C/T 2,742 0.18 0.35 1x10
-21

 N 5x10
-40

 

Overlap of Lipid Subfractions with LDL Loci 

SORT1 rs629301 Apolipoprotein B concentration G/T 2,821 0.21 -0.19 2x10
-08

 N 5x10-
241

 

ApoE rs4420638 ApoE concentration G/A 2,260 0.16 -0.62 9x10
-10

 N 2x10
-178

 

Overlap of Lipid Subfractions with Triglyceride Loci 

GCKR rs1260326 Apolipoprotein CIII concentration T/C 2,484 0.45 0.18 2x10
-10

 N 2x10
-239

 

LPL rs12678919 Apoliprotein AI concentration G/A 2,885 0.1 0.2 1x10
-05

 N 2x10
-199

 

APOA1 rs964184 Medium particles of VLDL G/C 2,742 0.14 0.26 2x10
-10

 N 7x10
-224

 

APOA1 rs964184 Remnant like particles expressed as triglycerides G/C 2,385 0.14 0.2 5x10
-06

 N 7x10
-224

 

APOA1 rs964184 Remnant like particles expressed as cholesterol G/C 2,468 0.14 0.19 7x10
-06

 N 7x10
-224

 

APOA1 rs964184 Apolipoprotein B concentration G/C 2,821 0.14 0.23 4x10
-09

 N 7x10
-224

 

 

*LDL=low density lipoprotein, HDL=high density lipoprotein, VLDL=very low density lipoprotein 

 

 

The threshold used for significance is1.4x10-5. This corresponds to a Bonferroni correction for 23 subfractions and 151 

SNPs found in the lipid subfraction dataset (0.05/(23*151)). 
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Supplementary Figures 

Supplementary Figure S2.1: Study Design 

 

 

 

 

 

 

 

 



 72

Supplementary Figure S2.2: QQ Plots of Metabochip Meta-Analysis P-value Distributions 

Quantile-quantile plots of metabochip meta-analysis observed association –log10 p-values plotted against expected –

log10 p-values.  Points in blue represent the p-value distribution after removing ± 1MB of previously known lipid loci.  

There is reduced inflation of p-values after removing ± 1MB of all genome-wide significant loci (shown in green). 

Lambda values for all Metabochip SNPs were between 1.19 (triglyceride levels) and 1.28 (HDL cholesterol) and reflect 

the enrichment of associated SNPs in the genotyping array.  After removing SNPs within 1 Megabase of previously 

reported associated variants, the lambda values ranged from 1.00 (LDL cholesterol) to 1.10 (HDL cholesterol).  After 

removing SNPs in newly genome-wide significant loci, lambda values reached 1.00 for two traits (LDL cholesterol and 

triglyceride levels) but were at 1.05 for total cholesterol and 1.07 for HDL cholesterol.  The interpretation of genomic 

control values from this experiment is complex because MetaboChip SNPs are heavily concentrated on regions associated 

with lipids and other cardiovascular traits.  The initial genomic control values likely reflect this enrichment; the modestly 

high genomic control value after excluding confirmed regions of association could reflect a combination of polygenic 

effects, additional loci to discover, or population stratification. 
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Supplementary Figure S2.3: Manhattan Plots of Lipid-specific Association Results 

Manhattan plots highlight significant SNP associations for each trait (P< 5x10
-8

).  Trait-specific novel loci are shown in 

red.  Association results for known markers previously reported to be associated with lipid traits are shown in dark blue 

(when primary trait is the same trait) and light blue (when primary trait is a different lipid trait). 
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Supplementary Figure S2.4: Effect Size vs. Allele Frequency at Lipid Associated Loci 

Lipid effect sizes of SNPs in the GWAS + Metabochip meta-analysis are shown in red (novel lipid loci) in comparison to 

SNPs discovered by previous GWAS efforts (shown in blue and green).  Dotted lines represent power curves for the 

minimum effect sizes that could be identified for a given effect-allele frequency with 10%, 50%, and 90% power, 

assuming sample size 200,000 and alpha level 5x10
-8

. 

 
 

 

 

 

 

 

 



 77

Supplementary Figure S2.5: Direct Protein-Protein Interactions from Dapple Analysis 

Direct protein-protein interactions for A. HDL-C (8 interactions, P = .002), B. LDL-C (10 interactions, P = .0002), C. 

total cholesterol (6 interactions, P = .017), and D. triglycerides (2 interactions, P = .27) show connections between novel 

and known genes in the same pathways. We tested genes near previously known and new loci. 
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Supplementary Figure S2.6: Lipid vs. CAD Effect Sizes 

Plots show coronary artery disease (CAD) effect sizes against lipid effect sizes for SNPs showing primary 

association with each lipid trait. All effect sizes were oriented to the lipid trait-increasing (or trait-

decreasing for HDL) allele.  Diagonal lines represent regressions of predictor lipid effect sizes by 

outcome CAD effect sizes for SNPs that show primary association with each trait including both 

previously known and newly reported index SNPs. LDL effect sizes were strongly associated with CAD 

effect sizes (Pearson r= 0.74, P =7x10
-6

).  The correlation between CAD effect size and triglyceride effect 

size (Pearson r= 0.46, P =0.02) was higher than that observed for HDL (Pearson r=-9x10
-4

, P =0.99).  

Lipid effect sizes were transformed into SD units. 
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Supplementary Figure S2.7: Association with Lipid Subfractions 

Heatmaps show effect sizes for association (P < 0.10) with 23 lipid subfractions in Framingham offspring 

with respect to the trait-decreasing allele of (A) HDL-C and trait-increasing allele of (B) LDL-C, (C) TC, 

and (D) TG.  Significant association (P < 0.05) of lipid-associated SNPs with coronary artery disease 

(CAD) is annotated on the y-axis at both known and novel genetic loci primarily associated with each 

trait.  Dendrogram clustering of loci (y-axis) and lipid subfraction phenotypes (x-axis) based on the effect 

sizes (beta) are also shown. (E) shows a heatmap of correlations for the 23 lipid subfractions in 

Framingham.  F-I show results from Women’s Genome Health Study
1
.  (J) shows a heatmap of lipid 

subfraction correlations in WGHS. 

 

A. 
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B. 

 

*The beta for the strongest association observed, rs4420638 at the APOE locus and Lapoeser5apc (beta = 

-0.62), is displayed as the minimum (-0.3) so that the color scale for the heatmap is more comparable to 

the heatmaps from the other 3 lipid traits. 
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C.  
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D. 
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E. 

 
HDLLG: Large particles of high density lipoprotein concentrations determined by NMR, Exam 4 

HDLSM: Small particles of high density lipoprotein concentrations determined by NMR, Exam 4 

HDLSZ: Weighted average for HDL size based on measurements of HDLP1 through HDLP6, Exam 4 

Lapoeser5
*
: ApoE concentrations in mg/dL using immunochemical technique by Servia, Exam 5 

LCHYLO
*
: Chylomicron particles size >220 nm (expressed as TG concentrations in mg/dl) and determined using 

NMR, Exam 4 

LDLINT: Medium particles of low density lipoprotein determined by NMR, Exam 4 

LDLLG: Large particles of low density lipoprotein determined by NMR, Exam 4 

LDLSZ: Weighted average for LDL size based on measurements of LDLP1 through LDLP6 determined by NMR, 

Exam 4 

Lhdl25
*
: HDL2 cholesterol subfractions after chemical precipitation 

LIDLP
*
: Intermediate density lipoprotein determined by NMR, Exam 4 

LLDLSM
*
: Small particles of low density lipoprotein determined by NMR, Exam 4 

Llpaconc
*
: Lipoprotein(a) concentration, Exam 3 
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LRLP_C
*
: Remnant like particles measured using selective immunoseparation of lipoproteins using the Otsuka kit. 

Expressed as cholesterol in mg/dL, Exam 4 

LRLP_tg
*
: Remnant like particles measured using selective immunoseparation of lipoproteins using the Otsuka kit. 

Expressed as triglycerides in mg/dL, Exam 4 

LVLDLINT
*
: Medium particles of very low density lipoprotein determined by NMR, Exam 4 

LVLDLLG
*
: Large particles of very low density lipoprotein determined by NMR, Exam 4 

VLDLSM: Small particles of very low density lipoprotein determined by NMR, Exam 4 

VLDLSZ: Weighted average for VLDL size based on measurements of VLDLP1 through VLDLP6 determined by 

NMR, Exam 4 

 
*
log transformed 

All models were adjusted for age, sex and PCs. Low-, high-, intermediate- and very low-density lipoprotein particle 

concentrations were measured by nuclear magnetic resonance. 
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F. 
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G.  
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H.  
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I. 
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J. 

 
 
llp: LDL large  hmp: HDL medium   vsp: VLDL small 

lsp: LDL small  ln.hmp: ln [HDL medium]  vz: VLDL mean size 

ln.lsp: ln [LDL small] hsp: HDL small    ntg: TG by NMR 

lz: LDL mean size hz: HDL mean size   ln.ntg: ln [TG by NMR] 

idlp: IDL total  nhc: HDL-C by NMR   TGGB: TG assay 

ln.idlp: ln [IDL total] HDL: HDL-C assay   ln.TGGB: ln[TG assay] 

ldlp: LDL total  vldlcp: VLDL total   CHOL: Total Cholesterol 

ln.ldlp: ln [LDL total] vlcp: VLDL large 

LDL: LDL-C assay ln.vlcp: ln [VLDL large] 

hdlp: HDL total  vmp: VLDL medium 

hlp: HDL large  ln.vmp: ln [VLDL medium] 
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Supplementary Note: Candidate Genes at Novel Loci 

The list of notable genes in newly identified loci, below, is meant to provide an overview of the 

diverse set of loci associated with blood lipids in our study. Although the list can provide a 

starting point for exploration of these loci and help motivate follow-up studies and/or 

hypotheses, the list should not be considered exhaustive.  

 

ABCB11 (ATP-binding cassette, sub-family B, member 11) is involved in the ATP-dependent 

secretion of bile salts (MIM 603201). Hepatic overexpression of Abcb11 in mice increased 

absorption of cholesterol and promoted diet-induced obesity and hypercholesterolemia (Henkel 

et al. 2011). G6PC2 encodes a glucose-6-phosphatase catalytic subunit (MIM 608058).  Variants 

at this locus have been implicated in liver enzyme and fasting glucose levels (Chambers et al. 

2011; Chen et al. 2008). 

 

ACAD11 (acyl-CoA dehydrogenase family, member 11) is involved in the β-oxidation of 

long-chain fatty acids in muscle and heart (MIM 614288).  

 

ADH5 (alcohol dehydrogenase 5 (class III), chi polypeptide) encodes a protein involved in 

oxidation of long-chain primary alcohols and which catalyzes a step in the elimination of 

formaldehyde (MIM 103710). 

 

AKR1C4 (aldo-keto reductase family 1, member C4) encodes a protein that produces 

intermediates in bile acid biosynthesis and inactivates circulating steroid hormones (MIM 

600451). AKR1C4 is expressed exclusively in the liver and is transcriptionally regulated by 

LXRA. 

ANGPTL1 (angiopoietin-like 1 gene) is a member of the angiopoietin family involved in 

angiogenesis, and widely expressed in highly vascularized tissues (MIM 603874).  

 

ANXA9 (annexin A9) and CERS2 (ceramide synthase 2). ANXA9 is a calcium-dependent 

phospholipid-binding protein (MIM 603319). CERS2 is involved in regulation of long acyl chain 

and sphingolipid metabolism (MIM 606920). 

 

APOH (Apolipoprotein H, also known as beta-2 glycoprotein I) and PRKCA (protein kinase 

C, alpha) APOH is a glycoprotein that is involved in the activation of lipoprotein lipase and 

which neutralizes negatively charged phospholipids (MIM 138700). PRKCA is activated by 

APOA1 and diacylglycerol during cholesterol mobilization (MIM 176960) (Ito et al. 2004). 

 

ASAP3 (ArfGAP with SH3 domain, ankyrin repeat and PH domain 3)is a GTPase-activating 

protein that promotes cell differentiation and migration and has been implicated in cancer cell 

invasion (Ha et al. 2008).  
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ATG7 (autophagy related 7) encodes a protein that is part of the autophagy machinery (MIM 

608760). Dysfunction in autophagy canimpact systems related to intracellular energy utilization 

andpromote apoptotic cell death.  

 

BRCA2 (breast cancer 2, early onset) is involved in maintenance of genome stability, 

specifically the homologous recombination pathway for repair of double stranded DNA.  

Variants in the region can increase risk of breast and other types of cancer (MIM 600185). 

 

C4orf52 (chromosome 4 open reading frame 52). The nearest gene to the lead signal is an 

uncharacterized gene with unknown function, and there are no other obvious candidate genes in 

the locus. 

 

CMTM6 (CKLF-like MARVEL). This gene belongs to the chemokine-like factor gene 

superfamily, but the exact function of the encoded protein is unknown (MIM 607889).  

 

CPS1 (carbamoyl-phosphate synthase 1, mitochondrial) encodes a mitochondrial enzyme that 

catalyzes the first committed step of the urea cycle (MIM 608307).  The lead variant encodes a 

threonine to asparagine substitution previously associated with levels of homocysteine and 

fibrinogen (Pare et al. 2009; Danik et al. 2009). 

 

CSNK1G3 (casein kinase 1, gamma 3) encodes a serine/threonine-protein kinase that is 

involved in a number of cellular processes including DNA repair, cell division, nuclear 

localization and membrane transport (MIM 604253). 

 

DAGLB (diacylglycerol lipase, beta) catalyzes the hydrolysis of diacylglycerol (DAG) to 2-

arachidonoyl-glycerol, an abundant endocannabinoid (MIM 614016). Endocannabinoids 

function signaling molecules, regulate axonal growth, and drive adult neurogenesis (Bisogno et 

al. 2003). 

 

DLG4 (discs, large homolog 4) encodes a membrane-associated guanylate kinase and may 

function at postsynaptic sites (MIM 602887).  Nearby, DVL2 may also play a role in signal 

transduction (MIM 602151) and CTDNEP1 is involved in a phosphatase cascade regulating 

nuclear membrane biogenesis (MIM 610684) (Kim et al. 2007). SLC2A4 is an insulin-regulated 

glucose transporter (MIM 138190). The variant identified here was previously associated with 

alkaline phosphatase levels in plasma (Chambers et al. 2011). 

 

EHBP1 (EH domain binding protein 1) The mouse homologue of EHBP1 was down-regulated 

in a transgenic Pcsk9 mouse model and up-regulated in a Pcsk9 knockout mouse (Denis et al. 

2011). 
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FAM13A (family with sequence similarity 13, member A). FAM13A has a putative role in 

signal transduction, and gene expression has been shown to be increased in response to hypoxia 

in cell lines from several tissues (MIM 613299).  

 

FAM117B (family with sequence similarity 117, member B) is an uncharacterized protein. 

Nearby, BMPR2 encodes a bone morphogenetic protein receptor (MIM 600799). Defects in 

BMPR2 cause primary pulmonary hypertension.   

 

FN1 (fibronectin 1) is a glycoprotein involved in cell adhesion and migration processes 

including embryogenesis, wound healing, blood coagulation, host defense, and metastasis (MIM 

135600). Fibronectin is one of the first extracellular matrix proteins deposited at atherosclerosis-

prone sites, and is central in the formation of atherosclerotic lesions (Rohwedder et al. 2012). 

 

FTO (fat mass and obesity associated) contributes to the regulation of the global metabolic 

rate, energy expenditure and energy homeostasis (MIM 610966). Variants in this gene have been 

repeatedly associated with obesity-related phenotypes, and it may act through hypothalamic 

regulation of food intake (Frayling et al. 2007; Fischer et al. 2009). 

 

GPR146 (G protein-coupled receptor 146) is an orphan G protein-coupled receptor. While no 

ligand has yet been identified, knockout mice exhibit reduced cholesterol levels (U. S. Patent 

Filing 20090036394). The adjacent gene, GPER encodes the intracellular G protein-coupled 

estrogen receptor 1 (MIM 601805).   

 

GSK3B (glycogen synthase kinase 3 beta) encodes a kinase involved in energy metabolism, 

neuronal cell development, and body pattern formation (MIM 605004). In mice, Gsk3b activity 

regulates pancreatic islet beta cell growth (Liu et al. 2010). Nearby, NR1I2 encodes a nuclear 

receptor that can form a heterodimer with retinoic acid receptor RXR and involved with 

homeostasis of numerous metabolites, including lipids (MIM 603065). 

 

HAS1 (hyaluronan synthase 1) is one of three isozymes that synthesize hyaluronic acid, 

produced during wound healing and tissue repair to provide a framework for growth of blood 

vessels and fibroblasts (MIM 601463). The nearest gene, FPR3 (formyl peptide receptor 3) is 

involved in host defense and inflammation (MIM 136539). 

 

HBS1L (HBS1-like, S. cerevisiae) encodes a member of the GTP-binding elongation factor 

family (MIM 612450) (Wallrapp et al. 1998). Variants at this locus regulate persistence of fetal 

hemoglobinin adults and other haematological traits (Uda et al. 2008; Soranzo et al. 2009). 

 

HDGF (hepatoma derived growth factor) and PMVK (phosphomevalonate kinase).HDGFis 

a growth factor that may be involved in cell proliferation and differentiation (MIM 600339). 



 93

PMVK catalyzes the fifth reaction of the cholesterol biosynthetic pathway (MIM 607622). 

Nearby, CRABP2 (cellular retinoic acid binding protein 2) encodes a cytosol-to-nuclear shuttling 

protein involved in the retinoid signaling pathway (MIM 180231) (Majumdar et al. 2011). 

 

IKZF1 (IKAROS family zinc finger 1) is a transcription factor that regulates the low-density 

lipoprotein receptor in certain cell types (Loeper et al. 2008). 

 

INSIG2 (insulin induced gene 2). INSIG2 influences cholesterol metabolism, lipogenesis, and 

glucose homeostasis in diverse tissues (MIM 608660).   

 

INSR (insulin receptor) is a transmembrane tyrosine kinase receptor that binds insulin and 

stimulates glucose uptake (MIM 147670). The receptor activates several downstream pathways. 

 

LOC84931 (uncharacterized gene). The nearest gene to the lead signal is an uncharacterized 

gene with unknown function, and there are no obvious candidate genes in the region. 

 

LRPAP1 (low density lipoprotein receptor-related protein associated protein 1) encodes a 

chaperone for the lipoprotein receptor-related proteins (MIM 104225).  Lrpap1 knockout mice 

exhibit impaired export of LRP2 and VLDL receptors from the endoplasmic reticulum.   

 

KAT5 (K(lysine) acetyltransferase 5). KAT5 is a positive regulator of PPARG transcription 

involved in adipogenesis (can Beekum et al. 2008).  

 

KCNK17 (potassium channel, subfamily K, member 17) passes outward current under 

physiological potassium concentrations (MIM 607370).  Variants ~50 kb away at KCNK16 have 

been implicated in type 2 diabetes (Cho et al. 2012).   

 

MARCH8 (membrane-associated ring finger (C3HC4) 8, E3 ubiquitin protein ligase) and 

ALOX5 (arachidonate 5-lipoxygenase) MARCH8 induces the internalization of several 

membrane glycoproteins (MIM 613335). ALOX5 is a lipid metabolism enzyme that catalyzes 

the conversion of arachidonic acid to leukotrienes, inflammatory mediators implicated in 

atherosclerosis and several cancers (MIM 152390).  

 

MET (met proto-oncogene (hepatocyte growth factor receptor))encodes a receptor tyrosine 

kinase that regulates hepatocytecell proliferation, migration and survival (MIM 164860) (Yu et 

al. 2010; Zou et al. 2007). 

 

MIR148A (microRNA 148a). MicroRNAs are short non-coding RNAs involved in post-

transcriptional regulation of gene expression. miR-148a has been implicated in several cancers 

(MIM 613786) (Zhou et al. 2012; Zheng et al. 2011).  
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MOGAT2 (monoacylglycerol O-acyltransferase 2) and DGAT2 (diacylglycerol O-

acyltransferase 2). MOGAT2 plays a central role in absorption of dietary fat in the small 

intestine (Cao et al. 2004). DGAT2 encodes one of two enzymes that catalyze the final reaction 

in the synthesis of triglycerides, in which diacylglycerol is covalently bound to long chain fatty 

acyl-CoA (MIM 606983). 

 

MPP3 (membrane protein, palmitoylated 3) is a membrane-associated guanylate kinase that 

regulates trafficking and processing of cell-cell adhesion molecule nectin-1α (MIM 601114).  

 

MTMR3 (myotubularin related protein 3) encodes a phosphatase that binds to 

phosphoinositide lipids (MIM 603558). 

 

OR4C46 (olfactory receptor, family 4, subfamily C, member 46). This signal is located in a 

cluster of G-protein-coupled olfactory receptors, including OR5W2, OR5D13, and OR5AS1 

(MIM 614273).  

 

PDXDC1 (pyridoxal-dependent decarboxylase domain containing 1). Little is known about 

this decarboxylase (MIM 614244). Variants at this locus have been shown previously to be 

associated with circulating sphingolipid levels (Demirkan et al. 2012). About 300 kb away, 

PLA2G10 encodes a protein that releases arachidonic acid from cell membrane phospholipids 

(MIM 603603). 

 

PEPD (peptidase D) encodesan enzyme that hydrolyzes peptides with C-terminal proline or 

hydroxyproline residues and helps recycle proline (MIM 613230). Also at this locus are the 

genes encoding transcription factors CCAAT/enhancer binding protein alpha and gamma 

(CEBPA (MIM 116897), CEBPG (MIM 138972)), involved in adipogenesis. Variants in this 

locus are associated with adiponectin levels and type 2 diabetes in East Asians (Cho et al. 2012; 

Dastani et al. 2012). 

 

PHC1 (polyhomeotic homolog 1) and A2ML1 (alpha-2-macroglobulin-like 1) is required to 

maintain the transcriptionally repressed state of many genes (MIM 602978). A2ML1 is an 

inhibitor for several proteases and binds to low density lipoprotein receptor-related protein 1 

(MIM 610627) (Galliano et al. 2008). 

 

PHLDB1 (pleckstrin homology-like domain, family B, member 1). PHLDB1 is an insulin-

responsive protein that enhances Akt activation, and PHLDB1 expression is increased during 

adipocyte differentiation (MIM 612834) (Zhou et al. 2010). 

 

PIGV (phosphatidylinositol glycan anchor biosynthesis, class V) and NR0B2 (nuclear 
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receptor subfamily 0, group B, member 2).  PIGV is a mannosyl transferase that plays a role in 

multiple cellular processes, including protein sorting and signal transduction (MIM 610274). 

NR0B2 is a transcriptional regulator involved in cholesterol, bile acid, and fatty acid metabolism 

and glucose-energy homeostasis.  

 

PPARA (peroxisome proliferator activated receptor alpha) encodes a nuclear transcription 

factor that regulates fatty acid synthesis, and oxidation and gluconeogenesis (MIM 170998). 

PPARA regulates the expression of lipoprotein receptors and cholesterol transporters involved in 

the reverse cholesterol transport pathway. 

 

PXK (PX domain containing serine/threonine kinase) plays a critical role in epidermal growth 

factor receptor trafficking by modulating ubiquitination of the receptor (MIM 611450) (Takeuchi 

et al. 2010).  

 

RBM5 (RNA binding motif protein 5) is a hypothetical tumour suppressor gene encoding a 

nuclear RNA binding protein involved in the induction of cell cycle arrest and apoptosis (MIM 

606884). Nearby, MST1R encodes macrophage stimulating 1 receptor and is involved in host 

defense (MIM 600168). 

 

RSPO3 (R-spondin 3). RSPO3 encodes a protein that regulates beta-catenin signaling, promotes 

angiogenesis and vascular development (MIM 610574). In mouse, Rspo3 is required for Vegf 

expression and endothelial cell proliferation (Kazanskaya et al. 2008). Variants in this locus are 

associated with waist-hip ratio (Heid et al. 2010), bone mineral density (Duncan et al. 2011) and 

renal traits (Kim et al. 2011). 

 

SETD2 (SET domain containing 2) encodes a histone methyltransferase specific for lysine-36 

of histone H3, a mark associated with active chromatin (MIM 612778). Nearby, NBEAL2 

encodes neurobeachin-like 2, which may play a role in megakaryocyte alpha-granule biogenesis 

(MIM 614169). 

 

SNX5 (sorting nexin 5) encodes a protein that binds to phosphatidylinositol 4,5-bisphosphate 

and is involved in intracellular transport of cargo receptors from endosomes to the trans-Golgi 

network (MIM 605937) (Koharudin et al. 2009). 

 

SNX13 (sorting nexin 13). This gene belongs to the sorting nexin (SNX) family and the 

regulator of G protein signaling (RGS) family (MIM 606589). It may be involved in several 

stages of intracellular trafficking. 

 

SOX17 (SRY (sex determining region Y)-box 17) encodes a transcription regulator that plays a 

key role in the regulation of embryonic development and is required for normal looping of the 
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embryonic heart tube (MIM 610928).  

 

SPTLC3 (serine palmitoyltransferase, long chain base subunit 3). SPTLC3 catalyzes the rate-

limiting step of the de novo synthesis of sphingolipids (MIM 611120).  Variants at this locus are 

associated with circulating sphingolipid levels (Hicks et al. 2009). 

 

STAB1 (stabilin 1) encodes a large, transmembrane receptor involved in angiogenesis, 

lymphocyte homing, cell adhesion, and receptor scavenging (MIM 608560). STAB1 mediates 

endocytosis of various ligands, including low-density lipoprotein (Li et al. 2011). Variants at this 

locus have been associated with waist-hip ratio (Heid et al. 2010). 

 

TMEM176A (transmembrane protein 176A) is a transmembrane protein (MIM 610334).  

TOM1 (target of myb1). TOM1 shares its N-terminal domain in common with proteins 

associated with vesicular trafficking at the endosomes (MIM 604700). Nearby, HMOX1 encodes 

an essential enzyme in heme catabolism (MIM 141250). Hmox1 knockout mice have low plasma 

triglycerides and altered composition of HDL (Ishikawa et al. 2012). 

 

UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1). This complex locus 

encodes several glycosyltransferases that transform small lipophilic molecules, such as steroids, 

bilirubin, hormones, and drugs, into water-soluble excretable metabolites (MIM 191740). 

Variants at this locus are associated with serum bilirubin levels. 

 

VEGFA (vascular endothelial growth factor A) encodes a growth factor active in angiogenesis 

and endothelial cell growth, promoting cell migration, and inhibiting apoptosis (MIM 192240). 

Variants in this locus are associated with waist-hip ratio (Heid et al. 2010). 

 

VIM (vimentin) and CUBN (cubilin, intrinsic factor-cobalamin receptor).VIM is an 

intermediate filament that controls the transport of LDL-derived cholesterol from a lysosome to 

the site of esterification (MIM 193060) (Sarria et al. 1992). CUBN is a receptor for high-density 

lipoproteins/apolipoprotein A-I, intrinsic factor-vitamin B12, and albumin (MIM 602997). 

 

VLDLR (very low density lipoprotein receptor) binds VLDL and other lipoproteins and 

transports them into cells (MIM 192977). VLDLR is expressed on the capillary endothelium of 

skeletal muscle, heart, and adipose tissue (Wyne et al. 1996). 

 

ZBTB42 (zinc finger and BTB domain containing 42) and AKT1 (v-akt murine thymoma 

viral oncogene homolog 1) ZBTB42is a DNA-binding transcriptional repressor (MIM 613915). 

AKT1 is a serine-threonine protein kinase that is activated by platelet-derived growth factor 

(MIM 164730). The Akt signaling pathway controls multiple cellular functions in the 

cardiovascular system, and murine Akt1 has an atheroprotective role (Ding et al. 2012). 
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Chapter 3: Prioritizing Functional Variants in Genetic Association Studies 
 

Introduction 

Genome-wide association studies, which examine millions of genetic variants across 

thousands of individuals, have identified many complex trait associated loci. Most of these loci 

include many strongly associated variants in linkage disequilibrium with each other and 

exhibiting similar evidence for association. The large number of variants showing evidence for 

association in each locus makes it challenging to prioritize likely functional variants.  

Information regarding biological plausibility can help prioritize SNPs for follow-up
 

(Minelli et al. 2013). SNPs where annotation suggests a functional role are significantly enriched 

in loci associated with human diseases (Schaub et al. 2012). Importantly, the SNP most strongly 

supported by experimental evidence is often not the SNP where association peaks but another 

nearby SNP in linkage disequilibrium (Schaub et al. 2012). Several types of biological 

information have been shown to be useful, including impact on coding sequence (Hindorff et al 

2009; Schork et al. 2013), impact on gene expression (Nicolae et al. 2010; Lappalainen et al. 

2013), and impact on transcription factor binding motifs (Maurano et al. 2012; Trynka and 

Raychaudhuri 2013).  Some of the earliest searches for overlap between association signals and 

functional annotation focused on eQTLs, which are extremely plentiful (Nicolae et al. 2010). 

Early enrichment analyses demonstrated strong enrichment of eQTLs near transcription factor 

binding sites, particularly near transcription start and end sites (Veyrieras et al. 2008). There is 

also strong enrichment of eQTLs in open chromatin regions and we now know that regulatory 
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annotation can help prioritize SNPs most likely to drive gene expression variation (Gaffney et al. 

2012). Over time, these analyses have become increasingly sophisticated, extending from eQTLs 

to more complex traits and examining functional annotations specific to individual cell types or 

tissues (Global Lipids Genetics Consortium 2013; ENCODE Project Consortium 2012). 

We define “causal” variants as the functional genetic variants that influence the risk for 

disease and explain the observed association. Overall, it is now well accepted that the search for 

causal variants for any trait may be aided by systematically modeling the features they share. For 

example, causal variants for lipid traits might preferentially overlap transcription factor binding 

sites active in liver, where important steps in lipid metabolism take place (Ernst et al. 2011). 

Intuitively, when choosing among two nearby lipid GWAS variants with similar association 

signals, we expect the one which overlaps a liver transcription factor binding site is more likely 

to be causal. Here, we set out to develop a method that quantifies the enrichment of particular 

annotations among the associated variants in a GWAS that is computationally efficient and 

reliably convergent so as to become a part of routine post GWAS analysis. In this way, we hope 

to prioritize variants for follow-up in a systematic and quantitative manner. 

We propose two methods to study enrichment for GWAS: (i) a simpler approach that 

seeks causal variants in loci with genome-wide significant evidence for association and (ii) a 

Bayesian approach that allows for causal variants to reside in loci that do not reach genomewide 

significance. Our methods work with summary level data (effect sizes and standard errors, or p-

values) and thus can be applied conveniently to large samples, including those derived through 

meta-analysis. Using the enrichment analysis results, our method computes a credible set of 

likely causal variants (Maller et al. 2012), narrowing the list of variants to be followed-up. Using 

simulations, we show that our method appropriately controls type I error rates and has 
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comparable or better power than the published method fGWAS (Pickrell 2014).  We demonstrate 

real data applications of our method using publicly available datasets for lipids (Global Lipids 

Genetics Consortium 2013) and schizophrenia
 
(Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014). We explore the enrichment of different genomic features such as 

coding variation, overlap with complement genes, and CADD score (Kircher et al. 2014) in 

association data for age-related macular degeneration. We use the UK Biobank dataset (Sudlow 

et al. 2015, Bycroft et al. 2017) to explore the enrichment of eQTL and coding variation among 

GWAS associated variants and find eQTLs to be significantly enriched in 37 of 45 traits while 

nonsynonymous variants are significantly enriched in 19 of 45 traits.  

Methods 

We set out to quantify the relationship between the causal variants for a trait and a 

genomic feature of interest. When there is a set of similarly associated variants, our method aims 

to identify the features that would most effectively at separate out truly causal variants. More 

generally, our method aims to combine association summary statistics and biological feature 

annotation to prioritize variants for follow-up.  

Consider the following contingency table: 

Table 3.1: Example of a Contingency Table if Causal Variants are Known 
 

 Annotated Not Annotated 

Causal a b 

Non-causal c d 

 

If we knew exactly which variants were causal, an odds ratio derived from this table 

would represent how likely a variant with annotation is to be causal relative to a variant without 

the annotation. Unfortunately, we do not know which variants are causal and, instead, expect that 
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in addition to each causal variant many nearby variants in linkage disequilibrium will show 

evidence for association in each locus. Thus, we use an iterative model to estimate expected cell 

counts and make inferences about the importance of a candidate biological feature. 

We begin by dividing the variants into loci assuming each locus has at most one causal 

variant. We then use an initial estimate of the odds ratio to estimate the expected cell counts of 

the table. Next, we use these expected counts to update our odds ratio estimate and repeat the 

process until the estimates converge. This iterative algorithm is computationally efficient and can 

be implemented with only summary level data from single SNP association analysis, namely 

either effect sizes and standard errors or p-values. 

To implement this method, we need to model the multi-SNP association with the trait, 

link annotation to the model and compute the conditional expected values of the cells given 

association summary statistics. 

Modeling the Association 

We begin with observed data from an association study. Let � be the sample size, � the 

trait vector denoting the trait values for each individual under study and � the � × � genotype 

matrix where � is the total number of SNPs in the study. Let there be � causal loci and let �� be 

the number of variants in the ��� locus and �� be the corresponding genotype matrix. 

We model the trait as follows: 

� = 	��� +	�(����)�� +  !
�"#  

 

where  ∼ %(&, ()*)10
 and �� is the indicator vector for the ��� locus denoting which variant is 

causal.  
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To make estimating this model more tractable, we make two simplifying assumptions. 

First, we assume that there is exactly one causal variant in each causal locus. In practice, there 

may be loci with multiple signals in which case we use a conditional analysis approach 

(described later) to model more than one causal variant. Second, we assume that variants from 

different loci are not in linkage disequilibrium and, thus, that causal variants are not in linkage 

disequilibrium with each other. These assumptions allow us to conveniently process loci one at a 

time and derive an approximate solution to the variable selection problem.  Since we expect most 

of the uncertainty about the identity of causal variants to be local, and caused by linkage 

disequilibrium, we expect this approximation captures and tackles the most interesting features 

of the data.  

Note that our simplifying assumption ensures that each �� has exactly one entry as 1 and 

the rest as 0. The estimates from the summary level data are for single SNP analysis but we can 

use those to approximate the above multi-SNP model as described in the Supplementary 

Methods. 

Linking the Annotations 

Let +�, denote whether the -�� variant in the ��� locus has the feature or not, and let . be 

an underlying parameter used to quantify the enrichment of variants with the feature among 

causal variants according to the following model: 

�(��, = 1	|+�,, .) = 	 exp(3 + .4�5)1 + exp(3 + .4�5) 
which is a prior imposed on the missing data � which denotes whether a variant is causal or not. 
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. is our principal parameter of interest and represents how much more likely a variant with the 

feature is to be causal compared to the other variants in the locus. We estimate this . defined as 

the log odds ratio from the contingency table (Table 3.1). 

Conditional Expectation 

Assuming exactly one causal variant per locus, for each SNP in a causal locus, the 

probability of being causal incorporating the prior based on annotations conditional on . 

becomes: 

�(��, = 1	|	�, �, +, .) = 	 �(�	|	�, +, ., ��, = 1)	�(��, = �	|	+, .)	∑ �(�	|	�, +, ., ��7 = 1)	�8��7 = 1	9	+, .):;<"#  

Note that since � takes values 0 or 1, the above conditional probability is also the conditional 

expectation of � which denotes the number of causal variants. We use these expected values to 

fill the cells of the contingency table (Table 3.1).  

EM Algorithm 

To implement this method, we begin by defining loci as described below. We start with 

an initial estimate of . and calculate the expected cell counts of the table, which we use to 

estimate an updated value of .. We repeat this process till our estimates converge 

(Supplementary Methods). Note that if any of the cell counts in the contingency table (Table 

3.1) is small, the estimates may fail to converge. This generally occurs if there are too few 

annotated variants with significant p-values in the associated loci, so we report a failure to 

converge and expect that there is no enrichment in such cases. 
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Defining Loci and Modifying the Prior 

Having described a simple strategy for calculating the probability that each variant is 

causal (within a locus) and for estimating our enrichment parameter ., we now proceed to 

outline two approaches for dividing the genome into loci and interpreting the evidence for 

association.  

Simpler Approach: Focusing on Loci that Reach Genome-wide Significance 

In our first approach, we classify loci into two discrete groups at the beginning of our 

analysis. One group consists of trait associated loci, the other includes the remaining non-

associated loci. We begin with the single-SNP analysis results and divide the genome into loci. 

Associated loci are regions near SNPs that are significantly associated with the trait (e.g., 

typically those with p-value < 5	 × 10
�). We assume that each associated locus has exactly one 

causal variant and that background variants not in the associated loci are never causal. This 

simplification greatly improves computational efficiency, since it allows us to track only a 

simple count of variants in each category outside associated loci. We make further simplifying 

assumptions that the average chi-square for the background variants is 1. Suppose that there are 

>#and >� background variants with and without the annotation respectively, and � associated 

loci, we assign the background variants to the associated loci, so that the prior for a variant at 

each locus becomes 

�(��, = 1	|	+�, .) = 	 	exp(.4�5)>�� + >#� exp(.) + ∑ 	exp8.4�<?:;<"#
 

This ensures that the background variants are accounted for when estimating the 

enrichment parameter without having to iterate through the association results for the whole 

genome. 
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Proceeding one locus at a time, and using the assumption that there is exactly one causal 

variant per locus, we approximate (Supplementary Methods) 

�(�	|	�, +, ., ��) = 	�(�	|	�, +, ., ��, = 1) ≈ expA12 �C�5)se8�C�5?)E	 
where ��: ��, = 1, ��7 = 0		∀H ≠ -. 
Hence, 

�(��, = 1	|	�, �, +, .) ≈ 	 expA12 �C�5)se8�C�5?)E 	exp(.4�5)
∑ expA12 �C�<)se8�C�<	?)E 	exp8.4�<? + J>�� + >#� exp(.)K exp L12M 	:;<"#

 

Here we assumed that the N) test statistic O�5 is  

O�5 = J �C�5PQ	8�C�5?K
)
 

 

and thus, we can approximate 

O�5 ≈	CHIDIST
#(��5,	df = 1) 
where ��5 is the p-value for the -�� marker in the ��� locus and CHIDIST returns the one-tailed 

probability of the N) distribution function. We can therefore invert the p-values to get the 

corresponding N) test statistic, and implement our method even if the effect sizes and standard 

errors are not available. 

The likelihood contribution of one locus �	is 

Z�(.) ≈ 		� �(�	|	�, +, ., ��, = 1)5 �(��, = 1	|	+�, .)
+ exp [12\ A>�� + >#� exp(.)E 1>�� + >#� exp(.) + ∑ 	exp8.4�<?:;<"#
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= ]� expA12 �C�5)
se8�C�5?)E 	exp(.4�5):;

5"#

+ exp [12\A>�� + >#� exp(.)E^	 1>�� + >#� exp(.) + ∑ 	exp8.4�<?:;<"#
 

We assume that the loci are independent and approximate the joint likelihood by taking a product 

across loci as 

Z(.) ≈ 	_Z�(.)�  

 

 

An Alternative Bayesian Approach: 

For the Bayesian approach, we divide the variants across the whole genome into loci 

based on LD patterns (Berisa and Pickrell 2016; Pickrell 2014), and assume that each locus � has 

�� variants and a probability `� of being causal. We assume that the loci are defined such that 

they contain at most one causal variant. Then,  

`� = 	1 −_ 11 + 	exp	(3 + .4�5)
:;
5"#  

which is obtained by calculating the probability – based on the parameters 3 and  . –  that none 

of the variants in a locus is causal, and then taking the complement of that. For this approach, we 

iterate through the association results for the whole genome to estimate both . and 3. 

The corresponding conditional probability is (Supplementary Methods): 

�(��, = 1	|�, �, +, .) = 	 a ∑ exp	(3 + .4�b)		cd�<b1 + ∑ exp	(3 + .4�b)		cd�bb e a exp	(.4�5)	cd�5∑ exp	(.4�b)cd�bb e 
 



 106

where cd5< represents the Bayes Factor for the H�� SNP at the -�� locus
 
and can be computed 

using summary level data based on single-SNP association analysis (Wen 2014): 

cd�5 =	A1 + f)se8�C�5?)E
#/) 	exp	 h12 f)se8�C�5?) Lse8�C�5?) +	f)Mi	�C�5

)
 

where we assume a %(0, f)) prior on ��5 and in practice, average over a range of values of f). 

The joint likelihood then becomes (Supplementary Methods): 

�(�	|	�, +, 3, .) ∝_`� ]�cd�5 	exp	(3 + .4�5) + 15 ^�∈!l
 

 

Prioritizing Variants for Follow-up 

We use a Likelihood Ratio to test whether the enrichment parameter . is significantly 

different from null (Supplementary Methods). For each method, we use the estimated . and the 

corresponding log likelihoods to get the test statistic 

Λ = 2(ZZn8.C? − ZZn(0)) 
which follows a N)distribution with 1 degree of freedom. 

If significant (p < 0.05), we use the estimated value of . to calculate the posterior 

probability that each SNP in an associated locus is causal. The 95% credible set for a locus is the 

smallest set of variants in that locus whose posterior probabilities sum up to ≥ 95% (Maller et 

al. 2012).  Thus, we calculate the 95% Bayesian credible set for each locus to get a list of 

variants most likely to be causal. These credible sets can be used to prioritize variants for follow-

up. 
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Loci with Multiple Causal Variants 

The method described thus far assumes that each causal locus has exactly one true causal 

variant and that variants from different loci are not in linkage disequilibrium. In practice, 

conditional analyses of GWAS results often demonstrate that there are multiple causal variants in 

a locus (Hormozdiari et al. 2014). To enable us to prioritize causal variants when there are 

overlapping loci, we use conditional analysis. Specifically, when there are multiple nearby 

independent signals, we first define a super-locus including all variants near these signals. Then, 

we define a series of pseudo-loci by conditioning association statistics in turn on all but one of 

the top independent signals in the region. For example, if conditional analysis indicates 3 distinct 

association signals in one locus, we define 3 pseudo-loci for that locus. Each pseudo locus 

corresponds to one of the distinct association signals and uses association results obtained after 

conditioning on the top variants from the other two signals. This is, admittedly, a rather ad-hoc 

approach to approximate the multi-SNP association model that would be required. Observe that 

in such a scenario, summary level data based on single-SNP analysis can still be used when a 

method such as GCTA (Yang et al. 2011) is used to carry out approximate conditional analyses 

and define the pseudo-loci.  

Application to Multiple Traits 

Phenome-wide Association Studies (PheWAS) involve evaluating the association of a 

single genetic marker with multiple phenotypes (Ye et al. 2015). Decreases in genotyping costs 

have led to large biobanks genotyping all participants making it feasible to conduct PheWAS on 

a genome-wide scale (Bush et al. 2016). Electronic Health Records (EHR) and survey 

questionnaires are leveraged to construct thousands of phenotypes. For example, in the Michigan 

Genomics Initiative (Schmidt et al. 2017), International Classification of Diseases (ICD) codes 
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(https://www.cdc.gov/nchs/icd/icd9.htm) are used to track 8,940 phenotypes derived from 

distinct ICD-9 codes in the data. In an initial analysis of 21,241 individuals, Schmidt et al (2017) 

report 145 associated loci across 131 traits. We reason that some genomic features may be 

enriched in causal loci for all traits and thus applied our approach for across traits. To 

accommodate multiple traits, we defined 41 causal loci associated with at least one of the 

phenotypes under study. When causal loci for two or more phenotypes overlapped, we kept the 

phenotype with the more significant association. The rest of the algorithm works as described 

above. 

Simulation 

We use simulations based on real genotype data from a study on age-related macular 

degeneration (AMD) (Fritsche et al. 2016) to validate our method by ensuring that Type I error is 

controlled and investigate the power to detect different values of the enrichment parameter. The 

original study includes 17,832 European controls genotyped at 439,350 variants. To generate 

simulated GWAS datasets, we sampled 5,000 European ancestry individuals and a set of 3,000 

loci, each with 100 variants. The 3,000 loci are selected so that they are at least10 Mb apart, so 

that a pair of variants from two different loci is not likely to be in linkage disequilibrium with 

each other.  

For the baseline model, we assume that variants possess a feature of interest with 

probability 0.1 and that the value of . used to determine the causal variant is 2.5 (odds ratio = 

12.2). We use the parametric model 

�(��, = 1	|+�,, .) = 	 exp	(3 + .+�,)1 + exp	(3 + .+�,) 
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to determine which variants are causal, using 3 = 	−8 which generates approximately 100 causal 

loci under the null.  

We vary the parameters to observe the behavior of our method under different scenarios. 

We also use the simulated data to compare our method with the published method fGWAS 

(Pickrell 2014). 

Real Data Application 

Age-related Macular Degeneration 

We apply our method on sequencing data based on case-control study of age-related 

macular degeneration (AMD) with a sample size of 4,787 individuals with 2,394 cases and 2,393 

controls. Studies have shown that up 70% of AMD risk can be attributed to genetic variation 

(Seddon et al. 2005). Previous association studies have found up to 52 signals in 34 different loci 

(Fritsche et al. 2016). The sequencing study samples were matched based on age and sex and 

restricted to European ancestry using LASER
 
(Wang et al. 2015). The sequencing study involved 

45.4 million variants most of which were intergenic and very rare, and led to the detection of 9 

signals in 4 distinct loci CFH, C2/CFB/SK1V2L, C3 and ARMS2/HTRA1. Most notably, the CFH 

locus has multiple signals as well as variants with very high odds ratios. We construct 9 pseudo-

loci using conditional analysis results from Firth-adjusted logistic regression analysis. We use 

our method to do enrichment analysis on these data considering different genomic annotations –  

whether a variant is (i) non-synonymous, (ii) non-synonymous or frameshift, (iii) overlaps with a 

complement gene, or (iv) has a CADD score greater than 20
 
(Kircher et al. 2014). 
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Publicly Available GWAS Datasets: Lipids and Schizophrenia 

We also implement our method on publicly available data-sets for a variety of traits 

including lipids
 
(Global Lipids Genetics Consortium 2013) and schizophrenia

 
(Schizophrenia 

Working Group of the Psychiatric Genomics Consortium 2014). We use the published lists of 

associated variants to define our associated loci to investigate the enrichment of non-

synonymous variants. 

Michigan Genomics Initiative 

The Michigan Genomics Initiative (MGI) (https://www.michigangenomics.org/) is a 

large data repository where phenotype information is collected using both Electronic Health 

Records and questionnaires (Schmidt et al. 2017). Based on the February 2016 data freeze, 1,448 

traits based on PheWAS codes (Supplementary Figure S3.1) are analyzed for a sample size of 

21,241 participants.  

We defined significant loci based on the GWAS signals for all PheWAS traits. We 

defined 1Mb loci (500kb on either side) from the top signals (p-value < 5x10 -9 to adjust for 

multiple testing as we considered multiple traits simultaneously), resulting in 41 significant loci. 

A handful of overlapping loci were merged as required, with the more significant trait’s statistics 

being used.  

The saddlepoint approximation (Dey et al. 2017) test calculates only the association p-

values for each variant, which were inverted to approximate the N) test statistics. We tested for 

enrichment of nonsynonymous variants in the trait associated loci. 

We obtained eQTL data from 44 human tissues collected by GTEx 

(http://www.gtexportal.org/home/), and ranked the eGenes by first q-value and then effect size 

(GTEx Consortium 2015). Considering the top 5,000 eGenes for each of the 44 tissues, we 
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annotated whether variants were one of the eQTL SNPs on the GTEx list. We then used these to 

estimate the enrichment parameter and the posterior probabilities. Then we used these posterior 

probabilities to compute 95% credible sets at each locus (Supplementary Figure S3.2).  

UK Biobank  

We estimated enrichment of non-synonymous variants in GWAS results from UK 

Biobank data (Sudlow et al. 2015, Bycroft et al. 2017) of 408,961 white British European 

ancestry samples. Association results for 989 ICD-10 derived phenotypes were obtained using 

SAIGE (Zhou et al. 2017) and used to find genome-wide significant loci. 45 traits were found 

with at least 9 genome-wide significant loci. Non-synonymous variants were annotated using 

VEP (McLaren et al. 2016) and tested for enrichment in these traits with at least 9 genome-wide 

significant loci. Additionally, we investigated enrichment of eQTL SNPs for 44 tissues obtained 

from GTEx (GTEx Consortium 2015; http://www.gtexportal.org/home/) in the associated loci for 

the 45 traits.  

Results 

Simulation 

Simulation results show that power to detect enrichment increases with sample size as 

well as with number of associated loci (Figure 3.1). As number of associated loci increases, we 

get a more accurate estimate of the enrichment parameter when combining information across 

many loci. With smaller sample sizes, small effect sizes are difficult to detect leading to fewer 

causal loci being detected and wider bounds on . estimates. 

Additionally, stronger enrichments are easier to detect and hence, the higher the true 

value of ., the greater the power (Figure 3.2). For example, with sample size 5,000, as 
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simulating . increases from 1 to 2 (odds ratio increases from 2.7 to 7.4), empirical power 

increases from 45.5% to 97.8% in the simpler approach and from 61.6% to 100% in the Bayesian 

approach. For simulation purposes, we do not consider the scenario where . is less than zero as 

significant depletion of a rare annotation among associated variants is extremely difficult to 

detect (consider, for example, that if ~1% of the variants are coding, detecting a deficit of coding 

variants among disease associated loci might require 100s or 1000s of independent association 

signals).  

We observe that the Bayesian approach has slightly greater power than the simpler binary 

classification approach. However, for large datasets we recommend using the binary approach as 

it is much faster. While the simpler approach controls the Type I error at 0.05, the Bayesian 

approach is over-conservative near the null (Type I error = 0.01) due to the approximations made 

when estimating 3. 

Considering the estimation aspect of our method, observe that a theoretical lower bound 

of the standard error of the estimate can be calculated from the contingency table set-up. The 

standard error of the true log-odds from the contingency table is: 

se(log	OR)	 = 	v1w + 1> + 1x + 1y 

which is dominated by the term 
#z as we expect the first cell of the contingency table 

(Table 3.1) to have the smallest cell count. Thus, if we assume that there are fewer than 100 

causal loci, the standard error of the log-odds is greater than 0.1, which puts a minimum bound 

on the confidence interval length. Since we do not know the actual cell values of the table, the 

estimate we use is more uncertain and has a wider confidence interval than the true log-odds 

ratio. Thus, increasing sample size or varying other parameters does not allow us to improve the 
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standard error beyond this limit.  Simulations show that our estimated confidence intervals are 

very similar to those obtained when the true causal variants are known, although they are slightly 

larger as expected (Table 3.2) due to the uncertainty involved in identifying associated loci. 

As expected, the confidence interval length decreases as the value of the true underlying 

enrichment parameter increases (e.g. confidence interval length decreases from 1.40 to 0.61 as . 

increases from 0 to 2.5 (Table 3.2)).  

We calculate the coverage probability of our estimate, that is, the proportion of times the 

simulation . lies in the confidence interval of the estimate and observe that in our method it lies 

in the 95% confidence interval at least 95% of the time (range 95% - 99%) (Figure 3.3). We 

observe that the confidence interval also always contains the true observed log-odds ratio, that is, 

the log-odds ratio calculated based on the causal variants used in simulation.  

We compute credible sets of the causal variants. In the simpler approach, we calculate the 

posterior probability of being causal for each variant in the associated loci. Then, for each 

associated locus, the 95% credible set of variants is the minimal set whose posterior probabilities 

sum up to be equal to or more than 0.95. In the Bayesian approach, we do the same for every 

locus after removing loci where the total posterior probabilities are small . 

We compute credible sets using both a flat prior and our method, and observe how the 

credible set size decreases when taking enrichment due to genomic features into account (Table 

3.3). Note that in our simple simulation scenario, we get consistently smaller credible sets than 

under the null (that is, assuming no enrichment), and, as expected, the decrease in credible set 

size increases as enrichment increases (credible set size decrease of 12.7% for . = 2.5). 

We compare our method with the published method fGWAS and observe that our method 

tends to be more stable when . values are very high or very close to 0. It is difficult to compare 
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estimates directly since the fGWAS approach gives estimates at two levels – a variant level 

enrichment parameter and a locus level enrichment parameter – but at the more extreme values 

of . our method generates more reasonable confidence intervals than fGWAS. The power of the 

simpler approach is very similar to fGWAS, with the Bayesian approach having slightly more 

power (Figure 3.4).  

Real Data Application 

Age-Related Macular Degeneration 

We use our method to analyze AMD sequencing data with a sample of 4,806 individuals. 

We construct 9 pseudo-loci based on conditional analysis as well as single SNP analysis results. 

For a locus with multiple signals, we obtain the pseudo loci by conditioning in turn by all top 

independent signals but one. For example, in a locus with 3 independent signals, we obtain 3 

pseudo loci where all the variants in the locus are analyzed after conditioning on each pair of the 

3 signals. 

We expect annotating non-synonymous variants (estimated log-odds ratio = 3.05; odds 

ratio = 21.1) to lead to a high enrichment parameter, but observe that dichotomized CADD score 

(estimated log odds ratio = 5.54; odds ratio = 254.7), overlap with complement gene (estimated 

log odds ratio = 5.17; odds ratio = 175.9) or frameshift variations along with nonsynonymous 

variants (estimated log odds ratio = 5.14; odds ratio = 170.7) are estimated to be more enriched 

in the associated loci (Table 3.4).  

We construct 95% credible sets at each locus based on the different enrichment 

parameters, and compare them to credible sets constructed assuming no enrichment (Table 3.5). 

Observe that while most of the credible sets are reduced in size to some extent compared to the 

no enrichment scenario, there are 5 loci where the credible set is reduced to exactly 1 variant for 



 115

at least one of the four annotations considered. We observe that the credible sets are reduced for 

at least seven of the nine loci for all four traits (Table 3.5). While there is considerable reduction 

in credible set size (for example, total credible set size across all 9 loci reduces from 13,669 to 

640 when considering annotation with CADD score (Table 3.5)), it is mostly driven by one or 

two loci with hundreds or thousands of variants in the null credible set. We highlight some of the 

variants that are in these reduced sets (Table 3.6) which have at least 95% posterior probability 

for one of the four annotations considered, and note that all of them are present in credible sets 

for at least 2 kinds of annotations. 

To illustrate our method, we focus on loci 8 and 9 in particular, which are pseudo-loci 

obtained using conditional analysis on chromosome 19 (Figure 3.5). There are several variants 

in high linkage disequilibrium with the top SNP, but considering the annotations, 3 variants stand 

out. Note that without using conditional analysis results, the variant chr19:6718146 would not be 

in any credible set as the credible sets would be dominated by the signal in locus 8 .  

Publicly Available GWAS Datasets: Lipids and Schizophrenia 

We do similar analyses for association results from lipids and schizophrenia to test for 

enrichment of non-synonymous variants (Table 3.7). While non-synonymous variants are found 

significantly enriched for HDL-cholesterol, LDL-cholesterol and triglycerides, the enrichment is 

not statistically significant for total cholesterol or schizophrenia. Using the estimated enrichment 

parameter to compute 95% credible sets leads to a reduction in the number of variants to 

potentially follow-up on. For example for HDL-cholesterol, there is a 16% reduction in credible 

set size as number of variants in 95% credible sets across all loci reduces from 547 to 452 when 

the estimated enrichment parameter is used (Table 3.7). 



 116

Michigan Genomics Initiative 

We defined 41 loci based on association results from 38 traits. Nonsynonymous variants 

were found to be significantly enriched in trait-associated loci with an estimated enrichment 

parameter of 3.68 (odds ratio = 39.6; p-value = 2 x 10
-7

). We computed the 95% credible set at 

each locus, and found that the credible sets at most loci were very similar to the 95% null 

credible sets computed assuming no enrichment of nonsynonymous variants. We observed that 

21 of the loci had fewer than 5 variants in the credible sets in both cases. 

We tested for enrichment in overlap with eQTL SNPs across all traits and obtained an 

estimated enrichment parameter of 4.41 (odds ratio = 82.3; p-value = 3 x 10
-8

). We observed that 

24 of the 41 loci had 5 or fewer variants in their 95% credible sets and 9 of those loci had exactly 

one variant in their 95% credible sets. We note that, for a pair of loci, using the estimated 

enrichment parameter decreases the credible sets from 46 variants to 1 variant and from 23 

variants to 11 variants respectively. 

Table 3.8 shows the annotated variants which have a posterior probability of ≥ 10% and 

are present in the 95% credible sets for the 41 associated loci. We observed some biologically-

plausible connections such as a variant in the credible set for ‘disorders of lipid metabolism’ 

annotated in liver, and a variant in the credible set for ‘Skin cancer’ annotated for ‘skin - sun 

exposed lower leg’. However, not all the connections were obvious to us, so we considered 

estimating the enrichment for each eQTL tissue separately. However, since there are only 3,551 

annotated variants for all 44 tissues in the 41 loci, considering only one tissue dropped this 

number to less than 150, and we often end up with fewer than 5 annotated variants in the credible 

sets. This leads to unstable estimates and inflated standard errors. 
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UK Biobank 

We used association results from SAIGE (Zhou et al. 2017) to find trait-associated loci 

for 989 traits. We found 45 traits with at least 9 distinct genome-wide significant loci where loci 

were defined using both physical distance (100kb on either side) and p-value cut-off (p < 5x10
-8

) 

so that loci extend 100kb on either side of the peaks. Nonsynonymous variants were found to be 

significantly enriched in 19 traits as detailed in Table 3.9. Additionally, we found nominally 

significant enrichment of eQTL SNPs in 37 of the 45 traits (Table 3.10).  

Discussion 

Recent work from various consortia (ENCODE Project Consortium 2012, Bernstein et al. 

2010) has led to detailed mappings of the genomic regulatory regions and the functional 

properties therein. We attempt to integrate this knowledge with GWAS study results to provide a 

deeper insight into potentially causal variants. Our method works with summary level data, 

namely effect sizes and standard errors or p-values, and thus can be used with already published 

GWAS data. 

There are some existing methods which have similar aims(Pickrell 2014; Kichaev et al. 

2014). However, our method uses a multi-SNP model based on single-SNP analysis results and 

provides an easy to interpret enrichment parameter estimate. Simulations show that our method 

is more stable than existing methods when the true values are near zero. The algorithm is fast and 

efficient as it takes advantage of the fact that most SNPs in the genome are not associated with 

the trait of interest. We then use the estimated enrichment parameter to construct credible sets of 

SNPs prioritized for follow-up.  

The summary statistics from any association study are sufficient to implement our 

method. This makes it easy to apply our method to previously published GWAS to compare how 
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different genomic features affect various traits. Another advantage is that we can easily use our 

method for meta-analysis data. Meta-analysis is a popular method to increase sample size by 

combining studies to get improved power. We can study enrichment easily in this combined 

sample as individual level data is not required. 

Our method helps us interpret GWAS results in a systematic manner. We construct 

credible sets for each locus which narrows down the set of potential causal variants there. For 

example, in the AMD data, the total number of variants in credible sets for all the loci goes down 

from 13,669 to 640 when considering annotation with CADD score (Table 3.5). However, note 

that this decrease is mainly driven by one locus where the credible set sizes decreases from 

13,425 to 591 and there is much smaller reduction in credible set sizes for the other loci.  

Loci can be defined based on linkage disequilibrium or distance from top associated 

SNPs. Loci based on distance is simpler to implement but loci based on linkage disequilibrium 

may be better for refining the signals as they can allow for unequal sized loci. For loci with 

multiple signals, we recommend using conditional analysis results to define them as multiple 

pseudo-loci. This enables us to get credible sets for each independent signal which are not 

dominated by stronger signals nearby. 

We recommend using the simpler binary classification approach in most cases for faster 

results as most GWAS have a large number of variants and comparatively fewer associated loci. 

However, for better power the Bayesian approach is preferred in situations where the sample size 

or the number of associated variants is relatively low. 

We have shown that our method works well to estimate the enrichment parameter. 

However, our method does not work well in situations where the SNPs annotated with the 

feature of interest are likely to be depleted in the causal loci. This is because the features of 
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interest tend to be rare, and in case of depletion, we may end up with too few annotated variants 

in the associated loci to get stable estimates. Our method also requires either a sufficient number 

of causal loci (ideally >25), or loci with high effect sizes to achieve sufficient power.  

While both methods described are easy to implement and quite effective, there are several 

directions in which it can be extended. We may wish to consider quantitative annotations, or 

categorical annotations with more than 2 levels. In our analysis, we dichotomized the CADD 

score, but using all the different levels available may lead to more informative results. Another 

option is to consider multiple genomic annotations simultaneously, which may or may not be 

correlated. We hope that our method can form the basis to develop tools which help us 

statistically quantify the relation between genomic features and phenotypes, and lead to a better 

understanding of the biological mechanisms behind complex genetic traits. 
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Table 3.2:  Estimated Confidence Interval Lengths for the Enrichment Parameter 

 

Simulating 

λ 

Mean estimated CI 

length 

SD of estimated CI 

length 

Actual 

observed CI 

length 

SD of actual 

observed CI 

length 

0 1.40 0.17 1.36 0.25 

0.5 1.18 0.10 1.07 0.12 

1 1.00 0.08 0.87 0.07 

1.5 0.84 0.05 0.72 0.04 

2 0.71 0.03 0.62 0.02 

2.5 0.61 0.02   

Confidence intervals reported are calculated using the Bayesian approach. Mean and SD 

calculated empirically based on 500 simulations for each parameter. Actual observed CI refers 

to CI based on using the known causal variants used in simulation. 

 

 

 

 
Table 3.3: Decrease in Credible Set Size using Enrichment Parameter 

 

Simulation { 

 

Mean Credible Set 

Size with Estimate 

Mean Credible Set Size 

under Null 

Mean Decrease in Credible 

Set Size (SD) 

0 1099.59 1109.87 10.28 (15.42) 

0.5 1128.34 1139.62 11.28 (13.06) 

1 1132.18 1154.08 21.90 (18.73) 

1.5 1129.53 1178.23 48.70 (30.11) 

2 1113.07 1202.94 89.86 (44.31) 

2.5 1012.76 1159.78 147.02 (61.98) 

95% credible sets are calculated using the enrichment parameter estimated. Results are shown 

based on enrichment parameter for simpler approach, but Bayesian approach results similar. 
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Table 3.4: Estimated enrichment parameter in AMD data for different genomic features 

 

Annotation Estimated λ Odds Ratio P-value 

Nonsynonymous 3.05 21.1 1 x 10
-3

 

Nonsyn + Frameshift 5.14 170.7 4 x 10
-5

 

CADD score 5.54 254.7 1 x 10
-4

 

Complement Genes 5.17 175.9 2 x 10
-4

 

Enrichment parameters estimated for different genomic features based on 9 associated ‘pseudo-

loci’ in association results for age-related macular degeneration. Odds ratio = exp(.). 
 

 

 

Table 3.5: Credible Set Sizes Based on Different Genomic Features for AMD Data 

 

Top SNP at Locus Null Nonsyn NFS CADD Complement 

chr1:196684392 20 19 20 19 19 

chr1:196661505 90 53 62 9 88 

chr1:196024122 13,425 4,537 7,483 591 1,402 

chr1:196358288 6 5 30 1 67 

chr6:31894355 2 2 2 1 1 

chr6:32609038 111 27 111 11 27 

chr10:124214600 11 8 2 1 11 

chr19:6718387 2 1 1 1 2 

chr19:6718146 2 1 1 6 1 

 
Credible sets constructed based on estimated enrichment parameter at 9 ‘pseudo-loci’ for AMD 

sequencing data. Null denotes credible sets constructed assuming no enrichment. Annotations 

are: Nonsyn = nonsynonymous; NFS = nonsynonymous or frameshift; CADD = CADD score > 

20; Complement = nearest gene is a complement gene. 
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Table 3.6: Some Highlighted Variants in the Associated Loci for AMD Data 
 

Locus Top SNP Annotated Credible Set Posterior Probability 

    Nonsyn NFS CADD Compl. 

4 chr1:196407807 CADD All 4 0.16 0.15 0.97 0.04 

5 chr6:31930462 CADD Nonsyn, NFS, Compl. 0.79 1 0.99 0.02 

5 chr6:31894355 Compl. Nonsyn, NFS, Compl. 0.21 0.2 0.001 0.98 

7 chr10:124214600 CADD All 4 0.11 0.02 0.99 0.28 

7 chr10:124214448 Nonsyn, NFS Nonsyn, NFS, Compl. 0.65 0.94 0.001 0.08 

8 chr19:6718387 Nonsyn, NFS, Compl. Nonsyn, NFS, Compl. 0.99 0.99 0.04 0.90 

8 chr19:6717655 CADD, Compl. CADD, Compl. 0.004 0.0005 0.95 0.08 

9 chr19:6718146 Nonsyn, NFS, Compl. All 4 0.99 0.99 0.51 0.99 

 

Highlighted variants selected such that posterior probability >95% for at least one annotation. Annotated denotes what features the 

top variant has; Credible Set denotes which credible sets the variant is present in; Posterior Probability is the estimated posterior 

probability each enrichment parameter; Nonsyn = nonsynonymous; NFS = nonsynonymous or frameshift; CADD = CADD score > 

20; Compl. = nearest gene is a complement gene 
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Table 3.7: Estimated Enrichment Parameter for Nonsynonymous Variants in Publicly Available Datasets 

 

Trait Estimated { Odds Ratio P-value Credible set size Null credible set 

HDL 2.67 14.4 1.2 x 10
-9

 452 547 

LDL 2.85 17.3 2.0 x 10
-5

 132 289 

TC 1.50 4.5 0.53 - 788 

TG 2.04 7.7 0.03 271 312 

SCZ2 0.72 2.1 0.42 - 1,707 

 

Lipid traits High Density Lipoprotein cholesterol (HDL), Low Density Lipoprotein Cholesterol (LDL), Total Cholesterol (TC) and 

Triglycerides (TG) data taken from published meta-analysis (Global Lipids Genetics Consortium 2013). Schizophrenia (SCZ2) data 

taken from Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Nonsynonymous variants annotated using 

VEP (McLaren et al. 2016). 
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Table 3.8: Highlighted Variants in the Enrichment Analysis for eQTL SNPs in MGI Data 

 

Trait SNP 
Credible 

Set Size 

Posterior 

Probability 
Annotation 

Rhesus isoimmunization in 

pregnancy 
1:25561667 2 0.33 23 tissues* 

Rhesus isoimmunization in 

pregnancy 
1:25583610 2 0.62 33 tissues* 

Disorders of lipoid metabolism 1:109817192 5 0.25 Liver, Muscle Skeletal 

Disorders of lipoid metabolism 1:109817590 5 0.26 Esophagus Mucosa, Pancreas 

Disorders of lipoid metabolism 1:109818306 5 0.42 
Brain Cortex, Skin-Not Sun Exposed Suprapubic, 

Whole Blood 

Gout 4:89045331 6 0.86 Vagina 

Skin Cancer 6:396321 1 1.00 
Cells EBV-transformed lymphocytes, Small 

Intestine Terminal Ileum, Whole Blood 

Fracture of pelvis 9:116113396 1 0.97 Whole Blood 

Other venous embolism and 

thrombosis 
9:136137065 11 0.33 Adrenal Gland 

Other venous embolism and 

thrombosis 
9:136149229 11 0.58 Colon Sigmoid, Pituitary, Uterus, Vagina 

Skin Cancer 16:90024202 13 0.28 Spleen 

Arrhythmia (cardiac) NOS 17:65200303 29 0.56 Brain Cortex 

Skin Cancer 20:32665748 1 0.96 Skin-Sun Exposed Lower leg 

Annotated variants in 95% credible sets that have at least 10% posterior probability of being causal are listed, along with the eQTL 

tissues they’re annotated for. Credible Set Size denotes the number of variants present in the credible set for that locus.  

*Some variants annotated for more than 20 eQTL tissues
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Table 3.9: Traits where Nonsynonymous Variants are found to be Significantly Enriched in 

UK Biobank Data 
 

Trait 
No. of 

Loci 

Enrichment 

Estimate 

Odds 

Ratio 
P-value 

Cholelithiasis and cholecystitis 30 4.38 79.85 5 x 10
-08

 

Disorders of lipoid metabolism 47 3.48 32.33 1 x 10
-07

 

Hypercholesterolemia 43 3.57 35.37 3 x 10
-07

 

Skin cancer 46 3.40 29.97 7 x 10
-07

 

Other non-epithelial cancer of skin 48 3.45 31.44 1 x 10
-06

 

Coronary atherosclerosis 51 3.54 34.31 4 x 10
-06

 

Hypothyroidism 49 3.46 31.81 2 x 10
-05

 

Diabetes mellitus 56 2.97 19.40 5 x 10
-04

 

Disorders of mineral metabolism 9 3.99 53.94 2 x 10
-03

 

Cataract 21 3.29 26.91 2 x 10
-03

 

Gout 11 4.24 69.14 0.02 

Phlebitis and thrombophlebitis 11 3.43 30.86 0.03 

Ischemic Heart Disease 29 2.57 13.04 0.03 

Other chronic ischemic heart disease, 

unspecified 
20 3.00 20.11 0.03 

Other arthropathies 9 3.54 34.58 0.03 

Phlebitis and thrombophlebitis of lower 

extremities 
12 3.11 22.39 0.04 

Inflammatory bowel disease and other 

gastroenteritis and colitis 
20 3.29 26.80 0.04 

Circulatory disease NEC 9 3.09 21.98 0.04 

Other disorders of circulatory system 10 3.04 20.95 0.04 

 

Traits where nonsynonymous variants were found to be significantly enriched in associated loci. 

Analysis done on 44 traits found to have at least 9 significantly associated loci. No. of loci 

denotes the number of distinct regions found to be genome-wide significant; Enrichment 

Estimate the estimated enrichment parameter and P-value the corresponding P-value. 
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Table 3.10: Traits where eQTL SNPs are found to be Significantly Enriched in UK Biobank Data 

 

Trait 
No. of 

Loci 

Enrichment 

Estimate 

Odds 

Ratio 
P-value 

Varicose veins 31 5.53 252.87 4 x 10
-15

 

Coronary atherosclerosis 51 4.93 138.93 2 x 10
-14

 

Disorders of lipoid metabolism 47 4.71 111.41 1 x 10
-12

 

Varicose veins of lower extremity 33 5.14 171.19 2 x 10
-12

 

Cardiac dysrhythmias 25 5.62 275.70 2 x 10
-12

 

Hypercholesterolemia 43 4.67 106.86 7 x 10
-12

 

Other chronic ischemic heart disease, unspecified 20 5.42 225.92 5 x 10
-11

 

Angina pectoris 22 5.41 223.47 7 x 10
-11

 

Ischemic Heart Disease 29 4.80 121.18 2 x 10
-10

 

Osteoarthrosis 22 5.55 256.69 3 x 10
-10

 

Diabetes mellitus 56 4.54 94.15 4 x 10
-10

 

Myocardial infarction 23 5.17 175.98 2 x 10
-09

 

Skin cancer 46 4.16 63.88 7 x 10
-09

 

Asthma 43 4.38 80.01 1 x 10
-08

 

Cholelithiasis and cholecystitis 30 4.64 103.85 2 x 10
-08

 

Overweight, obesity and other hyperalimentation 10 5.36 212.12 7 x 10
-07

 

Hypothyroidism 49 4.04 56.89 9 x 10
-07

 

Disorders of muscle, ligament, and fascia 28 4.39 80.59 1 x 10
-06

 

Abdominal hernia 16 5.29 199.16 2 x 10
-06

 

Other non-epithelial cancer of skin 48 3.75 42.36 2 x 10
-06

 

Inflammatory bowel disease and other gastroenteritis and colitis 20 4.81 123.29 3 x 10
-06

 

Diverticulosis and diverticulitis 38 4.33 76.31 4 x 10
-06

 

Nasal polyps 25 4.62 101.24 8 x 10
-06

 

Benign neoplasm of colon 28 4.38 79.84 2 x 10
-05

 

Ulcerative colitis 13 4.96 143.16 1 x 10
-04

 

Diffuse diseases of connective tissue 13 5.54 254.23 1 x 10
-04

 

Lupus (localized and systemic) 9 6.28 532.10 2 x 10
-04

 

Benign neoplasm of uterus 18 4.23 69.02 7 x 10
 -04

 

Glaucoma 15 4.44 84.46 8 x 10
-04

 

Phlebitis and thrombophlebitis 11 4.85 127.34 9 x 10
-04

 

Pulmonary heart disease 16 3.98 53.75 0.01 

Circulatory disease NEC 9 4.10 60.64 0.01 

Other disorders of circulatory system 10 4.04 56.73 0.01 

Urinary calculus 10 3.58 35.82 0.03 

Gout 11 4.38 79.76 0.03 

Psoriasis and related disorders 9 3.55 34.82 0.03 

Cataract 21 3.72 41.27 0.05 

 
Traits where eQTL SNPs obtained from GTEx (http://www.gtexportal.org/home/) are enriched in the associated loci 

for UK Biobank Data. Analysis done on 44 traits found to have at least 9 significantly associated loci. 
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Figure 3.1: Power Curves for Different Sample Sizes 

 

As expected the power improves with increasing sample size, and the Bayesian method has 

slightly better power than the binary classification method. 

 

Figure 3.2: Empirical Mean and SD of Enrichment Parameter Estimate 

 

 

Estimated . with standard errors when we vary . values for (a) Simpler approach and (b) 

Bayesian approach show that as the true value of . increases, the standard errors decrease as 

we have better power for estimation. 

 

 

(a) Simpler Approach (b) Bayesian Approach 
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Figure 3.3: Coverage Probability 

 

The black line denotes the coverage probability of our estimate which is >95% for all the values 

of . simulated.  

 

Figure 3.4: Power Comparison with fGWAS 
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Figure 3.5: Locuszoom plot for region around chr19:6718387 for AMD 

 

Locuszoom plot for region around chr19:6718387 highlighting annotated variants in credible 

sets from single-SNP analysis as well as conditional analysis results Credible sets for ‘pseudo 

loci’ 8 and 9 leads to 3 variants for follow-up. 
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Supplementary Methods 

Algorithm 

We wish to quantify the enrichment of variants annotated with a particular feature among causal 

variants. Now suppose the causal variants were known. Consider the following contingency 

table: 

 Has Annotation No Annotation 

Causal a b 

Non-causal c d 

 

The log odds ratio of this table estimates the parameter . from the logistic model 

log �(| = 1	|4)�(| = 0	|4) = 3 + .4 

and thus, is an enrichment parameter as required. However, we do not observe the table in 

practice. We begin with some initial estimates of 3 and ., and compute the expected cell counts 

of the table and the corresponding log odds ratio under our model assumptions. We continue 

estimating in an iterative process till the estimates converge. 

Modeling the Association  

We begin with observed data from an association study. Let � be the sample size and � the trait 

vector, � the genotype matrix. 

We model the phenotype-genotype associations using a standard multiple linear regression 

model: 

� = ��� +��5},
~

5"# + �, 
where }, indicates the -�� column of the matrix �.  
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Simpler Approach: Focusing on Loci that Reach Genome-wide Significance 

In this approach, we assume that each associated locus has exactly one causal variant and that the 

background variants not in the associated loci are not causal. We make further simplifying 

assumptions that the average chi-square for the background variants is 1. 

Prior 

Suppose that there are >#and >� background variants with and without the annotation 

respectively, and � associated loci, we assign the background variants to the associated loci, so 

that the prior for a variant at each locus becomes 

�(��, = 1	|	+�, .) = 	 	exp(.4�5)>�� + >#� exp(.) + ∑ 	exp8.4�<?:;<"#
 

Association Results 

Note that the N) test statistics from the single-SNP association results can be used to 

approximate the likelihood as follows: 

O�5 = 2	log J�(�	|�, ��, = 1)�(�	|	��) 	K	 
where O�5 = (	�C�5/se8�C�5?)) is the N) test statistic associated with the -�� variant of the ��� locus, 

and �� is the null case where the trait is not associated with any of the variants, and thus can be 

considered as a constant x independent of the genotypes. 

Hence, 

�(�	|�, ��, = 1) ∝ exp	 [O�52 \ 

Thus, for variants in the causal loci, we get 

�(�	|	�, +, ., ��, = 1) ≈ expA12J �C�5
se8�C�5?K

)E	 
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Likelihood 

The likelihood contribution of one locus �	is 

Z�(.) ≈ 		� �(�	|	�, +, ., ��, = 1)5 �(��, = 1	|	+�, .)
+ exp [12\ A>�� + >#� exp(.)E 1>�� + >#� exp(.) + ∑ 	exp8.4�<?:;<"#

 

= ]� expA12 ����)
se8����?)E 	exp(.4�5):;

5"#

+ exp [12\A>�� + >#� exp(.)E^	 1>�� + >#� exp(.) + ∑ 	exp8.4�<?:;<"#
 

We assume that the loci are independent so that the joint log-likelihood becomes 

ZZn(.) = 	�log	(Z�(.))�  

Testing 

 The Likelihood ratio test is 

Λ = 2(ZZn8.C? − ZZn(0)) 
which follows a N)distribution with 1 degree of freedom.   

Posterior Probability 

Although we assign the background variants to the associated loci, they are spread across the 

genome. To calculate the posterior probability for the variants actually present in the loci, we get  

�(��, = 1	|	�, �, +, .) ≈ 	 exp A12 �C�5)se8�C�5?)E 	exp(.4�5)
]∑ expA12 �C�<)se8�C�<?)E 	exp8.4�<? + exp L12M J>�� + >#� exp(.)K:;<"# ^ 
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However, this formula still takes the background variants into account so that the posterior 

probabilities of variants actually present in an associated locus sum to <1. To compute the 

credible sets, we use the modified posterior probabilities: 

�(��, = 1	|	�, �, +, .) ≈ 	 exp A12 �C�5)se8�C�5?)E 	exp(.4�5)
]∑ expA12 �C�<)se8�C�<?)E 	exp8.4�<?:;<"# ^ 

An Alternative Bayesian Approach 

Association Results 

The phenotype-genotype association is modeled using a standard multiple linear regression 

model: 

� = ��� +��5},
~

5"# + �, 
where }, indicates the -�� column of the matrix �.  

In the GWAS context, we expect most of the SNPs in the genome to not be associated with the 

trait and thus, only a small proportion of the �5s is non-zero. However, we do not know which 

SNPs are causal and a large number of SNPs are in linkage disequilibrium with one another. Let 

� be a latent indicator variable denoting the causal SNPs. We assume that our genotype data is 

divided into � smaller segments or loci and that the vector � can be split correspondingly into 

vectors as follows:  

� = �� ⊕�� ⊕…⊕�Z 

Let �,7 be the indicator variable corresponding to the H�� SNP in the -�� locus and +,7 be an 

indicator variable denoting whether the SNP has the feature of interest.  
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Prior 

We assume that the prior probability of a SNP being causal depends on whether it has the feature 

or not as follows: 

P(��� = 1) = exp(3 + .+,7)1 + exp(3 + .+,7) 
where . is the parameter of interest which quantifies the enrichment of SNPs with feature among 

the causal variants. 

Likelihood 

Now, the likelihood of the observed data can be obtained by summing over all possible values of 

the latent variable � as follows: 

�(�	|�, 3, .) = 	��(�	|�� , �)	�(�	|3, .) 
= �(�|��)��(�	|�, �)�(�	|��) �(�	|3, .)�  

where �� is the case where the trait is not associated with any of the variants, and thus can be 

considered as a constant x independent of the genotypes. Thus, 

�(�	|�, 3, .) = x	�cd(�)�(� = �	|	3, .)	�  

where cd(�) indicates the Bayes Factor for the selected �. 

Bayes Factor 

Here,  

cd5< =	J1 +	f)�5<K
#/) 	exp	 A12����

)
�5< f)�5< +	f)E 
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with ����  and �5< being the estimated association effect size and variance for the H�� variant in the 

-�� locus respectively. The prior imposed on this effect size is � ∼ %(0, f)) and we average 

over a range of possible values of f (Wen 2014). 

Now, note that the Bayes Factor can be approximated as  

cd(�) = 	_cd(�,)5∈!  

where cd(�,) represents the Bayes Factor for the selected vector �, at locus -. 
Simplification of Likelihood 

From the prior imposed on a variant being causal, we get 

�(�	|	3, .) = _�8�,79	3, .)5,<  

= _�(�,	|	3, .)5∈!  

Thus, 

�(�	|	�, 3, .) ∝ �_cd(�,)�(� = �	|	3, .)5∈!�  

= � _cd(�,)�(�, = �,	|	3, .)5∈!��,��,…	�Z
 

=	_h�cd(�,)�(�, = �,	|	3, .)�,
i5∈!  

 

To iterate over all possible combinations of � is not computationally feasible. In order to make 

the inference procedure computationally tractable, we make some simplifying assumptions. 

Suppose that we can partition � into the set of loci without a causal variant (��) and the set of 
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loci with at least one causal variant (�#) such that � = �� ∪ �#. In practice, we use association 

results based on single SNP analysis to approximate the partition. Observe that for a non-causal 

locus -, cd(�,) = 1, and hence,  

�cd(�,)�(�, = �,	|	3, .) = 	��(�, = �,	|	3, .) = 1�,�,
 

⇒ �(�	|	�, 3, .) ∝ 	_h�cd(�,)�(�, = �,	|	3,�,
.)i5∈!l

 

 

For the associated loci, we assume that the locus is defined to be small enough to contain a single 

causal variant. Then for such a locus -, 
cd(�,)�(�, = �,	|	3, .) → 0			for	�, ∶ 		��,7 > 1<  

This means that there is at most one underlying causal variant in the locus, and terms involving 

indicator variables with more than one causal variant are negligible. 

Let �5 = {	�, ∶ 	∑ �,7 = 1}< , that is, the set with exactly one causal variant in the locus.  

⇒�cd(�,)�(�, = �,	|	3, .) = 	 � cd(�,)�(�, = �,	|	3, .) + cd(&)�(�, = &	|	3, .)�,∈�,�,
 

 

Note that for �,∗ ∈ �5 ∶ 	 �,7∗ = 1, cd(�,∗) = cd(�,7) and cd(&) = 1. 

⇒�cd(�,)�(�, = �,	|	3, .)�,
=	�cd5<�8�,7 = 1, �,� = 0		∀	� ≠ H	9	3, .) + �(�, = 0	|	3, .)	<  
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=�hcd5<	�8�,7 = 1	9	3, .)	_�(�,� = 0	|3, .)b�< i< + �(�, = &		|	3, .) 
 

=�hcd5< exp	(3 + .45<)1 + 	exp	(3 + .45<)	_ 11 + exp	(3 + .45b)b�< i< + �(�, = &	|	3, .) 

= `5 h�cd5< 	exp	(3 + .45<)< + 1i 

 

where cd5< is the Bayes Factor corresponding to the H�� variant in the -�� locus and `5 is the 

locus specific probability that there is no causal variant in the -�� locus.  

Let the -�� locus have �5 variants. Then, 

`5 =	_ 11 + 	exp	(3 + .45<)
:�
<"#  

 

⇒ �(�	|	�, 3, .) ∝_`5 ��cd5< 	exp	83 + .45<? + 1< �5∈!l
 

Testing 

Thus, the Likelihood Ratio Test is: 

Λ = 	2	log J �(�	|	�, 3̂, .C)�(�	|	�, 3��, . = 0)K 

where  3�� is the estimated value of 3 under the model assumption that . = 0 and Λ	follows N) 

with 1 degree of freedom. 
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Posterior Probabilities 

Note that as �,7 takes values 0 and 1, the posterior expectation of �,7 is simply the posterior 

probability that �,7 = 1. 

�8�,7 = 1	9	�, �, 3, .) = �8�, �,7 = 1	9	�, 3, .)�(�	|	�, 3, .)  

Hence, 

�8�,7 = 1	9	�, �, 3, .) = 	  exp	83 + .45<?¡	`5	cd5<∑  exp	83 + .45<?¡`5cd5b +	`5 	b  

=	 ∑ exp	(3 + .45b)		cd5bb1 + ∑ exp	(3 + .45b)		cd5bb a exp	83 + .45<?	cd5<∑ exp	(3 + .45b)	cd5bb e 
=	 ∑ exp	(3 + .45b)		cd5bb1 + ∑ exp	(3 + .45b)		cd5bb a exp	8.45<?	cd5<∑ exp	(.45b)cd5bb e 
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Supplementary Figure S3.1: Phenotypes for MGI Data

 

Phenotype data for MGI was based on ICD-9 codes. 8,940 ICD-9 codes were aggregated into 

1,815 PheWAS Codes, out of which 1,448 had case count ≥ 20. 
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Supplementary Figure S3.2: Outline of Method to Estimate Enrichment of eQTL’s in MGI Data 

 

 

Δ : eQTL variant 
Ο : non-eQTL variant 
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Chapter 4: Correcting for Sample Overlap in GWAS Meta-Analysis Using Summary 

Statistics 
 

Introduction 

Meta-analysis is a practical method to increase sample size and power of genome-wide 

association studies, enabling discovery of novel signals and refinement of discovered loci. Many 

consortia have been formed to investigate the genetic underpinnings of different traits (Sullivan 

2010; Global Lipids Genetics Consortium 2013; The Coronary Artery Disease (C4D) 

Consortium 2010; International Consortium for Blood Pressure Genome-Wide Association 

Studies 2011), and often make their summary statistics publicly available. Newer studies may 

take advantage of these published statistics as a starting point for their own meta-analysis, further 

increasing sample sizes and increasing power to detect novel signals.  

In these successive meta-analyses, an important issue to consider is the potential overlap 

in the set of participants among successive studies. Any overlap can lead to inflated type I error 

and false signals. The overlap can have many sources. For example, in some analyses publicly 

available controls are shared among different studies (Burton et al. 2007). Additionally, same 

cohorts may contribute to different meta-analysis efforts. For example, for type 2 diabetes, data 

from FUSION was used in both GoT2D GWAS (Fuchsberger et al. 2016) and 70KforT2D 

GWAS (Bonàs-Guarch et al. 2017). 

Methods exist that account for overlap when individual-level data are available, or the 

number of participants contributing to both studies is known (Lin and Sullivan 2009). In this 

paper, we consider a different scenario in which only summary statistics (Z-score and sample 
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size at each marker) are available from potentially overlapping studies. Assuming that the 

samples belong to the same ancestry, we propose a method to identify overlap between pairs of 

studies using GWAS summary statistics, estimate the degree of overlap, and meta-analyze the 

studies appropriately accounting for the overlaps. 

We test the accuracy of our method by constructing overlapping samples based on real 

GWAS datasets to construct artificial overlapping datasets to illustrate our method. The results 

indicate that our method works well to estimate and correct for the overlap and obtain well-

calibrated summary statistics (Z-scores). 

 

Material and Methods 

Standard Meta-Analysis Method 

A common approach in meta-analysis is to sum the Z-scores across studies, weighting 

them appropriately using the sample sizes (Stouffer et al. 1949). Suppose we have ¢ studies, 

with |b, � = 1, …¢, being the Z-score from the ��� study and %b the corresponding sample 

size. A standard meta-analysis uses weights £b, � = 1, …¢, to combine the estimates as 

follows: 

| = 	�£b	|b¤
b"# 																										… Equation	(1) 

The |b’s are assumed to be have standard normal distribution under the null hypothesis 

of no association between trait and genetic marker. Hence, the variance of the combined Z-score 

is: 

Var(|) = 	�£b)¤
b"# 																					… Equation	(2) 



 143

The weights are usually chosen based on per-study sample size so that larger studies have 

more weight (eg.	£b = ¬­®¬∑ ­;; ). When the Z-scores are independent, these weights ensure that the 

combined Z-score is distributed as %(0,1) under the null. However, when the studies have 

overlapping samples, the variance (2) becomes: 

Var(|) = 	�£b)¤
b"# + 2	� � £b£� Cov

¤
�"b¯# (|b, |�) ¤

b"# 														… Equation	(3) 
where the covariance terms Cov(|b, |�) depend on overlap between each pair of studies. 

Thus, using standard weights no longer leads to a %(0,1) test statistic under the null. To account 

for this, we estimate this covariance and adjust the weights accordingly. The optimal weights can 

be shown to be (Lin and Sullivan 2009): 

±£#, …£¤² = Q³Ω
# Q³Ω
#Q⁄ 																									… Equation	(4) 
where Q is a ¢	x	1 vector of 1’s and Ω is the estimated covariance matrix of (|#, … |¤).  

The covariance matrix Ω can be calculated easily if individual-level data are available, or 

if the exact number of overlapping samples between each pair of studies is known. We consider 

the more general case where the number of overlapping samples is not known and use the pair-

wise correlation between Z-scores to estimate the overlap and adjust the weights as in (4).  

Meta-Analysis Correcting for Sample Overlap 

We develop a method to estimate the sample overlap and correct for it (Figure 4.1) using 

the correlation between Z-scores from each pair of studies. First, we stratify the Z-scores 

according to sample size at each marker because differences in the number of typed samples at 

each site could reflect success – or lack thereof – in genotyping across different studies. Second, 

we truncate the Z-scores using a cutoff value x (|Z| < c) to remove the effect of strongly 
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associated loci. Finally, we estimate the correlation from these stratified truncated observations, 

and used to estimate the covariance matrix in (4) and meta-analyze using the modified weights. 

Correcting for Overlap in Meta-Analysis 

Suppose there are ¢ studies in a meta-analysis, and the Z-scores are combined in a 

weighted sum where £b is the weight for the ��� study. If we can estimate the covariance 

between Z-scores of each pair of studies in the meta-analysis, we can meta-analyze using 

modified weights as in (4) as follows: 

|C = 	 1¬∑ £b)b + ∑ ∑ £b£�·̂b���bb 	�£b|b¤
b"# 																						… Equation	(5) 

where ·̂b� is the estimated correlation between the Z-scores of the ��� and ��� studies under the 

null. Note that the Z-scores are assumed to have standard normal distribution under the null, and 

hence, covariance and correlation can be interchanged. 

Using Truncated Z-scores to Estimate Covariance 

We assume that (a) effect sizes at trait associated loci do not vary from study to study, a 

condition that should be approximately true given our assumption that all studies are of the same 

ancestry and (b) the degree of overlap is uniform across markers after accounting for sample size 

stratification. Furthermore, we assume that the Z-scores for a pair of studies have a bivariate 

normal distribution. Suppose that the trait under consideration is independent of genetic effects. 

Then the Z-scores are standard normally distributed for each study, and sample correlation of 

paired Z-scores can be used to estimate the correlation parameter of the bivariate normal 

distribution. 

J|5|<K ∼ % A[00\ , J1 ¸5<¸5< 1KE																						… Equation	(6) 
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However, Z-scores at trait associated loci are expected to show positive correlation even 

in independent samples as trait associated loci are expected to have same direction of effect, and 

using the sample correlation between observed Z-scores would lead to an over-estimation of the 

correlation. We also expect most traits for GWAS to be complex polygenic traits where there 

may be many variants with small effect sizes.  

To exclude potentially causal loci, we use a cutoff x, and use markers with Z-scores in 

the interval (−x, x) to estimate the correlation. For example, using x = 1 uses about 68% of the 

markers while excluding the more significant loci. We assume a truncated normal distribution on 

the Z-scores to estimate the maximum likelihood estimate of correlation, and use this to estimate 

the overlap. The likelihood of the observed Z-scores between studies - and H is: 

� =_ f8�,º, �7º9	¸5<)�8|�,º| < x, 9�7º9 < x	9	¸5<)» 																						… Equation	(7) 
where ½ ranges over all the markers present in both studies, and the Z-scores are assumed to 

follow a bivariate normal distribution with mean 0, variance 1 and correlation ¸5<. 
The estimated correlation obtained from (7) is then used in (5) to correctly meta-analyze 

the studies by modifying the weights to for overlap. 

Stratification Based on Sample Size of Marker 

For a pair of studies, if all markers are present in both studies, the overlap number is the 

same for each marker. However, it may happen that sample size varies across markers as some 

markers may be present only in a sub-cohort of a study. For example, Figure 4.2 describes a 

simple scenario where two studies have a cohort overlapping (cohort 2). Markers absent in this 

overlapping cohort 2 would have an overlap of 0, and so they should be meta-analyzed without 
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correcting for overlap. However, markers present in the overlapping cohort should be meta-

analyzed after correcting for an overlap the size of cohort 2. 

Two problems arise if the overlapping number varies by marker. First, the estimated total 

covariance is biased downward by the markers where there is no overlap and we may apply an 

insufficient adjustment at many markers, leading to false signals. Secondly, when applying a 

constant correction for overlap, we may over-correct at markers with no overlap and lose power. 

 Ideally, clustering methods such as k-means clustering can be used to stratify the total 

sample size at each marker and works well when comparing a pair of studies. When many 

studies are included in a meta-analysis there may be a broad range of sample sizes(Figure 4.3) 

and using less refined clustering improves computational efficiency. Thus, we use markers that 

have at least 50% of total sample size, and bin them using relatively broad bin sizes. Then we 

estimate the correlation at each stratified level using (7) to estimate the overlap for that group of 

markers, and then correctly meta-analyze using (5). 

If sample size per marker is not available, we can use the total sample size to estimate 

and correct for overlap. In this case, we omit the stratification step. However, if all markers are 

not present in all studies, we expect this to lead to errors in the final meta-analysis as some effect 

sizes may be over-corrected while others remain under-corrected. 

Using Pair-wise Correlation of Z-scores to Estimate Effective Overlap Size 

Consider a pair of studies with sample sizes �# and �), and suppose that the trait under 

investigation is independent of genetic effects. Then, we expect the Z-scores to be distributed as 

%(0,1) for both studies. Let �#) be the number of samples overlapping between the two studies. 

Now, the Z-scores for each study can be considered as a weighted sum of the Z-scores for the 
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overlapping and non-overlapping parts. Assuming the weights are proportional to the sample size 

as follows: 

|# = ¬(1 − �#)|¾ + ¬�#|¿ 																					… Equation	(8) 
|) = ¬(1 − �))|¾ +¬�)|¿ 																						… Equation	(9) 

where the weights used are �# = �#)/�# and �) = �#)/�), that is, the overlap proportions in 

each study and |¾, |À, |¿ are standard normal variables. Then, 

Cov(|#, |)) = Â(|#|)) = 	¬�#�) 																								… Equation	(10) 
Thus, as the Z-scores have variance 1, 

Cor(|#, |)) = 	¬�#�) = �#)/¬�#�) 																								… Equation	(11) 
Hence, the effective overlapping number can be estimated using the sample correlation ·#) 

between the Z-scores of the 2 studies as follows: 

�Ã#) =	¬�#�)·#) 																												… Equation	(12) 
In case of GWAS where the trait is not independent of genetic effects, the estimated 

correlation from (7) can be used in (12) to get an estimate of the effective sample size.   

Observe that (12) estimates the effective sample overlap which may be different from the 

actual sample overlap. For example, for two case-control studies � and �, the estimated 

correlation corresponds to: 

Cor(|b, |�) ≈ [�b��Ä�b#��#�b���� + �b�#Ä�b�����b#��#\¬�b�� 							… Equation	(13) 
 

where 1 refers to cases and 0 to controls (Lin and Sullivan 2009). 
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Hence, the estimated effective overlap sample size (�Ãb� =	¬�b��·̂b�) may correspond to 

a range of actual overlap numbers. We can readily derive two extreme possibilities. First, when 

the overlap is restricted to the cases, Ä:®l:;l:®Å:®l �Ãb� is a point estimate of the number of overlapping 

samples. Second, when the overlap is restricted to the controls, Ä:®Å:;Å:®l:;l �Ãb� is an alternative point 

estimate of the overlap. 

Similar issues may arise in GWAS for quantitative traits if overlap proportions vary by 

phenotype values. For example, if overlap is concentrated in participants with extremely high 

phenotype, the estimated effective overlap may be an over-estimate. Note that while the 

estimated correlation may correspond to a range of overlap proportions, the adjustments to the 

weights in (5) are still valid. 

Meta-Analysis of Multiple Studies 

Multiple studies can be meta-analyzed sequentially, that is, each new study can be meta-

analyzed with the result from meta-analyzing the previous studies. For each marker for a pair of 

studies - and H, we meta-analyze them as described above and calculated the following 

quantities: 

Total Weight Æ = Ä£5) + £<) + 2 ∗ £5£<·5< 
Effective Sample Size % = �5 + �< − �5< 

| = 1Æ (£5|5 + £<|<) 
Observe that this ensures that the order the studies are analyzed in doesn’t affect the results. 
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Simulation Set-up 

We used actual genotypes from 5,000 GWAS individuals from a European population 

(Fritsche et al. 2016) to simulate a series of overlapping studies with phenotype independent of 

the genotypes. We simulated the phenotype as normal with mean zero and variance 1 and used 

300,000 markers across the genome to run single marker tests for the overlapping studies. We 

then attempted to estimate sample overlap using GWAS summary statistics and to conduct a 

meta-analysis that accounted for this estimated overlap. 

Artificially Creating Overlapping Datasets based on GWAS Data 

We created another series of overlapping GWAS studies using actual lipids and type 2 

diabetes) data. We first considered a quantitative trait and used real data from GWAS of HDL-

cholesterol (Teslovich et al. 2010).  We used 3 studies that contributed to the meta-analysis to 

artificially create a pair of overlapping studies. We used 2 studies with sample sizes 7,841 and 

5,253 respectively, and meta-analyzed a study with sample size 2,485 with each of them to create 

2 datasets with an overlap of 2,485. We then meta-analyzed these overlapping together using 

both the standard meta-analysis as well as our method correcting for overlap. We compared the 

results with the target results obtained when meta-analyzing the initial three studies directly 

without overlap. 

We carried out a similar procedure for a case-control study using data for type 2 diabetes 

(Morris et al. 2012). We used 2 studies with sample sizes 6,528 and 16,503 respectively, and 

meta-analyzed a study with sample size 2,209 with each of them to create 2 datasets with an 

overlap of 2,209. We then meta-analyzed the overlapping datasets were meta-analyzed 

correcting for overlap and compared the Z-scores obtained to the target Z-scores obtained by 

meta-analyzing the studies without overlap. 
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Results 

Simulation Results 

Simulation results based on 300,000 markers from 5,000 individuals of European 

ancestry show that our method provides an accurate estimate of sample overlap (Table 4.1). For 

example, when GWAS studies overlapped by 17% of samples, we estimate overlapping 

proportions as 17.9% ± 0.8%.  We then meta-analyzed GWAS summary statistics accounting for 

estimated overlap and observed that the mean genomic control was 1.01 as compared to 1.22 

when meta-analyzed without considering overlap. 

Artificially Created Overlapping Datasets: Quantitative Trait 

We created overlapping datasets with sample sizes 10,326 and 7,738 where the overlap 

number is 2,485 using GWAS datasets for HDL-cholesterol (as per the scheme described in 

Supplementary Figure S4.1). We estimated the overlap proportion of 13.7% to be 14.1% when 

the Z-scores are truncated at the cutoff value x = 1 (Table 4.2), and meta-analyzed the data to 

obtain well-calibrated statistics (Figure 4.4). 

We varied the cut-off value c and observed that as the cut-off value decreases, the length 

of our confidence interval for the effective overlap sample size generally increases (e.g. In the 

maximum sample size category where observed total sample size is 18,064, when cut-off is 

changed from 1 to 0.5, the confidence interval size increases from 134 to 581). This happens 

because the number of markers with Z-score within the cut-off limit decreases as the value of the 

cutoff becomes smaller. However, as the cut-off value increases, we do not observe any 

systematic pattern to the bias (Table 4.2). One exception is the category where there is no actual 

overlap (observed N = 13,094), where estimated effective overlap increases as the cut-off value 

increases. Thus, while a more stringent cut-off may be better in terms of truncating trait 
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associated variants with very small effect sizes, the reduction in the total number of markers 

decreases the accuracy of the estimate. Based on the datasets investigated, a cut-off value of c=1 

appears to work well. 

We compared the Z-scores of the corrected meta-analysis with the Z-scores obtained 

from meta-analyzing the studies without overlap (Figures 4.4 and 4.5) and found 100 markers 

(0.004%) with corrected p-values differing from the target p-values by >=2 on the log10 scale. 

We examined these outliers and found that these occurred when the overlapping study 

had a different effect size compared to the non-overlapping studies. For example, a marker which 

had a Z-score of 8.9 in the overlapping sample and Z-scores of 5.0 and 2.3 in the non-

overlapping samples leads to a corrected Z-score of 9.3 instead of the target value of 8.1 as the 

correction does not account for the additional deviation from null in the overlapping sample. 

Similarly, a marker with a Z-score of -1.2 in the overlapping sample and Z-scores of -6.7 and -

5.0 in the non-overlapping samples leads to a corrected Z-score of -7.0 instead of the target value 

of -8.1 as there is overcorrection because of the overlapping Z-score being closer to the null than 

the others. Thus, population structure in the overlap affects the correction of the meta-analysis Z-

scores. We observe that our method improves on the naïve meta-analysis for 11% of the outliers 

on the log10 scale and for 49% of the outliers on the loge scale.  

Artificially Created Overlapping Datasets: Case-Control Study 

We created overlapping datasets with sample sizes 8,737 and 18,712 where the overlap 

number is 2,209 using GWAS datasets for type 2 diabetes (as per the scheme described in 

Supplementary Figure S4.2). We estimated the overlap proportion of 8.1% to be 8.5% (Table 

4.3) when cutoff value for truncating Z-scores was 1, and meta-analyzed the data to obtain well-
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calibrated statistics (Figure 4.6). A closer examination of the markers with p-value >10
)� 

shows that most markers have corrected Z-scores close to the target Z-scores (Figure 4.7). 

Varying the cut-off value allows for similar estimates with the confidence interval sizes 

varying accordingly (Table 4.3). We observe that for makers with no actual overlap (sample size 

= 23,031), increasing the cut-off value increases the estimated overlap as in the quantitative case. 

We expect this is because variants with small effect sizes may get included as we increase the 

cut-off value. Thus, for this example, a more stringent cut-off appears to work better. 

Discussion 

We describe a simple method to identify sample overlap based on GWAS summary 

statistics, to estimate the overlap, and to adjust for that overlap appropriately. Our method 

requires Z-scores and sample size at each marker for each study, which are usually available in 

published GWAS, and hence, can be used to meta-analyze publicly available GWAS data with 

newer datasets to increase sample size while accounting for any overlap. Not accounting for 

overlap generally leads to an inflation in type I error, potentially leading to false positive signals. 

Hence, our method helps to increase the power to detect weaker signals by aggregating sample 

size, while controlling type I error. 

We recommend using our method only if all the samples are of the same ancestry. If the 

overlapping samples have significantly different effect sizes than the non-overlapping samples, 

the assumption of homogeneity of effect sizes is more likely to be violated and our method may 

actually perform worse than a naïve meta-analysis by over-correcting.  

We assumed that the degree of overlap is uniform across markers after accounting for 

sample size stratification. Violation of this assumption leads to mis-calibration in correcting for 

overlap. For example, for a variant that is specific to a particular population (say, Finland) the 
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effect of overlap would be stronger than average if all the overlapping samples are drawn from 

that population (Finland). 

While our method only requires the summary statistics, we do need the sample size for 

each marker to accurately estimate the overlap. Overlap can vary by marker, and hence, not 

stratifying by sample size can lead to mis-calibration of the summary statistics. For example, 

Supplementary Figure S4.3 shows the comparison of corrected meta-analysis p-values when 

markers are not stratified by sample size with the target and we identify a significant variant not 

present in the overlapping sample. Not stratifying by sample size leads to an over-correction at 

this variant leading to a decrease in significance. 

We recommend using a more stringent cut-off value for traits known to be highly 

polygenic to ensure that variants with small effect sizes are not included when estimating 

correlation. We note that this may lead to fewer variants based on which correlation is estimated, 

and so may lead to a loss in power.  

We have implemented our method for a simple meta-analysis which uses every study 

available. It assumes there is no heterogeneity of effect sizes which is a rather stringent 

assumption. There exist newer meta-analysis approaches that modify the weighted Z-score to 

work under less stringent assumptions, e.g. meta-analysis using a subset based approach 

(Bhattacharjee et al 2012). Since our method works by estimating the covariance for Z-scores 

between a pair of studies, a direction for future research might be to extend our method to these 

approaches.  

In conclusion, our proposed method is a simple yet effective way to adjust for sample 

overlap in GWAS in homogeneous populations while working with the constraints of summary 

level data.  
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Table 4.1: Overlap estimate and confidence interval when trait is independent of genotypes 

 

N1 N2 Overlap Overlap Proportion Estimated Overlap Proportion (SD) 

 2,500 2,500 0 0.00 0 (-) 

2,550 2,550 100 0.02 0.02 (0.0056) 

2,750 2,750 500 0.09 0.09 (0.0066) 

3,000 3,000 1,000 0.17 0.17 (0.0079) 

5,000 5,000 5,000 1.00 1.00 (0.00) 

3,000 2,100 100 0.02 0.02 (0.0051) 

3,000 2,500 500 0.09 0.09 (0.0048) 

Estimated overlap when phenotype is simulated independent of genotypes using real genotypes 

from 5,000 European samples across 300,000 markers. N1 and N2 denote the sample sizes of the 

observed overlapping samples, and Overlap the true overlap number. Overlap proportion is 

defined as Overlap / (N1 + N2). 
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Table 4.2: Estimated Sample Overlap for Artificially Created Overlapping Studies for HDL-cholesterol  
 

 

Sample 

Size 
Cutoff = 0.5 Cutoff = 0.75 Cutoff = 1 Cutoff = 1.5 Cutoff = 2 

 
Estimate CI Estimate CI Estimate CI Estimate CI Estimate CI 

4,970 2,485 (2,473, 2,485) 2,485 (2,473, 2,485) 2,485 (2,478, 2,485) 2,485 (2,473, 2,485) 2,485 (2,473, 2,485) 

10,223 2,691 (2,280, 2,982) 2,390 (2,214, 2,543) 2,409 (2,324, 2500) 2,463 (2,412, 2,521) 2,463 (2,412, 2,499) 

12,811 2,091 (557, 2,887) 2,662 (2,381, 2,887) 2,448 (2,305, 2583) 2,476 (2,406, 2,558) 2,518 (2,457, 2,583) 

13,094 - (-2,792, -706) - (-674, -353) - (-546, -6) - (-128, 96) 40 (-32, 128) 

18,064 2,941 (2,637, 3,218) 2,616 (2,503, 2,716) 2,546 (2,458, 2,592) 2,538 (2,503, 2,592) 2,581 (2,548, 2,637) 

 

Three European GWAS datasets for HDL-cholesterol (Teslovich et al. 2010) are used to create two overlapping datasets. Datasets 1 

and 2 are meta-analyzed together, and datasets 2 and 3 are meta-analyzed together to generate a pair of overlapping datasets whose 

overlap number equals the sample size of dataset 2 (2,485). The sample size column denotes the total observed sample size for the 

markers. For sample size = 13,094, the true overlap is 0, and for all other categories, the true overlap is 2,485. The cutoff value is 

used to truncate the Z-scores used to estimate the correlation and overlap (markers with abs(Z)<cutoff used in the estimation). 

Estimates <0 are not reported. 
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Table 4.3:  Estimated Sample Overlap for Artificially Created Overlapping Studies for Type 2 Diabetes 

 

Sample 

Size 

Cutoff = 0.5 Cutoff = 0.75 Cutoff =1 Cutoff = 1.5 Cutoff = 2 

 Estimate CI Estimate CI Estimate CI Estimate CI Estimate CI 

4,418 2,209 (2,187, 2,209) 2,209 (2,187, 2,209) 2,209 (2,187, 2,209) 2,209 (2,187, 2,209) 2,209 (2,187, 2,209) 

10,946 2,061 (1,779, 2,284)  2,118 (2,021, 2,197) 2,225 (2,175, 2,262) 2,303 (2,284, 2,328) 2,310 (2,284, 2,328) 

20,921 1,696 (1,029, 2,282) 2,316 (2,122, 2,507) 2,656 (2,540, 2,765) 2,517 (2,443, 2,572) 2,372 (2,315, 2,411) 

23,031 0 (-882, 207) 200 (0, 415) 176 (52, 311) 287 (208, 363) 397 (363, 467) 

27,449 2,916 (2,685, 3,132) 2,391 (2,302, 2,493) 2,326 (2,238, 2,365) 2,335 (2,302, 2,365) 2,330 (2,302, 2,365) 

 
Three European GWAS datasets for type 2 diabetes (Morris et al. 2012) are used to create two overlapping datasets. Datasets 1 and 2 

are meta-analyzed together, and datasets 2 and 3 are meta-analyzed together to generate a pair of overlapping datasets whose 

overlap number equals the sample size of dataset 2 (2,2095). The sample size column denotes the total observed sample size for the 

markers. For sample size = 23,031, the true overlap is 0, and for all other categories, the true overlap is 2,209. The cutoff value is 

used to truncate the Z-scores used to estimate the correlation and overlap (markers with abs(Z)<cutoff used in the estimation).  
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Figure 4.1: Outline of procedure to meta-analyze correcting for overlap 

 

 

To correctly meta-analyze adjusting for potential overlap, the markers are first stratified by total 

observed sample size, and then the Z-scores truncated based on a pre-determined cutoff value 

and used to estimate the correlation between the paired Z-scores. Finally, the estimated 

correlation is used to adjust the weights in the meta-analysis so that covariance due to overlap is 

adjusted for. 
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Figure 4.2: Example Illustrating the Need for Stratification Based on Sample Size 

The above diagram shows a simple scenario where 2 overlapping studies Study A and Study B 

share one cohort Cohort 2. Thus the actual number of overlapping samples is the sample size of 

cohort 2 (n2). However, if a marker is not present (that is, not genotyped or imputed) in cohort 2, 

the overlap number for it is 0. The diagram shows possible combinations for a marker, and why 

it is important to stratify based on observed sample size.  

 

Figure 4.3 : Example of Sample Size Distribution in a Large Meta-Analysis 

 

Sample size distribution of a meta-analysis for HDL cholesterol (Teslovich et al. 2010) for all 

markers with 73,588 unique values of sample size. This demonstrates that markers are not 

present in all samples as well as the fact that stratifying based on every possible sample size 

combination is not feasible in large-scale meta-analyses. 
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Figure 4.4: Performance of Meta-Analysis Correcting for Overlap in HDL-Cholesterol 

Comparison of target -log10 p-values obtained when meta-analyzing the 3 original non-

overlapping studies for HDL-cholesterol together with (a) -log10 p-values obtained when naively 

meta-analyzing the overlapping studies; and (b) -log10 p-values obtained when meta-analyzing 

after adjusting for overlap. 

 

Figure 4.5: Outliers in Meta-Analysis Correcting for Overlap in HDL-Cholesterol 

 

Investigating the markers that are outliers, we observe that zooming in on the markers with 

target –log10 p-value <20, the corrected meta-analysis p-values tend to be biased downward as 

expected since for most of the markers, the overlap is over-estimated slightly. 
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Figure 4.6: Performance of Meta-Analysis Correcting for Overlap in Type 2 Diabetes 

 
Comparison of target -log10 p-values obtained when meta-analyzing the 3 original non-

overlapping studies for type 2 diabetes together with (a) -log10 p-values obtained when naively 

meta-analyzing the overlapping studies; and (b) -log10 p-values obtained when meta-analyzing 

after adjusting for overlap 

 

Figure 4.7: Outliers in Meta-Analysis Correcting for Overlap in Type 2 Diabetes 

 

Markers with –log10 p-value< 20 for type 2 diabetes seem to be well calibrated: the color 

denotes the density at each point while the dots denote the outliers. 
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Supplementary Figure S4.1: Creating Overlapping Datasets for HDL-Cholesterol 

 

We artificially create an overlapping dataset for HDL-cholesterol using GWAS data (Teslovich 

et al. 2010). Study B is meta-analyzed with studies A and C respectively to create a pair of 

overlapping datasets. Studies A, B and C are meta-analyzed directly to get the target results 

without overlap. 
 

Supplementary Figure S4.2: Creating Overlapping Datasets for Type 2 Diabetes 

 

We artificially create an overlapping dataset for Type 2 Diabetes using GWAS data (Morris et 

al. 2012). Study B is meta-analyzed with studies A and C respectively to create a pair of 

overlapping datasets. Studies A, B and C are meta-analyzed directly to get the target results 

without overlap. 
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Supplementary Figure S4.3: Effect of Not Stratifying by Sample Size 

 

The target p-value denotes the p-values obtained by meta-analyzing the samples without the 

overlap, and thus are the gold standard for our analysis. The meta-analysis p-value denotes the 

p-values obtained using our method to meta-analyze correcting for potential sample overlap. 

Overlapping samples were created using HDL-cholesterol GWAS data (Teslovich et al. 2010). 

When the markers are not stratified by sample size before estimating covariance and correcting 

for overlap, we may lose some signals. Markers such as the one circled in red in the figure are 

not present in the overlapping sample. Thus, correcting for overlap leads to a decrease in power 

for these markers. 
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Chapter 5: Conclusion 

 

Meta-analysis is a powerful tool to jointly analyze genetic association results from 

multiple genome-wide association studies when individual level data is not available. 

Aggregating data across studies to increase sample size and power facilitates the discovery of 

trait-associated variants with modest effect sizes, and provides an opportunity to increase our 

understanding of genetic susceptibility. However, meta-analysis results may produce a large 

number of variants significantly associated with the trait of interest. The association findings 

from GWAS provide an initial guide for the development of medical treatments by pointing to a 

genomic region of interest and thus it is important to refine the lists of associated variants for 

further investigation. In this thesis, I have advanced our understanding of lipid genetics through a 

large scale meta-analysis, demonstrated the challenges in interpreting meta-analysis results, and 

provided a framework to integrate functional data to prioritize variants for follow-up. 

Additionally, I have developed a method to meta-analyze studies that may have overlapping 

samples.Chapter 2 described the largest genetic association study of blood lipid levels to date, 

where data on 94,595 individuals from the initial GWAS (Teslovich et al. 2010) were meta-

analyzed with a follow-up study of 93,982 individuals genotyped on the Metabochip (Voight et 

al. 2012). In the manuscript Global Lipids Genetics Consortium et al. (2013), we discovered 62 

novel genetic loci associated with lipids to contribute to the existing list of 95 known associated 

loci. Discovery efforts were followed by several downstream analyses to prioritize variants for 

follow-up such as literature review, pathway analysis, and investigation of regulation of mRNA 



 164

expression. However, the different sources of prioritization sometimes disagreed, establishing 

the difficulty in interpreting GWAS results and understanding causality. Fine mapping in 65 

lipid-associated loci in different ancestries facilitated separation of the strongest signal from the 

prior GWAS signal in 12 regions. Based on our downstream analyses, we suggested a list of 70 

genes from 44 of the novel loci that might be the focus of the first round of functional studies. 

However, the role of the remaining loci is unknown, leaving opportunities for future genetic 

studies to study their functional impact. 

In Chapter 3, I have described a method to systematically incorporate functional 

information about the genome to prioritize variants for follow-up analyses. Summary statistics 

(effect sizes and standard errors or p-values) are weighted using genomic annotation to produce 

credible sets constituting a list of potentially causal variants. I have proposed two methods: one 

which uses association results across the whole genome and is more computationally intensive, 

and one which approximates the association results for variants not in the associated loci to 

increase computational efficiency. Simulation studies demonstrated the accuracy of our estimates 

and compared their power with fGWAS (Pickrell 2014). Real data applications to MGI 

(https://www.michigangenomics.org/) and UK Biobank data (Sudlow et al. 2015, Bycroft et al. 

2017), which have hundreds of phenotypes, established the advantages of such a systematic 

approach. To sort through the large volumes of data, I aggregated data across related traits with 

few signals in the MGI data, which generated credible sets at associated loci. Applications to 

Age-related Macular Degeneration association data exhibited how using different genomic 

annotations can lead to different variants being prioritized. However, consolidating a unique list 

of potentially causal variants based on different genomic annotations remains a challenge. 
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As different studies and consortia make their summary statistics publicly available, it is 

challenging to consolidate their findings into one “bottom-line” p-value, which can be used as a 

guide to investigate and understand their genetic architecture. A major challenge in meta-

analyzing these data together is the potential for sample overlap. In Chapter 4, I have described a 

meta-analysis approach that identifies and corrects for this overlap and accurately meta-analyzes 

potentially overlapping studies. This method works with summary statistics (Z-score and sample 

size) and thus, can be used on publicly available data. A caveat is that my method assumes that 

overlap does not vary by ancestry, which may not always be the case. 

Prioritizing Variants for Follow-up Studies 

 Currently, integration of varying types of data is an emerging area of inquiry, as large 

volumes of data from both association studies as well as functional studies are being made 

publicly available. Investigators collaborate in large-scale consortia to generate association 

results for huge sample sizes, while large repositories of high-throughput genomics and 

epigenomic data are being built to enable functional annotation. For example, the systems 

genetics approach, or Genome Wide Network Study as coined by Björkegren et al. (2015), 

emphasizes combining data from intermediate phenotypes such as RNA, proteins, metabolites, 

and epigenetics in multiple disease-relevant tissues. 

As demonstrated in the downstream analyses in Chapter 2 and the method developed in 

Chapter 3, coupling of GWAS findings with functional genomics data can potentially advance 

our understanding of disease etiology. The method described in Chapter 3 currently works only 

for binary genomic annotations; thus, in the examples described, I dichotomized non-binary 

annotations such as CADD scores. However, using the complete range of CADD score values 
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may lead to better estimates. Additionally, comparing multiple genomic annotations at a time 

may be of interest, which this model does not yet support. 

A simplifying assumption I have used is that there is at most one causal variant per locus, 

which may not be realistic. An ad-hoc approach to adjust for violation of this assumption is 

described in the analysis of the AMD data, where conditional association results are used as 

“pseudo-loci.” In such a scenario, summary statistics are no longer adequate and additional 

conditional analyses are required. Additionally, selection of the variants that the conditional 

analysis is based on may prove difficult.  Multi-SNP models allowing for multiple causal variant 

per locus require individual level data (Kichaev et al. 2014) and hence, using summary statistics 

to model that remains difficult. 

A key challenge is selection of functional data to use, and to consolidate results from 

diverse functional annotations in a systematic manner. Future work in this direction may involve 

extending the model to incorporate non-binary or multiple annotations. While the large volumes 

of genomics and epigenomics data from sources such as ENCODE (ENCODE Project 

Consortium 2012) and Roadmap Epigenomics Consortium (Bernstein et al. 2010) make it 

enticing to test all possible annotations for enrichment, multiple testing issues should be kept in 

mind since it is possible that some annotations would be found significantly enriched by chance. 

Thus, a rigorous framework to integrate functional data and association results is required to take 

advantage of the diverse functional annotations available. 

Meta-Analysis of Studies with Sample Overlap 

With decreasing genotyping and sequencing costs, there are more and more available sets 

of genotyped or sequenced controls that can be used in multiple studies. Other sources of overlap 

may include participants belonging to multiple studies, or the same study contributing to multiple 
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meta-analysis efforts. We aimed to meta-analyze data for the same trait while correcting for 

overlap to generate a consolidated list of associated variants. An ongoing project for the type 2 

diabetes portal (www.type2diabetesgenetics.org/) is to generate a “bottom-line” p-value 

combining information across multiple potentially overlapping studies, that is, for each variant a 

single p-value combining information across all studies for type 2 diabetes should be reported. 

When overlap numbers are not known, and individual level data is not available, a method to 

meta-analyze correcting for overlap using summary statistics is required. 

A limitation of the method described in Chapter 4 is that we essentially assume a fixed 

effects model and that allele frequencies and effect sizes do not vary with overlap. This 

assumption may work if we limit our attention to European populations, which have been studied 

extensively. However, currently available GWAS data from non-Europeans tend to have smaller 

sample sizes and thus it may be desirable to meta-analyze them with data from other ancestries to 

increase power. In such scenarios, as effect sizes and allele frequencies may vary by ancestry, 

correction for overlap becomes challenging. Future work in this direction may involve using 

publicly available allele frequencies (1000 Genomes Project Consortium 2010) to approximate 

the population structure in the corrected meta-analysis. 

An additional question to consider is what happens when there is sample overlap between 

a pair of studies, but the overlap is between cases of one study and controls of another. 

Depending on how the phenotype is defined in each study, participants with borderline values of 

the trait may be categorized differently. For example, in the UK Biobank data (Sudlow et al. 

2015; Bycroft et al. 2017), several phenotypes are recorded that are highly correlated such as 

“disorders of lipoid metabolism”, “hyperlipidemia” and “hypercholesterolemia”. However, cases 

for one trait may be controls for the other, depending on the attending physician’s definition of 



 168

the trait in question, rather than inherent misclassification. Our method currently assumes that 

the studies have uniform definition of phenotypes, which is a realistic assumption in well-

designed meta-analyses. However, this is an important issue to keep in mind when using 

previously published results.  

In Summary 

In this dissertation, I have discussed various methods to interpret results obtained from 

genome-wide association studies. I have focused my research on the use of summary statistics to 

take advantage of the growing repositories of publicly available data. I have described a large-

scale meta-analysis for blood lipid levels, leading to new insights into lipid biology. 

Additionally, I have developed a method to integrate functional annotation of the genome with 

association results to prioritize lists of potential causal variants, as well as a method to meta-

analyze studies with potentially overlapping variants by estimating and correcting for the 

overlap. It is my hope that the methods and tools developed can lead to advances in our 

understanding of the genetics of various complex traits and diseases. 
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