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Abstract 

 Computational chemistry is becoming a widely used tool to investigate the kinetics and 

thermodynamics of chemical transformations.  These investigations are often heavily guided by 

experiment and require significant mechanistic insight prior to meaningful model development.  

Recent advances in reaction path finding and automated potential energy surface assessment have 

enabled faster and easier exploration of complex chemical mechanisms. In combination with 

mechanistic information, structure energy correspondence provides information which describes 

how a particular reaction mechanism energetically varies as structure is modulated.  Together, the 

relevant reaction pathways and the structure energy relationships describe the reaction landscape 

for a given class of reactivity.   

  Chapter 1 introduces the core chemical concepts needed to understand reaction landscapes.  

The tools and information needed to perform detailed mechanistic exploration via computation are 

presented and competing methods are summarized.  Further discussion of reaction path finding 

tools is provided through an example involving the reactivity of ammonia borane and carbon 

dioxide.  A discussion of the characteristics which connect potential energy surfaces to quantitative 

structure activity relationships is used to conclude this chapter. 

 Chapter 2 details the application of an automated reaction path finding tool for the 

investigation of intuitive and non-intuitive pathways for C(sp3)-N reductive elimination from 

palladium(IV).  This work demonstrates that detailed computational studies using automated 

reaction path investigation can be used to assess unexpected reaction pathways.  These simulations 

predicted the relative reaction rates with various sulfonamides through consideration of both 

intuitive and non-intuitive reaction mechanisms. Overall, this chapter demonstrates that 

combinations of experimental studies and computational tools can provide fundamental 

mechanistic insights into complex organometallic reaction pathways.  This work begins to explore 

relevant molecular features which appear to trend well with the experimentally observed reactivity.   

 Chapter 3 continues the development of molecular feature based investigation.  This 

chapter was inspired by the possibility of using computational investigations of complex 
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organometallic reaction landscapes to describe structure energy correspondence.   This section 

discusses the development of a thermodynamic landscape to investigate CO2 reduction from cobalt 

bis(diphosphine) complexes.  The construction of a dataset of Co(L)(L’)H2 type complexes from 

set of commercially available of bis(diphosphines) covering a thermodynamic landscape of over 

50 orders of magnitude acidity and hydricity is discussed.  These data suggest that relationships 

between common steric and electronic molecular features are poorly correlated with catalyst 

thermodynamics.  However, a strong correlation between the thermodynamics and Co—H NLMO 

energy is observed. The landscape provides a clear example of careful electronic balance required 

for catalytic relevance.  The best catalyst identified for future experimental investigations was 

Co(dCype)H, which is expected to be more acidic and hydridic than previously reported 

Co(dmpe)2H. 

 While there is still significant work remaining in the development of robust and automated 

computational chemistry tools, this work outlines some potential applications and details the 

relevant findings.  The final chapter discusses the current limitations and challenges associated 

with computational reaction discovery.  Particular attention is paid to the development of 

reasonable organometallic computational models for use in reaction landscape investigation. 
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Chapter 1: Introduction 

1.1 Exploring Reaction Landscapes with Computational Chemistry 

 Mechanistic understanding at an atomistic level is a fundamental building block of 

chemical intuition. Computational chemistry has become increasingly popular as a fast and 

accurate tool to supplement experimental mechanistic studies.   Computational methods that offer 

a high accuracy with low cost, such as density functional theory (DFT), have been increasingly 

used for the resolution of complex chemical mechanisms.  The average citation count for papers 

incorporating DFT has increased from below 100 per year in the early 1990’s to well over 10,000 

per year in 2017.1,2  In spite of the widespread success of DFT in mechanistic studies, studying 

reactivity through simulation is still quite challenging.  While experimental chemistry is able to 

quickly assess the success or failure of a reaction, computational chemistry requires a detailed map 

of the reaction landscape before making the same assessment. Thoroughly understanding 

chemistry from a simulation first perspective relies upon two types of investigations: assessment 

of the potential energy surface associated with a single reaction and quantitative structure activity 

relationships, or mathematical descriptions of how the potential energy surface changes as a 

function of atomistic modifications to the structure. Computationally resolving the reaction 

landscape requires identification of all intermediates, transition states, and products resulting from 

a single reactant molecule as well as the effects of varying atomistic composition.  This work 

details the application of DFT, automated reaction path finding, and statistical analysis of 

molecular environment to the resolution of reaction landscapes. 

  The first half of this dissertation discusses the application of ZStruct, an automated reaction 

path finding tool, to the elucidation of C(sp3)-N, C(sp3)-C(sp2), and C(sp3)-F reductive elimination 

from Pd(IV).  The second half utilizes an array of DFT and modeling tools in combination with 

statistical analysis to uncover the structure energy relationship for cobalt bis(diphosphine) 

catalyzed reduction of CO2.  In the following sections a summary of background material 

necessary for understanding computational mechanistic investigations will be discussed. Related 

material has been covered extensively in previous reviews.3–5 The interested reader is encourage 
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to explore these reviews if a deeper understanding is desired.  We continue this introduction with 

a background on the theory and methods for resolving potential energy surfaces in Section 1.1.1. 

 

1.1.1 Potential Energy Surfaces and Reaction Pathways 

 Ab initio simulations provide a computation first perspective on how reactant molecules, 

and sometimes catalysts, proceed through chemical reactions.  A chemical reaction pathway is one 

of the many available free energy paths leading from starting materials to products on a potential 

energy surface (PES).  The PES is a high dimensionality surface consisting of approximately 3N 

dimensions (where N represents the number of atoms in the molecule of interest).  The field of 

computational chemistry is largely focused on application of quantum chemistry, especially 

density functional theory, to discover the most accessible and relevant pathways for navigating the 

PES.   

 The surface can be roughly divided into two main categories: stable local minima which 

resolve thermodynamics and first order saddle points, or transition states, which provide 

information about the kinetics of a chemical reaction.  In the search of local minima, discrete 

chemical structures are geometrically optimized to the lowest point of the potential energy surface 

(PES).  A variety of structural optimization techniques are available in most modern quantum 

mechanics simulation packages, but most use a set of standard optimization methods.6,7 The 

reference state for a chemical reaction should ideally correspond to the global minimum, or the 

lowest possible point on the PES (Figure 1, A).  Local minima sometimes correspond to chemical 

intermediates along the reaction path (Figure 1.1, B,C,D) which are connected by transition states 

(Figure 1.1, [AB]ǂ).   

 

Figure 1.1 Example potential energy surface showing global minimum (A), local minimums 
(B,C,D), and transition state (ABǂ).  
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 The minima and transition states are often referred to as stationary points on the PES.  The 

minimum energy path connects the stationary points which proceed through the lowest transition 

states leading to a stable product (Figure 1.1, pathway connecting A, B and D).   These reaction 

profiles are often viewed from a side-on perspective to better visualize the energetic differences 

between the stationary points (Figure 1.2).   

 

 

Figure 1.2 Simple reaction schematic mirroring minimum energy path from Figure 1.1 

  

Figure 1.2 illustrates a side on view of the potential energy surface shown in Figure 1.1.  

Taken together, the stationary points and minimum energy path are often the most relevant portions 

of the PES.5   

1.1.2 Relating Potential Energy Surfaces to Experimental Chemistry 

 Models of potential energy surfaces have been fundamental in unifying understanding 

regarding quantum principles to the macroscale behavior of molecular reactivity.  The utility of 

reaction pathways results from the close relationship between the model molecular system used to 

construct the PES, experimental chemistry and chemical intuition.  The minima are molecular 

structures which are often experimentally stable and physically observable species.  Ground state 

species often exist in chemical equilibrium with one another.  The ratio of species at equilibrium 

can be used to calculate Keq.  The equilibrium in the ratio of products in experiment is described 

by the simple equilibrium expression for Keq (equation 1.1):  
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Equation 1.1 Expression for the equilibrium constant of reaction example shown in figure 1.2 

 

 In equation 1.1 Keq is the equilibrium constant for the reaction, ΔG is the difference in 

energy (similar to that shown in figure 1.2), R is the universal gas constant, and T is the 

temperature in Kelvin.  The second half of the equation shows the approximate relationship 

between Keq and the ratio of molar concentration of reactants and products, A and B, and the 

order of those species in the equilibrium, σ and ρ, respectively.   This example, while simplified, 

demonstrates the close correspondence between experimentally observable equilibrium 

phenomena and the energy values obtained through calculations.   

 Computational models of transition states are related to experimentally observable 

reactions rates by transition state theory.  Equation 1.2 shows the Eyring equation which relates 

ΔGǂ to the rate of reaction. 
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Equation 1.2 Eyring equation relating the reaction rate, r,  to ΔGǂ 

  

 In equation 1.2, r is the rate of the reaction of A to B, � is the transmission coefficient, kB 

is Boltzman’s constant, T is temperature in Kelvin, h is Planck’s constant, R is the universal gas 

constant and ΔGǂ is the transition state energy.  This relationship provides the necessary 

framework to connect atomic structure at the transition state to macroscale observable 

phenomena in experimental chemistry.   The equations relating the computationally calculated 

free energies of the potential energy surface to experimentally observable rates and 

concentrations provide the necessary framework to interrogate molecular reactivity through 

computational chemistry.  

 

1.2 Automated Reaction Path Finding Using ZStruct 

 The close relationship between the models developed in computational chemistry and 

experimentally observable phenomena has motivated faster and more automated methods to assess 

potential energy surfaces. The ability to quickly and automatically assess a potential energy surface 
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holds the potential to enable reaction prediction in silico.8–10  However, resolving relevant local 

minima and saddles points on potential energy surfaces has proven to be a considerable challenge 

for computational chemistry.  A number of methods have been developed which provide a means 

to navigate these surfaces with increasing reliability while attempting to minimize user interaction.  

Reaction discovery by computation based on PES analysis can be divided into four main 

classifications: (1) Expert encoded,11–26 (2) Transition state centric,27–42 (3) Stringing together 

intermediates,43–50 and (4) reaction coordinates to find reaction paths.51–58  This work demonstrates 

the application of computational tools relating to primarily the third class of reaction path 

exploration.  The following sections provide the background information to understand automated 

transition state finding and reaction path discovery as it relates to exploring PESs by stringing 

together intermediates. 

  

1.2.1 Transition State Finding for Connecting Intermediates 

 Due to the high computational cost, exhaustive exploration of the PES is currently 

infeasible.  One solution is instead to focus on chemically meaningful intermediates which relate 

to breaking and forming select chemical bonds and analyzing the resulting reaction pathways. PES 

search techniques which string together intermediates must be able to generate the relevant 

intermediate molecular structures and subsequently connect them using transition state search 

techniques.  As such, selection of accurate, automated methods for transition state finding is vital 

to successful PES investigations.   

 Transition state finding can be divided into three main classes: (1) methods requiring IRC 

confirmation59–72 (2) double ended string methods,73–77 and (3) single ended string methods.78 For 

general purpose investigation of discrete reaction paths, computational chemistry largely used 

method 1.5,79  This method searches for the exact molecular structure of the transition state as it 

relates to the start and end point by approximating the structure using chemical intuition or by 

software which interpolates between the starting and ending structures of the reaction path.61–72  

For any guess-structure driven transition state search, the final step of analysis requires an intrinsic 

reaction coordinate scan to confirm that the isolated transition state is connected to the desired 

starting and end points of the reaction path.80,81   These methods are typically user intensive, 

requiring multiple iterations to successfully locate and confirm a single transition state.  
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 Automated double-ended string methods provide the same results as IRC confirmation 

methods, but with significantly less user interaction.  String methods75–77 and nudged elastic 

band59,62,82,83 are the among the most commonly employed double ended methods when the two 

endpoints of a reaction path are known.  More recently developed methods have improved upon 

the speed and accuracy of string method including double ended growing string method (GSM)73,74 

and single ended string method (SEM).78  The double ended GSM is primarily used throughout 

this document.  The GSM operates through iterative structure optimization of the reaction path 

connecting two points on the potential energy surface (Figure 1.3). 

 

 

Figure 1.3 Overview of double-ended GSM transition state finding approach with the final 
transition state adjustment outlined in red 
 

 The program interpolates between the starting point (shown in figure 1.3 as an orange 

circle) and the end point (figure 1.3 black circle orange outline) to generate the first set of node 

structures.  These nodes are then geometrically optimized orthogonal to the guess reaction path.  

The process is repeated until a saddle point is detected.  The gradient information of the reaction 

path is then used to optimize the transition state structure.  All of these steps occur automatically 

after the initial starting and endpoints are provided. 
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1.2.2 Overview of ZStruct - an Automated Reaction Discovery Tool 

 Advances in automated transition state finding have provided the groundwork for targeting 

bulk assessment of stationary points on single PES, even for complex reactivity.   In combination 

with fast DFT implementation, advances in transition state finding has enabled tractable resolution 

of even complex PESs provided guess structures for the starting and endpoints are provided 

systematically.  One method that systematically explores intermediates is ZStruct, a program put 

forth by the Zimmerman lab to enable broader computational exploration of PESs.    

      ZStruct provides a set of tools to investigate reaction mechanisms by searching through 

individual elementary reaction steps, similar to a true chemical reaction sequence. By iteratively 

discovering plausible elementary steps, characterization of complete multi-step, multi-pathway 

reaction mechanisms become possible (Figure 1.4) even in systems where the reaction mechanism 

is not known to chemical intuition. While ZStruct can be employed with any level of quantum 

chemical theory (i.e. any functional, basis set, and solvent model can be used) to describe the 

atomistic reaction processes, herein we use density functional theory and implicit solvation models 

due to their low cost to accuracy ratio.   

 

Figure 1.4. Simulated potential energy surface showing four low energy wells corresponding to 
hypothetical intermediates (A, B, C, and D). 
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     To begin reaction discovery, ZStruct requires input of the optimized starting material, A (see 

Figure 1.4, step i).  Intermediates B and C (step ii) are created through software application of 

connectivity rules describing possible elementary reactions (Figure 1.5).  

 

 

Figure 1.5 Examples of connectivity rules implemented in ZStruct. 
 

Examples of these elementary reactions (applied to an octahedral metal center in this 

example) include: (a) Break 1 results in the M—L bond breaking.  M—L formation is generated 

through a Form 1 operation. (b) Combinations of “Break 1” and “Form 1” enables the generation 

of more complex single elementary steps.  In this case the “Break 1, Form 1” breaks the M—R 

bond, and forms R-L.  This process is similar to what one might expect for an SN2-like reductive 

elimination. (c) Break and form combinations provide other important chemical processes such as 

direct reductive elimination from octahedral complexes. In this case the M—R and M—X bonds 

break and the R-X bond is formed in a concerted fashion.    

These intermediates are optimized (step iii, Figure 1.4) by DFT, thereby obtaining the 

thermodynamic plausibility of the reaction. High-energy structures which are considered to be 

unstable or unobtainable under the reaction conditions are removed from subsequent analysis 

through energy filters. GSM then performs a double-ended reaction path search to connect the 

initial structure to thermodynamically plausible intermediates (e.g. B,C of Figure 1.4). 

Importantly, GSM provides the minimum energy path and exact transition state simultaneously. 

The activation barrier from GSM is used to identify the most kinetically relevant reaction steps 

(step v).  
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1.3 Application of ZStruct to CO2 and NH3BH3 reactivity 

This section based upon published work: Li, M. W.; Pendleton, I. M.; Nett, A. J.; Zimmerman, 
P. M. Mechanism for Forming B,C,N,O Rings from NH3BH3 and CO2 via Reaction Discovery 
Computations. J. Phys. Chem. A 2016, 120 (8), 1135–1144. 
 

 One of the first applications of ZStruct was toward the discovery of plausible mechanism 

for BCN formation from ammonia borane, NH3BH3, and CO2 Figure 1.6.   

 

Figure 1.6 Two-step synthesis of BCN.84–86 

  

 The anticipated complexity and unknown nature of reactions involving CO2 and AB 

provided a prime target for application of ZStruct and the growing string method.  A unique aspect 

of this project was the incorporation of additional reagents throughout the ZStruct analysis.  For 

each set of reactants, a complete investigation of the accessible reaction pathways was performed.  

Once the complete set of favorable elementary steps are found, additional reagents like AB or CO2 

were added to the simulation and the process is repeated. An outline of reagent addition process is 

shown in Figure 1.7.  The outer ring is associated with the typical ZStruct operation (identical to 

steps ii-vi, Figure 1.4), while reagent addition was incorporated specifically for the study of 

CO2and AB reactivity. 
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Figure 1.7 Automated reaction finding (ZStruct) iterative logic including addition of reagents.  

 

 Using the reactants AB and CO2 (1) as a starting point, ZStruct located the paths shown in 

Figure 1.8. TS I effects simultaneous two-hydrogen transfer from AB to CO2, forming FA and 

NH2BH2 (2) with a barrier of 27.8 kcal/mol above 1.87,88 The energy profile for this reactivity 

(Figure 1.8) highlights the favorable covalent B-O bond formation step (reaction II) compared to 

the higher barrier two-hydrogen transfer steps in reactions I and III. The comparatively large 

downhill free energy of reaction for II also emphasizes the stability of FAB and its derivative 4, 

which is especially important due to the observed production of carbon-containing compounds 

under relatively high temperatures of around 100 C.84–86  ZStruct elucidation of these reaction 

pathways was crucial to the identification of B-O bond formation as a thermodynamic driving 

force associated with AB/CO2 reactivity.   
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Figure 1.8 Energy profile for 3b and 4 formation (ΔG at 373K). 

 Subsequent analysis revealed a number of competing reaction pathways, elucidated 

entirely through systematic analysis using ZStruct.  A summary of these pathways is included in 

Figure 1.9.    

 

Figure 1.9. Summary of Cy-BCN formation pathways. 

   

 ZStruct analysis provided a large scope of reactivity eventually leading to the identification 

of competitive ring forming events.  Starting from only two reagents, CO2, and NH2BH2, 

accessible reaction paths leading to the formation of stable ring-like structures comprised of up to 

three additional reagents were identified.  Based on past findings, these ring-like structures, Cy-

BCN (5 and 6) were identified as potential products of experimental reactions of CO2 and 

NH3BH3.84–86 Figure 1.10 overviews the detailed reaction pathways generated via ZStruct driven 

reaction path finding.  The rate-limiting step for 5 formation is reaction VII, the hydroboration step 

which has a transition state energy of 16.9 kcal/mol above 4. Comparatively, concomitant proton 
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transfer to carbon and N-B dative bond formation in reaction XVI has a limiting transition state 

energy of 19.1 kcal/mol (referenced to 4) along the lowest energy path for 6 formation. The 

comparison between rate limiting barriers suggests that the less stable form of Cy-BCN, 5, is 

kinetically favored despite being less thermodynamically stable. The transformation of 5 to 6, 

however, is possible through decomposition of 5 followed by paths X through XVI (shown in 

black, Figure 1.10). 

 

 

Figure 1.10. Cy-BCN precursor formation from 4 and NH2BH2. The blue and black paths 
indicate the most favorable paths for 5 and 6 formation, respectively.  

 ZStruct enabled the identification of two specific six-membered ring (Cy-BCN) structures 

from AB and CO2 by detailing key elementary reactions. These reactions comprise part of the 

potential energy surface for the AB/CO2 reaction network and form a foundation for the eventual 

formation of BCN from AB and CO2.  Furthermore, reactivity patterns, such as the importance of 

B-O bond formation were extracted from the thermodynamic and kinetic reaction data, providing 

an overview of trends in reactivity for AB and CO2.  This work outlines the broad scope of 

reactivity sampled by ZStruct and provides a starting point for application of ZStruct to more 

structurally complex transition metal complexes. Chapter 2 details applications of the ZStruct 

program to the resolution of reaction networks for reductive elimination from palladium (IV). 
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 In general, reaction path finding using automated transition state searches provides a means 

to computationally resolve chemical mechanisms.  These mechanisms provide the relevant 

features of the potential energy surface that correspond to reaction prediction.  This information 

provides the crucial first step to resolving the computational reaction landscape.  The next section 

introduces the relevant background on addressing how the potential energy surface changes as a 

function of atomistic changes to the molecules of interest. 

 

1.4 Constructing the Reaction Landscape  

 Once a mechanism is known, computational tools can also probe the effects of steric and 

electronic contributions to the reactivity, often more easily than experimental investigations.  

Stepwise structural modification is trivial, allowing data mining approaches obtained from analysis 

of stationary points to develop a quantitative structure activity relationship (QSAR).  The reaction 

path for a particular process often varies predictably as stereoelectronic contributions to the 

reactive atoms are modulated.  The prototypical example of this is an Evans-Polanyi principle.    In 

Evans-Polanyi, the reaction barriers for similar chemical reaction can be estimated, and often 

quantified, based on measuring differences in the enthalpy of reaction (Equation 1.3). 

 

��= �� + �∆� 

Equation 1.3 Evans-Polanyi principle relating the activation barrier of a reaction to the difference 
in enthalpy of reaction. 
 

In equation 1.3 Ea is the activation barrier of a reaction from the same class of reactivity, 

(i.e. both are examples of a particular named reaction), ΔH is the enthalpy of reaction, and α 

characterize the position of the transition state (early to late).  Even though the relationship is a 

generalization, the ability to cluster similar types of reactivity has been fundamental in expert 

encoded PES investigation tools mentioned previously.11–26   

More generally, human intuition has proven to be a powerful tool in the design of new 

types of reactivity.  Interpreting the structure-energy correspondence between similar types of 

reactivity often improves human understanding in the process. To accomplish this, discrete 

reactions, varied by molecular structure modifications, can be related through a descriptive model 

equation (Figure 1.11). 
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Figure 1.11 Illustration of QSER for five example SN2 leaving groups and the effect on the free 
energy of reaction. 
 

 Functions can be developed to describe Evans-Polanyi-like relationships targeting 

activation barriers, or more broadly to predict other thermodynamic or kinetic properties from 

systematic structural changes.  Automated structure generation can be used to generate libraries of 

test reactions which can aid in the development of QSAR to generalize a single potential energy 

surface to include entire classes of reactivity. Toward this goal, chapter 3 discuss development of 

thermodynamic landscapes and the structure-energy descriptors of cobalt catalyzed CO2 reduction. 

 The background concepts required to explain reaction landscapes has been reviewed.  The 

following provides a brief outline of the rest of this dissertation, Chapters discussing the 

application of computational tools toward the resolution of reaction landscapes will be presented.  

 

1.4 Dissertation Outline 

 In Chapter 1, a brief background on the necessary tools for investigating PESs and reaction 

landscapes was presented.  The following chapters will apply these tools to main group and 

organometallic chemistry targeting the systematic evaluation of PESs and QSAR. 

 Chapter 2 demonstrates the application of ZStruct to a combined experimental and 

computational investigation of reductive elimination from palladium(IV).  Development of non-

intuitive reaction pathways for C(sp3)-N reductive elimination will be covered as well as specific 

substrates which favor C(sp2)-C(sp3) reductive elimination. 
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 Chapter 3 will cover the development of a thermodynamic landscape using modified 

versions of the ZStruct program to design catalyst libraries.  Discussion of statistical modeling 

techniques for QSAR and reaction landscape development.   

 Chapter 4 will include Final Remarks, in which the findings from previous studies are 

reviewed as well as the scope and limitations of these works.   
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Chapter 2: Reactivity and Mechanism in C(sp3)N Bond-Forming             

Reductive Elimination from Palladium(IV) 

 

This chapter is largely based upon published work:  
Reproduced with permission from Pendleton, I. M.; Pérez-Temprano, M. H.; Sanford, M. S.; Zim-
merman, P. M. Experimental and Computational Assessment of Reactivity and Mechanism in 
C(sp3)–N Bond-Forming Reductive Elimination from Palladium(IV). J. Am. Chem. Soc. 2016, 138 
(18), 6049–6060. 

 

2.1 Abstract 

This report describes a combined experimental and computational investigation of the 

mechanism of C(sp3)–N bond-forming reductive elimination from sulfonamide-ligated PdIV com-

plexes. After an initial experimental assessment of reactivity, we used ZStruct, a computational 

combinatorial reaction finding method, to analyze a large number of multistep mechanisms for 

this process. This study reveals two facile isomerization pathways connecting the experimentally 

observed PdIV isomers, along with two competing SN2 pathways for C(sp3)–N coupling. One of 

these pathways involves an unanticipated oxygen-nitrogen exchange of the sulfonamide ligand 

prior to an inner-sphere SN2-type reductive elimination. The calculated ΔG‡ values for isomeriza-

tion and reductive elimination with a series of sulfonamide derivatives are in good agreement with 

experimental data. Furthermore, the simulations predict relative reaction rates with different sul-

fonamides, which is successful only after considering competition between the proposed operating 

mechanisms. Overall, this work shows that the combination of experimental studies and new com-

putational tools can provide fundamental mechanistic insights into complex organometallic reac-

tion pathways. 

2.2 Introduction  
  Over the past decade, Pd-catalyzed C(sp3)–N bond forming reactions (involving both C–H 

amination and oxidative amination of alkenes) have emerged as valuable methods in organic 
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synthesis.1,2 Although high-valent palladium complexes have been proposed as intermediates in 

these transformations, a detailed mechanistic understanding of the key C(sp3)–N bond-forming 

step has remained largely elusive.3,4 Recently, we isolated a PdIV model complex, 1Ts, that 

undergoes selective C(sp3)–N coupling (Figure 2.1).5 This work was the first example of C(sp3)–

N bond-forming reductive elimination from a well-defined PdIV complex.6  

 

Figure 2.1. C(sp3)–N Bond-Forming Reductive Elimination from 1Ts 

 

 A detailed mechanistic understanding of this C(sp3)–N coupling process would provide 

valuable information about relative rates, ligand design, and stereochemistry that could ultimately 

inform new catalyst design and optimization. However, experimental mechanistic studies of 

reductive elimination from 1Ts are hampered by the complexity of this system. For example, two 

different isomers of this octahedral PdIV complex (1Ts-a and 1Ts-b) are detectable, and others could 

be kinetically accessible under the reaction conditions. Furthermore, multiple kinetically 

indistinguishable reductive elimination pathways are possible from each of these isomers (vide 

infra).  

  The complexity of these competing reductive elimination pathways motivated us to pursue 

computational studies to gain a greater understanding of this transformation. We reasoned that this 

system would serve as an attractive test case for the ZStruct program, a new reaction-finding tool 

developed in the Zimmerman lab.7 ZStruct enables a combinatorial exploration of reaction 

pathways originating from an initial species (Figure 2.2) and uses quantum chemistry to provide 

accurate analysis of the thermodynamic and kinetic factors that govern each path. The entire set of 

ZStruct-discovered reaction pathways are automatically characterized at the full level of detail and 

accuracy available to modern quantum chemical simulations of reaction mechanism. In 

comparison to a traditional DFT investigation, this method significantly expands the scope of 

reactivity and can reveal previously unknown mechanistic pathways. Importantly, the advantages 
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of this method must be balanced by its high computational cost relative to traditional DFT.8 

However, with the rapidly expanding availability of computational power, ZStruct and other 

modern reaction network discovery tools9 are expected to become more and more economical for 

mechanistic investigations in years to come.  

  We report herein that combining experimental studies with ZStruct allowed us to unravel 

competing pathways for carbon-nitrogen bond-forming reductive elimination from complex 1Ts 

and derivatives thereof. During these studies, ZStruct unveiled an unanticipated, alternative  

pathway  for  C(sp3)–N  coupling at PdIV alkyl sulfonamide complexes. 

 

Figure 2.2 ZStruct mediated mechanism discovery incorporates known and non-intuitive chemical 
pathways. 

 

  This pathway, shown in Figure 2.3, is an inner-sphere, concerted reductive elimination via 

a 5-membered transition state that does not require pre-dissociation of the sulfonamide. Prior 

literature reports have shown that C(sp3)–C(sp2)10 and C(sp2)–X reductive elimination processes 

from high-valent group 10 complexes occur through concerted inner-sphere mechanisms, while 

C(sp3)–heteroatom11,12,13,14 couplings generally favor outer-sphere SN2-type mechanisms. To our 

knowledge, concerted inner-sphere paths have not been previously implicated for C(sp3)–N 

coupling.15,16 However, as detailed below, in our system, it is necessary to invoke competing inner 

and outer-sphere C(sp3)–N reductive elimination mechanisms to fully explain the experimental 

data. Overall, this work leverages a synergistic combination of experimental studies and ZStruct 

to obtain a detailed mechanistic picture of C(sp3)–N bond-forming reductive elimination from 1Ts 

and its analogues. 
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Figure 2.3 New Pathway for C(sp3)–N Reductive Elimination of Sulfonamide Substrates Discov-
ered by ZStruct 

2.3 Results and Discussion 
2.3.1 Possible Mechanisms for C(sp3)–N Reductive Elimination from PdIV Complexes. We 

initially considered 4 mechanisms for reductive elimination from PdIV complexes of general 

structure 1. All of these mechanisms have significant precedent in the literature for other carbon-

heteroatom bond-forming reductive elimination processes.17,18,19,20  

  The first possibility (pathway Ia/b) involves direct nucleophilic attack by exogeneous 

RNH– on the six-coordinate PdIV starting complex. As shown in Figure 2.4, this encompasses two 

distinct processes, as it could occur from either isomer 1a or isomer 1b. The rate expression for 

each is expected to be similar and is shown in Figure 2.4.  

  Pathway II involves the dissociation of one arm of the bipyridine ligand to generate a 

neutral 5-coordinate intermediate, followed by concerted C–N reductive elimination via a 

traditional 3-membered transition state.  This pathway is only possible for isomer 1b, since the 

sulfonamide and σ-alkyl ligands are trans to one another in 1a.  Because PdIV complex 1b is 

unsymmetrical, this pathway could involve two different neutral pentacoordinate PdIV 

intermediates. 
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Figure 2.4 Pathway I: Direct Nucleophilic Attack  

  In these two-step mechanisms, either the ligand dissociation or C–N coupling could be the 

rate-determining step. The rate expression for each possibility is shown in Figure 2.5. 

 

 

Figure 2.5 Pathway II: Bipyridine Ligand Dissociation  

  Pathway III proceeds via concerted C(sp3)–N bond-forming reductive elimination (via a 

traditional 3-membered transition state) from the octahedral palladium center of 1b. This pathway 

is not possible for 1a, since the sulfonamide and σ-alkyl ligands are trans to one another in this 

isomer. This mechanism and the corresponding rate expression are shown Figure 2.6. 

 

 

Figure 2.6 Pathway III: Concerted Reductive Elimination  
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  Finally, pathway IVa/b involves two-steps: pre-equilibrium dissociation of RNH– to afford 

a 5-coordinate cationic intermediate followed by SN2-type attack of RNH– on the Pd-σ-alkyl 

intermediate. As in the previous two-step mechanisms, either the ligand dissociation or the C–N 

coupling could be the rate-determining step. The rate expressions for each of these possibilities are 

shown in Figure 2.7.  

 

2.3.2 Previous Studies of 1Ts.  Our initial communication provided preliminary mechanistic 

insights into C(sp3)–N bond-forming reductive elimination from 1Ts.5 These studies showed that 

the reaction exhibits a first-order dependence on [1Ts] and zero-order dependence on [NMe4NHTs]. 

These data unambiguously rule out pathway I, but do not allow us to differentiate between 

pathways II-IV. We also observed rapid exchange between free and Pd-bound TsNH– at 

temperatures significantly lower than those required for C(sp3)–N coupling.21 This indicates that 

the sulfonamide dissociation step of pathway IV is fast under our reaction conditions. 
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Figure 2.7. Pathway IV: SN2 Pathway  

2.4 Experimental Studies of C(sp3)–N Coupling 
2.4.1 Initial Screen of Sulfonamide Nucleophiles. Using the results with 1Ts as starting point, we 

first studied C(sp3)–N bond-forming reductive elimination as a function of nucleophile with a 

series of sulfonamides.22 The sulfonamides CF3SO2NH–, CF2HSO2NH–, and CH3SO2NH– were 

selected to represent a range of electronic properties (i.e., pKa values). A fourth sulfonamide, 

TsMeN– was selected to alter the steric properties and hydrogen bond donor ability of the 

nucleophile, while maintaining similar pKa to TsNH–. 

  The concentrations of the PdIV starting materials and of the reductive elimination products 

were monitored via 1H NMR spectroscopy. The rate constant (kC-N) with each sulfonamide was 

determined by fitting the concentration versus time data to the kinetic model proposed in Figure 2 
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(rate = kC-N[1R]). During the fitting of the kinetic data, the concentrations of 1R-a and 1R-b were 

added together and treated as a single PdIV complex. As summarized in Table 2.1, changing the 

steric and electronic properties of the sulfonamide had a significant impact on kC–N. The fastest 

reaction was observed with the most electron deficient sulfonamide CF3SO2NH– (kC–N = 6.59 x 10-

4 s–1; entry 1). The slowest reactions were observed with CH3SO2NH– and TsNH–, which react 

approximately 5-fold slower than CF3SO2NH– (1.65 x 10-4 s-1 and 1.43 x 10-4 s-1, respectively). 

Previous studies of related C(sp3)–O coupling reactions from PtIV complexes showed that electron 

deficient benzoate derivatives react significantly faster than electron rich derivatives (Hammett ρ 

value = +1.44 for this system). Based on this prior work, we anticipated that we might observe 

faster rates with more electron deficient sulfonamides (i.e., sulfonamides with lower pKa values).19e 

While this general trend is observed in Table 2.1, entries 1-4, the disubstituted sulfonamide 

(TsMeN–, entry 5) is a clear outlier. This latter sulfonamide has the highest pKa value, but shows 

an unexpectedly fast rate.  
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Table 2.1. Reductive elimination reaction rate constant for C(sp3)N coupling using different sul-
fonamides.   

2.4.2. C(sp3)–N Reductive Elimination from 1Tf, 1Ms and 1TsNMe. We next pursued more detailed 

investigations of the complexes containing TfNH–, MsNH– and TsMeN–. These were selected 

because: (1) they encompass the largest range of steric and electronic properties of the 

sulfonamides examined; (2) they are also among the fastest and slowest reacting; (3) they include 

the key outlier with respect to the initially expected pKa trend (TsMeN–); and (4) computational 

results suggest that a change in mechanism occurs between these nucleophiles (vide infra). 
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  We established the kinetic orders of the C–N reductive elimination process in [PdIV] and 

[sulfonamide] for 1Tf, 1Ms and 1TsNMe. In all cases, these reactions exhibited a 1st order dependence 

on [PdIV]23
 and a zero-order dependence on [sulfonamide].24 As discussed above for 1Ts, this data 

allows us to definitively rule out a direct SN2 mechanism (pathway I in Figure 2.4), since this 

would exhibit a 1st order dependence on sulfonamide.25 

  We next explored the feasibility of pathway II, which involves pre-equilibrium de-

chelation of the bipyridine ligand prior to C–N bond-formation. If dissociation of one of the 

nitrogen arms of the ligand were occurring, we would expect to see a large rate difference as a 

function of the rigidity of the bidentate ligand. To test this possibility, we synthesized complex 

1’Tf, in which the bipyridine is replaced with electronically similar but more rigid phenanthroline. 

As shown in Figure 2.8, the rate of reductive elimination from these two complexes under our 

optimal conditions was essentially identical (k2,bpy = 6.59  10-4 s-1 and k2,phen = 6.88  10-4 s-1). 

This experiment provides preliminary evidence against the de-chelation mechanism.26 Notably, 

the computational studies also strongly indicate against this mechanism (vide infra). 

 

 

Figure 2.8 Ligand Effects on the Rate of C(sp3)N Reductive Elimination  

  Eyring plots for C(sp3)–N bond-forming reductive elimination from 1Tf, 1Ms and 1TsNMe 

were obtained by monitoring the reaction rate over the temperature range of 50 ºC to 75 ºC. A 

representative plot is shown in Figure 2.9, and the activation parameters obtained from this 

analysis are provided in Table 2.2. The most noteworthy aspect of this data is the large differences 

in the entropy of activation between 1Ms and 1Tf/1TsNMe. Specifically, the S‡ values for 1Tf and 
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1TsNMe are comparable to one another (-4.9 and -3.4 cal·K-1·mol-1, respectively) and are 

approximately 20 eu more positive than that for the reductive elimination from 1Ms. 

 

 

Figure 2.9 Eyring plot for determination of H‡ and S‡ for the C(sp3)N reductive elimination 
from 1Ms. 

 

  

Table 2.2 Activation parameters for the C (sp3)N bond forming reaction. 

 

  This preliminarily suggests that different reductive elimination pathways might be 

operating upon variation of the sulfonamide (a proposal that is supported by computation, vide 

infra).  
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2.4.3 Lability of the sulfonamide ligand in 1Tf, 1Ms and 1TsNMe.  We next examined the lability 

of the sulfonamide ligand in these complexes. The treatment of 1Ms-a/1Ms-b with 1.2 equiv of 

NMe4NHTs at room temperature resulted in fast sulfonamide exchange to form an equilibrium 

mixture of 1Ms and 1Ts . Similar fast exchange was observed upon treatment of 1TsNMe-a/1TsNMe-b 

with 1.2 equiv of NMe4NHTs at room temperature. For a solution of 1Tf-a and 3.0 equiv of 

NMe4TfNH, EXSY NMR studies at 20 ºC show fast exchange between free and bound TfNH–. 

Overall, these results are similar to those obtained with 1Ts, and they demonstrate that: (1) 

sulfonamide dissociation pathways (e.g., pathway IV) are kinetically feasible and (2) sulfonamide 

dissociation is not the rate-limiting step of the C–N coupling process.  

 

2.4.4 1-a/1-b Isomerization Process. We hypothesized that the differences in reductive 

elimination rates/mechanism between 1Tf, 1Ms and 1TsNMe might be related to the accessibility 

and/or reactivity of different PdIV isomers. As such, we conducted a detailed study of the 

isomerization process. Under our reaction conditions, all of these complexes exist as a mixture of 

two isomers: 1R-a and 1R-b.5 However, isomer 1R-a can be formed in quantitative yield via the 

room temperature reaction of complex 3 with NMe4NR in CD3CN, and it then undergoes slow 

isomerization to form an equilibrium mixture of 1R-a/1R-b at room temperature (Figure 2.10).27 

This isomerization is significantly faster than reductive elimination, and none of the C–N coupled 

product is detected over the time frame of isomer equilibration.  

 



35 

 

 

Figure 2.10. 1R-a/1R-b isomerization 

  We obtained the rate and equilibrium constant for the isomerization of each complex over 

a range of temperatures using NMR spectroscopic analysis. Figure 2.11 shows the data for 1Ms as 

a representative example. The data were fit to the kinetic model shown in Figure 2.11,28 by 

nonlinear least-squares (NLLS) regression.29 The thermodynamic and activation parameters for 

these equilibrium processes were determined using the van’t Hoff and Eyring equations, 

respectively. As summarized in Table 2.3, both the rate and equilibrium constant for isomerization 

varies as a function of sulfonamide. However, neither of these values correlates with the observed 

rate of C(sp3)–N coupling.  
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Figure 2.11 1Ms-a/1Ms-b isomerization process at 45 ºC. Solid lines are the best fit using GEPASI. 

 
Table 2.3. Thermodynamic and activation parameters for the isomerization process using different 
sulfonamide substrates. 

 

2.4.5. Summary and Conclusions from Experimental Studies. Overall, the experimental 

mechanistic studies provide several mechanistic insights into this C(sp3)–N reductive elimination 

process. First, sulfonamide structure has a significant influence on the rate of reductive 

elimination. Second, there is not a clear trend with respect to electronic effect (pKa) of the 
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sulfonamide and the rate of C(sp3)–N coupling (with sterically larger TsNMe– being the key 

outlier). Third, reductive elimination is 1st order in [Pd] and zero order in sulfonamide for all of 

the systems examined. Fourth, two PdIV isomers, connected by a facile isomerization step, are 

observed in the reaction mixture during the course of the reaction. Fifth, both isomerization and 

sulfonamide exchange are faster than reductive elimination.  

  Although the experimental studies do not provide a satisfying explanation for all these data, 

they allow us to rule out a direct SN2 mechanism (pathway I). Furthermore, the observation of 

similar rates with bpy versus phen ligands suggests against the bipyridine de-chelation mechanism 

(pathway II). However, these studies do not provide data to distinguish between pathways III and 

IV. In addition, other undetectable isomers might also be accessible (for example, 1c, 1d, and 1e 

in Figure 2.12) and could potentially be involved in C(sp3)–N coupling via related mechanisms. 

In combination with the possibility of at least two pathways and five different PdIV isomers, there 

are a minimum of 14 kinetically indistiguishable mechanisms that could be operating in this 

system. In addition, many of these pathways could have similar barriers (and thus be operating 

simultaneously), further complicating experimental mechanistic analysis. As such, we turned to 

ZStruct to obtain a more detailed mechanistic understanding of this reductive elimination reaction. 

 

Figure 2.12 Possible unobserved PdIV isomers. 

 

2.5 Identification of Isomerization Mechanism Using Computational Combina-
torial Reaction Finding.  
2.5.1  Reaction Path Identification. Based on the complexity of this system, we viewed it as an 

ideal test case for the computational mechanism discovery program, ZStruct.6a,6b ZStruct is a 

reaction exploration tool designed to interrogate complex chemical transformations using only 

minimal user input. The method is able to: (1) generate a large number of chemically reasonable 

reaction intermediates in a multistep mechanism through combinations of bond “break” and 

“form” operations; (2) evaluate relevant thermodynamic and kinetic parameters using DFT; and 
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(3) utilize state-of-the-art reaction path finding methods to efficiently locate minimum energy 

paths and transition states.6c,6d  ZStruct  differentiates axial and equatorial bonding positions of 

octahedral transition metal complexes and interrogates pseudorotation and axial/equatorial ligand 

isomerizations as well as bond-breaking events.

  As such, it enables a full search of potentially reactive PdIV species. In comparison to a 

traditional DFT investigation, this method proposes and evaluates a combinatorial set of reactions 

in silico without substantial user intervention. This process does not require input of a 

predetermined set of hypothetical reaction steps, so the mechanistic pathways that are evaluated 

by ZStruct can be completely unexpected. ZStruct was initially developed and tested for reactions 

of main group compounds,7,30 and the current work represents the first application to transition 

metal complexes. A summary of these steps is shown in Figure 2.13, and a full description of the 

method is given in the introduction chapter of this dissertation. 

 
Figure 2.13. Overview of the ZStruct Combinatorial Reaction Finding Tool  

2.5.2. Computational Details. 1Ms-a/1Ms-b were selected as chemically relevant and 

computationally tractable starting complexes for the ZStruct analysis. Application of ZStruct to 

1Ms-a/b generated 9,482 chemical structures and 794 individual elementary steps as well as all 

794 associated transition states. During the initial assessment of reaction paths, we used the 

B3LYP density functional31 in a spin restricted formalism with the LANL2DZ32 basis set.33 The 

cost of the search was approximately 80,000 computing hours, which corresponds to less than 1 
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week of computational time on 1,000 CPUs. To narrow these pathways down to the most plausible 

reaction mechanisms, screening and higher-level evaluations were performed, as shown in Figure 

2.14.  

 

 

Figure 2.14. Screening and activation energy cutoffs (ΔG‡) used for finding the lowest energy 
pathways from 1Ms.  *Improved density functional incorporating long-range and dispersion cor-
rections. 

   

  The energy cutoffs were selected based on the experimentally measured barriers for 

isomerization and reductive elimination from 1Ms-a. The experimental barriers, which are all less 

than 28 kcal·mol-1, suggested that barriers more than a few kcal·mol-1 higher would be 

uncompetitive. Taking into account corrections from solvent,34 we set the first screening cutoff at 

40 kcal·mol-1. After removing pathways with activation energies of ≥40 kcal·mol-1, 81 elementary 

steps (~10% of the total generated) remained for further analysis (first filter, Figure 2.13). For 

these elementary steps, the energies were evaluated at an implicit solvent corrected level of theory 

[SMD]35,36  and were subjected to a stricter energy filter of 35 kcal·mol-1. This second filter 

reduced the key reactions to include 38 elementary steps.   

  The lowest energy pathways for isomerization and C(sp3)–N reductive elimination were 

then analyzed using the dispersion and long-range corrected ωB97X-D density functional37 with 

6-311++G** basis set for hydrogen through sulfur and LANL2TZ(f) for Pd to provide accurate 
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energetics.38 For the 14 lowest barrier elementary steps (third filter), the geometries were re-

optimized after adding a single explicit acetonitrile as a reagent to account for solvent binding to 

the palladium center (fourth filter).39 For a more detailed description of the ZStruct method, 

selection of level of theory, as well as the development and application of energy cutoffs, see 

appendicies for this chapter. 

 

2.5.3 Overview of ZStruct Results. As summarized in Figure 2.15, the ZStruct studies predicted 

two different, energetically viable pathways for isomerization between 1Ms-a and 1Ms-b as well 

as for C(sp3)–N bond-forming reductive elimination. A first low energy mechanism involves the 

proposed sulfonamide dissociation/SN2 pathway involving intermediate 4Ms (pathway IV in 

Figure 2.15). However, ZStruct also identified previously unanticipated pathways for both 

isomerization and C(sp3)–N coupling, which proceed via an oxygen-bound sulfonamide 

intermediate (5Ms). As described in detail below, this unanticipated pathway is critical to explain 

the observed trends in rate as a function of sulfonamide substitution. A complete discussion of the 

computational results is provided below.        

 

Figure 2.15. Overview of ZStruct search of the reactivity of 1Ms-a involving multiple unproductive 
search paths as well as known and unknown chemical reactivity. Shown in blue are expected chem-
ical reactivity while red highlights the non-intuitive reaction paths. 

 

2.5.4 ZStruct Pathways for Isomerization. ZStruct generated two low barrier mechanisms for 

the isomerization of 1Ms-a to 1Ms-b (Figure 2.16). In the first elementary step, TS7Ms, the Pd–

NHSO2CH3 bond of 1Ms-a is exchanged for a Pd–NCCH3 bond to generate intermediate 4Ms.40 

Complex 4Ms then undergoes sulfonamide binding and concomitant reorganization of the aryl 
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backbone to afford isomer 1Ms-b through TS8MS. The computed G0 was 1.0 kcal·mol-1, which 

agrees with the experimentally measured 0.94  0.05 kcal·mol-1 at 65 °C. 

  The second isomerization pathway proceeds via displacement of MsNH– by CH3CN to 

form 4Ms, but then follows a unique path compared to the first isomerization mechanism. From 

4Ms, coordination of the sulfonamide through one of its oxygen atoms leads to 5Ms via TS9Ms. 

This O-bound sulfonamide intermediate then undergoes a concerted exchange of the sulfonamide 

oxygen with nitrogen at the palladium center via TS10Ms to form the product 1Ms-b. Notably, the 

κ2-coordination seen in TS10Ms resembles that of bidentate sulfonamide-ligated PdIV 

intermediates proposed by Ritter and coworkers.14 The similarity in the activation barriers for the 

two mechanisms in Figure 2.16 (ΔΔG‡ = 0.2 kcal·mol–1) suggests that they likely occur 

competitively. 

 

Figure 2.16. Two pathways for isomerization of 1Ms-a to 1Ms-b. 

  The experimental value of ΔG‡ for isomerization (24.4 kcal·mol-1 at 65 ºC) is in close 

agreement with the computed barriers of 24.0 and 23.8 kcal·mol-1 for the mechanisms in Figure 

2.16. The computation is also consistent with the experimental observation that the isomerization 

process is zero order in sulfonamide. Furthermore, the ordered conformation of the sulfonamide 
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approach as well as the presence of a stabilizing CH3CN ligand in TS8Ms and TS9Ms are both 

consistent with the experimentally measured S‡ value of –14.8  3.4 cal·K-1·mol-1.  

  While searching for reaction pathways connecting the observable isomers (1Ms-a to 1Ms-

b), three additional pathways were found leading to experimentally unobserved isomers (Figure 

2.17). All three of these isomers (1Ms-c, 1Ms-d and 1Ms-e) were calculated to be more 

thermodynamically stable than 1Ms-a and 1Ms-b. However, the only kinetically viable pathway for 

isomerization connects 1Ms-a and 1Ms-b.41 Overall, these results are consistent with the 

experimental observation that 1Ms-a and 1Ms-b are the only isomers detected experimentally 

(Figure 2.1 and Figure 2.12), and indicate that the other isomers are not kinetically relevant 

intermediates.   

 

Figure 2.17.  Energy barriers for pathways leading to the formation of 1Ms isomers (see Appen-
dices for full reaction pathways). 

 

2.6 ZStruct Evaluation of C(sp3)–N Bond-Forming Reductive Elimination.  
  After ruling out the participation of other PdIV isomers, we analyzed possible pathways 

leading from 1Ms-a and 1Ms-b to C(sp3)–N bond-forming reductive elimination.42,43 ZStruct 

identified the proposed pathways II-IV as well as an unanticipated pathway, V. ZStruct predicts 

that pathway II is energetically inaccessible (ΔG‡ > 32.0 kcal/mol; see Appendices for complete 
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details). This is consistent with the experimental results, which provided evidence against this 

mechanism. In addition, the direct reductive elimination pathway (III) did not pass the screening 

criteria of Figure 2.13., as it has a calculated ΔG‡ of 51.7 kcal·mol-1 (see Appendices for details). 

As such, the discussion below focuses on pathway IV as well as the new mechanism identified 

by ZStruct (pathway V).  

 

2.6.1 Pathway IV. ZStruct found that the lowest energy route for C(sp3)–N coupling starting from 

1Ms-a is a two-step sequence (pathway IV in Figure 2.7). The first step involves the pre-

equilibrium exchange of MsNH– for CH3CN (TS7Ms) to generate an octahedral PdIV acetonitrile 

complex, 4Ms (Figure 2.18). Rate- limiting C(sp3)–N bond-formation then proceeds via outer 

sphere SN2-type attack of MsNH– on the axial sp3-carbon ligand (TS11Ms, Figure 2.19). 

 

Figure 2.18. Pathway IV. C(sp3)–N reductive elimination pathway from 1Ms-a.  

  The nucleophile has an approach angle of 143.3° (compared to the ideal 180º in a 

traditional SN2 reaction), highlighting the steric constraints of this transition state. The calculated 

value of G‡ (26.5 kcal·mol-1 at 65 ºC) matches well with that observed experimentally (25.7 

kcal·mol-1). Importantly, related SN2-like mechanisms for C(sp3)–heteroatom reductive 

elimination have been proposed at platinum,3 palladium,44 and rhodium.45 However, the SN2-

nature of TS11Ms is particularly noteworthy considering that the participating carbon is a highly 

hindered neopentyl-type center.12  
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Figure 2.19. (a) C(sp3)–N reductive elimination transition state TS11Ms from 1Ms-a (in Pathway 
IV). (b) C(sp3)–N reductive elimination transition state TS12Ms from 1Ms-b (in Pathway V).  

 

2.6.2 Pathway V.  A second low energy pathway for C–N bond formation was identified by 

ZStruct and originates from 1Ms-b. Interestingly, this mechanism (pathway V) is not among those 

initially hypothesized above, and has much less precedent in the literature.13 As shown in Figure 

2.20, pathway V involves a two-step sequence, in which an initial nitrogen-oxygen exchange of 

the sulfonamide at the Pd center is followed by reductive elimination via an inner sphere 

concerted 5-membered transition state. Since the second step is calculated to be rate determining, 

the rate expression for this pathway is fully consistent with the experimental kinetic orders. The 

complete reaction profile for C(sp3)–N bond formation from 1Ms-b is shown in Figure 2.21. The 

calculated value of G‡ for the highest energy transition state of pathway IV (26.7 kcal·mol-1 at 

65 ºC) is very similar to that for pathway V (26.5 kcal·mol-1 at 65 ºC). This suggests that the two 

pathways occur at comparable rates in this system.  

  As shown in Figure 2.21, the inner sphere C(sp3)–N coupling in pathway V proceeds via 

backside attack, analogous to the outer-sphere SN2-type mechanism of pathway IV. As such, 

stereochemical labeling studies would not be effective for experimentally distinguishing between 

pathways IV and V. However, the bond angle for approach of the sulfonamide in TS12Ms is much 

shallower than that in pathway V (101.4° in comparison to 143.3°). This is due to a sustained 

stabilizing Pd–O interaction in the transition state, where the Pd–O distance is 3.27 Å for TS12Ms, 

compared to 3.85 Å in TS11Ms (Figure 2.19). Other key bond lengths and angle comparisons are 

given in Figure 2.19, and these values are summarized for all of sulfonamides in the Appendices. 

  Because they are both SN2 reactions with similar rate expressions, TS11Ms and  TS12Ms  

might be initially considered chemically indistinguishable.  However, in practice, there are a 
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number of key differences including transition state structure  (quantitatively different angles and 

bond lengths, Figure 2.19), inner vs. outer sphere mechanism, and activation barriers. 

 

 

Figure 2.20. Pathway V from 1Ms-b 

As will be shown below, the differences in reaction mechanism lead to changes in mechanism 

(pathway IV vs V) as a function of sulfonamide structure. 

 

 

Figure 2.21. Pathway V. C(sp3)–N reductive elimination from 1Ms-b. All energies are referenced 
to 1Ms-a. 
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2.7 Computational Sulfonamide Screen and Experimental Verification.  
  To further assess the feasibility of the proposed pathways, we computationally analyzed 

reductive elimination through pathways IV and V for the sulfonamides TfNH–, CF2HSO2NH–, 

TsNH– and TsMeN–. As summarized in Table 2.4 and Figure 2.22, the lowest calculated barriers 

and experimental ΔG‡ values for the five sulfonamides are in excellent agreement (R2 = 0.90).  

  The predicted lowest energy pathway (i.e., IV versus V) was found to vary as a function 

of sulfonamide structure. For the sulfonamides CF2HSO2NH– and CH3SO2NH–, pathways IV and 

V have similar values of ΔG‡, while TsNH– favors pathway IV. In contrast, TsMeN– and TfNH– 

favor pathway V. For all five sulfonamides, the calculated ΔG‡ for pathway IV generally 

correlates with pKa, with higher pKa’s affording higher barriers. (A linear regression of ΔG‡ for 

pathway IV versus pKa has an R2 = 0.77).  

 

Figure 2.22. Comparison between computational and experimental ΔG‡ for C(sp3)–N reductive 
elimination. The point computation predicted prior to experiment is highlighted in red.  

 

  This trend is consistent with results from Goldberg’s group studying C(sp3)–O coupling 

at PtIV. Specifically, they showed a linear Hammett plot (ρ = +1.44) upon varying the substituents 

on the benzoate nucleophile.19e A key consequence of this pKa trend is that the most basic 

sulfonamide (TsMeN–) has a prohibitively high barrier for reductive elimination via pathway IV. 

As such, the rela- tively fast rate of reductive elimination with this nucleophile is due to the 

accessibility of pathway V, which does not trend with pKa (a linear regression for the five 

sulfonamides has R2 = 0.28).  
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Table 2.4 Comparison of lowest barrier calculated C(sp3)–N reductive elimination and experimen-
tally measured ΔGǂ values for various sulfonamides 

   

  The factors controlling the relative barriers for pathway V as a function of sulfonamide 

appear to be complex, and we have not been able to identify clear trends in ΔG‡ as a function of 

pKa or bond lengths/bond angles that fit for all of the sulfonamides. Nonetheless, one instructive 

comparison for pathway V is between TsHN– and TsMeN–, which differ only by substitution of a 

hydrogen for a methyl group on the sulfonamide. As shown in Table 2.4, this change results in a 

3.3 kcal·mol-1 decrease in ΔG‡ for pathway V, thereby enabling fast reductive elimination from 

the TsMeN– complex via this pathway. A carefully comparison of these systems shows that, with 

TsNH–, the transition state for C–N bond formation via pathway V requires breaking a TsN–H---

-F–Pd hydrogen bond. This hydrogen-bond breaking is clearly reflected in the increasing H---F 

distance moving from 5Ts (2.01 Å) to transition state TS12Ts (3.05 Å) to the product 6Ts (4.80 Å). 

Importantly, a similar hydrogen bond is not possible in the analogous intermediate 5TsNMe, since 

the hydrogen bond donor has been replaced with a methyl group. The magnitude of ΔΔG‡ between 

the two sulfonamides for pathway V (3.3 kcal/mol) is fully consistent with the penalty associated 

with breaking a hydrogen bond. As such, we propose that the lack of a H-bond donor in TsMeN– 
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is likely responsible for the preferred mechanism for C(sp3)–N reductive elimination, and enables 

fast C–N bond-formation despite the high pKa of this sulfonamide.  

  Overall, the computational activation barriers for the five sulfonamides agree well with 

experiment (Figure 2.22), but only when taking into account two distinct mechanistic routes, 

pathways IV and V. Furthermore, while pathway IV is computed to be the lowest (or 

approximately equal) barrier mechanism for 3 of the 5 sulfonamides, 1TsNMe has a much lower 

barrier for pathway V.  Pathway V is also favored for 1Tf, but in this case the energy difference 

between pathways IV and V is less significant (ΔΔG‡ < 1 kcal·mol-1). These observations are 

consistent with the experimental activation entropies. The S‡ values for C(sp3)-N coupling from 

1Tf and 1TsNMe are similar (–4.9 and –3.4 cal·K-1·mol-1) and clearly distinct from S‡ for 1Ms (–

23.5 cal·K-1·mol-1). The higher S‡ likely reflects the increased order associated with solvation 

of the charged intermediates/transition state in pathway IV versus the neutral compounds in 

pathway V. This demonstrates that both predicted mechanisms are critical for understanding the 

observed rates.  

 

2.8 Additional predictions based on thermodynamic considerations.  
  We next sought to computationally examine the impact of moving to the sulfonamide 

Tf2N–, which has an even lower pKa than that of TfNH–. The studies described above suggest that 

the PdIV complex of this sulfonamide (1BisTf) should react at a fast rate via pathway IV. Consistent 

with this hypothesis, the G‡ for C(sp3)–N coupling from 1BisTf via pathway IV is calculated to 

be 23.7 kcal·mol-1. A significantly higher value (26.9 kcal·mol-1) is calculated for pathway V. 

However, the simulations also predict that the C(sp3)–N coupling product 6BisTf is 5.5 kcal·mol-1 

uphill from the starting material, 1BisTf. Therefore, C(sp3)–N coupling from 1BisTf is predicted to 

be kinetically fast, but thermodynamically unfavorable (Figure 2.23).  

 The ZStruct assessment of 1BisTf suggested that alternative, more thermodynamically 

favorable reductive elimination pathways are likely to occur with this complex.  As such, we also 

computationally evaluated the pathway for C(sp3)–C(sp2) bond-forming reductive elimination 

from 1BisTf. 



49 

 

 

Figure 2.23.  C(sp3)–N versus C(sp3)-C(sp2) reductive elimination from common pentacoordinate 
intermediate 4BisTf. All energies referenced to 1BisTf-a. 

 

  This process is predicted to be thermodynamically downhill (–4.4 kcal·mol-1 to generate 

the initial intermediate 14BisTf), with a computed activation barrier of 23.3 kcal·mol-1 (Figure 

2.23). To test these computational predictions, we conducted the thermolysis of a mixture of 3 

with 2 equiv of NMe4NTf2 in CD3CN at 65 ºC. As anticipated, none of the thermodynamically 

disfavored product of C(sp3)N bond-forming reductive elimination (6BisTf) was detected. 

Instead, the C(sp2)–C(sp3) bond-forming reductive elimination product, cyclobutane 15, was 

obtained in quantitative yield (Figure 2.24). The activation barrier for the formation of 15 was 

measured experimentally as 23.8 kcal·mol-1. This is in excellent agreement with the 

computational prediction of 23.3 kcal·mol-1.  
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Figure 2.24. Thermolysis of 3 in the presence of NMe4NTf2 

2.9 Conclusions  
  Detailed mechanistic investigations of reductive elimination from octahedral PdIV 

complexes are challenging due to the presence of multiple isomers and the feasibility of multiple 

kinetically indistinguishable pathways. In this report, we disclose a combined experimental and 

simulation investigation of competing isomerization and C(sp3)–N bond-forming reductive 

elimination from a series of PdIV complexes. Several possible pathways could be ruled out 

through experimental investigations, but numerous plausible mechanisms proved to be 

experimentally indistinguishable.   

  These challenges were addressed by using ZStruct, a computational reaction discovery 

method, to explore this complicated chemical landscape. ZStruct enabled us to rapidly rule out 

pathways involving unobservable isomers and to establish an isomerization mechanism within 1 

kcal·mol-1 of the experimentally determined ΔG‡.   

  In addition, two low energy mechanisms for C(sp3)–N bond-formation were identified: an 

SN2-type outer sphere C–N coupling (pathway IV) and a concerted inner sphere C–N bond 

formation that proceeds via a 5-membered transition state from an O-bound sulfonamide 

intermediate (pathway V). Pathway V appears to be the major pathway for reductive elimination 

for some sulfonamides. This hitherto unreported pathway therefore merits consideration in any 

future studies of C(sp3)–N reductive elimination reactions of sulfonamide derivatives.    

  Taking into account competition between these two mechanisms, ZStruct results showed 

good agreement with the experimentally measured values of ΔG‡ for C(sp3)–N bond-forming 

reductive elimination with stereoelectronically varied sulfonamides. Across a variety of 

substrates, competition between pathways IV and V needs to be accounted for to accurately 

predict and explain experimental outcomes. In one case, computation also predicted that C(sp2)–
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C(sp3) reductive elimination would occur instead of the kinetically facile, yet thermodynamically 

disfavored C(sp3)–N coupling from 1BisTf.  

  This study contributes to a growing body of work demonstrating the advantages of a 

combined simulation and experimental approach to mechanistic investigations, especially those 

pertaining to organometallic complexes.46 Moving forward, we plan to use this approach to 

evaluate the full suite of possible reductive elimination reactions from 1Ms and its analogues (i.e., 

competing C(sp3)–N, C(sp2)–N, C(sp3)–F, C(sp2)–F, and C(sp3)–C(sp2) reductive elimination).  

  While this chapter demonstrates that the combination of experimental mechanistic studies 

with ZStruct holds great promise for the detailed evaluation of complex reaction mechanisms, 

identification of structural features of the molecule, specifically intramolecular interactions such 

as the H-F interaction remain difficult to justify computationally.   Using only manual analysis of 

intramolecular hydrogen bond interactions provided an explanation with a narrow scope limited 

predictive potential.  Chapter 3 endeavors to develop a reliable approach for computationally 

investigating important molecular features through design and subsequent study of a 

thermodynamic landscape of complexes using statistical analysis.   
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Chapter 3: The Thermodynamic Landscape and Descriptors of Cobalt 
catalyzed CO2 Reduction 

 

3.1  Introduction 

 Towards using CO2 as a C1 carbon feedstock,1–4 many homogenous catalysts have been 

developed to produce methanol, formic acid, or formate salts.5–9  While large scale implementation 

of any CO2 reduction process would likely need to utilize earth-abundant transition metals, such 

as Cu,10 Ni,11–16 Co,17–21 and Fe,21,22 some of the highest activity catalysts are currently based upon 

precious metals like Au,23 Ir,24–26 Re,27 Rh,28–30 and Ru.31–37. On the other hand, Linehan and 

coworkers reported that Co(dmpe)2H (dmpe = 1,2-Bis(dimethylphosphino)ethane) was highly 

efficient for CO2 reduction to formate,38 providing a promising example that could lead to a library 

of bis(diphosphine)-ligated cobalt catalysts. 

 

 
Figure 3.1. a) Catalytic cycle for CO2 reduction by cobalt bis(diphosphine) metal complexes b) 
Free energy diagram for Co(dmpe)2H catalyzed CO2 reduction using Verkade’s base. 

 
 The catalytic cycle for CO2 reduction using dihydrogen as a reducing agent is shown in 

Figure 3.1. The thermodynamics of this cycle depend upon the choice of base, solvent and ligand.  

The base provides a tunable thermodynamic force and modifying the solvent can change the free 
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energy of the overall process,39 but modulating the ligands will not alter the overall spontaneity of 

a reaction (Figure 1b.).  Instead, changes to the ligands can only shift the relative energy of 

intermediates within the catalytic cycle.  Taking these factors into account, effective CO2 reduction 

requires: (1) facile H2 heterolysis, usually by the catalyst being sufficiently acidic to be paired with 

the selected base, and (2) metal-H hydricity for thermodynamically viable conversion of CO2 to 

formate.  

 The Co(dmpe)2 catalyst was reported as most efficient using stoichiometric Verkade’s base 

to drive the catalytic cycle. With weaker bases such as 1,8-Diazabicyclo[5.4.0]undec-7-ene 

(DBU), higher pressures of CO2 and H2 were required to turn over catalysis. Using the same 

general mechanistic manifold (Figure 3.1), a subsequent report demonstrated an effective L2NiH 

(where L=1,2-[bis(dimethoxypropyl)phosphino]ethane) complex which was demonstrated to 

successfully reduced CO2 using water as a solvent.16  While the reactivity of cobalt complexes are 

highly ligand dependent bis(diphosphine) ligand scaffolds seem to affect the reduction of CO2 

under various conditions.    

    In general, bis(diphosphine) ligand scaffolds are widely used and investigated ligand class 

in organometallic chemistry.40 These ligands provide a range of reactivity and, owing to the 

widespread use, are commercially available. From a computational perspective, ligand screening 

systems have incorporated bidentate phosphines with the long-term goal of catalyst screening, 

optimization, and development of structure-activity relationships.41,42  The impact of systematic 

ligand changes on cobalt catalyzed CO2 reduction reactivity is not fully understood, owing in part 

to the difficulty associated with synthesis of novel metal phosphine complexes; only a limited 

number of these complexes are reported in the literature.43–47 Computationally generated catalysts, 

derived from ligand libraries or taken from commercially inspired ligand scaffolds, can be used to 

extend beyond the synthetically available complexes to explore inaccessible chemical space. 

 The structure-energy relationships that underlie cobalt catalyzed CO2 reduction can be 

studied using first principles simulations. Previous computational studies have explored a handful 

of PNP-type pincer complexes48,49 for CO2 reduction, and the present article is therefore in the 

same spirit. Specifically, this article explores the potential for tuning of Co-based CO2 reduction 

catalysts using large libraries of bis-phosphine complexes. A benchmark set of thermodynamic 

data for heteroleptic metal bis-phosphines will permit evaluation of the relative capacity for CO2 

reduction for each complex, as well as indications of how the underlying catalyst structure dictates 
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reactivity. Therefore H2 binding, deprotonation, and hydride transfer thermodynamic properties 

are examined for a large set of cobalt complexes, exploring both homoleptic and heteroleptic metal 

bis(diphosphines) constrained to a subset of all reported commercially bis(diphosphine) ligands.  
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3.2  Computational Benchmarking  

To begin this investigation, a computational model is constructed to inform the three 

ligand-controlled steps of catalysis (Figure 3.1b). Here, three thermodynamic quantities hold 

particular interest: H2 binding through oxidative addition to the transition metal, pKa, and hydricity, 

all of which must be accurately quantified to form a useful model. Prior benchmark studies have 

examined pKa for organometallic complexes50,51–54 and found that density functional theory (DFT) 

approaches were sufficient to reproduce these quantities. To build our own model, a benchmark 

set was assembled to include eight cobalt and nickel bis(diphosphine) ligated metal complexes 

with experimentally reported pKa values ranging from -2.3 to 38.53,55–58,58,59 Comparisons were 

made between various simulation approaches with different DFT functionals, basis sets, solvation 

models, and thermodynamic corrections (see appendices for all comparisons). Gas phase DFT 

simulations overestimate energetic differences, but still linearly correlate (R2 = 0.93) with 

experimental results. Implicit SMD solvation in acetonitrile results in a significantly more precise 

pKa, but adding vibrational zero-point energy corrections reduces the correlation between 

computed and experimental. No substantial change in accuracy was observed when using DLPNO-

CCSD(T) computations compared to DFT (ωB97X-D). 

 Prior reports on hydricity have shown it is more challenging to compute compared to 

pKa.60,61  The most accurate methods for calculating ΔG°H- have employed DFT with CPCM 

solvation models, resulting in only limited correlation with experimentally observed hydricities.62 

For benchmarking, a series of nine metal hydrides with experimental ΔG°H- values ranging from 

31.8 to 66.3 kcal/mol21,59,60,63–69 were selected. Similar to the pKa benchmark, comparisons were 

made between various simulation approaches, and a single model chosen for general use (see 

appendices for full details).  The solvation model was found to significantly impact precision of 

the results, as at the ωB97X-D/Def2-SVP level of theory SMD-PCM was observed to have an 

R2=0.75 while Def2-SVP/CPCM R2=0.89 and Def2-TZVP R2=0.87 when compared to experiment 

(Figure 3.2). DLPNO-CCSD(T), using Def2-TZVP and Def-SVP basis sets, linearly correlates 

with DFT methods such as ωB97X-D (see appendices for details). These results indicate that using 

ωB97X-D/Def2-SVP/PCMacetonitrile would provide precise comparisons for calculating test set pKa 

and hydricity values. 
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Figure 3.2. Experimental and calculated hydricity values using ωB97X-D/Def2-SVP level of 
theory comparing SMD-PCM acetonitrile and PCMacetonitrile  
 
Section 3.2.1  Bisphosphine Library and Thermodynamic Landscape  

 With a suitable computational method in hand, a library of heteroleptic cobalt complexes 

of the type Co(L)(L’) was developed.   As a first step, a series of bis(diphosphine) ligand scaffolds 

were selected with a range of electron withdrawing/donating effects, for example 16-dcpe and 40-

dpp(perfluoro)Bz as electron acceptors, and electron donating ligands such as 19-d(4-methoxy-

Ph)pe and 36. A variety of backbone linkers was also selected to intentionally vary parameters 

such as bite angle and cone angle.  Commercially available phosphine ligands that were 

prohibitively large and/or prevented the formation of octahedral complexes were excluded (Figure 

3).   
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Figure 3.3. Outline of the bis(diphosphine) ligand library approach used for this study. 
 

The catalyst library contains 780 unique cobalt complexes which were generated from the 

combination of pairs of ligands from Figure 3.3.  Figure 3.4 illustrates the resulting thermodynamic 

landscape which compares H2 binding, pKa, and hydricity using the ωB97X-D/Def2-

SVP/PCMacetonitrile level of theory.  Figure 3.4 also illustrates how altering the solvation 

environment from acetonitrile to tetrahydrofuran (THF) results in a slight shift of the 

thermodynamic landscape toward more acidic and weaker hydride donor complexes. 
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Figure 3.4  ωB97X-D/Def2-SVP/PCMacetonitrile thermodynamic landscape shown in color with 
ωB97X-D/Def2-SVP/PCMTHF shown as a background in grey  (a) Hydricity (kcal·mol-1) versus 
pKa with H2 binding (kcal·mol-1) on the Z-axis (b) Hydricity (kcal·mol-1) versus H2 binding 
(kcal·mol-1) with pKa on the Z-axis. 
 

These results make clear that the thermodynamic values of hydricity, pKa, and H2 binding 

are dependent on one another. For example, the strong negative correlation between hydricity and 

pKa illustrates electronic effects on the thermodynamic cycle of H2 binding, deprotonation, and 

hydride loss.  Strongly electron withdrawing groups are expected to reduce pKa while increasing 

hydricity, whereas electron-donor phosphines result in a more electron-rich cobalt species which 

tend to be good hydride donors and weaker acids. Similarly, complexes that readily give up protons 

and hydrides with also have endothermic H2 binding, while weak-hydride/weak-acid complexes 

are associated with more exothermic H2 binding. A balance of these factors is required for the 

catalytic landscape to be as flat as possible, resulting in higher rates of CO2 reduction. 

 
Section 3.3 Qualitative assessment of the thermodynamic landscape 

 
The Co complex library permits closer examination of chemical features which dictate 

trends in the energetic landscape. Upon identification of these features from a qualitative level, 

quantitative relationships will be built to better validate these descriptions.  The extreme regions 

of the landscape—i.e. at high acidity or hydricity—were predominately governed by electronic 

properties of the ligands. For instance, 16-dcpe was the predominant ligand found in the most 

acidic 10% of the thermodynamic landscape (Figure 3.5).  Intuitively, the chlorine atoms bound to 

the phosphorous of 16-dcpe make the complex electron deficient—and thus acidic.  All 35 

instances of ligand 16-dcpe appear in the most acidic 50% of the landscape as well as the most 
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acidic complex in the test set. The electronic character of 16-dcpe is further emphasized by 

Co(16)(16)H2 with a calculated pKa of -3.5 (this complex, were it to form, would be highly 

unstable).  The most common ligand in the least acidic region of the thermodynamic landscape is 

the electron-donating 27-dmpm. Complexes containing ligand 27 are almost exclusively limited 

to the least acidic half of the thermodynamic landscape (pKa range 27.5 - 49.9). The only exception 

to this is Co(27)(16), where 16 overpowers the effect of 27, resulting in a pKa of 6.8, 20.7 pKa units 

more acidic than the next complex containing ligand 27. 

 
 

 
Figure 3.5. Quantitative analysis of ligand population for the (a) most-acidic and (b) least-acidic 
regions of the thermodynamic landscape 
 

Moving on to the next thermodynamic property, a population analysis of hydricity indicates 

that ligands 21 and 36 predominate in the highly hydridic region of the thermodynamic landscape, 

shown in Figure 3.6. Electron donation from methoxy substituted arenes on ligand 21 and the 

direct � donation from the lone pairs of nitrogen of ligand 36 result in reactive hydrides.  In 
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comparison, the electron withdrawing groups on ligands 16-dcpe and 6 are almost exclusively 

limited to the least hydridic half of the thermodynamic landscape. As expected by the negative 

correlation between pKa and hydricity, no complexes containing ligand 16 are among the 50% 

most hydridic complexes.   

 

 
Figure 3.6.  Quantitative analysis of ligand population in the (a) most hydridic and (b) least 
hydridic regions of the thermodynamic landscape   
 

In general, significant overlap is expected between the high pKa and strong hydride donor 

complexes within the bottom right of landscape shown in Figure 4a. A comparison of structures 

containing ligand 21 in this region helps to illustrate the interdependency of pKa, H2 binding, and 

hydricity.  The population of ligand 21 seems to be primarily distributed along the strong hydride 

donor window of the landscape, ranging from ΔG°H- 14.6 kcal/mol to 33.2 kcal/mol, with 15 

instances among strong hydride donor complexes.  When assessing the same number of complexes 

in a vertical window, ranging for pKa 49.9 to 38.3, only 6 instances of ligand 21 are observed.  The 

variation in population of complexes containing ligand 21 in the strong hydride window vs. high 
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pKa window can be attributed to differences in H2 binding; variation in hydricity while constraining 

pKa is largely associated with H2 binding energy. As the electronic environment of 21 is largely 

dominated by the electron donating methoxy substituents, a likely cause of the variation in H2 

binding is steric encumberment from the ligand paired with 21.  Qualitative steric analysis can be 

made through comparison of other common ligands within the most hydridic and high pKa regions. 

Hydridic ligands 21 (ortho-methoxy substituents), 36 (t-butyl groups), and 41 (isopropyl groups) 

appear more sterically encumbered than basic ligands, 27 (methyl substituents), 11 (ethyl 

substituents) and 22 (p-fluoro).  While not a complete explanation, these analyses suggest that H2 

binding and hydricity could be correlated with steric features of the molecule.   

This qualitative assessment of the thermodynamic landscape has provided intuitive 

electronic factors that determine whether a given complex will exist in a proton-donating or 

hydride-donating region.  Furthermore, the differences in the populations of ligands within each 

region indicate that further quantification of steric features could explain variations in the H2 

binding energy.  In the next section of this article, specific molecular features are evaluated for 

their ability to describe structure-activity relationships in this landscape.  
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Section 3.4 Exploring Molecular Feature Based Descriptions of the 
Thermodynamic Landscape 
 
 The results of Section 3.1 suggest that regions of the landscape might be described by 

variation in electronic and steric features of the catalysts.  We aimed to better understand which 

molecular features best describe variation in the thermodynamics of cobalt catalyzed CO2 

reduction. Toward this end, the multivariate regression know as LASSO (least absolute shrinkage 

and operator) was invoked.  LASSO allows systematic evaluation of input features by penalizing 

terms with little influence on the accuracy of the resulting model. For instance, if a dataset were 2 

dimensional in nature, but included 2 additional, low relevance or redundant features, LASSO 

would drop out the latter two features and give a regression with just 2 terms (i.e. � = ���� +

���� + ���� + ���� → � = ���� + ����). Therefore, the following procedure was enacted: 

(1) Linear expressions with all (normalized) features were constructed, and (2) LASSO selects the 

best low-dimensional regressions for subsequent analysis.  Important features for discussion are 

highlighted in Figure 3.7 below.  

 
Figure 3.7. Features considered in constructing a molecular representation for pKa and hydricity. 
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The intermediate Co(L)(L’)H was selected as the target structure for the development of 

electronic and steric features.  While steric features, such as buried volume and bite angle, are not 

expect to change significantly from the Co(L)(L’)H2 to Co(L)(L’)H, we hypothesized that the 

electronic character of the Co—H hydride on Co(L)(L’)H would be informative of both hydricity 

and acidity.  For this study NBO atomic charges for cobalt and the metal hydride as well as the 

NLMO (natural bond orbital) energy and bond length for the Co—H bond in the Co(L)(L’)H 

complex were included. Commonly cited steric features including, bite angle70,71, total ligand area, 

total ligand volume, buried volume,72 and Sterimol parameters L, B1, and B5 were selected.73  Bite 

angle has been called upon as a key molecular features in many organometallic QSAR studies, 

including past computational work by Guo and coworkers exploring relationships between 

structural features and metal bis(diphosphine) catalyzed CO2 reduction.61,70  Buried volume has 

been recently incorporated into QSAR studies for the purpose of characterizing steric bulk near 

the metal center of catalyst that could impact overall reaction yield74 or enantioselectivity.75 

Sterimol parameters have been used widely throughout drug discovery chemistry76 while recently 

experience a renaissance of sorts and now being more widely incorporated into the description of 

the steric properties for transition metal catalyzed chemical reactions.75,77–80 Distortion around the 

Co(L)(L’)H metal center was quantified by Tau 5 (trigonal bipyramidal distortion).81  

As a first step in targeting a feature based representation for thermodynamics, the landscape 

was reduced to 487 complexes spanning a slightly narrower region of approximately 50 pKa and 

70 kcal/mol hydricity containing only alkenyl, aryl, and alkyl backbones.   Specifically, catalysts 

with ferrocene backbones as well as Rac-BINAP (35), Nixantphos and ligand 33 were excluded in 

subsequent analyses. We hypothesized that by constraining the landscape to more closely related 

ligands, correlation between the structure and thermodynamics would be improved.  Despite this 

initial constraint, the first analyses revealed that few of the commonly employed steric descriptors 

seemed to significantly contribute to the predictive value of the model.  The best correlation 

between a feature based model versus QM calculated pKa was identified as a 11 term model with 

an observed R2 = 0.78 where the predominate features were the Co—H NLMO energy and NBO 

populations.  However, in the absence of the electronic information provided by Co—H NLMO 

energy and NBO populations, the best correlation identified was an eight term model with an 

observed R2 = 0.40.  The poor correlation between the model in the absence of NBO data and the 

QM calculated pKa strongly suggested that the molecular features such as bite angle, sterimol, 
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buried volume, and distortion, poorly describe statistical variance across large regions of chemical 

space.  These data also suggested that out of the available features in our dataset the energy of the 

Co—H NLMO is the most correlative feature for describing the relative acidity and hydricity of a 

cobalt bis(diphosphine) complexes.   

We next attempted to better understand the information provided by the Co—H NLMO 

energy.  A linear regression of QM calculated pKa versus NLMO energy produced an observed R2 

= 0.71 (Figure 3.8a) and an observed R2 = 0.57 (Figure 3.8b) when hydricity was plotted versus 

NLMO energy.  Importantly, the one term NLMO model only has an observed R2 of 0.07 less than 

a 11 term model which included additional steric features as well as NBO populations on cobalt 

and the metal hydride.    

 
Figure 3.8.  QM calculated (a) pKa and (b) hydricity versus Co—H NLMO energy (eV) 

 

p�� = 247.7εNLMO + 84.8 
Equation 3.1.  Equation relating the εNLMO energy with pKa shown in figure 3.8a 
 
 

∆G°�� �
����

���
� = −284.5εNLMO − 17.1    

Equation 3.2.  Equation relating the εNLMO energy with hydricity shown in figure 3.8b 
 

 Though the NLMO is from the Co(L)(L’)H intermediate, this orbital would still be 

expected to provided significant information regarding the hydricity and acidity of the metal 

complexes and would also be expected to contain some limited information regarding the energy 

of H2 binding.   For hydricity, these data suggest that the lower the Co—H bonding orbital energy, 

the more stable the Co—H bond, and the less labile the hydride.  For acidity, the more stable the 
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Co—H NLMO, the more acidic the Co(L)(L’)H2 complex is expected to be.   Figure 3.9 illustrates 

some of the possible shifts in the thermodynamics for hydricity, and pKa through modulation of 

the NLMO energy. 

 

 

Figure 3.9.  Illustration of effects on pKa B and hydricity C caused by modulation of Co—H 
NLMO energies 

 

What can clearly be observed is that the stability of the NLMO is intimately related to the 

acidity and hydricity.  While the consideration of H2 binding complicates the relationship between 

acidity and hydricity these can be reduced to two distinct classes, endothermic and exothermic H2 

binding: 1) If an H2 binding process is highly exothermic then both hydricity and pKa are less 

favorable 2) If the H2 binding process is endothermic hydricity and pKa will be more favorable.   

Notably, the characterization of the H2 binding step seems to be most difficult to characterize using 

any combinations of features in our dataset.  The best correlation for H2 binding was observed for 

a 13 term model with an R2 = 0.46 in which NBO populations on cobalt — from each of the three 

catalytic intermediates —  were the most heavily weighted features.  From these analyses we can 

conclude that the Co—H NLMO energy correlates with hydricity and pKa across the entirety of 

the thermodynamic landscape and is crucial for the construction of a predictive model, even when 

only limited information regarding H2 binding is available.    

These data suggest that limited correlation exists between molecular features other than 

NLMO and NBO populations and thermodynamics within the dataset.  Attempting to divide the 

landscape into smaller regions by pKa, hydricity, H2 binding, ligand scaffold, and even 
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constraining only to catalytically relevant regions provided little additional insight, but 

continuously suggested that the best overall feature was the localized Co—H NLMO descriptor.   

 

Section 3.5.  Selection of the Best Catalyst Using QM Calculations 

We next set out to determine the most thermodynamically favorable catalysts according to 

QM data using two sequential thresholds for selection.  The first reduction applied a 

thermodynamic cutoff, thereby considering only the most catalytically relevant species. As a point 

of reference, the thermodynamic values calculated for our dataset predict Co(dmpe)2H catalyst 

with a pKa  of 31.3, hydricity of 46.4, and a H2 binding of -13.1 kcal/mol.   More generally, in 

acetonitrile the hydride transfer to CO2 is favorable for catalysts with < 44.0 kcal/mol calculated 

hydricity.  For pKa, we aimed to select catalysts more acidic or similar to previously reported 

Co(dmpe)2H catalyst.  While there are some entropic penalties associated with H2 binding, 

increasing the pressure of H2 in these reactions seems to have little deleterious impact on 

catalysis.82  Therefore, reactions that are less than -5.0 kcal/mol with respect to H2 binding seemed 

reasonable to include. Based on these metrics we bounded the selection to only catalysts favorable 

H2 binding, hydride transfer to CO2 in acetonitrile and to catalysts that were similar or more acidic 

than calculated values for Co(dmpe)2H2.  An overview of stepwise reduction of the thermodynamic 

landscape, and the selection of best case catalysts from each step, is shown in Figure 3.10. 
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Figure 3.10.  Stepwise reduction of the thermodynamic landscape toward the selection of best-
case catalysts. 
  

In total we observed only 24 species inside the constrained region of the thermodynamic 

landscape.  While the synthetic tractability of the heteroleptic complexes limits experimental 

study, the surprising lack of complexes within the windows illustrates the challenge associated 

with selecting ligands capable of balancing the desired thermodynamic parameters.  During our 

assessment of the ligand population we identified that complexes generally considered to be 

electron donating were primarily associated with strong hydride donor complexes.  Similarly, our 

regression analysis also pointed toward the correlation between a high energy Co—H NLMO and 

stronger hydride donors.  Taken together these data would suggest destabilizing the NLMO 

through electron donation would be expected to postion complexes in a region far from the 

catalytically active window.   The top ten thermodynamically relevant catalysts are presented in 

table 3.1 entries 1-10 along with catalytically competent cobalt complexes table 3.1 entries 11-13. 
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Table 3.1 Entries 1-10 show the top thermodynamically relevant Co(L)(L’)H2 complexes from the 
landscape while entries 11-13 highlight catalytically competent homoleptic catalysts 
 

 We observed that the most favorable catalysts within the window contain ligands 

characterized as electron neutral, dCype (12), dmpm (27), dmpe (7), or combinations of electron 

withdrawing and electron donating ligands such as Co(22)(36)H2.  The electron donating and 

electron withdrawing properties of the ligands must be in balance such that heteroleptic complex 

remains in the catalytic region of interest.  Neutral ligands are thereby more likely to be in the 

center of the landscape closest to the region of catalytic interest.  These data also suggest that 

seemingly subtle changes to ligand environment, such as shifting from alkyl to aryl substituted 

phosphines, has a large impact on the acidity, hydricity and H2 binding character of the complexes.  

For example,  shifting from Co(dCype)2H2 to Co(dppe)2H2 (table 3.1 entry 13) results in an almost 

10 kcal/mol difference in the calculated values for hydricity.  

Based on our analysis of the landscape the most thermodynamically favorable homoleptic 

complex is the Co(dCype)2H2.  This complex is calculated to be relatively more acidic and hydridic 

than the previously reported Co(dmpe)2H2, or Co(depe)2H catalysts (table 3.1 entries 11-12).83  

The H2 binding energy for the Co(dCype)2H2 catalyst is calculated to be more endothermic than 

the Co(dmpe)2H2 catalyst by 7.9 kcal/mol, showing that the cyclohexyl substituted phosphine 

results in substantial energetic difference when compared to simpler alkyl ligands.   Observed 

differences in the binding energy accounts for thermodynamic favorability of deprotonation and 

hydride transfer for the Co(dCype)2H catalyst, an effect which could be attributed to the more 

crowded steric environment around the metal center.   

Entry L L' pK a ΔH
o
H- H2 Binding

1 36 22 27.6 43.8 -5.4

2 27 12 30.5 42.4 -8.1

3 25 7 30.6 42.8 -8.6

4 35 27 30.6 43.0 -8.7

5 14 27 30.7 44.2 -10.2

6 19 27 30.8 44.2 -10.2

7 36 20 30.9 40.7 -6.8

8 34 11 31.1 44.2 -10.5

9 24 36 31.8 38.0 -5.4

10 12 12 31.9 39.5 -7.1

11 11 11 33.2 45.8 -15.0

12 7 7 31.3 46.4 -13.1

13 25 25 22.8 49.1 -4.2

General Octahedral Structure: Co(L)(L')H2
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These analysis suggest that potential complexes for cobalt bis(diphosphine) catalysts are 

highly sensitive to the electronic character of the ligands.  Only a few combinations of ligands 

within the landscape have the properties necessary to aptly balance the thermodynamics for each 

step of the catalytic process.  Despite the limited number of complexes in this region of the 

landscape, we identified the Co(dCype)2H2 as an important target for further experimental 

investigation.  This complex has not yet been experimentally reported, but is associated with a 

more endothermic H2 binding process than previously reported Co(dmpe)2H while maintaining 

what would appear to be superficially similar electronic character.  The net result is that the 

Co(dCype)2H2 complex is overall the most thermodynamically favorable and potentially 

synthesizable catalyst in the landscape.  
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Section 3.6.  Conclusions 

In this article we demonstrate a step-wise approach to development of a computational 

chemical library from benchmarked experimental data and description of a thermodynamic 

landscape. Our dataset consisted of Co(L)(L’)H2 type complexes generated from set of 

commercially available of bis(diphosphines) which covered a thermodynamic landscape of over 

50 orders of magnitude acidity and hydricity.  Overall, the diversity of complexes in this landscape 

has provided unique insight into limited ability to quantify ligand interactions using traditional 

steric and electronic features.  The attempted use of traditionally employed steric and electronic 

molecular features revealed that these parameters seem to have little statistical correlation with the 

thermodynamics of CO2 reduction for cobalt bis(diphosphine) complexes.  From this dataset we 

found a single highly correlative electronic feature, the Co—H NLMO bond energy, which alone 

provided an observed R2 = 0.70 for pKa and an observed R2 = 0.54 for hydricity.  Using the 

quantum chemical dataset we were able to extract and interpret the best catalysts from the 

landscape.  We identified the Co(dCype)2H catalyst as the most catalytically relevant species.  In 

summary, ligand population and NLMO analysis both suggest that presence of neutral ligands 

appears to position complexes in the region of catalytic interest while ligands with electronic 

character shift the complexes toward the extreme edges of the landscape.   Work remains in the 

development of molecular features which aptly describe the steric environment around cobalt 

bis(diphosphines) specifically pertaining to H2 binding. 

 

3.7 Computational Details 

 A detailed account of the methods used throughout this publication can be found in 

appendix B. This investigation utilized B3LYP84, B3P86,  and ωB97X-D85 density functions, as 

well as the DLPNO-CCSD(T)86 method.  Utilized basis sets include: LANL2DZ87,88 Def2-SVP89, 

Def2TZVP, and ma-Def2-SVP.   Solvation methods:  SMD-PCM90 and CPCM91–93.  Software 

packages include: QChem94 and Orca95. 
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Chapter 4: Final Remarks 

 
With ever increasing computational power, quickly and accurately assessing chemical 

properties through simulation is becoming easier.  The ability to simulate all types of chemical 

reactions, and the larger scope of related chemical space is quickly becoming feasible.  One crucial 

advancement comes in the form of semi-automated tools for assessing reaction landscapes.  These 

tools enable chemical investigations to explore beyond narrow regions of chemical space 

providing an increasingly broad view of related reactivity.  Given that development of 

computational tools continues, the combined information from the relevant portions of the 

potential energy surface and the quantitative structure-energy relationships provided via 

computational investigation will eventually rival the accuracy and reliability of experimental 

testing.  The implications for exploring chemical space will shift the paradigm of computational 

investigation from experimental confirmation, to truly guiding which tests are necessary in the 

laboratory.  

 

4.1 Research Summary  

This work continues to explore the use of computational simulation to investigate complex 

chemical reactivity.  In chapter two of this work, a tandem experimental-computational study of 

C(sp3)-N reductive elimination from a palladium(IV) was performed.  The study focused on the 

relevant reaction pathways for C(sp3)-N reductive elimination, with computational methods 

providing important insight into alternative reductive eliminations including C(sp3)-C(sp2) 

pathways. A complete description of important reaction pathways enabled computation to 

accurately predict rates and thermodynamics for a new class of palladium complexes. 

Chapter 3 aimed to extend the applicability of scalable computational methods for 

searching large regions of organometallic chemical space.  The thermodynamic landscape for 

cobalt catalyzed CO2 reduction provided unique insight into energy structure correspondence.  

Statistical modeling packages were employed to simplify the analysis of many possible chemical 

descriptors.  In the end, the large chemical space revealed the limitations of steric molecular 
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features and importance of orbital descriptions, as well as highlighting the need for additional 

intuitive metrics for quantifying electronic and steric contributions.  The dataset also suggested 

that the catalytically relevant regions of the landscape are tightly bounded, heavily favoring 

electron neutral ligands.  These data provided a potentially accessible experimental complex 

Co(dCype)H for further investigation. 

The research outlined in this document is a contribution to a growing body of work which 

attempts to bridge the gap between experimental and computational chemistry.  In contrast to 

experiment where all possible reaction pathways are naturally sampled, computational chemistry 

has long been beholden to technical limitations enabling investigation of only a few possible 

reaction pathways at a time.  In many ways, the constrained investigations of computational 

chemistry were only possible because of the close relationship to experimental chemistry.  With 

the advent of these new tools comes an opportunity for computational chemistry to start 

performing some of the more complicated aspects of chemical development including reaction 

screening, computational first reaction discovery, and potentially substrate development and 

selection.   These new opportunities open a rich collaborative environment where the best aspects 

of experimental and computational chemistry can mesh for fast, accurate and more holistic reaction 

investigation.    

 

4.2 Constructing Reasonable Models 

 These new opportunities must be met with caution, however.  As computational programs 

are made more accessible the likelihood that models and datasets will be overinterpreted increases.  

In particular, chemists must be careful to ensure all approximations and model limitations are 

clearly understood throughout the investigation. Software such as ZStruct (reaction path finding 

tool), and the growing string method are designed to provide the user with fast, accessible and 

accurate data based on minimal structural input information.  The ease with which these programs 

operate can misrepresent the underlying complexity of the chemical environment to which they 

are applied.  Therefore, development of chemically meaningful structural models is even more 

crucial as these tools continue to advance.  

 With the advent of new, powerful, and accessible computational methods is likely a rise in 

the number of studies performed with only limited experimental data.  While these types of studies 

are not intrinsically problematic, extra caution must be applied during the initial stages of model 
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development.  A few common steps have emerged which seem to simplify the early stages of 

model development, particularly for organometallic systems. These can be roughly divided into: 

1) level of theory and method selection 2) initial ‘starting material’ and 3) model refinement with 

experimental feedback.  The next paragraphs detail, in broad strokes, how to best resolve each of 

these challenges.   

 The selection of the appropriate level of theory will likely remain challenging until a highly 

accurate “silver bullet” method emerges.  For now, understanding or testing the limitations and 

strengths of various DFT implementations provides the best defense against failure.  Reviews 

discussing the differences in basis set,1 functional,2–4 and solvation methods5 remain crucial to 

selection of the appropriate level of theory to optimize structures6,7 as well as calculate single 

points.  However, the best solution to DFT method selection seems to be benchmarking against 

experimental datasets when available.  Benchmarking ensures that the key chemical information 

is captured by the chosen model and that the data is physically meaningful. Using benchmarks, 

chemical intuition and past literature are vital to the selection of a suitable DFT level of theory. 

 Computational modeling of reaction pathways requires that investigations aim to identify 

the lowest energy structures on the potential energy surface.  Without these minima, accurate 

representation of the kinetics and thermodynamics of a given reaction is dubious. For reactions 

involving a single starting material with limited conformations, such as in simple organic reactions, 

identification of reference structures is often straight forward.  In comparison identification of the 

best entry into a catalytic organometallic reaction is sometimes less clear.  This challenge is 

complicated by potential substrate-solvent, catalyst-solvent, and conformational mobility of the 

substrate bound or near the catalyst.  The potential pitfalls for not correctly addressing model 

development at this stage are sometimes mitigated by error cancelation, i.e. if a solvent is bound 

at the starting material, transition state and product, then omitting the solvent will have a moderated 

impact on the accuracy.  Relying on error cancellation is of course inadvisable.  However, directly 

addressing this problem is rather straight forward.  Often the experimentally observable starting 

material is a sufficient guess structure.  Subsequent conformational searches can then be performed 

to ensure that the most stable geometry is obtained.  Furthermore, addition of one or more solvent 

molecules to open coordination sites of the catalysts can be attempted.  Generally, if the reaction 

is performed in coordinating solvent such as acetonitrile, pyridine, DMSO, water, etc. the user 

should attempt to bind solvent to the catalyst to see if the energy of the complex is stabilized.  If 
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coordination sites open throughout the reaction path, an appropriate course of action would be to 

attempt solvent addition for those intermediate structures.  Finally, some metal structures have 

multiple accessible spin states with unique geometries.  This is sometimes the case with nickel, 

cobalt, iron and other first row transition metals. For these types of complexes, all reasonable spin 

states should be sampled prior to beginning the reaction path sampling. 

 Finally, the ability to refine the computational structures and mechanisms through 

experimental feedback is crucial to the development of highly accurate and predictive models.  The 

Zimmerman lab has largely viewed experimental collaboration as a prerequisite for applying 

reaction path sampling.  For instance, in the case of investigating palladium (IV) reductive 

elimination processes, we obtained a large dataset which included multiple pathways to C(sp3)-

C(sp2) and  C(sp3)-F reductive elimination (detailed in appendix A).  From the initial ZStruct 

investigation, there was little discernable difference in the accuracy of the results C(sp3)-N 

reductive elimination and C(sp3)-C(sp2) and  C(sp3)-F reductive elimination process.  Only later, 

after closely analyzing the differences in expected energies as compared to experiment were we 

able to better capture the solvation and ligand environment at the palladium (IV) center.  

Specifically, the incorporation of explicit acetonitrile on the palladium was a crucial addition to 

the model that was added after the initial reaction discovery process and primarily due to 

experimental feedback.  Without the data from experiment the narrow window of energy analyzed 

in this study is likely infeasible. This example highlights the importance of maintaining a close 

working relationship between computational and experimental chemistry even as the tools in 

computational chemistry seem to provide broader and more data rich assessments of the reaction 

landscape.   

 While sometimes computational reaction path investigations or QSAR studies must be 

performed in the absence of real time experimental feedback, preference should be given to 

chemistry which is actively being studied.  In general, computational studies rely upon error 

cancellation as a common explanation for the high degree of accuracy for DFT studies.  While 

fortuitous error cancellation is likely a contributing factor, much of the ability to systematically 

develop predictive models relies upon human guidance and close collaboration with experimental 

chemistry.  Each step of the process: selection of the best level of theory, incorporation of 

additional details to the model, and finally the interpretation of the results, must consider the 

information obtained from experimental observation as well as the assumptions of the model.  
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 Despite the error associated with DFT in general, user guided model development can 

significantly minimize error associated with making computational predictions.  Operating in a 

data rich environment has the potential mask the underlying flaws in the initial model.  Chemists 

should be wary of mistaking correlation with causation when analyzing large sets of data, 

especially those associated with QSAR studies.8 Scrutiny of each step of the model development, 

using experimental data, and rigorous intuition checks when possible will often guard against 

overinterpretation of data rich models.  In summary, the prevalence of faster, more accurate, and 

broader reaching computational assessment is highly encouraging.  However, this progress does 

not eschew but rather deepens the need for collaboration between experimental and computational 

chemistry.  

 

4.3 Final Thoughts 

 Reaction landscape investigation through use of automated reaction path finding tools 

offers new insight into regions of chemical space that have yet to be observed or studied.  This 

dissertation has demonstrated the utility of automated reaction path finding and comprehensive 

computational investigations of reaction landscapes.  Significant work remains toward the 

development of more user-friendly and intuitive software as well as increased autonomy of 

reaction path tools.  Future work for potential energy surface investigation should target broader 

integration with experiment as well as using statistics to validate the utility of specific steric and 

electronic descriptions.  Such advances will pave the way for improving our ability to think about 

and describe the relevant portions of a molecule and how they relate to experimentally observed 

chemical reactivity.    
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Appendix A: Supporting Data for Chapter 2 

 

A. 1. Computational Reaction Discovery 

A.1.1 General Computational Information 

1Ms was chosen for the complete ZStruct reaction path search to significantly reduce the total 

computational cost.  Furthermore, experiment had demonstrated the feasibility of this 

sulfonamide for C(sp3) -N bond formation.  Once the lowest energy starting conformations for 

1Ms-a and 1Ms-b palladium complexes were found, these starting points were used for finding the 

reaction paths disclosed herein.  Additionally, excess sulfonamide and bipyridine were not 

included in the ZStruct analysis as the reaction is zero order in both1. Starting from 1Ms-a and 

1Ms-b, the generated pathways were filtered after each iteration to remove high energy and 

unreasonable possibilities. Figure A.1 illustrates the stepwise application of increasing levels of 

theory to improve upon the computational results. 
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Figure A.1 Detailed outline of computational filtration tiers.  Each box contains a summary of 
the level of theory and the energy cutoff used.  Structures passing the threshold proceed to the 
next level filter.   
 

 An updated version of the ZStruct program1 implemented in C++ generated a total of 

9,482 structures and 794 elementary reaction steps.  During the initial assessment of reaction 

paths the B3LYP density functional2 in a spin restricted formalism with the LANL2DZ3 basis set 

was employed. The latest version of the Growing String Method2,3,4 (GSM) performed the 

double-ended reaction path searches connecting the initial structures to the ZStruct-generated 

intermediates. GSM provides a minimum energy path and exact transition state search in a single 

computation, enabling rapid characterization of the many hypothetical reaction pathways. GSM 

and ZStruct use Q-Chem 4.04 to provide quantum mechanical energies and gradients. All 

structures generated in this initial search were submitted to the first tier energy filter of 40 

kcal·mol-1. After removing high energy intermediates, a total of 101 structures, connected by 81 

elementary steps, remained.  

 High energy pathways conjectured from chemical intuition were also included for 

completeness (for instance Pathway III, concerted C(sp3)-N coupling from 1Ms-b, page S25).  

Other pathways were generated by ZStruct and found to be unfavorable, but could be used as a 
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reference in related chemical systems; these pathways are included below. The pathways 

eliminated in the initial cutoff, set at 40 kcal·mol-1 were deemed energetically inaccessible based 

on the magnitude of solvent stabilization provided by Table A.1 

  

 

Table A.1 Comparison of energetics for key intermediates at various levels of theory. 

The sulfonamide-PdIV complex ion pair 4Ms is expected to be the most significantly stabilized by 

solvent as this species bears the largest charge separation. With this in mind, we selected an 

energy cutoff that was higher than the largest stabilization due to solvent.  As shown in the table, 

less than 10 kcal·mol-1 was the largest observed stabilization for TS7Ms and 4Ms.  Since the 

largest barrier for C(sp3)-N reductive elimination was experimentally observed to be 25.7 

kcal·mol-1 prior to the application of ZStruct, we were able to set the first energy cutoff 

significantly higher, at 40 kcal·mol-1. The energetic margin allotted for the initial gas phase 

calculations is conservative, incorporating more pathways than were most likely needed.  This is 

demonstrated by the number of high energy, unproductive pathways shown in the following 

sections of this supporting information.  Before application of the second tier screening, the 

optimized intermediates and transition states were then evaluated in the GAMESS5 software 

package to calculate energies in solvent. These calculations used the B3LYP density functional 

with the LANL2DZ basis set. Solvent was calculated using an implicit PCM6 solvent model, 

SMD7. After application of this energy filter a total of 40 structures and 38 elementary steps 

remained.  We then compared the initial isomerization results to experiment and found that ionic 

Structure
Gas Phase Energy 

B3LYP LANL2DZ

Solvated Energy 

*B3LYP LANL2DZ 

Solvation: SMD PCM

Solvated Energy 

**ωb97x-D LANL2TZ 

Solvation: SMD PCM

Explicit Solvation 

**ωb97x-D LANL2TZ 

Solvation: SMD PCM     

(1 molecule CH3CN)

1Ms-a 0 0 0 0

TS7Ms 32.3 29.6 25.7 22.8

4Ms 21.6 23.1 24.5 13.1

1Ms-b 1.2 2.8 1.9 1

*Performed in Q-Chem (see above for more information)

**Performed using GAMESS
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structures (specifically the dissociated sulfonamide) were not well-represented by B3LYP 

energies. 

 The ωB97X-D8 density functional was chosen for the next level of screening due to its 

dispersion correction and inclusion of range-separated exchange, neither which are present in 

B3LYP.  The triple zeta, polarized with diffuse functions 6-311++G**9 basis set was used for 

hydrogen through sulfur and LANL2TZ(f) with f orbitals6c,10 was used for Pd. Solvent was 

calculated using PCM with SMD. Entropic and enthalpic frequency calculations were performed 

using Q-Chem 4.0 for a temperature of 65 °C.  After these single points were analyzed we were 

left with 29 structures and 14 elementary steps which comprised our primary pathways.   

 Performing geometry optimizations at the ωB97X-D level of theory with the larger basis 

was considerably more time consuming and resulted in minor changes to geometries.  Figure 

S32 overlays the geometries from B3LYP to those of ωB97X-D.  The root mean square error 

(RMSE) between 1Ms-a in B3LYP/LANL2DZ and ωB97X-D/LANL2TZ(f)/PCM-SMD for bond 

length is 0.0017Å, the RMSE for angles 1.68°.  The root mean square error (RMSE) between 

1Ms-a in B3LYP/LANL2DZ and ωB97X-D/LANL2TZ(f)/PCM-SMD for bond length is 

0.0018Å, the RMSE for angles 2.44°.  The energy for 1Ms-a at the ωB97X-

D/LANL2TZ(f)/PCM-SMD was calculated to be -1754.113019 Hartree and 1Ms-b -1754.109731 

Hartree corresponding to 0.0 kcal·mol-1 for 1Ms-a and 2.1 kcal·mol-1 for 1Ms-b.   

 

 

Figure A.2 Overlays of B3LYP/LANL2DZ and ωB97X-D/LANL2TZ(f)/PCM-SMD geometry 
optimizations for (a) 1Ms-a and (b) 1Ms-b 
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     Finally, one molecule of explicit acetonitrile was used to provide specific solvation 

interactions and a more accurate energetic assessment. Multiple conformations for each of the 

solvated structures were sampled to ensure a low energy structure was found.  If the explicit 

solvent did not reduce the energy of a particular elementary step, the value without explicit 

solvent is reported instead.    

     Figure A.3 considers the reductive elimination from 1Ms-a and compares the use of explicit 

solvent to stabilize all elementary steps, no explicit acetonitrile, and the lowest possible free 

energy pathway comprised of acetonitirile as a reagent where needed.  Noteably, we observed a 

different transition state for reductive elimination when explicit acetonitrile was considered.  The 

geometries of the transition states in these cases reflect the dissociation of the acetonitrile with 

concomitant C(sp3)-N reductive elimination (TS11Ms_withCH3CN ).   

      

 

Figure A.3 C(sp3)-N reductive elimination from 1Ms-a with explicit solvent (a) forced in every 
step (b) not present in any step and (c) used only where necessary in the calculations. 
 
Discussion and comparison of general C(sp3)-N reductive elimination mechanisms 

 

     The following sections detail the most accessible and favorable mechanisms found through 

the ZStruct search of 1Ms.  The pathways discussed in the main text correspond to the most likely 

pathways, but more complete details of the potential reaction mechanisms are provided here.        

     All computed values shown in Table A.2 are without explicit acetonitrile.  Since no 

significant bonding interaction with acetonitrile was found in the transition state for the reductive 

0.0

22.8

13.1

24.5
26.5

-29.8

ΔG (ωB97X-D) kcal·mol-1

1Ms-a

TS7Ms

6Ms

4Ms

0.0
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13.1

29.0

-20.2

ΔG (ωB97X-D) kcal·mol-1
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6Ms_WithCH3CN

4Ms

TS11Ms_WithCH3CN

0.0
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26.5
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Figure S33a.
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CH3CN

Figure S33b. Figure S33c.

CH3CN
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elimination, inclusion of explicit acetonitrile was associated with an increase in the relative 

energy of the transition state.   

 

 

 

Table A.2 C-N Reductive Elimination Summary 

 

     Accurate prediction of ΔGǂ was only possible through consideration of both pathways for 

reductive elimination.   The main text provides an assessment of geometric features comparing 

pathway IV to pathway V for only 1Ms.  Figure S34 and Table S37 take this comparison further, 

showing the relevant geometric data for all analyzed sulfonamides.  Importantly, these test cases 

also highlighted key distinctions between the two transition states.  For instance, TS11Ms N-Pd-C 

average bond angle for B was 176.9°, while average bond angle for B’ was 152.5°.   

Entry
Structure 
Number

R

Comp.  
Path. IV 

ΔGǂ

Comp. 
Path. V 

ΔGǂ

Exp. 
Measured 

ΔGǂ

1 1Ms CH3SO2NH 26.5 26.7 25.7

2 1Ts p -Tol-SO2NH 26.1 28.5 25.7

3 1CF2H CF2HSO2NH 24.7 25.1 25.1

4 1Tf CF3SO2NH 25.3 24.4 24.8

5 1TsNMe p -Tol-SO2N(Me) 27.8 25.2 25.0

6 1BisTf (CF3SO2)2N 23.7 26.9 N/A
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Figure A.4. (a) C(sp3)–N reductive elimination transition state TS11Ms from 1Ms-a (in Pathway 
IV), reference for labels shown in Table S37. (b) PdIV reductive elimination transition state 
TS12Ms resulting from 1Ms-b (in Pathway V), reference for labels shown in Table S37. 

 

 

 

 

Table A.3.  Geometry comparison for TS11Ms and TS12Ms for various sulfonamides 

 

 

R 

A 

Pd-O 

length 

A’ 

Pd-O 

length 

B 

N-Pd-C 

angle 

B’ 

N-Pd-C 

angle 

C 

Pd-C 

length 

C’ 

Pd-C 

length 

D 

C-N 

length 

D’ 

C-N 

length 

CF3SO2 (Tf) 4.85 Å 3.22 Å 176.7° 156.6° 2.23 Å 2.15 Å 2.61 Å 3.21 Å 

CF2HSO2 3.74 Å 3.22 Å 176.2° 154.7° 2.32 Å 2.16 Å 2.50 Å 3.10 Å 

p-Tol-SO2NH 

(Ts) 
3.17 Å 3.00 Å 176.8° 148.1° 2.23 Å 2.14 Å 2.90 Å 3.18 Å 

CH3SO2 (Ms) 3.85 Å 3.27 Å 176.9° 148.1° 2.32 Å 2.17 Å 2.49 Å 3.17 Å 

p-Tol-SO2NCH3 

(TsMe) 
3.19 Å 3.29 Å 177.0° 150.7° 2.26 Å 2.16 Å 2.72 Å 3.08 Å 

(a) TS11Ms b) TS12Ms 
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Rationalization of Pathway IV and Pathway V 

Examination of the two reaction pathways indicated that pathway IV correlated well with pKa 

(R2 = 0.775) while pathway V did not (R2 = 0.280) (Figure A.5).   

 

(a)  

(b)  

Figure A.5. (a) Calculated ΔGǂ for pathway IV versus sulfonamide conjugate acid pKa (b) 
Calculated ΔGǂ for pathway V versus sulfonamide conjugate acid pKa 
 

 While the lowest ΔGǂ for C(sp3)-N correlates with pKa for the MsNH-, TsNH-, TfNH-, 

and CF2HSO2NH- sulfonamides the TsNMe- sulfonamide was a clear outlier.  The TsNMe- has 

the highest pKa of 11.67, but one of the lowest C(sp3)-N reductive elimination barriers (ΔGǂ of 

25.2 kcal·mol-1).  Taken together these data demonstrate that the predicted lowest energy 

pathway (either pathway IV or V) was found to vary as a function of sulfonamide structure.  In 

terms of the specific reactivity, TsNH-, and CF2HSO2NH- favored pathway IV, MsNH- and 

TfNH-  favor neither pathway IV or V and were comparable in energy, and TsNMe- clearly 
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favored pathway V over pathway IV,  25.2 kcal·mol-1 versus 27.8 kcal·mol-1 respectively.  In an 

effort to better understand and possibly rationalize the reactivity differences between TsNMe- 

and TsNH- sulfonamides we compared the TsNH- and TsNMe- oxygen bound intermediate (5Ts 

and 5TsMe), pathway V transition states (TS12Ts and TS12TsMe), as well as the final product 

energies and conformations (6Ts and 6TsMe) as shown in Figure A.6. 

     Even though TsNMe- and TsNH- are similar in structure the two sulfonamides each favor a 

different pathway; TsNH- favors pathway IV and TsNMe- favors pathway V.  We observed that 

the H-F interaction present in intermediate 5Ts (H-F length = 2.10 Å) breaks throughout transition 

state TS12Ts (H-F length = 3.05 Å) and is completely broken in the product 6Ts (H-F length = 

4.80 Å).  Breaking the H-F bond during transition state TS12Ts was expected to result in an 

overall increase in energy of reductive elimination through pathway V (observed ΔGǂ for TS12Ts 

= 28.5 kcal·mol-1).  In comparison, this H-F interaction is not possible for the TsNMe- complex; 

thereby, the lower observed barrier for pathway V (observed ΔGǂ for TS12Ts = 25.2 kcal·mol-1) 

reductive elimination from TsNMe- supports this explanation.  Reactivity differences in these 

two substrates can be further rationalized through consideration of the entire of the reaction 

profile.  The stabilizing H-F interaction in 1Ts results in a notably less exergonic reaction than the 

N-methyl analog; a direct comparison shows that the product energy for 6Ts (ΔG = -22.8 

kcal·mol-1) is notably higher than 6TsMe (ΔG = -27.9 kcal·mol-1).  By the Evans-Polanyi 

relationship a reduced thermodynamic driving force for TsNH- is expected (and was observed) to 

increase the barrier for C(sp3)-N reductive elimination.  Based on these observations we 

concluded that the lack of H-bonding in the TsNMe- results in a comparatively lower barrier for 

C(sp3)-N reductive elimination for the 1TsMe complex. 
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Figure A.6. Comparison of distances between sulfonamide N-R group and fluorine for TsNMe- 
and TsNH- substrates. 
 

 In summary, consideration of the entirety of the reaction profile, isomerization, reductive 

elimination and product energy, for all of the substrates involved in this study enabled the 

identification of key reaction features leading to a more detailed understanding of the reactivity 

involved with these select palladium(IV) complexes.    
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Summary Reductive Elimination Figures  

Summary of 1Ms pathways 

     All summary figures highlight the lowest energy intermediate and transition state for the 

processes shown.  Energies are referenced to 1Ms-a_withCH3CN whenever explicit acetonitrile 

is present, or to 1Ms-a when acetonitrile is not present (similar naming and energetic references 

are used for all sulfonamides).  For these reactions (C(sp3)-N reductive elimination processes) 

transition states in the presence of explicit acetonitrile were identified to be significantly higher 

in energy as a result of having no specifically stabilizing chemical interactions along the reaction 

path.  In cases where direct interaction between solvent and complex is necessary, using implicit 

and explicit solvent models together is known to increase the accuracy of the computation11.  For 

instance dissociation sulfonamide at the palladium center is significantly stabilized by an explicit 

solvent molecule that fills the open Pd coordinate site 7Ms. For the following figures, if CH3CN is 

in the structure, than the lowest energy structure contains the CH3CN-PdIV interaction shown.  In 

all other cases the palladium complex is shown alone.  The reference XYZ structures can be 

found listed by the structure name shown below.  For the alternative variation, search for the 

structure number followed by _noCH3CN or _withCH3CN. 

 

Figure A.7. Summary of 1Ms pathways 
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Summary of 1Tf pathways 

All summary figures highlight the lowest energy intermediate and transition state for the 

processes shown at the same level of theory.  Energies relative to 1Tf-a_withCH3CN where 

explicit acetonitrile is shown.  Relative to 1Tf-a where acetonitrile is not shown. For the 

following figures, if CH3CN is in the structure, than the lowest energy structure contains the 

CH3CN-PdIV interaction shown.  In all other cases the palladium complex is shown without 

explicit solvent.  The reference XYZ structures can be found listed by the structure name shown 

below.  For the alternative variation, the structure number is followed by  _noCH3CN or -

_withCH3CN. 

 

Figure A.8.  Summary of 1Tf pathways 
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Summary of 1Ts pathways 

All summary figures highlight the lowest energy intermediate and transition state for the 

processes shown at the same level of theory.  Energies relative to 1Ts-a_withCH3CN where 

explicit acetonitrile is shown.  Relative to 1Ts-a where acetonitrile is not shown. For the 

following figures, if CH3CN is in the structure, than the lowest energy structure contains the 

CH3CN-PdIV interaction shown.  In all other cases the palladium complex is shown without 

explicit solvent.  The reference XYZ structures can be found listed by the structure name shown 

below.  For the alternative variation, the structure number is followed by _noCH3CN or -

_withCH3CN. 
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Figure A.9.  Summary of 1Ts pathways 
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Summary of 1TsNMe pathways 

All summary figures highlight the lowest energy intermediate and transition state for the 

processes shown at the same level of theory.  Energies relative to 1TsNMe-a_withCH3CN where 

explicit acetonitrile is shown.  Relative to 1TsNMe-a where acetonitrile is not shown. For the 

following figures, if CH3CN is in the structure, than the lowest energy structure contains the 

CH3CN-PdIV interaction shown.  In all other cases the palladium complex is shown without 

explicit solvent.  The reference XYZ structures can be found listed by the structure name shown 

below.  For the alternative variation, the structure number is followed by noCH3CN or -

_withCH3CN. 

Figure A.10. Summary of 1TsNMe pathways 
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Summary of 1CF2H pathways 

All summary figures highlight the lowest energy intermediate and transition state for the 

processes shown at the same level of theory.  Energies relative to 1CF2H-a_withCH3CN where 

explicit acetonitrile is shown.  Relative to 1CF2H-a where acetonitrile is not shown. For the 

following figures, if CH3CN is in the structure, than the lowest energy structure contains the 

CH3CN-PdIV interaction shown.  In all other cases the palladium complex is shown without 

explicit solvent.  The reference XYZ structures can be found listed by the structure name shown 

below.  For the alternative variation, the structure number is followed by noCH3CN or -

_withCH3CN. 

 

 Figure A.11. Summary of 1CF2H pathways 
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Summary of C(sp3)-N reductive elimination 1BisTf pathways 

All summary figures highlight the lowest energy intermediate and transition state for the 

processes shown at the same level of theory.  Energies relative to 1BisTf-a_withCH3CN where 

explicit acetonitrile is shown.  Relative to 1BisTf-a where acetonitrile is not shown.  For the 

following figures, if CH3CN is in the structure, than the lowest energy structure contains the 

CH3CN-PdIV interaction shown.  In all other cases the palladium complex is shown without 

explicit solvent.  The reference XYZ structures can be found listed by the structure name shown 

below.  For the alternative variation, the structure number is followed by _noCH3CN or -

_withCH3CN.  

 Transition states for the acetonitrile TS7BisTf and sulfonamide bound palladium 

complexes 1BisTf-a were identified to be isoenergetic.  Though the lowest C- N pathway and the 

C-C reductive elimination are close in energy, we rationalized the exclusive formation of C-C 

product based on the stable formation of 14BisTf (18).  

 

(a) C-N reductive elimination from the acetonitrile bound 7BisTF 

 
(b) C-N reductive elimination from 10BisTf 

 
Figure A.12. Summary of C(sp3)-N reductive elimination 1BisTf pathways 
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Summary of C(sp3)C(sp2) reductive elimination from penta-coordinate palladium 

complex.  

This instance of CC reductive elimination is unique to the 1BisTf sulfonamide because of 

the isoenergetic nature of the sulfonamide and acetonitrile bound species. Since no additional 

stabilization interaction occurs through the binding of the sulfonamide, the CC reductive 

elimination barrier (which is identical for all palladium complexes as it was found to occur from 

the penta-coordinate intermediate 16) is competitive with the CN reductive elimination barrier. 

The CC reductive elimination barrier was recalculated in the absence of sulfonamide to 

improve upon the solvent cavitation (no explicit interaction between the sulfonamide and 

palladium complex was found prior or during the transition state for CC reductive elimination).  

This value, obtained prior to confirmation by experiment, was found to be in close agreement to 

the experimentally measured 23.3 kcal mol-1. 

 

Structures 17 and 18 are referenced to penta-coordinate 16. 

 

Figure A.13. Summary of C(sp3)C(sp2) reductive elimination from penta-coordinate palladium 
complex.  
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Detailed Analysis of Isomerization 

      During isomerization, the inclusion of explicit acetonitrile is important in the steps involving 

dissociation of the sulfonamide anion. The following energy diagrams provide a comparison of 

the energy change from inclusion or absence of explicit acetonitrile.  For all cases the energies in 

the figure are relative to the indicated 1Ms-a_withCH3CN or 1Ms-a (no explicit acetonitrile in the 

calculation), shown in the title of each figure.   

 

(a) Lowest Energy Pathways 

 (a) with explicit acetonitrile.  (energies relative to 1Ms-a_withCH3CN) 

 

(b) without explicit acetonitrile. (energies relative to 1Ms-a) 

 

 Figure A.14. Isomerization of 1Ms-a to 1Ms-b (a-b) 

 

     For all cases the energies in the figure are relative to the 1Ms-a_withCH3CN or 1Ms-a (no 

explicit acetonitrile in the calculation).  For all cases the energies in the figure are relative to 1Ms-

a_withCH3CN or 1Ms-a (no explicit acetonitrile in the calculation), as shown in the title of each 

figure.   

 

 

 

 

 

 

 



107 
 

 

 

(a) with explicit acetonitrile (Elaboration in Figure 6). (energies relative to 1Ms-a_withCH3CN)  

 

(b) without explicit acetonitrile. (energies relative to 1Ms-a) 

 
Figure A.15. Isomerization of 1Ms-a to 1Ms-b (a-b) 

 

(b) High Energy Isomerization Pathways (formation of 1Ms-c through 1Ms-e) 

These computational data show that the isomerization processes to form 1Ms-c and 1Ms-d share a 

few elementary steps. In both cases, the first step is the rate determining step. For the comparison 

between the calculations with and without explicit acetonitrile, only the first step of the 

isomerization was simulated with explicit acetonitrile since it is rate-limiting.  In addition to the 

isomerization pathways from 1Ms-a, 1Ms-b could potentially provide alternative routes to other 

Palladium(IV) isomers.  Pathways under 40 kcal·mol-1 originating from 1Ms-b are outlined 

below. In summary, pathways leading to 1Ms-c, 1Ms-d, 1Ms-e from 1Ms-b were found to be higher 

in energy than those originating from 1Ms-a. 
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(a) 1Ms-a to 1Ms-c and 1Ms-d without explicit acetonitrile (energies relative to 1Ms-a) 

 (b) rate limiting step (first step) with explicit acetonitrile (energies relative to 1Ms-
a_withCH3CN) 

 
Figure A.16. Isomerization of 1Ms-a to 1Ms-c and 1Ms-d (a-b) 

     The first step of this process is rate limiting. Calculating the transition state with an explicit 

acetonitrile interaction with the palladium did not lower the barrier for this process.  

(a) 1Ms-a to 1Ms-e without explicit acetonitrile (energies relative to 1Ms-a) 

 

(b) 1Ms-a to 1Ms-e with explicit acetonitrile (energies relative to 1Ms-a_withCH3CN) 

 

Figure A.17. Isomerization of 1Ms-a to 1Ms-e (a-b)  
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Elaboration on Pathways IV-V 

Pathway V 

Energies relative to 1Ms-a.  As none of the structures shown in these diagrams are stabilized by 

explicit binding of acetonitrile to the palladium center, all values in the presence of explicit 

acetonitrile were found to be high energy.   

 

 

Figure A.18 Summary of results for pathway V 

Pathway IV 

(a) (energies relative to 1Ms-a_withCH3CN)  

 
(b) (energies relative to 1Ms-a) 

 

Figure A.19 Summary of results for pathway IV (a-b) 

 

 

 

 

 

 

 



110 
 

Elaboration on Additional High Energy Steps in Pathways II-III 

Pathway III 

 

 

Figure A.20. Direct C-N reductive elimination from 1Ms-b (energies relative to 1Ms-a) 

 

Pathway II: Bipyridine dissociation and related substitution steps 

(a) Bipyridine dissociation pathways from 1Ms-b 

Figure A.21 highlights four pathways related to pathway II of the main text.  In total these 

schemes demonstrate the dissociation of bipyridine from 1Ms-b does not lead to a viable reaction 

pathway for reductive elimination. In these cases the explicit acetonitrile only participates when 

an open coordination site is present on the palladiumIV center.  In addition to the isomerization 

pathways from 1Ms-a, 1Ms-b could potentially provide alternative routes to other Palladium(IV) 

isomers.  Pathways under 40 kcal·mol-1 originating from 1Ms-b are outlined here. In summary, 

pathways leading to 1Ms-c, 1Ms-d, 1Ms-e from 1Ms-b were found to be higher in energy than those 

originating from 1Ms-a. 
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(a) Bipyridine dissociation and simultaneous migration of sulfonamide to open coordination site. 
(energies relative to 1Ms-a_withCH3CN) 

 
 
 
(b) N-O exchange and subsequent high energy partial bipyridine dissociation (energies relative to 
1Ms-a_withCH3CN) 

 
 
(c) Acetonitrile insertion in place of bipyridine (high energy, bipyridine completely dissociates) 
(energies relative to 1Ms-a_withCH3CN) 

 
(d) Direct substitution of one arm of bipyridine with acetonitrile (energies relative to 1Ms-
a_withCH3CN) 
 

 
Figure A.21. Comparison of lowest energy pathways for bipyridine dissociation (a-d) 
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Additional High Energy Pathways 

(a) Bipyridine dissociation pathways from 1Ms-a 

Reactions in this section offer possible alternative routes to bipyridine substitution and 

dissociation leading to the formation of various intermediates. 

The first step of most of these process are higher energy than reductive elimination.  Notably, 

Figure A.22.a has a comparable barrier to C-N reductive elimination, but produces a high 

energy reversible intermediate.  The subsequent intermediate 37Ms is unable to undergo C-N 

reductive elimination as the sulfonamide is still bound.  No further calculations were run to 

investigate additional substitution reactions from this intermediate.   

Figure A.22.b and Figure A.22.c show high barrier substitution reactions where acetonitrile 

inserts in place of one arm of the bipyridine ligand.  In both cases the intermediate is high energy 

and the barrier is too high for consideration in additional reactivity. 

 

(a) Partial substitution of bipyridine with acetonitrile (energies relative to 1Ms-a_withCH3CN) 

 
(b) Substitution of bipyridine with sulfonamide, acetonitrile inserts axially (energies relative to 
1Ms-a_withCH3CN) 

 
(c) Additional pathway for bipyridine substitution with acetonitrile (energies relative to 1Ms-
a_withCH3CN) 

 
Figure A.22. Bipyridine dissociation from 1Ms-a: alternatives to Pathways II (a-c) 
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Additional acetonitrile exchange processes 

 All additional acetonitrile exchange pathways (not included in the main text and shown 

here) were found to be high energy in comparison to the lowest barrier pathways determined for 

isomerization and reductive elimination. We were unable to find a kinetically accessible pathway 

leading to the (oxygen and nitrogen bound) κ2 coordination of the sulfonamide with bipyridine 

dissociation, but instead found an alternative single elementary step involving generation of 

53Ms, a species which has an open equatorial coordination site and the bipyridine was clearly 

dissociated from the palladium center. 

 In general, we noted that inclusion of explicit acetonitrile only substantially improved the 

energetics of a process when the explicit solvent molecule was directly interacting with the Pd 

complex. In processes where the solvent was a bystander, the energy in the transition state 

calculation would typically increase.  Note that mechanisms presented elsewhere that fall into 

this category are repeated here for clarity and comparison.  The two reaction paths (c-1 and c-2) 

were generated through analysis of acetonitrile exchange with bipyridine. While the geometries of these 

two reactions appear quite similar, the reaction energies are different.  A closer analysis of the complete 

reaction path generated by the growing string method shows an additional rotation occurring at the 

sulfonamide for the case of TS46Ms. For the sake of completeness, both of these reactions are included. 

(a) Insertion of acetonitrile in place of bipyridine (partial dissociation of bipyridine)(energies 

relative to 1Ms-a_withCH3CN) 

 

(b) Complete dissociation of bipyridine with κ2 coordination of sulfonamide  (energies relative to 

1Ms-a_withCH3CN) 
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(c) Complete dissociation of bipyridine to generate penta-coordinate PdIV (energies relative to 
1Ms-a_withCH3CN) 
 (c-1) 

 
(c-2) 

 
(d) Acetonitrile inserting axially, sulfonamide migration (energies relative to 1Ms-
a_withCH3CN) 

 
(e) Acetonitrile inserts equatorially in place of bipyridine (energies relative to 1Ms-
a_withCH3CN) 

 
Figure A.23. Additional acetonitrile exchange pathways from 1Ms-a (a-e) 

 

 

 

 

 

 

 

 



115 
 

In addition to the isomerization pathways from 1Ms-a, 1Ms-b could potentially provide 

alternative routes to other Palladium(IV) isomers.  Pathways under 40 kcal·mol-1 originating 

from 1Ms-b are outlined here. In summary, pathways leading to 1Ms-c, 1Ms-d, 1Ms-e from 1Ms-b 

were found to be higher in energy than those originating from 1Ms-a. 

 
(a) Sulfonamide – acetonitrile exchange (energies relative to 1Ms-a_withCH3CN) 

 
(b) Acetonitrile inserting axially, sulfonamide migration (energies relative to 1Ms-
a_withCH3CN) 

 
(c) Alternative Transition State: Acetonitrile insertion in place of bipyridine (high energy, 
bipyridine completely dissociates) 

 
(d) Sulfonamide – acetonitrile exchange from oxygen bound sulfonamide (energies relative to 
1Ms-a_withCH3CN) 

 
Figure A.24 Pathways from 1Ms-b (a-d) 
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Appendix B: Supporting Data for Chapter 3 

 
Computational Methods 
 
 This work consists of a variety of levels of theory and multiple software packages to 

perform calculations. An overview of the methods used is provided in Figure B.1.  

 

 
 
Figure B.1. Overview of this article and relevant methods for each section  
  

Overview: a) Computational benchmark studies to assess performance of basis sets and 

functionals b) Catalyst test set structure generation using B3LYP/LANL2DZ c) single point 

calculations for hydricity, pKa, and H2 binding using the optimized ωB97X-D/Def2-

SVP/CPCMacetonitrile level of theory d) Complete thermodynamic landscape including single point 

gas phase, ωB97X-D/Def2-SVP and CPCMacetonitrile or SMD-PCMacetonitrile comparisons. 

 All structures in this study were optimized at the B3LYP1/LANL2DZ2,3 level of theory 

using the QChem4 software package. Throughout the benchmark testing (Figure Xa) a variety of 

different levels of theory were implemented using the Orca5 software package. Notably, Orca was 

highly robust, failing in less than 0.05% of all of the single points calculated using only default 

parameters associated with the indicated level of theory.  Single point calculations for the 

benchmark series were performed using the B3LYP, B3P86, ωB97X-D6 functionals as well as 
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DLPNO-CCSD(T)7 in combination with the LANL2DZ2,3, Def2-SVP8, Def2TZVP, ma-Def2-SVP 

basis sets.  Auxiliary basis sets were used as follows: Def2-SVP with Def2/J9, Def2-TZVP with 

Def2/J, and ma-Def2-SVP with AutoAux10.  SMD-PCM11 and CPCM12–14 solvation models were 

implemented through Orca using the default parameters for acetonitrile, dielectric constant = 20.7. 

 All calculations shown in the thermodynamic landscape and used for quantitative structure 

activity relationship (QSAR) were performed at the optimized level of theory: ωB97X-D/Def2-

SVP/CPCMacetonitrile, unless otherwise noted.  

Discussion of Benchmark Calculations 

Overview of Ligands 

 The ligands used in the benchmark calculations as well as the construction of the 

thermodynamic landscape are outlined in figure B.2 below.  This figure also outlines the relevant 

acronyms used throughout discussion of the benchmark studies and assessment of the 

thermodynamic landscape. 

 

 
Figure B.2 Overview of ligands used in benchmark calculations and thermodynamic landscape. 
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Benchmark calculations of M-H pKa 

Guo and coworkers in 2006 reported the most accurate method to date for the calculation 

of metal pKa.15 In their report, the authors demonstrated that geometry optimization at 

ONIOM(B3P86/LANL2DZ+P:HF /LANL2MB) and subsequent single point calculations at 

ONIOM(CCSD(T)/LANL2DZ+P:B3P86/LANL2MB) level of theory provided sufficient 

accuracy for calculation of pKa. Subsequent studies have also demonstrated that organometallic 

pKa values can be accurately calculated using low cost density functional theory approaches.16–19 

Recent work on smaller organic molecules in aqueous solvent has demonstrated that 

explicit solvent is sometimes necessary for accurate pKa calculations.20–22 However, for transition 

metal complexes with measured pKa in acetonitrile the participation of explicit solvent on the metal 

center is often not the dominant factor in accurate pKa prediction; with no explicit acetonitrile, 

accurate pKa calculations have been demonstrated15. Furthermore, metal species targeted for pKa 

assessment in this work are strictly octahedral prior to deprotonation and are highly unlikely to 

coordinate with solvent. 

 The relative energies of the metal species are sufficient for accurate prediction of M-H pKa 

without consideration of the conjugate acid; since in all cases the conjugate acid is equivalent, an 

exact energy in solution is unnecessary to accurately model the thermodynamic driving force for 

deprotonation. Using these parameters, we can use a simple, scalable model for pKa calculation 

using a single reference compound, similar to work shown by Guo (1), where ΔΔE is the energy 

difference between the calculated metal complex and an experimentally measured reference 

complex, R is the universal gas constant in kcal·mol-1·K, and T is the temperature (298 K). 

 

Calculated pKa=pKa[NiH(depp)2]+ - 
∆∆�

�.�����
   

Equation B.1. Reference calculation for pKa 
 

For the benchmark set we selected a subset of experimentally reported cobalt and nickel 

bis(diphosphine) ligated metal complexes across a wide range of pKa values from -2.3 to 38. The 

starting M-H complexes and their computational and experimental pKa values are shown in Table 

1. 
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Table B.1.  Overview of calculated values for pKa.  Red represents the highest values while blue 
shows the lowest values. 

 
Complexes in Table 1 are ordered from highest to lowest pKa and were selected to cover a 

wide range of possible first row transition metal pKa values. The experimentally determined pKa 

values were obtained in acetonitrile and performed using two different experimental protocols. 

The pKa values for [HNi(depp)2]+ (depp=diethylphosphinopropane) (23.3 ± 0.3),23 [HNi(dmpp)2]+ 

(24.0 ± 0.3) (dmpp=dimethylphosphinopropane),24 and [H2Co(dppe)2]+ (22.8 ± 0.2)25 were 

measured by equilibration with tetrametylguanidine. Values for HCo(dppe)2,25 [H2Co(dppe)2]+,25 

[trans-H2-Co(P4)]+,18 [HCo(P4)(CH3CN)]+2,18 and [Ni(depp)2]2+
,
23 were determined through 

analysis of complete thermodynamic cycles analyzing pKa, ΔG°H·, ΔG°H- based on CoII/I, HCoIII/II, 

and HCoII/I redox couples, or HNiIII/II, NiII/I, and NiI/0 redox couples, and are associated with and 

error of ±2 kcal·mol-1, corresponding to approximately  ±1.5 pKa units. 

The computational benchmark was designed to test the accuracy of more recently 

developed functionals, such as ωB97X-D, in comparison to previous computational approaches 

for pKa assessment of bis(diphosphine) metal complexes. Recent reports targeting pKa for organic 

compounds have shown that ωB97X-D produces consistently low mean absolute error.26 

Similar to previous findings involving organometallic pKa, gas phase single point 

calculations overestimate the energetic difference between various complexes but manage to 

capture the correct relationship with an R2 value of 0.9313. SMD-PCM solvation using acetonitrile 

results in a significantly more precise pKa, while augmenting the method to incorporate vibrational 

zero-point energy corrections is deleterious to the correlation between computed and experimental 

values (Figure B.3). 

ωB97X-D/Def2-SVP CCSD(T)

Structure

pKa 

(Exptl)

Gas 

Phase      

pK a

SMD-PCM 

(Acetonitrile)   

pK a

SMD-PCM 

(Acetonitrile) 

+ Vib. ZPE        

pK a B3LYP      pK a

B3P86      

pK a

wB97X-D   

pK a

LANL2DZ 

pK a

Def2-SVP  

pK a

ma-Def2-

SVP  pK a

Def2-TZVP    

pK a

PCM      

(Acetonitrile)         

pK a

Def2-SVP/SMD-

PCM     

(Acetonitrile)      

pKa

HCo(dppe)2 38.0 86.9 36.6 36.0 36.6 35.0 40.4 40.4 37.5 38.7 38.6 43.2 31.9

[trans- H2-Co(P4)]+ 31.7 37.6 31.8 31.5 31.8 32.3 34.7 34.7 34.4 35.8 35.8 35.1 36.7

HNi(dmpp)2]+ 24.0 32.0 31.0 29.0 31.0 30.5 33.3 33.3 31.5 31.8 31.5 34.0 30.2

[HCo(dppe)2]+ 23.6 30.6 23.6 23.2 23.6 22.3 24.6 24.6 23.8 25.2 24.6

*[HNi(depp)2]+ 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3

[H2Co(dppe)2]+ 22.8 28.8 22.3 21.8 22.3 22.1 22.1 22.1 22.8 24.3 25.0 23.4 26.7

[HCo(P4)(CH3CN)]+2 16.0 -22.5 14.9 24.7 14.9 16.0 14.6 14.6 14.6 16.2 16.4 -29.0 20.5

[HNi(depp)2]2+ -2.3 -61.4 -12.8 -14.4 -12.8 -10.3 -16.0 -16.0 -7.0 -5.6 -4.6 -10.7 -8.0

*Reference compound for pK a calculations.

B3LYP/LANL2DZ LANL2DZ/SMD-PCM (Acetonitrile) ωB97X-D/SMD-PCM (Acetonitrile)
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Figure B.3.  Comparison of experimental and calculated pKa values using gas phase, solvation 
SMD-PCM in acetonitrile, and SMD-PCM(Acetonitrile) plus vibrational zero point energy 
corrections at the B3LYP/LANL2DZ level of theory  
 
Functional does not seem to have a large impact on the accuracy or precision of the calculation. 

Modifying the functional for the single point calculation from B3LYP, to B3P86, to wB97X-D 

results in minimal changes to the overall precision, with the best observed with wB97X-D (Figure 

B.4). 

 

 
Figure B.4.  Comparison of experimental and calculated pKa values using various functionals in 
combination with the LANL2DZ  basis set and SMD-PCM solvation model with acetonitrile  
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Basis set choice also has negligible impact on the overall correlation with experiment.  More 

expensive Def2-TZVP basis set marginally improves performance over Def2-SVP, but at 

significant expense. Minimally augmented Def2-SVP also provides marginal correlation 

improvement (Figure B.5). 

 

 
Figure B.5. Comparison of experimental and calculated pKa values using ωB97X-D functional in 
combination with the various basis sets and the SMD-PCM solvation model with acetonitrile  
 
Solvent method implementation has a small effect on calculation pKa, with the SMD-PCM 

providing an R2 value of 0.9555 and PCM providing an R2 of 0.9581, both using acetonitrile. 
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Figure B.6.  Experimental and calculated pKa values using ωB97X-D/Def2-SVP level of theory 
comparing SMD-PCM and PCM solvation models with acetonitrile  
 

The consistency of results at various levels of theory seems to be the result of systematic error in 

DFT; comparison of CCSD(T) with wB97X-D results provides very high correlation (Figure B.7). 

 
Figure B.7. Comparison of the gas phase relative acidity for the reaction of MH → M at CCSD(T) 
and ωB97X-D density functionals 
 
These results indicate that using ωB97X-D/Def2-SVP/PCMacetonitrile would provide precise 

comparisons for calculating test set pKa values. 

Past work has applied linear scaling models to align the pKa with experimental values, 

however, for our purposes the relative acidity is more important than absolute acidity as the relative 
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acidity is all that is needed to interrogate structural features that relate to the thermodynamics of 

the complexes. For our dataset, we were able to quantitatively reproduce experimental pKa values 

by applying an additional linearly scaling model. To find the “corrected” value for pKa one can 

multiply the calculated pKa reported in this document by 1/1.18 or 0.85. We are uncertain as to the 

reason for the overestimation of absolute pKa values calculated through DFT. 

 
Benchmark calculations of M-H hydricity 
 

M-H hydricity has been notably more challenging than pKa calculation.  Application of 

DFT methods for the calculation of ΔG°H- has demonstrated poor precision unless constrained to 

a limited number of benchmark cases. The first entry into calculation of metal hydricity was 

performed by Kovacs et. al using B3LYP/SDDP for geometry optimization and single points at 

the B3LYP/SDDP + PCM-UA0 level of theory.27 The mean absolute deviation was reported to be 

in the range of 2.4-5.5 kcal·mol-1 depending on the substrate. Guo and coworkers visited this 

problem soon after demonstrating that application of a QMMM ONIOM-CCSD(T) method for 

pKa calculation could not be transferred directly to calculating metal hydricity.28 Instead they 

resorted to application of B3P86/LANL2DZ+p for geometry optimization adding C-PCM in 

acetonitrile for single point calculations.  Subsequent studies have illustrated that hydride 

formation is strongly dependent upon solvent choice experimentally, solution pH and other factors 

including metal solvent interaction in some cases27–32. A possible solution to the limited accuracy 

of DFT based hydricity studies could be the systematic incorporation of explicit acetonitrile onto 

the pentacoordinate metal hydride.  While this might seem a first to be plausible, cobalt species 

such as HCo(dmpe)2 and HCo(dppe)2 are d8 metal centers which prefer to adopt a trigonal 

bipyramidal conformation25.  Furthermore, for these complexes, the computationally forced 

incorporation of acetonitrile would result in the lone pairs from the acetonitrile nitrogen 

contributing to the antibonding dz
2 orbital of the trigonal bipyramidal species in a 

thermodynamically reversible, high energy binding regime. The selected benchmark set of first 

row M-H bis(diphosphine) complexes is shown in table B.2. 
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Table B.2. Overview of calculated values for hydricity. Red represents the highest values while 
blue shows the lowest values. 

 
 

Complexes in Table 2 are ordered from highest to lowest hydricity and were selected to 

cover a wide range of first row transition metal hydricity values (ΔG°H-) ranging from 66.3-31.8 

kcal·mol-1. The experimentally determined hydricity values were obtained in acetonitrile using 

three different experimental protocols. 

Hydricity was determined to be 66.3 ± 0.4 kcal·mol-1 for [HNi(depp)2]+ and 50.7 kcal·mol-1 

(no error reported) for [HNi(dmpe)2]+.23,33 These hydricities were calculated from a 

thermodynamic cycle constructed from direct measurement of metal acidity and heterolytic 

cleavage of H2 and solving for the value of ΔG°H- through equation 2. 

 

∆�°�� = 2.303�� log
[HML�]�[BH]�

[ML�][H�][B]
− 2.303�� p��(BH�) + 76.0 kcal/mol  

Equation B.2. Overview of experimental derivation of hydricity values for benchmark 
calculations. 
 

In this equation HML2 is the metal hydride species, BH+ is the conjugate acid and the values 

of 76.0 kcal/mol is obtained from the experimentally measured value for heterolytic H2 bond 

cleavage in acetonitrile. The experimental error for this calculation can be attributed to the requisite 

metal-H and base equilibration and 1H proton NMR measurement error. While no value for 

hydricity experimental error is reported in the original article, using the error associated with the 

NMR based pKa measurement (pKa error approximately ± 0.3) one can extrapolate to an estimated 

lower bound of the error as ± 0.4 kcal·mol-1. 

The second set of complexes were evaluated using a complete thermodynamic cycle based 

on equation 2 which uses the redox activity of the metal species in place of equilibration with base 

to probe the hydricity. 

All values in kcal·mol-1

Structure

Hyd. 

(Exptl)

Gas 

Phase      

Hyd.

SMD-PCM 

(Acetonitrile)   

Hyd.

SMD-PCM 

(Acetonitrile) 

+ Vib. ZPE        

Hyd.

B3P86        

Hyd.

wB97X-D      

Hyd.

Def2-SVP     

Hyd.

ma-Def2-

SVP         

Hyd.

Def2-SVP           

Hyd.

Def2-TZVP        

Hyd.

Def2-SVP           

Hyd.

Def2-TZVP        

Hyd.

[NiH(depp)2]+ 66.3 141.5 63.9 56.9 60.5 66.4 63.4 63.9 68.3 68.5 70.0 70.0

HNi(dmpp)2]+ 61.2 148.7 62.7 55.9 59.2 65.2 62.3 63.2 66.9 66.1 66.6 66.6

HCo(dppe)2]+ 60.5 121.2 64.4 56.9 60.0 65.4 56.5 56.9 59.7 60.3

HNi(dedpe)2]+ 60 124.8 44.5 36.6 39.3 43.2 37.9 37.7 52.6 52.6 51.8 51.8

[HNi(dmpe)2]+ 50.7 142.0 52.6 46.4 48.7 52.4 46.0 47.8 51.2 51.4 52.2 52.2

HCo(dppe)2 49.1 40.3 30.7 22.9 29.5 29.4 29.5 29.4 35.1 35.9 35.0 35.0

*HCo(dppb)2] 48 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0

[HCo(P4)(CH3CN)]+ (trans) 46.7 90.6 36.6 41.4 33.4 28.2 27.6 30.9 31.1 40.0 28.4

[HCo(P4)(CH3CN)] (trans) 31.8 24.2 26.8 31.7 23.5 18.8 16.1 20.1 16.5 25.7 15.3 15.3

*Reference compound for hydricity calculations

wB97X-D/SMD-PCM 

(Acetonitrile) ωB97X-D/PCM CCSD(T)/PCMB3LYP/LANL2DZ

LANL2DZ/SMD-PCM 

(Acetonitrile)
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∆�°�� = 2.303�� p��(MH) + (46.1)[�°(II/0)]   +  79.6 kcal/mol  

Equation B.3. Overview of second method for experimental derivation of hydricity values for 
benchmark calculations. 

 
 
Where the M-H acidity is measured through in situ equilibrium, the value of the II/0 redox couple 

for Ni species (or III/I for Co) is measured through cyclic voltammetry (CV) multiplied by 23.06*2 

to convert from eV to kcal·mol-1, and 79.6 is equal to the free energy change through the reaction: 

H+ + 2e- → H-. This approach provides the following experimental hydricities: [HNi(dmpp)2]+ 

62.1,24 [HNi(dedpe)2]+ 60.0,34 [HCo(dppe)2]+ 
 60.5,25 HCo(dppe)2  49.1,25 HCo(dppb)2 48.0,35 all 

with the approximate associated error of 0.4 kcal·mol-1 and [H(CH3CN)Co(P4)]+ 46.7,18 and 

H(CH3CN)Co(P4) 31.8,18 with a reported error of ~2.3 kcal·mol-1 from CV measurement. 

Figure B.8 demonstrates the stepwise incorporation of model parameters. Addition of 

SMD-PCM solvation model failed to significantly improve the computational results while 

incorporation of vibration zero point energy corrections resulted in worse overall performance of 

the model. 

 

 

Figure B.8. Comparison of experimental and calculated hydricity values using gas phase, solvation 
SMD-PCM in acetonitrile, and SMD-PCMacetonitrile plus vibrational zero point energy corrections 
at the B3LYP/LANL2DZ level of theory 
 
Density functional selection had little effect on the overall correlation, however ωB97X-D 

provided the best correlation with experiment (see Figure B.10). 
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Figure B.9.  Comparison of experimental and calculated hydricity values using various functionals 
in combination with the LANL2DZ basis set and SMD-PCM solvation model with acetonitrile.  
 

Using the ωB97X-D functional SMD-PCMacetonitrile combined with various basis sets 

provided little improvement in overall correlation. Even though LANL2DZ and Def2-SVP 

provided similar correlation with experiment, Def2-SVP produced values closer to the expected 

experimental value with an overall slope closer to the desired1:1 (LANL2DZ=1.55, Def2=1.41). 

 
 

 

Figure B.10. Comparison of experimental and calculated hydricity values using ωB97X-D 
functional in combination with the various basis sets and the SMD-PCM solvation model with 
acetonitrile  
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Application of the acetonitrile CPCM solvation model improved the consistency of the 

hydricity value; at a similar level of theory, SMD-PCM was observed to have an R2=0.7537 while 

CPCM R2=0.8850. 

 

 

Figure B.11. Experimental and calculated hydricity values using ωB97X-D/Def2-SVP level of 
theory comparing SMD-PCM acetonitrile and PCMacetonitrile  
 
 

Employing CCSD(T) at either the Def2-SVP or Def2-TZVP basis set using the PCM 

solvation model failed to improve upon correlation observed in wB97X-D. 

 
Figure B.12. Experimental and calculated hydricities using ωB97X-D and CCSD(T) with Def2-
SVP/PCMacetonitrile.  
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Calculations using more expensive wave function methods also did not significantly 

improve accuracy. Using CCSD(T)/Def2-TZVP provided a similar level of performance to the 

ωB97X-D/Def2-SVP level of theory. From these data we decided to use the ωB97X-D/Def2-

SVP/PCMacetonitrile level of theory to generate the thermodynamic landscape. 

Building the Thermodynamic Landscape 
 
Computational Construction of Catalyst Complexes 

 Heteroleptic (mixed ligated) octahedral Co(L)(L’)H2 species were generated through a 

step-wise process starting from the homoleptic octahedral Co(L)2H2 species (Figure X). All bis-

ligated structures were optimized at the B3LYP/LANL2DZ level of theory and split into L + 

H2LM. The divided structures were re-combined to form all possible combinations. In cases where 

diastereomers of complexes were generated, the lower energy structure was manually selected. In 

total, 780 structurally unique complexes were generated and optimized at the B3LYP/LANL2DZ 

level of theory.   Single point energy calculations were then performed using the benchmarked 

ωB97X-D/Def2-SVP/PCMacetonitrile level of theory.   Construction of the catalysts for study in the 

thermodynamic landscape used a variation of the ZStruct program.36  This particular ZStruct 

implementation involved the use of MOPAC37 for calculation of chemical gradients and a modified 

single-ended growing string method38 for combining the divided halves of the catalysts.  An 

overview of this methodology is included in figure B.13. 

 

 
Figure B.13. Overview of catalyst construction using a modified version of ZStruct and the 
growing string method (GSM) to generate all possible catalyst-ligand combinations. 
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Though the procedure was generally automated, some complexes proved difficult to 

construct. Certain ligands tended to fail in construction and optimization more often than others. 

This method proved reliable for approximately 90% of the catalysts within the desired test set.  

These include ligands with large aryl groups or sterically encumbered ligand environments 

including: (in order of frequency): 6-D(3,5-bisTFM-Ph)PF, 35-rac-BINAP, 36-D(tBu)PPye, 5-

D(4-TFM-Ph)PF, 31-DCyPBz. A graphical illustration overviewing instances of failure for 

constructing, optimizing and/or obtaining single point energies during assessment of H2 binding is 

shown in Figure B.14. 

 
 

 
Figure B.14.  Instances of failure throughout H2 binding assessment denoted by ligand label  
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LASSO Feature Selection 
 
 A number of plots are referenced in the main section of the text with regards to more 

complex models that offer only minimal improvements while substantially increasing the number 

of terms in the regression.  The following section overview these data and presents them for the 

interested reader. 

 The ‘best’ multi-term model developed for the entire landscape is shown in Figure B.15 

with an observed R2 = 0.72.   The equation for this multi-term model is shown in equation B4, 

where BL is a term for the backbone bond length, features from this model are presented in figure 

3.7 of the main text.  

 

 

Figure B.15.  QM calculated pKa versus the equation B4 model shown for the full 
thermodynamic landscape including all complexes. 
 

p�� =  −0.98��� − 0.79�� − 0.13�� − 0.37�� + 0.45� − 1.03�� + 1.09�� − 0.66��

− 0.94�� + 6.40����� + 19.9 

Equation B4.  Multiterm QSAR model describing entire thermodynamic landscape describing 
pKa 
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 An observed R2 = 0.63 was the highest observed correlation between QM calculated 

hydricity and a ten term feature based model shown in Figure B. 16 and represented by equation 

B5.  In both of the regressions the key term was the NLMO energy.  Plotting only the NLMO 

against the pKa generates a model capable of producing an observed R2 = 0.642 where SA is the 

surface area of the ligand, BT is the backbone torsion and BL is the backbone bond length.  The 

remaining features are described in figure 3.7 of the main text. 

 

 

Figure B.16.  QM calculated pKa versus the equation B4 model shown for the full thermodynamic 
landscape including all complexes. 

 

Hydricity =  2.27�� + 0.91�� − 0.06�� + 0.68�� − 1.27� − 1.75�� + 0.72�� − 0.87���

+ 2.24�� + 1.14����� − 7.62����� + 57.4 

Equation B5. Multiterm QSAR model describing entire thermodynamic landscape targeting  
hydricity 
  

 A plot showing only the pKa versus the NLMO provided an observed R2 = 0.642 (figure 

B17, and Equation B6). 
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Figure B.17.  Single term model shown in equation B5 versus QM calculated pKa using NLMO  
 

p�� =  6.7����� + 19.9 

Equation B6. Single term equation represented by the NLMO describing the thermodynamic 
landscape. 
 
 Similarly, the NLMO for the Co—H bond was the term with the largest coefficient — and 

thereby largest contribution — in model for hydricity.  Plotting a linear regression of NLMO 

energy versus hydricity provided an observed R2 = 0.525, indicating that a majority of information 

associated with the multiterm model was provided by the NLMO.   

 After reducing the landscape to only alkyl, aryl and alkenyl backbones regression models 

target a feature based description of the landscape were explored.  Additionally, we observed that 

Co—H NLMO energy was strongly correlated pKa providing an observed R2 = 0.64. These 

correlations are shown in the main text.  These data suggested that the NLMO is the best single 

feature to describe the relative thermodynamics and that including additional molecular descriptors 

only marginally improved correlation.  For example, including up to 11 terms in the feature based 

model only provides an observed R2 = 0.784 versus QM calculated pKa where SA is the surface 

area of the ligand, V is the volume of the ligand, BT is the backbone torsion and BL is the backbone 

bond length as shown in Figure B18. 
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Figure B18. 12 term model shown in Equation B7 versus QM calculated pKa 

 

p�� =  −1.61�� + 0. ��� − 0.49�� + 0.06�� + 1.00� − 1.53�� + 1.00�� − 3.21��

− 0.88��� − 0.35�� − 1.49����� + 5.89����� + 20.9 

Equation B7. 12 term QSAR model describing reduced thermodynamic landscape targeting  pKa 
 

 In the absence of the electronic information provided by Co—H NLMO energy and NBO 

populations, the models performed significantly worse. The best correlation identified was an eight 

term model with an observed R2 = 0.40  (Figure B19 and eq. B8).  
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Figure B19.  LASSO derived molecular feature model for pKa versus QM calculated pKa 

 
The largest terms include the surface-volume ratio of the catalyst complexes, Sterimol 

parameters L and B1, distortion parameter Tau 5,  and the length of the Co(L)(L’)H Co—H bond. 

 
p�� =  1.79�� − 6.36��� + 3.37� + 1.29�� − 0.59�� − 1.28�� − 4.43����� + 20.86 

Equation B8. Seven term QSAR model in the absence of NBO and NLMO features describing 
reduced thermodynamic landscape targeting  pKa 

 

As all features are normalized, one can approximate that larger coefficients are associated 

with a large predictive contribution to variance in pKa.  A reasonable interpretation of larger 

surface area to volume ratio is a more spherically filled outer ligand sphere is associated with more 

acid complexes.  However, any further interpretation of the model fails to agree with commonly 

held chemical intuition.  For instance, direct interpretation of the bond length of the metal hydride 

term would counterintuitively suggest that increasing the length of the Co—H bond in Co(L)(L’)H 

is associated with increased acidity. Further analysis quickly reveals the contradictory nature 

between the molecular features in this model.  For instance the buried volume term with a positive 

coefficient would seem to suggest that increasing the bulk near the metal center is associated with 

less acidic complexes, a direct contradiction to the surface area to volume ratio term.   These poor 

correlations with more complex models led to the conclusion that the simple metric targeting only 

NLMO was the most reasonable descriptor for the thermodynamic landscape. 
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