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ABSTRACT

Global water systems are being stressed by aging infrastructure, climate change, and re-

source withdrawals. The ability to model large water systems has attempted to keep pace

with these challenges, with modern water models now operating effectively across mas-

sive spatial and temporal scales. Despite great advances in numerical modeling, many

decision makers require high-resolution information that large-scale models do not yet pro-

vide. Simultaneously, the affordability and ease of use of sensing platforms has improved

dramatically, enabling even small communities and research groups to deploy observation

networks. Unfortunately, these real-time measurements are often not attached to a physical

or numerical model, which prevents their use in predictive applications. To that end, this

dissertation poses the question: how can the domain knowledge embedded in large-scale

models be fused with new forms of sensor data to improve understanding of hydrologic

and hydraulic processes? Three primary issues currently prevent this question from being

answered. First, many datasets are irregular or noisy, making integration with models dif-

ficult. This dissertation addresses this issue by providing a methodology for integrating

non-standard and distributed measurements with large numerical models. The approach is

applied to an unprecedented data set of over one million ship observations across the Great

Lakes to generate new insights about distributed hydrometeorological processes. Second,

the scales across which water models operate do not often match the scales at which we

measure. This dissertation addresses this issue by providing a methodology for dynami-

cally mapping large-scale model outputs to site-scale forecasts. The approach is applied

to flood forecasting across the entire state of Iowa, where nearly two hundred sensors are

fused with the US National Water Model. Third, since many numerical models of water

systems are often heavily parameterized, it is difficult to determine how to update these

models when novel sources of sensor data emerge. This dissertation addresses this issue

by providing a methodology for abstracting simple models from complex water networks

xvii



to enable efficient detection and localization of change. The approach will underpin a real-

time asset management methodology for stormwater systems. Ultimately, this dissertation

seeks to contribute to the emergence of Big Data Hydrology by discovering opportuni-

ties in data-driven water modeling that will be enabled by systems engineering and data

science.
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CHAPTER 1

Introduction

The goal of this dissertation is to advance the knowledge of water systems by allowing

large hydrologic and hydraulic models to be fused with new forms of sensor data. This will

improve the fundamental understanding of hydrologic processes and inform better water

management. Around the globe, water systems are being stressed by aging infrastructure,

climate change, and resource withdrawals [1]. The ability to model large water systems

has attempted to keep pace with these challenges. While new models are effective at

representing hydrologic and hydraulic processes across massive scales, they do not yet

provide the fine-resolution insights desired by local decision makers [2].

Simultaneously, the increasing affordability of sensors has made it possible for even

small communities and research groups to monitor their water systems [3]. However, these

real-time measurements are often not attached to a physical or numerical model, limiting

their ability to be used in studies of physical processes or forecasting applications. In this

dissertation I ask the question: How can the domain knowledge embedded in large-scale

models be fused with new forms of sensor data to improve understanding of hydrologic

and hydraulic processes? At this time, a number of fundamental knowledge gaps make it

difficult to answer this question, including:

1. Many sensor datasets are irregular or noisy, which challenges integration with mod-

els using traditional data assimilation approaches.
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2. The scales across which numerical models operate do not often match the scales at

which sensor observations are made.

3. Many numerical models of complex water systems are heavily parameterized. There-

fore, when novel sources of sensor data emerge, it is difficult to determine how to

update these models efficiently and effectively.

This dissertation will bridge these knowledge gaps and discover emerging opportunities

in data-driven water modeling by using techniques from systems engineering and data

science. Specifically, The contributions of this dissertation are:

Chapter 2 A probabilistic methodology for integrating noisy, irregular observations into

large-scale water models. The approach will be applied to a massive dataset of over

one million ship observations collected across the Great Lakes.

Chapter 3 A methodology for dynamically mapping large-scale model outputs to site-

scale forecasts, applied to flood forecasting across the entire state of Iowa.

Chapter 4 An approach for deriving and identifying linear models from complex water

systems, with the aim of enabling real-time asset management in urban watersheds.

1.1 Integrating Large and Noisy Sensor Datasets with Nu-

merical Models

The sheer size of many natural water systems limits the ability of in-situ sensor networks

to resolve spatiotemporal variability of underlying hydrologic processes. Therefore, hy-

drologists often rely on physically-based models to estimate hydrologic processes [2]. As

sensing platforms have become more affordable, many novel data sources have begun to

emerge. Many of these datasets are irregularly formatted, inconsistently measured, and

noisy [4]. However, many of these measurements have become available at locations that
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are traditionally difficult to observe, thereby providing potentially valuable insights. The

question then becomes: how can these non-traditional measurements be used to improve

hydrometeorological estimates across large water systems? The first chapter of this disser-

tation will investigate how large sets of distributed sensor data can be integrated with mod-

els using probabilistic methods, in particular Gaussian Process Regression. The approach

will be evaluated by integrating over one million new ship-based observations across the

Great Lakes with a large numerical water model.

The Great Lakes watershed has an unprecedented water to land ratio. As such, evap-

oration is an unusually large component of the water balance [5]. Understanding the spa-

tiotemporal distribution of evaporation will enable more static water levels, saving the local

economy hundreds of millions of dollars due to increased shipping revenue [6]. The Great

Lakes Coastal Forecasting System (GLCFS), the primary regional water model, numeri-

cally estimates hydrometeorological conditions across the Great Lakes, but it is calibrated

almost exclusively on near-shore or terrestrial observation stations. Therefore, open-water

dynamics are highly uncertain. Recently, mobile observations from ship-based weather

stations have emerged, which provide observations across regions of the lakes that have

never been measured before.
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Figure 1.1: Chapter 2 Methodology. Informing an estimate of a hydrometeorological process on the
Great Lakes f(X) by mapping inputs from a state of the art model X to co-located non-standard
observations y.

Given the noisy nature of the observations, direct ingestion of mobile sensor data

through traditional assimilation and filtering approaches becomes impractical [7]. For a

given ship, without knowing the measurement height, reporting methods, and maintenance

schedules, a single data point carries little perceived information. However, by formulat-

ing a new approach around probabilistic processes, this chapter will demonstrate how these

ship observations can be fused with large regional water models to derive updated spatial

estimates of various hydrometeorological processes (Figure 1.1).

This research will have two primary contributions. Firstly, this research provides an

approach by which to integrate noisy, irregular observations into large-scale models to gen-

erate new insights about hydrologic processes. This is especially useful when traditional

sensing platforms are difficult or impossible to deploy. Secondly, this research results in a
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new openly available data product consisting of nine years of gridded hourly estimates of

wind speed, air temperature, surface temperature, and relative humidity – the four primary

variables for estimating evaporation using bulk methods. This will be the first gridded

database for the Great Lakes that integrates over a million open water observations.

1.2 Using sensor data to dynamically map large-scale mod-

els to site-scale forecasts

Computational capacity has grown rapidly over the last few decades, enabling massive-

scale hydrologic models. However, when modeling across continental or global scales,

the amount of data available for calibration is comparatively small [8]. This results in

coarse model dynamics at the local scale, which limits the utility of these models to local

decision makers. Therefore, there is a need to downscale complex, state-of-the-art large-

scale models to the site level so decision makers can have actionable information [9].

While many local sensor data are available, they are often not used in the calibration of the

larger model. The question then becomes: how can highly-localized forecasts be generated

by fusing site-scale sensor measurements with outputs from larger-scale physical models?

The US National Water Model (NWM), which recently became operational, models 2.7

million stream reaches across the entire continental US with the ultimate goal of providing

street-level flood forecasts. While this ambitious model routes water effectively on large

rivers, many streams in headwater areas are modeled coarsely and do not match real-world

dynamics. At the same time, sensing platforms are becoming cheaper and easier to deploy.

A great example is given in the state of Iowa, where nearly 200 stream gages are maintained

by the Iowa Flood Center (IFC). For decision makers in areas such as Iowa, early warning

flood forecasting systems are extremely important. However, with the NWM not being able

to resolve stream dynamics at the site-level, its present utility appears limited. Discovering

a way to fuse NWM forecasts with locally-available sensor observations thus becomes a
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motivation for providing potentially life-saving forecasts.

Figure 1.2: Chapter 3 methodology. Historical measurements made by a sensor are used to learn a
dynamical mapping between modeled and measured values. Once the parameters of the mapping
are learned, predictions can be made by dynamically transforming the modeled estimates.

By pairing measured water levels with coarsely modeled flows, this research will

demonstrate how to learn a dynamical mapping based on system identification. The out-

puts of a large numerical model will be used as inputs into a dynamical system, which will

predict stream heights that are measured by a sensor. Once the parameters of the dynam-

ical mapping are learned, future forecasts of site-scale conditions will then be generated

(Figure 1.2). This methodology will be assessed by using nearly 200 water level sensors

across Iowa. A performance classification, based on principal component analysis and

boosted random forests, then will also evaluate under which conditions the methodology

can be expected to perform well.

This chapter will have two primary contributions. Firstly, this research proposes a gen-

eral methodology for dynamically downscaling large-scale, coarse hydrological models to

site-scale forecasts. This will allow highly-localized forecasts to be derived from existing

models and sensor data, to the immediate benefit of local decision makers. Secondly, an

extensive site-classification will highlight where this methodology can be used effectively,

which is immediately useful to decision makers seeking to forecast local flooding or select

locations to place new sensors.
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1.3 Model reduction for real-time change detection across

complex water systems

Detecting changes across hydraulic and hydrologic systems is often difficult due to the

large number of states and parameters that underpin their dynamics [10]. At the system

scale, changes may often be detected by sensors, but the exact source of the change is

often unclear because the sensors are measuring a signal comprised of many additive sub-

systems. Numerical models can be re-tuned to determine the source of the change, but this

can be difficult due to their highly structured or parameterized nature. Determining where

and why a change occurred can require an exhaustive search over millions of possible pa-

rameterizations. To that end, the contribution of this chapter is a methodology by which a

simpler linearized model, with much fewer parameters, is abstracted from a networked wa-

ter system, identified through sensor data, and then used to detect where the water system

may have changed (Figure 1.3).

Detecting and locating system changes is of great importance as the world’s population

continues to concentrate in urban areas [11]. Much of the water infrastructure in the United

States’ and other developed countries’ urban areas are approaching or have exceeded their

design lives [12]. One major, costly challenge facing city managers is system maintenance

or asset management. Pipes often clog or break and basins fill up with sediment, and these

events are rarely identified in real-time. This compromises system performance and can

lead to flooding and water quality impairments. To address these concerns, many cities

make use of the EPA’s Stormwater Management Model (SWMM) for their management

and planning of stormwater assets. However, this numerical model is highly parameter-

ized. Therefore, when an anomaly is detected, it is difficult to determine where a pipe may

be blocked or a pond may need dredging without running many simulations or blanket-

ing the network in sensors. Computationally efficient methods that do not require many

observations are needed to enable improved asset management, especially in the real-time
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Figure 1.3: Chapter 4 methodology. A linearized model is identified from sensor data and an
iterative search is performed to determine changes in the systems. This enables the localization of
damage across the system.

The goal of this chapter is to establish a foundation for real-time asset management

systems – one that is computationally efficient and applicable when real-time data is spa-

tially sparse. For this case study, it will be assumed that a single sensor at the outlet of

an urban watershed is measuring flow. Based solely on the networked connectivity of the

stormwater system (only storage nodes and links), a linear system of differential equations

can be assembled with a relatively small number of parameters compared to a traditional

model. Then, using system identification, a sparse state space representation of the water-

shed can be parameterized. When an anomalous signal is detected at the outlet, an efficient

search can be carried out over the linearized model. This search will use maximum like-

lihood estimation, enabling the probabilistic identification of sites that may have changed

in the system. Using these likelihood scores, sources of damage across the system can be

proposed.

This chapter has two primary contributions. Firstly, this research will provide a formal

approach for abstracting simplified models from complex networked water systems with

the ability to support damage detection. Secondly, it will result in a decision support tool

for real-time asset management, which is urgently needed by municipalities to manage

urban watersheds and infrastructure.
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CHAPTER 2

Integrating Large and Noisy Sensor Datasets

with Numerical Models

2.1 Introduction

Advances in sensing are transforming the measurement and understanding of water re-

sources. However, site access and resource constraints still challenge the ability of in-situ

observatories to resolve the spatiotemporal variability of many hydrologic systems. This

is particularly true across large surface water bodies, such as many of Earth’s large lakes,

where strong seasonality and the sheer size of study areas limit the permanent and spatially

dense deployment of observing platforms [13].

To that end, we ask the question: How can new and non-traditional sensor measure-

ments, such as those made by volunteer ship captains, be used to improve hydrometeoro-

logical estimates across large surface water systems? This question is answered through the

analysis of one of the largest such data sets: an unprecedented collection of approximately

one million unique measurements made by ships on the North American Great Lakes over

2006-2014. The contribution of this chapter is a flexible probabilistic framework which

can be used to distribute ship measurements, or any other general sets of irregular or La-

grangian point measurements, into contiguous gridded datasets. The performance of this

probabilistic framework is assessed through the development of a new ship-based spatial
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data product of surface water temperature, air temperature, and wind speed across the Lau-

rentian Great Lakes. The generality and flexibility of this approach enables it to be applied

to many similar data sets and will be of use to those seeking to merge large collections of

measurements with other sources of data, such as physical models, satellite products, and

even data collected by drones [14]. Direct applications could include, but are not limited

to, the assimilation of similar ship data across other large surface water systems, or the

use of stationary sensor network data in applications such as snowpack estimation or flood

forecasting.

2.1.1 Motivation: The Great Lakes

The North American Great Lakes comprise a vast hydrologic network whose daily hy-

droclimate impacts over 30 million Canadian and American residents in the region [15].

Collectively, the Great Lakes basin accounts for 90 percent of the United States’ and 20

percent of the world’s fresh surface water supplies, while simultaneously housing one-third

of both the United States’ population and Gross State Product [16]. Only a small number

of other freshwater bodies, such as Lake Baikal or the African Great Lakes, compare in

size, making the North American Great Lakes one of the largest sources of surface fresh

water on the planet. This underscores the need to urgently improve understanding of the

Great Lakes water budget in an uncertain climate [17, 18]. Many operational and research

models have been developed to study and predict hydroclimatic conditions on the Lakes,

ranging from water levels using Net Basin Supplies [19] to harmful algal blooms using

HAB Tracker [20]. Lake level models, in particular, have been of interest due to their

impact on shipping, agriculture, power production, recreation, and real estate [21].

Surface water covers over a third of the total watershed area; no other large basin

in the world has a comparable land-to-water surface area ratio [13]. As such, an under-

standing of the energy fluxes at the air-lake interface is critical toward assessing the po-

tential impacts of climate change on the Great Lakes water balance. It is suspected that

10



evaporation has been the major contributor to recent lake level fluctuations, a hypothesis

presently being tested through an expansion of evaporation measurements throughout the

Great Lakes Basin [13]. In general, data availability presents one of the major challenges

to hydrometeorological studies on the Great Lakes, as existing in-situ measurements are

limited to seasonal buoys and a small number of permanent stations. A number of studies

have demonstrated remotely sensed data’s utility in calibration and validation of models

[22]. While satellite observations are showing great promise to help fill these observational

gaps [23, 24], their calibration and downscaling could nonetheless still benefit significantly

from ground-based measurements. Without additional overlake measurements, especially

away from shore at hard-to-reach lake centers, it becomes difficult to confidently assess

the impacts of climate on the water balance of the Great Lakes.

2.1.2 Existing Models and Data

A large number of observational stations and buoys on the Great Lakes are maintained

by the National Data Buoy Center (NDBC) and equipped with common hydrometeoro-

logical sensors, including those measuring wind speed, wind direction, air temperature,

atmospheric pressure, and significant wave height (Figure 2.1). There is also a smaller

contingent of buoys and lighthouse stations that are equipped with advanced instrumenta-

tion for specialized studies, such as those related to energy fluxes [25, 26]. All of these

data are freely available on NOAA’s NDBC website (ndbc.noaa.gov). Unfortunately, many

of these measurements are not available throughout the entire year, making it difficult to

study many phenomena during the late fall and winter, a period during which energy fluxes

such as evaporation are known to be at their peak [27]. Buoys are generally deployed only

during the summer and fall months (May through November) to avoid issues with ice

floes and heavy seas, and they are generally moored near-shore for ease of maintenance

and avoidance of shipping traffic, while permanent stations are often located on islands or

shallow reefs and thus limited by bathymetry.
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Questions that cannot be addressed via measurements alone have been addressed via

models, which simulate over lake conditions at locations that are not instrumented. Phys-

ical models require accurate observations for calibration and validation. Since over-lake

monitoring networks are sparse when compared to terrestrial observations, the ability to

validate off-shore dynamics is very limited. Some approaches address this by distributing

terrestrial observations using combined data sources such as remote sensing and in-situ

measurements [28, 29, 16], while others use regional climate models to capture the over-

lake dynamics [30].

The National Digital Forecast Database (NDFD) is one of the primary forcing inputs

used for physical models of hydrometeorological variables across the Great Lakes. It is

a regionally-focused model that deterministically outputs meteorological estimates based

on measurements from regional weather stations [31]. One model that uses the NDFD for

forcing is the Great Lakes Coastal Forecasting System, which models a suite of variables

not covered by the NDFD such as the temperature profile of the lakes, significant wave

height, and other variables of interest to researchers and stakeholders [32]. As with the

NDFD, the GLCFS is a deterministic model underpinned by assumptions about overlake

conditions, for which measurements are unavailable. Given this lack of measurements, it

becomes difficult to provide error estimates on the performance of these physical models.

As such, there is significant consensus that more over-lake observations are needed to

better address fundamental questions underpinning the short- and long-term variability of

hydrometeorological phenomena across the Great Lakes basin [13].

2.1.3 An untapped data source

Many ships on the Great Lakes are equipped with meteorological instruments for nav-

igational purposes. Much of this data feeds into the Volunteer Observing Ships (VOS)

program which has been archiving Great Lakes data from shipping, research, and coast

guard vessels since 1987. These data are freely available through NOAA’s CoastWatch
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system. The primary goal of the global VOS program is to provide data to organizations

invested in understanding weather and climate, particularly as they relate to commerce,

extreme events, and the safety of life at sea. Many of the maritime routes traversed by

these ships are active throughout the entire year and pass through locations that are not

measured by the existing buoy network, including the center of each lake. Over the past

decade, the data comprise over 400,000 unique ship reports, each measuring from one to

ten variables. Depending on the vessel, these may include air temperature, water temper-

ature, wind speed, wind direction, dew point, significant wave height, wave period, cloud

cover, solar radiation, and/or barometric pressure. A coverage map summarizing these

measurements is shown in in Figure 2.1.

Figure 2.1: Comparison of ship measurement densities to the stationary observations. Red color
indicates few measurements, yellow corresponds with locations which contain over 100 measure-
ments, while blue indicates no available ship measurements.

The VOS program has been used in a number of oceanic studies, primarily in the North
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Atlantic and North Pacific oceans [33]. [34] used a semivariogram method to determine

the spatial variability and uncertainty in ship observations. This methodology relies solely

on observations and does not use physical models to inform an initial estimate of the state,

thus requiring many observations to capture both the observation noise and the spatial

variability. In another oceanic study, [35] used VOS data to correct subjective observations

of swell, significant wave height, and wind speed to improve hindcasts of wind waves in

the North Atlantic and North Pacific. To the author’s knowledge, the vessel data have not,

however, been comprehensively used on the Great Lakes as part of a rigorous probabilistic

framework.

While vessel measurements provide valuable information at locations that would oth-

erwise remain unobserved, these measurements still inherently comprise a collection of

point observations, which must be distributed throughout space and time to improve the

understanding of fine-grained, lake-scale phenomena. Given the variety of existing VOS

measurements, their non-stationary nature, delayed reporting, as well as the number, com-

plexity, and variety of physical models across the Great Lakes, a traditional on-line data

assimilation approach (e.g. [36]) quickly becomes impractical. Furthermore, many spatial

data products, such as those measured by satellites, do not depend on a physical model but

could still benefit from being updated by spatially-distributed ground observations. To that

end, this chapter presents a much more general and flexible framework, based on proba-

bilistic processes, to address all these challenges and fuse the variety of data sources. The

approach uses prior information provided by a physical model, a combination of physical

models, or other spatial data products and then spatially distributes information from mea-

surements, such as those made by ships, to improve estimates of system states. This not

only enables us to make predictions at unobserved locations, but also provides invaluable

variance estimates that can be used to characterize the uncertainty of these predictions.

Further, the implementation does not require intimate knowledge of a physical model, ac-

cess to model source code, or the need to re-run an underlying physical model, which often
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poses a major obstacle in many research projects.

2.2 Materials and Methods

2.2.1 Spatial Estimation

Our estimation problem is framed by the need to condition a field f(x) : Rd → R, which

maps a d-dimensional input vector x to a phenomenon f(x) of interest, based on a set of

observations y with zero-mean Gaussian measurement error ε ∼ N(0, σ2
n). Formally:

y = f(x) + ε (2.1)

Represented graphically (Figure 2.2), each nonlinear mapping of the field f(x) is a

process of interest, such as wind speed or water temperature. The dimension of the input

vector x is governed by features that are known to affect the process of interest. They can

include, but are not limited to, latitudes, longitudes, estimates made by physical models

(e.g. NDFD or GLCFS), or time. Therefore the goal is to fuse the observations from the

boats (top of Figure 2.2, y) with the model estimates (bottom of Figure 2.2, x) and yield

a new field (middle of Figure 2.2, f(x)). The parameterization of the mapping function

f(x) is not known a priori and must be conditioned or learned using the set of sparse and

noisy ship observations y. This mapping may depend on highly nonlinear and unknown

relationships, which limits the use of common estimation methods that assume explicit

mappings, such as linear regression or optimal interpolation [37]. Once the mapping is

learned, it can be used to derive estimates at locations where ship observations are not

available.
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Figure 2.2: Probabilistic Methodology. Inform an estimate of the process f(X) by matching inputs
X to co-located ship observations y.

Probabilistically, an infinite number of mappings may characterize the input-output

relationship. As such, rather than finding an explicit relation, it is more desirable to char-

acterize the distribution over these mappings and generate a random field onto which the

data can be projected to derive new estimates (Figure 2.2). This field can be fully described

by its mean and covariance functions:

m(x) = E[f(x)] (2.2)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.3)
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By assuming a zero mean probabilistic process, these equations form a Gaussian Pro-

cess (GP) [37], which is fully characterized by its covariance, or kernel, function k(·, ·).

A zero-mean process can, for example, be obtained by subtracting the ship measurement

from a co-located prediction of a physical model. In this case, the resulting probabilis-

tic process becomes analogous to bias-correcting that can also be used to characterize the

uncertainty of the underlying physical model.

It can be shown that rather than assuming an explicit mapping for f(x), a much more

powerful regression framework can be obtained by focusing instead on choosing a kernel

k(·, ·) and learning its hyperparameters. Hyperparameters are simply the parameters of

the kernel function and are called such to distinguish them from the parameters of the

underlying model (in this case, y = f(x) + ε). An example covariance function for two

inputs xp and xq is given by the squared exponential kernel:

k(xp,xq) = exp

−1/2(xp − xq)T


l−21 . . . 0

... . . . ...

0 . . . l−2d

 (xp − xq)

+ σ2
nδpq (2.4)

with hyperparameters σ2
n and l, where σ2

n is the measurement noise associated with the

n-th observation, l is a vector of the characteristic length scales li of each input feature,

and δpq is the Dirac delta function. In this parameterization the length scales are spatially

analogous to the radius of influence of a measurement. When individual length scales are

used in lieu of a single length scale, the relative magnitude of each length scale indicates

the relative importance of each input to the predictive model. Therefore this kernel yields

a method by which to infer the relevance of individual inputs, which in turn helps provide

insight about the output of interest. For example, a relatively shorter length scale for

a given feature in x would indicate that this input variable may be more informative in

explaining the output y, while a relatively longer length scale suggests that a feature could
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be entirely eliminated from future analyses to improve computational efficiency.

The use of kernels not only provides significant computational benefits but enables a

much richer set of basis functions upon which the process can be trained. For example, it

can be shown that the choice of some kernels, such as the squared exponential kernel, is

equivalent to regression across an infinite set of basis functions, compared to a limited set

that would be obtained using classical linear regression [37].

The task, then, is to learn the hyperparameters of the kernel given a set of observed

data, in this case the ship measurements. Using the n observations from the ships as

the output (y ∈ Rn) and a matrix of co-located features (latitude, longitude, physical

model forecast, etc.) as the input X ∈ Rnxd, a predictive GP model can be learned for

each hydrometeorological variable (air temperature, wind speed, etc.) by maximizing the

marginal likelihood:

p(y|X) =

∫
p(y|f(X),X)p(f(X)|X)df(X) (2.5)

where the probability distribution of y, given f(X) (the posterior), is normally dis-

tributed around f(X) with some measurement noise σ2
n (p(y|f(X)) ∼ N(f(X), σ2

nI),

where I is the identity matrix) and the probability of f(X), given an input X (the likeli-

hood), is normally distributed around a mean function and a covariance function that must

be learned (p(f(X)|X) ∼ N(m(X),K) where K ∈ Rnxn with Kij = k(xi,xj). It is im-

portant to note that that the only assumption is that the noise ε of the ship measurements is

normally distributed, which is the case for many real-world sensors, and given a Gaussian

likelihood, the resulting posterior distribution is then Gaussian. The kernel is learned by

maximizing this marginal likelihood with respect to the kernel hyperparameters. Given the

normally distributed noise assumption, which can readily be justified given the measure-

ment error exhibited by real-world sensors, a closed form solution can be obtained for the

above integral [37]. Because the logarithm function is monotonic, the log of the marginal
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likelihood will achieve its maxima at the same points as the marginal likelihood function.

The solution to Equation 2.5 is an exponential function, so taking the logarithm eliminates

the exponential while also making any multiplicative terms additive. This enables us to

find the hyperparameters that minimize the negative log-marginal-likelihood (maximize

the positive log-marginal-likelihood) in a computationally efficient manner though the use

of a gradient descent optimization algorithm. The log-marginal-likelihood is given by:

log p(y|X) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π (2.6)

Once the kernel hyperparameters have been learned, the joint distribution can be used

to spatially distribute the ship measurements and derive variance (uncertainty) estimates

across the study area:

 y

f(X′)

 ∼ N

m(X),

 K + σ2
n K′

K′T K′′


 (2.7)

where X are the inputs co-located with observations y, X′ ∈ Rmxd is a matrix of in-

puts for the m locations where measurements are not available, K′ ∈ Rnxm with K′ij =

k(xi,x
′
j) is the covariance between the n observed locations and the m unobserved lo-

cations, K′T ∈ Rmxn is the transpose of K′, and K′′ ∈ Rmxm is the covariance matrix

between each of the unobserved locations. The above distribution can then be used to ar-

rive at a set of predictive equations that can be used to make estimates at all unobserved

locations:

f(X′) = K′
T

(K + σ2
nI)−1y (2.8)

cov(f(X′)) = K′′ −K′
T

(X + σ2
nI)−1K′ (2.9)
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2.2.2 Implementation

The proposed method was used to spatially distribute ship measurements of wind speed, air

temperature and lake surface temperature from 2006 to 2014 across the Great Lakes. The

choice to focus on these variables was motivated by their large role in lake evaporation and

the broader lake energy balance [27]. While the fundamental mechanisms and interaction

between these variables are beyond the scope of this chapter, the resulting spatial data sets

are expected to be of significant value in future studies of lake hydroclimate. This chapter

focuses primarily on the evaluation of the proposed probabilistic method. Estimates of

wind speed and air temperature, co-located spatiotemporally with measurements made

by the ships, were retrieved from the NDFD, which provides outputs on an hourly basis

across a 5km grid. The NDFD generates a regionally-focused model at each of the 122

weather forecasting offices nationwide, with a dozen of these located in the Great Lakes

region [31]. The NDFD also interpolates or smooths model outputs at boundaries between

weather forecasting offices. lake surface temperature estimates were obtained from the

GLCFS since the NDFD does not model this variable. The starting year of the analysis

was chosen because the GLCFS model became operational in 2006. While these physical

models were chosen due to regional popularity, the methods presented herein can readily

be repeated using other physical models or combinations of models. Furthermore, the use

of two distinct physical models in this study also highlights the flexibility of the proposed

framework, showing that very limited overhead is required to apply the method to different

physical models.

To determine if there are benefits to be gained from the proposed probabilistic method,

an initial assessment was first carried out to determine how well physical models alone per-

form across the study region. A mean absolute error (MAE) analysis was used to compare

physical model outputs to the ship measurements. The physical models were resampled

via averaging to reflect the coarser 0.1 degree resolution of the ship reports. The MAE was

calculated for any grid cell in which one or more ship measurements were available. No
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time averaging was performed. The ship measurements were simply compared to the out-

puts of their corresponding model grid cell. The results were used to determine any spatial

or seasonal biases that may be present in the physical model, treating the ship observations

as the true value of the underlying hydrometeorological variable.

An initial visual inspection revealed relatively consistent spatial MAE patterns during

different seasons of each year. As a result, before training the GP algorithm, the ship data

were separated into seasons (January-March winters, April-June springs, July-September

summers, October-December falls). The choice to bin the ship data into seasons was mo-

tivated by computational complexity. Initially, a set of GP models was evaluated in which

time was used as one of the input variables. This provided no discernible improvement

over the seasonally binned approach. This choice to bin is justified because binning into

seasons implicitly captures the temporal variation as seen in the MAE plots (Figures 2.3,

2.4, and 2.5). More practically, the assimilation of all of the measurements into one proba-

bilistic model would have come at a high computational cost, so learning separate models

for each season enables faster compute times and more temporally focused models.
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Figure 2.3: Seasonal Mean Absolute Error for Lake Surface Temperature, comparing the measured
value from a ship to the co-located physically modeled estimate, averaged over each instance at that
grid cell.

The inputs, X, to the GP framework are defined as the latitude, longitude, and physical

model estimate from either the NDFD (air temperature and wind speed) or GLCFS (lake

surface temperature). To satisfy the zero mean GP assumption, the output, y, is defined

as the difference between the physical model estimate (wind speed, air temperature, SST)

and co-located ship observation. A squared exponential kernel was used with a unique

length-scale for each input. The choice of kernel was based on the ability to carry out

automatic relevance detection (ARD), which, as mentioned previously, would permit for

length scales to be ranked, thus providing insight into which inputs were the most infor-

mative for predicting the final output. A shorter length scale suggests that a feature is more

important to the prediction than other features. For instance, one might expect that the

physically modeled estimates of air temperature would be more important in explaining

ship observations than the location of the ship. As such this feature’s length would should

be shorter than those for latitude and longitude. Additionally, the choice to use a squared
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exponential kernel was motivated by its radial basis. This encodes the notion that the co-

variance between two points is related to the distance between the points. Other kernels

were also tested (such as the rational quadratic), but these yielded either lower or similar

likelihoods for all seasons and variables. Therefore, the squared exponential kernel is used

for all models to maintain consistency across the dataset.

Figure 2.4: Seasonal Mean Absolute Error for Wind Speed. Interpretation follows from Figure 2.3

Next, the input space was normalized to reduce any adverse scaling impacts on the

minimization algorithm and to allow for the comparison of the relative importance of each

length scale parameter. Without this scaling, a relative comparison of length scale (and

thus the relative importance of an input) would be difficult. Scaling also creates a more

spherical search space for the likelihood search algorithm. If no scaling was performed,

the surface would be more elliptical in shape and the gradient descent may take steps in

suboptimal directions, leading to increased computational time [38].

23



Figure 2.5: Seasonal Mean Absolute Error for Air Temperature. Interpretation follows from Figure
2.3

For each season of ship data, half of the input-output pairs were randomly split to

form the training data sets and the minimization algorithm was executed five times. Mul-

tiple random restart conditions were carried out to ensure overfitting was not an issue

and to reduce the effects of potential local minima. The kernel hyperparameters result-

ing in the largest maximum marginal likelihood (minimum negative marginal likelihood)

were deemed representative of the “best” achievable GP model. The remaining half of the

input-output pairs (the testing set) was then used to validate the accuracy of the GP model.

While a larger training set could have been used (training sets comprised of 80-90% of

observations are not uncommon in machine learning), the choice to use only half the data

for training was motivated by a desire to limit overfitting and to determine if the algorithm

can perform well even if observations are sparse. Once each algorithm was trained, it was

used to make a prediction of the testing data. Given the computational demand of the

GP framework, the analysis was executed on the high performance computing cluster at
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the University of Michigan, allowing for a parallelization of the required 540 algorithm

executions (4 seasons x 3 variables x 5 lakes x 9 years = 540 models).

It is important to note that aside from minimally removing physically impossible values

(e.g negative wind speed) an explicit quality assurance/control (QA/QC) preprocessing

procedure was not carried out on the ship observations because the GP framework accounts

for such measurements during the training and forecasting step. In fact, the subjective

removal of any ship data from the training set can bias the final model and lead to an

inaccurate characterization of the uncertainty. This is one of the added benefits of using

a probabilistic approach, such as the one presented here: given a sufficient number of

training points, any outliers will fall in the tails of the distribution.

Once the “best” GP models (those with the highest marginal likelihood) were selected

and validated for each season, a full GP regression using all of the available observations

was then carried out to derive hourly estimates (3-hourly for SST) of all hydrometeoro-

logical variables across all lakes at 1/10 degree spatiotemporal resolution, using latitude,

longitude, and physically modeled values as the inputs to the GP. The result is a spatially

distributed data product of lake surface temperature, air temperature, and wind speeds from

2006 to 2014.

2.3 Results

Due to the large size of the data set, the following section provides a summary of the

overall analysis. To facilitate transparency and motivate adoption of the proposed meth-

ods, all of the input data, the source code of the entire implementation, as well as any

resulting data products and additional figures are available on a public web repository

(https://goo.gl/rfGPpt).
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2.3.1 Comparison of Vessel Measurements to Physical Models

Very notable spatial and temporal differences between the physical models and the vessel

measurements were evident. For example, lake surface temperature MAE (Figure 2.3)

was larger during the summer for all lakes except Lake Michigan, which was highest in

the spring. Spatial biases were also evident, showing that the physical model generally

differed more from the vessel measurements in open water rather than near-shore. Wind

speed predictions (Figure 2.4) made by the physical models on Lake Erie and Lake Ontario

agreed with the vessel measurements the most, while the Upper Great Lakes (Superior,

Michigan, and Huron) showed less agreement. In general, the MAE was highest off-shore,

though some near-shore locations saw large MAE as well (e.g. the junction of Michigan,

Huron, and Superior.) MAE patterns for air temperature (Figure 2.5), resembled those seen

with lake surface temperature (Figure 2.3). Summer showed the most agreement between

the physical models and ship observations, while winter and fall showed higher MAE.

When the MAE was averaged over all lakes and seasons, the physical models differed from

the vessel measurements on average by 2.39 m/s for windspeed, 1.49◦ C for air temperature

and 1.82◦ C for SST.

2.3.2 Assimilation Performance

The proposed GP framework, when calibrated on a randomized subset of seasonal vessel

observations (training data), outperformed the physical models in predicting the remaining

set of vessel observations (testing data), both spatially and temporally. A comparison of

the probabilistic algorithm to the physical model is shown in Figures 2.6, 2.7, and 2.8. On

the left of each figure, a randomly sampled subset of all of the ship observations (testing

data) is compared to co-located physical model estimates. The observations not plotted

(training data) are then used to generate the covariance matrix K (Equation 2.8) and make

new estimates. The testing observations are then compared to the probabilistic prediction
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Figure 2.6: Comparing air temperature predicted by the physical model (left panel) and the GP
approach (right panel) to ship observations that where not used to in training the probabilistic
approach. For visualization purposes the data have been binned into 0.1 degree Celsius bins along
the x-axis (ship observations) and color-coded as a histogram along the y-axis (model estimate).
The color corresponds to the relative density of the data in that bin. In a very good model the
highest density of points will fall along the 45-degree line.
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Figure 2.7: Comparing lake surface temperature predicted by the physical model (left panel) and
the GP approach (right panel) to ship observations that where not used in training of the GP model.

on the right of each figure. A notable bias was exhibited when evaluating the ability of the

physical models to predict vessel measurements. In general, the physical model tended to

underestimate air temperature at upper extremes and overestimate at lower extremes (Fig-

ure 2.6). A similar tendency was seen with lake surface temperature, where the physical

model over-predicted lake surface temperature at lower extremes while under-predicting

lake surface temperature at higher extremes (Figure 2.7). For wind speed, a significant

mean difference and large variance were also evident when comparing the physical model

to the ship measurements (Figure 2.8). Overall, the root mean square difference (RMSD)

between the physical model and actual observations for air temperature, lake surface tem-

perature, and wind speed, were 3.06, 2.96, and 3.38, respectively.

When comparing the ability of the GP algorithm to predict the same vessel observations

(right plots in Figures 2.6, 2.7, and 2.8), there was an improvement in the mean, variance,

and the RMSD of the prediction residuals. For each variable, the GP approach reduced the
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biases seen with the physical model at the upper and lower extremes. When compared to

the physical model’s performance in predicting air temperatures, the GP approach reduced

the mean difference from 0.49◦C to 0.46◦C, the standard deviation of the difference from

3.02◦C to 1.63◦C, and the RMSD from 3.06◦C to 2.47◦C. For lake surface temperature, the

mean difference was reduced from 0.58 to 0.52◦C, the standard deviation was reduced from

2.9 to 1.83◦C, and the RMSD was reduced from 2.96 to 2.14◦C. For wind speeds (Figure

2.8), the mean difference was reduced from -0.91 m/s to -0.83 m/s, the standard deviation

from 3.25 m/s to 1.52 m/s, and the RMSD from 3.38 to 2.82. Further, for each case of air

temperature, lake surface temperature, and wind speed, the pairwise t-test of the residuals

between the GP-based outputs and the physical models indicated that the two data sets are

significantly different from each other to an α-level of essentially zero (machine epsilon

of 2 × 10−16). Further results are summarized in Table 2.1, where the performance of the

GP-based approach in predicting vessel data is compared to the physical model (quantified

as percent improvement in the mean difference and variance of the difference).

Table 2.1: Comparing the performance of the proposed approach to physical models in predicting
predicting ship observations that were not used in the training procedure. Quantified as the percent
reduction in mean difference and variance (averaged over all 45 models for each lake-variable pair).

Temperature Wind Speed SST
Mean Variance Mean Variance Mean Variance

Erie 65.20 17.60 0.76 17.62 70.61 16.81
Huron 60.92 14.01 77.37 10.97 79.74 16.44

Michigan 70.09 14.89 56.85 6.36 78.13 20.34
Ontario 49.09 14.22 47.18 -7.70 48.13 19.93

Superior 76.65 10.56 80.76 4.23 6.50 17.89

2.3.3 Final Data Product

Upon validating the ability of the GP-based assimilation technique to predict the testing

data, all of the vessel observation were combined into a complete data set and used to re-

fine the parametrization of the GP. These final GPs were then used to distribute all of the
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Figure 2.8: Comparing wind speeds predicted by the physical model (left panel) and the GP ap-
proach (right pane) to ship observations that where not used in training of the GP model.

ship observations, yielding a final data product for air temperature, wind speed, and lake

surface temperature at 1/10 degree spatial and hourly temporal resolution. The run time

of the gradient descent training algorithm increased with each season due to an increase

in the number of available ship observations (the number of operations required to execute

the algorithm increases as a cube of the number of data points [37]). The gradient descent

training procedure converged in under an hour for earlier years (2006-2009), while it re-

quired upwards of 48 hours to perform all five restarts of the procedure for later years. In

most cases, the five randomized gradient descent restarts resulted in nearly identical local

minima and hyperparameters. For most variables and seasons, the hyperparameter with the

shortest length-scale corresponded with the input of the physical model, implying that the

physical model, rather than location in space, was deemed as the most relevant explanatory

variable of the vessel observations’ covariance. The predictive variance of the GP model

was also larger in the earlier years of the analysis.
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Figure 2.9: Winter 2007 comparison of physical models to the probabilistic method. The first row
contains the seasonally averaged physical model estimates for air temperature (first column), lake
surface temperature (second column), and wind speed (third column). The second row contains
the GP model’s estimate, seasonally averaged across the Winter of 2007. The third row displays
the average difference between the physical model and GP approach. The fourth row displays the
average predictive standard deviation of the GP model for each grid cell. Please see the data archive
to generate more detailed maps.

Seasonal averages for Winter 2007 and Summer 2013 are presented in Figures 2.9 and

2.10, comparing the predictions made by the physical models to that of the GP algorithm

while also displaying the uncertainty of the GP algorithm’s predictions (variance in Equa-

tion 2.9). To provide insight into how the size of the training set can impact the final model,

these two seasons were chosen because they contained the relatively least (Winter 2007)

and most (Summer 2013) number of ship observations. All other seasons across the study

period are plotted in the supplementary information. For winter 2007, there were only 891

air temperature observations, 543 lake surface temperature observations, and 913 wind

speed observations. For summer 2013, there were 21,632 air temperature observations,

11,642 lake surface temperature observations, and 21,411 wind speed observations. With

approximately twenty times the observations in 2013 compared to 2007, the GP in 2013
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Figure 2.10: Summer 2013 comparison of physical models to the probabilistic method. Interpreta-
tion follows that of Figure 2.9.

made higher resolution adjustments. For example, in the Winter of 2007 the GP algorithm

performed, on average, uniform adjustment across Lake Michigan (-0.22◦C on average),

with an average variance of about 1.8◦C. For the summer 2013, much finer scale adjust-

ments were made across many regions of the lake, while lower uncertainties aligned with

the ship trajectories. Compared to the physical model, the final GP data product showed,

on average, a -0.19◦ C difference in air temperature, a 0.99◦ C difference in lake surface

temperature, and a -0.05 m/s difference in wind speed.

2.4 Discussion

2.4.1 Comparison of Vessel Measurements to Physical Models

Limited patterns in the spatial error structure of the physical models (Figures 2.3, 2.4 and

2.5) suggest that a simple one-to-one comparison may not shed much light onto which
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specific factors govern the performance of the physical models. This, along with the noise

of the vessel observations and significant complexity of the physical models, makes it diffi-

cult to use the ship measurements directly to highlight times or locations where the models

need improvement, which may, in part, also explain why these ship observations have seen

limited use across the Great Lakes. While the difference between physical models and

vessel measurements did correlate in numerous instances with distance from shore (larger

difference further away from shore), this pattern was not consistent through all seasons and

lakes. A lack of correlation with other factors, such as bathymetry or location of buoys,

thus makes it difficult to provide informed conclusions on the observed difference between

the ship data and the physical models.

In many instances, MAE was less variable in locations that aligned with ship trajecto-

ries, suggesting that the availability of more measurements in those locations led to more

accurate estimates of the spatial bias in physical models. In other words, lake regions

that were visited by fewer ships only provided few measurements with which to calculate

MAE, thus leading to more variability of MAE in those locations. This, however, was not

always true across all lakes and seasons and suggest that the MAE is governed by more

than just spatial factors.

Similarly, the lack of temporal consistency in the error pattern also suggests that the

performance of the physical models may at times be biased by seasonal parameterizations,

which are impacted by buoy data availability. While some lakes (e.g. surface temperature

on Lake Michigan, Figure 2.3) did exhibit pronounced seasonal differences between the

physical models and ship measurements, such patterns or their magnitude were not con-

sistent year-to-year. Additionally, it is worth noting that Lake Erie most likely does not

experience drastic MAE seasonality due to the greater density of buoys available for cali-

bration of the physical models as well as the considerably greater amount of resources put

into the operational model for this lake [32].

Additionally, the observed error structure may in fact be stochastic and change over
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time, as is evident in the varying performance of the physical model during different sea-

sons. Capturing this variability may be difficult using a physical model alone, which is

why the proposed GP framework provides a powerful alternative to learning, and correct-

ing for, these seasonal patterns. The one notable consistency in MAE between the physical

model and vessel observations was evident through a bias of the physical model at the

extremes (Figures 2.6, 2.7, and 2.8). For example, given that the physical model consis-

tently over-predicts vessel air temperature at the lower extremes, the outputs of the physical

model can be adjusted at the lower extremes to be more representative of what the ships are

measuring. Such an adjustment should not, however, be made haphazardly or without sta-

tistical certainty, as these biases may be more pronounced across different locations and at

different times. This further supports the use of a holistic statistical estimation framework.

2.4.2 Assimilation Performance

Recall that the feature inputs to this model (x) are chosen based on the belief that they

influence the variable of interest. Therefore, by choosing some initial estimate from a

physical model as one of the features, the implied belief is that the models do a good job

of explaining physical processes on the lakes, but that they could be improved by embed-

ding new information based on spatiotemporal biases (latitude, longitude, and season) and

ship observations. Therefore, the estimates that are generated should remove some of the

predictive variance from the initial estimate. When compared to the physical model, the

performance of the GP algorithm in predicting ship measurements of air temperature (Fig-

ure 2.6) and lake surface temperature (Figure 2.7) suggests that the probabilistically-based

approach does indeed provide a robust and reliable framework by which to distribute vessel

measurements through the entire spatial extent of the study area. When the hyperparam-

eters are learned, the final GP makes use of all available data sources, fusing the outputs

of the physical models (and, implicitly, the buoy data used for calibration) with the addi-

tional information provided by the vessel observations. This is true not only across space
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and time, but also across the range of estimates of the underlying physical model. For ex-

ample, when estimating temperature, the GP algorithm takes advantage of regions where

the physical model performs well (middle temperature range), while correcting the more

pronounced differences at the lower and upper temperature extremes. As such, the major

benefit of the GP approach is not necessarily just its ability to reduce error in the overall

predictions, but rather to improve the predictive variance. By shrinking and quantifying

the “error bars,” the approach thus explains more of the variability in the ship observations

compared to the physical models.

While still significant, the ability of the GP algorithm to predict wind speeds is accom-

panied by a nuanced statistical point (Figure 2.8). Much of the variability evident when

comparing vessel observations to those of the physical model is likely due to the height

at which these measurements were made. While the NDFD forcing model explicitly out-

puts surface wind speeds (which drives wave heights), the measurement heights on each

individual vessel are variable and unknown. It is reasonable to assume that the wind mea-

surement heights on these vessels are above the height used by the physical model, which

would explain the consistent underestimation by the physical model when compared to

the ship observations. As such, it is important to view the GP-derived wind product as a

spatially averaged representation of ship measurements, rather than a prediction of wind

speed at a known height. Probabilistically, it represents the wind speed at an average, but

unknown, measurement height. The predictions made by the physical model are still how-

ever very important in providing a prior estimate that can be used to spatially distribute the

ship measurements, as evident in the performance of the GP estimates during evaluation

of the testing data (Figure 2.8). Given the variability in measured wind speeds, it is also

important to note that the GP did not seek to overtune the final model or drastically reduce

its variance. Rather, the resulting variance or “error bars” on the windspeed predictions

are an indication that, as intended, the likelihood function used in the training procedure

struck a balance between data quality and model performance. Until the actual measure-
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ment heights are known or are estimated via independent data (they are not presently being

recorded by the VOS program), the GP wind product can be used to analyze spatial vari-

ability and trends, rather than specific estimates.

2.4.3 Final Data Product

Unlike a simple seasonal MAE analysis (Figures 2.3, 2.4 and 2.5), the GP-derived data

product can be used to provide some insights into the factors governing the biases of the

physical models. To that end, the difference between the GP-derived data and the physical

models (third row, Figures 2.9 and 2.10) defines the magnitude to which the physical mod-

els would need to be adjusted at any point in time to reflect what a ship would observe.

While these GP predictions give us additional understanding of the biases in the physical

models, a major benefit of this approach relates to the ability to provide probabilistic esti-

mates of uncertainty (last row, Figures 2.9 and 2.10). As would be expected, many of the

lower levels of uncertainty coincide with regions that are traversed by the ships most fre-

quently. However, many of the lower levels of uncertainty also overlapped with locations

of the stationary buoy network, implying that the use of the buoys in the calibration of the

physical model may have provided a level of consistency that improved the confidence of

the GP predictions.

An increase in the availability of vessel measurements also improved the confidence

and spatial resolution of the GP data product. In earlier years when fewer observations

were reported, the algorithm adjusted the physical models at coarser resolutions (Figure

2.9). In later years, as more vessels joined the VOS program, the adjustments were made

at much finer resolutions and resulted in lower predictive variances (Figure 2.10). As such,

the robustness and certainty of the approach are expected to improve as more measure-

ments are used. That said, there will likely be a point of diminishing returns, after which

more measurements only marginally improve the performance of the GP algorithm. There

were almost twenty-fold more observations in the summer of 2013 when compared to win-
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ter 2007, but this did not result in a similar magnitude GP performance gain. In fact, most

seasonal models yielded similar predictive performance after being trained on only a few

thousand ship observations (as opposed to the over 20,000 in summer 2013).

This suggests that at some point the performance of the algorithm likely begins to be

limited by the noise (uncertainty) of the senors. Therefore, what may be most important is

not to have as many measurements as possible, but to have enough measurements at repre-

sentative locations. While a mathematically rigorous analysis of what constitutes “enough”

measurements may be carried out formally using information theoretic measures (see the

work of Krause and Guestrin, for example [39]), performance will likely vary based on the

application and quality of underlying sensors. It may also be determined empirically on

a case-by-case basis. Most of the later seasons in this study would converge to a model

close to the full GP (i.e. one trained on all the available data) when trained on about 7000

observations for each variable of interest. Reducing the size of the training set down three-

fold would reduce computation times by approximately 27 times (roughly 96%) [37]. In

this study, it took a day to learn the hyperparameters when trained on nearly 21,000 data

points for all three variables. It would then be possible to reduce the computational time

to under an hour with a smaller training set, without significantly sacrificing performance.

With computation times at this level, it would be possible to update the model at regular

intervals (e.g. overnight each day) in a semi-online fashion using a moving window for

training and updating the GP model.

The use of the variance estimates is very important when interpreting the final data

product, as any outputs need to be weighed against predictive uncertainty. In many in-

stances, locations lacking observation (buoy or ship) often had the highest error bars. The

GP captures this by minimally adjusting the output in those locations, thus placing more

weight on the output of the physical models. This implicitly captures the intuition that

the physical model presents the best estimate of a process at locations or during times that

measurements may not be available. This is most evident in the Georgian Bay (Eastern
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Lake Huron), where limited ship and buoy measurements are made and therefore adjust-

ments to air temperature are minimal, but error bars are much higher than the rest of the

lake (first column, Figure 2.10). While this further emphasizes the need for more spatially

representative measurements, it also highlights the value of the vessel measurements and

benefits of the GP framework, which can provide confidence bounds on all its projections.

These uncertainty estimates can be used to selectively identify the most informative re-

gions of the lake, by enabling a quantitative tool to recommend measurement locations

for new buoy networks (e.g. near-optimal sensor placement [40]). Beyond this, it would

also be possible to leverage these uncertainty maps in more complex experimental settings.

For instance, if an experimental vessel plans to collect measurements across the lakes, the

most informative routes may be planned using the uncertainty maps generated by the GP

product.

There are likely many other factors governing the discrepancies between the physical

models and the new GP data product, suggesting that the error structure of the physi-

cal models may be stochastic in nature or impacted by regionally-specific physical model

calibrations. While beyond the scope of this chapter, a more exhaustive analysis of the

physical models could be carried out in the future to inform the implementation of the

physical models. Generally speaking, the use of the proposed GP framework could thus

also aid as a tool to modelers seeking to identify potential sources of model bias.

To reiterate – the goal of the proposed method is not to improve a physical model or

expand it with data assimilating capabilities. Rather, this method seeks to find a general

means by which to fuse multiple data sources to generate a combined data product. These

sources of data could include multiple heterogeneous inputs, thus enabling significant flex-

ibility. For instance, instead of using only the outputs of one physical model, it is possible

to combine multiple modeled estimates or remotely sensed data products. This approach

would then not only learn which of these inputs best explains the in-situ observations, but

also where they perform best. This could, for example, lead to a final data product that
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relies on one model to explain one part of a spatiotemporal domain, while using another to

explain different regions. This creates a final data product that is weighted in response to

those inputs that most consistently explain a phenomenon of interest.

It should be noted that a traditional data assimilation approach, such as a Kalman filter,

may also have performed well at improving predictions when compared to the physical

model outputs. However, the need to implement such an approach across two physical

models, one of which is driven by the other, would have come at a significant implemen-

tation overhead. This would require the source code and the computational capacity to

execute both physical models, which is beyond the scope and feasibility of many scien-

tific studies. Rather, this approach provides a flexible means by which to extract just the

readily-available output from these models, as well as many other data sources, and fuse

the collective information into one final spatial data product.

In this chapter, used Gaussian likelihood with a squared exponential kernel is used.

Mathematically, this approach becomes analogous to kriging, which has readily been

adopted in the geostatistical community. The framework presented here, however, is ex-

tensible to many other likelihood and covariance functions, such as those used for clas-

sification rather than regression. This should afford additional flexibility in addressing a

variety of hydrologic and water resource problems that are underpinned by heterogeneous

observations and data sources.

2.5 Conclusion

This chapter introduced a probabilistic method by which to spatially distribute large quanti-

ties of ship measurements across surface water systems. Evaluated through cross-validation,

this approach integrated the vessel measurements with operational physical models to gen-

erate a new spatial data product. While physical models alone may not readily accommo-

date the kind of measurements made by ships, the probabilistic method presented herein
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offers a rigorous and flexible approach to combine the hydrometeorological expertise em-

bedded in these models with the added benefit of independent distributed measurements.

This approach is computationally demanding, but offers a means by which to begin in-

gesting large and unconventional data sources into studies of large water systems. The

approach can be applied to many other water systems where irregular data are available.

Its flexibility permits it to be informed by a combination of distributed and temporally ir-

regular data sources, as well as a variety of spatial data inputs, such as physical models,

satellite data or other new data sources such as those from drones. For example, remotely

sensed data could readily be used as an input into the framework, with the objective of

generating a ship-corrected satellite data product. Since the method does not set a bound

on the number of inputs that are used, its only cost relates to computational complexity,

which will increase with the number of input data features. An added benefit of the ap-

proach also involves the enabling of more complex tasks, such as the design of expanded

measurement networks through the use of variance estimates.

An analysis of the final Great Lakes data product suggests that the availability of mea-

surements across the Great Lakes will continue to play a large role in the confidence with

which these large surface water systems can be studied and modeled. The ability to in-

corporate new sources of data could significantly improve understanding of these systems

in an uncertain climate. For instance, the consistent over-estimation of air temperatures

by the physical model at lower extremes could result in a smaller predicted temperature

gradient between the surface and the air during peak evaporation in late fall. Without the

knowledge provided by additional data, such as those used in this study, this may result in

the underestimation of evaporative fluxes and therefore the over-prediction of water levels.

While beyond the scope of this chapter, future studies will investigate these impacts, and

Gaussian Process Regression is one tool that can enable the community to do so.
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CHAPTER 3

Using sensor data to dynamically map

large-scale models to site-scale forecasts

3.1 Introduction

As computational power has grown, so has hydrologists’ ability to model complex hy-

draulic and hydrologic systems [41]. No longer limited to the study of single stream

reaches or small watersheds, increasing access to supercomputers is now enabling a new

generation of massive models, some of which would have seemed infeasible even recently.

Presently, one exciting example is the United States’ National Water Model (NWM) which

provides forecasts for nearly 2.7 million stream and river reaches across the continental US

[42]. Beyond numerical modeling, a variety of studies have also highlighted the potential

of big data in hydrology, wherein large quantities of data are analyzed to provide scientific

insight and improve forecasting performance (e.g. [43, 44, 45]). As such, there is now an

unprecedented opportunity to begin leveraging advances in computing and data science to

explore a variety of large and complex water challenges.

Advances in computation have also been accompanied by improved access to real-

time measurements. Wireless sensor networks have become much more affordable [46]

and cloud-based services are now readily available, even to small research groups (e.g.

Amazon Web Services, Microsoft Azure, Google Cloud etc.). The open source hardware
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movement (e.g. [3, 47, 48, 49]) is empowering many technological non-experts, such as

decision makers and small research groups, who can now deploy their own sensors to

measure a variety of water parameters in near real-time. This is allowing important, but

limited, sources of data, such as USGS gauges, to be supplemented by a variety of smaller

and stakeholder-relevant measurements.

These advances still do not appear to be ushering in new wave of water management.

At the level of individual communities or cities, water managers seek answers to very

practical and neighborhood-specific questions. For example, forecasting the water level at

specific bridges or highway overpasses can help trigger flood alerts or dispatch emergency

response personnel. Given their spatial extent, large numerical models may not always be

accurate at high resolutions, meaning that their forecasts may not be immediately useful

to decision makers. Additionally, units and variables that are important to modelers (e.g.

flow) may not be the units and variables that decision makers care about (e.g. water level

under a bridge). Alternatively, sensor observation alone may only go so far. While making

a direct measurement at any specific site may provide real-time information to decision

makers, it does not provide a forecast or warning without a model. There is, however,

an opportunity to fuse the forecasting benefits of large-scale models with the site-level

accuracy offered by local measurements.

In this chapter we ask the question: how can highly localized forecasts be generated

by fusing site-scale sensor measurements with outputs from larger-scale physical models?

Instead of increasing the complexity of the physical model or re-calibrating it to match the

local measurement, this approach leaves the physical model unchanged and uses a dynam-

ical systems transformation to map the large-scale model outputs to site-scale conditions.

To evaluate this approach, a case study is carried out in which water levels, as measured by

a sensor, are predicted from modeled flows made by a publicly-available and large-scale

physical model. This will illustrate how city managers and other stakeholders, who have

access to local measurements, can quickly benefit from large-scale models without need-
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ing to run or modify the models themselves. Specifically, this methodology is applied to

the outputs of the US National Water Model and a publicly-available data set of hourly

water level observations, made by over 180 sensors across the entire US state of Iowa.

Beyond evaluating predictive performance, a Random Forest-based classification analysis

is also carried out to evaluate under which conditions the approach is expected to perform

well. The chapter concludes with a discussion on the generalizability of the approach and

places the findings into into a broader context of making big models and data useful to

stakeholders.

3.1.1 Background

To illustrate the challenges that may be faced when translating macro-modeled outputs to

hyper-local conditions, the outputs from the US National Water Model (NWM) are used

to predict water levels at sites of interest. The desire to predict water levels, rather than

flow, is motivated by two factors. Firstly, water levels are relevant to local flood inundation

mapping [47]. Secondly, and more importantly, local measurements of flow are expensive

and rarely available. Water level sensors, on the other hand, are relatively inexpensive to

deploy and maintain, making them a more realistically available data source [46].

Given its spatial extent, the NWM assumes trapezoidal stream cross sections, which

are derived from the National Hydrography Dataset [50]. A mapping of flows to heights

for specific sites may thus not be directly evident, since each location will have its own nu-

anced topographic and hydraulic properties. As such, there is a motivation to discover how

the outputs of this large numerical model can be translated to site-specific parameters that

are not directly modeled. If a clear relationship can be established between the modeled

flows and measured heights for any given location, the forecasts of the NWM could then

be used to provide authorities with precise localized flood inundation maps. This would

allow local water managers, who have access to their own measurements and knowledge

of local inundation elevations, to benefit directly from the expertise embedded in the larger
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NWM.

Traditionally, rating curves have been a primary tool for deriving stream flows from

stage measurements and vice-versa [51]. Reliable rating curves require a relatively long

history of stage and discharge measurements. Measurement-constraint alternatives have

been proposed (e.g. [52], [53]), but often only work under limited conditions. Secondly,

even when a long history of observations is available, rating curves can have large uncer-

tainties, particularly related to heteroscedasticity [54], extrapolation outside of the history

[55], hysteresis [56], and measurement error [57]. Most importantly, however, in the con-

text of the proposed problem, the flows are modeled rather than measured, which poses

additional challenges when attempting to estimate site-specific water levels.

To illustrate the challenge of deriving local height estimates from modeled flows, fhe

output of the NWM is compared to two independent water level measurements made on

small bridges in Iowa (Figure 3.1). For the first example (Figure 3.1a), it is qualitatively

apparent that there is a strong relationship between the modeled flows and the measured

heights. This is supported by a dynamical agreement between the two time series (Figure

3.1c), which align well temporally, with clear agreement of the hydrograph peaks, as well

as a generally good agreement on the rates of the rising and falling limbs. This provides

a reliable rating curve and makes a strong case that the flow forecasts of the model could

be used to predict future heights. On the other hand, for the second example (Figure

3.1b), the relationship between modeled flows and measured height is not nearly as clear.

While the presence of a rain storm is evident in each time series (Figure 3.1d), it is unclear

how the dynamics of each variable are correlated. Without a clear rating curve, it may

seem difficult to establish a relationship between modeled forecasts and measured heights,

which may limit the apparent utility of the modeled forecast to this specific site.
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Figure 3.1: Measured water levels made by bridge sensors and modeled flows derived from the
NWM for two example sites in the state of Iowa. The first example demonstrates a relatively strong
relationship between modeled flows and measured water levels, while the second site does not.

When modeled flows do not directly align with local observations, one alternative is

to directly assimilate the local measurements into the bigger model, thus improving its

accuracy. Data assimilation is an established field in the hydrologic modeling community,

relying on methods such as the Kalman Filter [58] or Particle Filter [4] to guide the model

states toward the locally-measured values. In fact, the current version of the NWM per-

forms a computationally low-cost form of data assimilation, whereby federal streamflow

measurements from the United States Geological Survey (USGS) are used to “nudge” the

model toward observed values. While the high quality and reliability of USGS gauges

has been verified on many occasions (e.g. [59], [60]), the number of gauges is limited

compared to the scale and resolution of the NWM. As such, the NWM will benefit from

assimilating alternative sources of information into its operation.

Expanding the coverage of the measurement network used by the NWM, such as mea-
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surements made by individual communities, poses a number of practical challenges in

the context of data assimilation. Firstly, given the sheer number of sensor manufactur-

ers, deployment standards, and maintenance schedules, some sources of local data may be

more reliable than others. Since measurement errors can propagate into the bigger model,

assimilating local data thus poses questions regarding accuracy. Data will need to be ap-

proved and quality checks will be needed to ensure that any faulty sensors do not damage

the model’s integrity. Computational capacity will also need to be increased to ensure a

growing number of assimilation points can be integrated. Given the sheer diversity of lo-

cal water measurements and logistics associated with large-scale data assimilation, it is

unclear when or if all of them will ever be ingested into the NWM. For those local wa-

ter officials who do trust their own measurements, an alternative approach may still allow

them to benefit from the existing forecasts offered by the NWM.

3.1.2 Approach and Contributions

Motivated by the challenges posed in the prior section, the major contribution of this chap-

ter is a computational approach by which independently-measured observations are com-

bined with the output of a larger physical or numerical model to provide a dynamical fore-

cast of local site conditions. In other words, historical model forecasts and independent

historical measurements will be used to derive high-resolution and dynamical forecasts for

a site of interest. The output will be an automated tool chain, which allows end-users to

benefit from the expertise embedded in a large, but perhaps coarse, model without needing

to update the model itself (Figure 3.2). Specifically, the approach will be evaluated by

fusing outputs of the NWM and a large publicly-accessible stream sensor network in the

state of Iowa [47]. Since these measurements have not been used in the calibration of the

NWM, they provide an independent data set for the evaluation of the approach. Practi-

cally, a successful demonstration of the approach will permit water managers, who may be

inclined to invest into local measurements, to benefit directly from forecasts made by the
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NWM.

Figure 3.2: Conceptual diagram of dynamical mapping methodology. Historical measurements
made by a sensor are used to “learn” a dynamical mapping between modeled flows and measured
water levels. Once the parameters of the mapping are learned, water levels can then be predicted
by dynamically transforming the modeled flows.

Since a one-to-one stage-discharge mapping is not possible for all sites (Figure 3.1b),

this approach is based on dynamical systems theory [61]. Here, the output of the physical

model is treated as the input to a dynamical system, with the idea that while the physical

model may capture the general timing and magnitude of impulses, these outputs need to

be mapped through a dynamical transfer function, to achieve agreement with measured

values. Effectively, the approach will learn the response of a dynamical system, whose

input is the physical model and output is the measured stage, and use it to transform model

forecasts to water level estimates. At a low-order level, this approach is analogous to

learning a unit hydrograph [62], which have been used to map rainfall to flows ([63], [64]).

However, simple single-order unit hydrographs are known to work mostly for smaller scale

catchments [52]. This approach addresses this limitation by expanding the order of the

underlying system to be able to reflect more nuanced site-specific conditions.

The first part of this chapter presents the theory, implementation and application of this

approach to a large set of over 180 stream height observations. Secondly, a performance

analysis is conducted which evaluates under which conditions the proposed approach will

perform well. Given the sheer number of sites, each of which has a large number of phys-

iographic features, a simple classification approach will not be adequate. Therefore, two
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analytical tools (principal component analysis and random forests) are used to determine

which features explain when this approach can be used to reliably predict local conditions.

The results of this analysis will provide a general sensor placement guide to help maximize

the potential of mapping NWM output to local sites.

3.2 Methods

3.2.1 System Identification Theory

We frame the problem of mapping a physical model output u(t) to a measured sensor

value y(t) as a transfer function operation, which can be represented in the time domain as

a convolution with an impulse function h(t) [61]:

y(t) =

∫ ∞
τ=0

h(τ)u(t− τ)dτ. (3.1)

In this case study, the physical model output u(t) represents the flow modeled by the

NWM, while y(t) are the height measurements made by a water level sensor at some lo-

cation. The transfer function h(t) can be converted to its frequency domain representation

H(S) using a Laplace transform:

Y (s) = H(s)U(s)

H(s) =
Y (s)

U(s)

=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
(3.2)

where (a0, a1, · · · , an) and (b0, b1, · · · , bn) are the nth order coefficients of the transfer

function. More generally, the roots of the numerator’s polynomial are known as the zeros
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and the roots of the denominator are known as the poles of the system. Since transfer func-

tions are equivalent to systems of linear differential equations, an increase in the order of

the system reflects the ability to represent more nuanced dynamics. Given a system order

(i.e. number of poles and zeros), the goal is to learn the transfer function coefficients from

prior measurement and modeled values, after which Equation 3.1 can be used to trans-

form any future modeled flows to their corresponding heights. In the dynamical systems

literature, this problem is broadly referred to as System Identification [61]. A common

approach to learning the parameter θ := [a1, · · · , an, b0, · · · , bn] of the model relies on the

formulation

y(t) = ŷ(t,u; θ) + ε(t, θ) (3.3)

where the measured output is a function of the predicted output ŷ given parameter set θ,

which is corrupted by a noise term ε(t, θ). Finding an estimate of the parameters θ̂ can be

framed as an optimization problem that seeks to minimize the difference between modeled

and observed values. Here the mean squared error is used as the loss function:

θ̂(y,u) = arg min
θ
||y − ŷ||22

= arg min
θ

n∑
t=1

(y(t)− ŷ(t,u; θ))2 (3.4)

This approach uses a Gauss-Newton method [65] to iteratively approach the minimum

through the use of a gradient-based solver:

θ(k+1) = θ(k) − (JTJ)−1JT ε(θ(k)) (3.5)

where ε(θ(k)) = y − ŷ is a vector of the errors at iteration k, and J is the Jacobian
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matrix:

J =


∂ε1(θ(k))

∂θ
(k)
1

· · · ∂ε1(θ(k))

∂θ
(k)
n

... . . . ...

∂εm(θ(k))

∂θ
(k)
1

· · · ∂εm(θ(k))

∂θ
(k)
n

 (3.6)

The Jacobian is a matrix of all the first-order partial derivatives of the error. Therefore,

at each iteration, the parameterization of the transfer function model (θ̂ = [a1, · · · , an, b0, · · · , bn])

yields an estimated signal ŷ that approaches the true signal y. Once θ is learned using time

series of the inputs and outputs, forecasts can be made using Equation 3.1. A visual sum-

mary of the approach is provided in Figure 3.2.

3.2.2 Data sources and implementation

To promote transparency, reproducibility, and broader adoption by others, the authors have

made all the formatted data, source code, and supplementary information available freely

as an open source implementation on https://github.com/kLabUM/NWM/.

The approach was evaluated across two large data sources. These included the outputs

of the US National Water Model, which served as the inputs u(t) to this method. The

second data set included 182 independently-measured (not assimilated into or used in the

calibration of the NWM) streamgages across the state of Iowa, which represented the sen-

sor measurements y(t). The objective was to compare how well local water depths could be

predicted by dynamically mapping the flows made by the NWM. Along with a summary of

performance, an extensive analysis was also carried out using Principal Component Anal-

ysis [66] and Logit Boosted Random Forests [67] to classify under which conditions the

proposed approach may perform reliably.
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3.2.2.1 Data Source: The National Water Model

The National Water Model (NWM) became operational in the fall of 2016, and is contin-

uing to be developed by the Office of Water Prediction at NOAA. The NWM estimates

flow for approximately 2.7 million stream reaches across the continental United States. At

its core, the NWM relies on large-scale Muskingum-Cunge routing, which is coupled with

a gridded subsurface flow routing scheme [42]. The model is forced by rainfall from the

Multi-Radar/Multi-Sensor System (MRMS) [68] as well as a suite of models ingested by

WRF-Hydro [42]. Additionally, it assimilates measurements from the national network

of USGS streamgages. Given the continental scale of the model, a major appeal is that it

routes flows from far away regions and covers locales that are often not captured by any

other models. This should make it attractive for smaller communities seeking flash flood or

streamflow forecasts but who may not have their own modeling resources. The NWM out-

puts hourly nowcasts, as well as 1-18 hour short-term forecasts, 0-10 days medium-term

forecasts, and 0-30 days long-term forecasts [42]. Presently, modeled flows from the previ-

ous two days are freely available for download in NetCDF format on the National Centers

for Environmental Prediction server (ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nwm).

The NWM also provides an Analysis and Assimilation product which gives a three-hour

hindcast. Because the NWM’s forecasting ability is constantly being updated and im-

proved, this chapter uses this product to provide an upper bound baseline for the dynamical

mapping approach.

3.2.2.2 Data Source: The Iowa Flood Information System Sensors

The Iowa Flood Center (IFC) was established in 2008 in response to the increasing fre-

quency of flooding in the state [47]. One of their major initiatives was establishing the

Iowa Flood Information System (IFIS), which provides real-time stream conditions and

flood warning alerts [69]. IFIS ingests data from approximately 500 stream sensors, of

which half are managed by the USGS and half are managed by the IFC (Figure 3.3). IFC

51



gauges are primarily composed of bridge-mounted ultrasonic depth sensors, which trans-

mit sub-hourly measurements across a wireless connection. Historical depth measurements

are freely available on the IFIS website across a rolling 30 day window. In this chapter, the

focus is on the 220 bridge-mounted sensors that the IFC manages, since these sensors were

not used in the calibration of the NWM. As such, they provide an independent validation

data set for the proposed method.

Figure 3.3: Visualization of the nearly 62,000 streams modeled by the NWM in the state of Iowa.
USGS gages, which are assimilated into the NWM, are denoted as cyan circles. Locations of the
IFIS water level sensors are denoted as yellow circles, with diamonds denoting the three example
sites used in this chapter.

3.2.2.3 Implementation

Outputs from NWM and IFIS gauge measurements were recorded using an automated

Python script on an hourly basis from October 2016 through May 2017 across the state of

Iowa. IFIS gauge readings were logged in real-time as measurements became available.

Out of the 220 candidate sites, 182 were co-located with outputs of the NWM and deemed

to have a continuous record. For small data gaps (few missing points), linear interpolation

was applied to create continuous time series. The NWM and IFIS timeseries were linked
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by location, thereby providing individual model-measurement pairs that could be used in

the dynamical mapping approach. Data from October to December were used to train

the system identification approach, while data from March to May were used for valida-

tion. To reduce potential impacts of wintertime conditions (freezing, snow, and snowmelt),

which may have influenced NWM outputs and gauge maintenance, data across January and

February were not used in the analysis.

Prior to applying the system identification procedure, sensor data were linearly de-

trended to remove the impact of base flows, which was necessary to ensure that the trans-

fer functions would decay to zero following a storm event. Since the complexity of the

dynamical mapping was not known a priori, an ensemble of 14 different transfer func-

tions was learned using the training data, with each mapping having varying numbers of

poles and zeros. These included all possible pole-zero pairings for first through fourth or-

der systems ([0,1],[1,1],[0,2]...,[3,4],[4,4]). This allowed for the average and upper-bound

performance of the approach to be compared across mappings of varying complexities.

The final software toolchain was implemented in MATLAB, using an implementation of the

System Identification procedures from [70]. For comparison, a standard regression rating

curve procedure [71] was also implemented, whereby prior stage-discharge relationships

(October-December) were used to predict future values (March-May). The normalized

root mean squared error (nRMSE), which is equivalent to the Nash Sutcliffe Efficiency

[72], was used to evaluate performance:

E = 100

(
1− ||y − ŷ||
||y − ȳ||

)
(3.7)

where E is the nRMSE in percent, y is the vector of observed water level, ŷ is the

vector of predicted water level, ȳ is the mean of the observed water level , and || · || is the

Euclidean norm [73]. For interpretation, a value of 100% would imply a perfect prediction

of water levels, a value of 0% would imply a prediction that is as good as taking the
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historical average of water levels, and a value less than 0% indicates a performance more

inadequate than taking the average. An nRMSE of 50% or above is generally considered

the lower bound for a good predictor [74], which is the threshold adopted in this chapter.

The analysis considered the nRMSE of both the best ensemble member and the ensemble

average.

3.2.3 Performance Classification

One major goal of this chapter is to investigate under which conditions the proposed dy-

namical mapping approach will work well. Not all locations may benefit directly from

this approach, even if investments into local sensors are made. Evaluating which features

explain this behavior will be crucial to informing where investments into sensors should

be made to maximally leverage the NWM. To classify the performance of the proposed

approach under various physiographic conditions, a combined approach of Principal Com-

ponent Analysis [75] and Random Forest Classifiers [67] is used.

The NWM is built on a number physiographic features from the National Hydrogra-

phy Dataset (NHD) [50]. These include the channel bottom width, elevation, Manning’s

roughness, channel slope, and Strahler stream order [76]. An additional feature was also

considered, which captures the distance of a given water level sensor to the nearest USGS

gauge. This will indicate whether this approach performs better near official NWM data

assimilation locations. Overall, this provided six features that may be used to explain the

performance of the dynamical mapping approach. For example, intuition would suggest

that the approach would work well on larger rivers, where the NWM may be able to cap-

ture flow dynamics more accurately than in smaller, ungauged basins. This, however, has

to be confirmed, especially given the array of other complex features that may explain

performance.

Since some of the features analyzed in this study (e.g. stream order vs. bottom with)

may exhibit collinearity or multicollinearity, they must be orthogonalized to maximize the
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ability to classify around them. Before the performance is classified, this approach used

Principal Component Analysis (PCA) to shift the six dimensional feature space into an

orthogonal subspace [75]. PCA changes the coordinates of the features, with the objective

of finding a new set of features that are linear combinations of the original features. PCA

initially determines the direction in which the greatest amount of variance lies, defines the

first axis to align with that direction, and then iteratively re-orients subsequent axes such

that each axis is aligned in the direction of next greatest variance. In doing so, the features

are de-correlated and combined into composite principal axes that should maximize the

ability to discover higher-dimensional hyperplanes that can be used during classification.

The goal of PCA is to find the weighting vectors, or principal components, that yield

linear combinations of the original feature space. X ∈ Rn×d is the data matrix with n

rows of observations and d features, which in this case is populated with the physiographic

features of the nearly 62,000 stream reaches in Iowa. Before PCA is applied, all input

features also need to be standardized in magnitude to reduce impacts of overweighting

some features over others [75]. By standardizing across each variable, one can consider

the relative impacts of each more effectively.

To find the first principal component, w1, a unit vector that maximizes the variance of

X must be found.That is:

w1 = arg max
||w||=1

||Xw||2 = arg max
wTXTXw

wTw
(3.8)

This is a Rayleigh quotient [77], and therefore the solution to this maximization prob-

lem is the largest eigenvector (i.e. the eigenvector of the largest eigenvalue) of XTX. Each

successive principal component is the next largest eigenvector of XTX. Therefore, rather

than solving iteratively for each principal component, it is possible to consider the singular

value decomposition (Equation 3.9) of the data matrix X:
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X = UΣWT (3.9)

XTX = WΣUTUΣWT = WΣ2WT (3.10)

As such, the eigenvectors of XTX are the rows of W, meaning the principal compo-

nents are the right singular vectors of the data matrix. Therefore, to place the data in an

orthogonal feature space such that all the variables are de-correlated, the new data matrix,

T, is simply:

T = XW (3.11)

Using this matrix will lead to a more stable classification procedure, will reduce the

likelihood of over fitting, and will enable more complex interactions between features to

be captured [75].

Once the features that describe all of the 182 sensor locations were PCA-transformed,

each of the sites was labeled based on performance of the dynamical mapping. The pre-

dictive performance was labeled in a binary sense, whereby sites with a maximum nRMSE

of 50% or greater were deemed to perform well (label 1), while any remaining sites were

labeled as inadequate (label 0). The performance classification was then implemented as

a supervised learning procedure, where the final classification seeks to predict how well

the dynamical mapping approach will perform for a given set of features. While various

classification algorithms exist, this approach used a statistical learning tool known as Logit

Boosted Random Forests, or Adaboost with trees [67].

Adaboost generates a large number of “weak learners” [75] in the form of small classi-

fication trees. A weak learner is a model that is only slightly better than randomly guessing

[78]. The tree partitions a feature space using a series of binary splits, resulting in a large
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number of labeled bins. Given their relative simplicity, these trees tend to have very low

bias but high variance [75]. This can be addressed by generating an ensemble, or a forest,

of many trees. Going a step further, each tree should be developed to provide as much in-

formation gain as possible. In Logit Boosted Random Forests, each data entry (i.e. labeled

row of the data matrix T) is given an initial weight wi. Then, as new trees are learned, the

data entries are reweighted so as to emphasize where the model is failing. That is, the final

algorithm (Algorithm 1) ensures that misclassified data are stressed more in the learning of

the next tree. In this implementation, t is the input data (i.e. a row of T), y is the observed

data (1 for a site labeled as well-performing site, −1 for a bad site), and H(z) := 1[z>0] is

the Heaviside step function [75]. M classification trees are learned in an iterative fashion.

1 Initialize wi = 1
N
, i = 1, 2, ..., N ;

2 for m=1,2,...,M do
3 Learn classification tree that outputs pm(t) = Pw(y = 1|t) ∈ [0, 1] with weights

wi;
4 Set fm(t)← 1

2
log pm(t)

1−pm(t)
;

5 Set wi ← wi exp[−yifm(ti)], i = 1, 2, ..., N , and renormalize such that∑
iwi = 1;

6 end
7 Output classifier as H[

∑M
m=1 fm(t)]

Figure 3.4: Logit Boosted Random Forest

The logit function (line 4 of the algorithm) is used to re-weight the inputs (line 5).

Because of the form of the logit function, much larger values exist closer to 0 and 1.

The result is that if the data entry ti is classified properly and with high probability, then

exp[−yifm(ti)] in line 5 will trend towards zero. If it is classified improperly with high

probability, then this term will approach infinity. This ensures the re-weighting will target

poorly classified data on the next iteration and that properly classified data will be largely

ignored. After learning allM models, any new input t can be provided and, when summing

over all fm(x) trees, a prediction can be made for whether a site will be a good candidate

for the dynamical mapping approach. A good site will be one that sums to be greater than
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0 and a bad site will sum to be less.

3.3 Results

3.3.1 Dynamical Mapping Performance

After training and applying the dynamical mapping (DM) procedure across all 182 sen-

sor locations, predictions at approximately one-third of the sites (55/182) exceeded the

desired 50% nRMSE threshold, while performance across 90 sites exhibited an nRMSE

of at least 40%. The overall performance of the approach is summarized in Figure 3.5,

showing that the DM procedure consistently performed better than a simple rating curve

approach. Indeed, in all but 8 cases, water levels were predicted more accurately using

the proposed DM approach compared to a regression between measured levels and NWM-

modeled flows. The order (i.e. the number of poles and zeros) of the transfer functions that

had the best performance was not consistent site-to-site.
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Figure 3.5: Histograms of prediction performance (nRMSE) evaluated across 182 sensor locations.
A comparison is made between the best dynamical mapping (black), ensemble of dynamical map-
pings (gray), and a simple correlation-based rating curve approach (white)
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Given the sheer number of sites used in the analysis, this section will evaluate three

locations in detail, while the remainder are plotted in the supplementary information. The

three sites were selected to reflect three types of performance. The first is a location for

which the DM approach provides a strong predictive performance, in large part due to

a high correlation between the NWM predicted discharge and the observed stage. The

second site exhibits strong predictive performance, despite the NWM providing coarse

outputs. The final example illustrates a case in which there is a limited ability to predict

observed heights from flows.

The first example demonstrates a case of strong predictive performance (Figure 3.6).

The left column of the figure displays the training data, which include the NWM model

outputs and measured water levels for the Fall of 2016. The right column shows the NWM

outputs and measured water levels for the Spring of 2017, as well as the water level pre-

dictions made by the DM approach. Specifically, the bottom right panel is the average

prediction made by the approach across all 14 transfer functions (red line, with gray area

indicating variability within the ensemble) compared to the measured water levels (blue

line). Overall, the DM procedure performed well at this site, with an average nRMSE

close to 80%. While not plotted, predictions of water levels at this site using a simpler

regression-based rating curve performed nearly as well, with an average nRMSE of 76%.

59



Figure 3.6: Dynamically mapping modeled flows to local water levels on site 1 (see Figure 3.3).
Data used to “learn” the mapping parameters are plotted in the left column, while the resulting
mapping is applied to future data in the right column. For this example site, the dynamical mapping
performs relatively well (nRMSE of 80%). A simple regression-based rating curve approach (not
plotted) performs strongly as well, with an nRMSE of 76%.

The second example (Figure 3.7) illustrates a case where a simple regression approach

did not perform well, largely because modeled flows and measured water levels did not

correlate (nRMSE of -4%). The modeled flows were quite impulsive and not representative

of observed dynamics. However, when the DM approach was used, the results improved

significantly, with an average nRMSE of over 50%.
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Figure 3.7: Dynamically mapping modeled flows to local water levels on site 2, following con-
vention used in Figure 3.6. For this example site, the dynamical mapping performs relatively well
(54% nRMSE), while a simple regression-based rating curve approach does not (−4% nRMSE).

Finally, the third example (Figure 3.8) illustrates a location at which no good predictive

performance can be reached, regardless of the approach used. As evident in the figure,

the measurements reflected a slowly changing system, while the NWM showed a series

of rapid impulses. An average nRMSE of -145% was obtained using the DM approach,

with only one of the 14 ensembled transfer functions showing a slightly favorable nRMSE

(49%). The rating curve method was even more ineffective, with an nRMSE of -14,900%.
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Figure 3.8: Dynamically mapping modeled flows to local water levels on site 3, following con-
vention in Figure 3.6. For this example site, neither the dynamical mapping (0% nRMSE) or
regression-based rating curve (nRMSE of −14, 900% nRMSE) perform well.

3.3.2 Performance Classification

Using the 50% nRMSE criterion, 55 of the 182 sites were labeled as locations of high

performance, while 127 were labeled as low performing, reflecting the ability of the DM

approach to predict flows from NWM outputs. These labels were then used to determine

the combination of physiographic characteristics that describes the conditions under which

the DM approach exhibits high performance. The normalized distributions of each phys-

iographic feature, split by performance criteria, is shown in Figure 3.9a. Overall, little

distinction was evident between high-performing and low-performing sites, with the dis-

tribution of each physiographic feature showing similar means and variances. The distribu-

tions of channel bottom width and channel slope showed the relatively largest discrepancy,

suggesting that sites at which the DM approach performed well had a larger stream width

and slope than lower-performing sites. However, the bounds on these distributions were
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not sufficient to determine a consistent labeling.
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Figure 3.9: Boxplots representing the relative distribution of features, when split by the ability of a
dynamical mapping to predict water levels from modeled flows. For any given feature, a clear dif-
ference between the two distributions would indicate that this feature describes a general condition
for the dynamical approach to work well. a) This plot shows the splits based on stream physio-
graphic features. It is not apparent in this figure that any features describe a general condition for
the DM approach to work well. b) This plot shows the splits based on principal components (new
variables 1-6). Here, the first principal components exhibits the strongest difference between the
high and low performing sites, illustrating a potentially strong indicator of prediction performance.

Applying PCA to the physiographic features across the entire state of Iowa resulted in

a 62000× 6 data matrix. The resulting principal components are shown in Table 3.1. Each

entry in a column of this table can be interpreted as the relative influence of a physiographic

variable to a particular principal component. For example, considering the first principal

component, which explains the greatest amount of variability in the physiographic data,

it becomes apparent that the channel bottom width and the stream order both increase as

the first principal component score increases. On the other hand, the Manning’s roughness

decreases as the principal component score increases. As such, if a stream reach in the
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data set has a large first component score, it will be relatively larger and smoother than

other streams. Similar interpretative examples could be provided for the other principal

components. Further, a number of the components exhibited opposing physiographic re-

lationships. For example, for the second principal component, streams closer to a USGS

gauge and located at higher elevation had relatively higher component values. For the

fourth component, this relationship was reversed, as stream reaches at higher elevations

and located further away from a USGS gauge tend to have higher component values.

Table 3.1: Principal Components resulting from applying PCA to features of 62,000 streams across
the entire state of Iowa. σ is the singular value associated with that component whose relative
magnitude indicates the amount of variability the component explains in the data.

Stream Feature Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

σ = 3.16 σ = 1.09 σ = 0.86 σ = 0.77 σ = 0.08 σ = 0.04

Bottom Width 0.534 0.140 0.185 -0.041 0.693 -0.423

Elevation -0.198 0.648 0.182 0.712 0.016 0.000

Manning’s Roughness -0.535 -0.143 -0.170 0.008 0.720 0.382

Slope -0.254 -0.075 0.932 -0.240 -0.015 0.062

Order 0.545 0.141 0.105 -0.004 0.023 0.819

Proximity to USGS gage -0.165 0.717 -0.157 -0.659 -0.012 0.003

The performance of the DM approach, split by principle components, is shown in Fig-

ure 3.9b. Compared to splitting based on just physiographic features (Figure 3.9a), a more

distinct clustering was evident for a few of the new variables. This is especially true for the

first principle component, for which a larger component score generally corresponded with

higher performance of the DM approach. While the other principal components did not

exhibit as large of a discrepancy, the opposing physiographic relationships within each of

their principal components, as noted above, suggested that application of a Logit Boosted

Random Forest would enable effective classification.

After applying the Logit Boosted Random Forest algorithm (Algorithm 3.4), cross val-
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idation reflected a 75% accuracy in classifying whether the DM approach would work or

not (Area under receiver-operator curve was 0.69). The resulting Random Forest model

was then applied to all 62,000 PCA-transformed stream reaches in Iowa. The outputs were

standardized on a scale from 0-1, indicating the probability that the DM algorithm would

perform well at transforming NWM outputs to water levels. The final results are plotted for

all stream reaches in Iowa in Figure 3.10, where the color blue is used to denote locations

at which the DM approach is expected to perform well. It is important to note that this map

covers many more streams than are measured by the 182 level sensors. As such, it should

be interpreted as a map of potential future sensor sites. That is, placing a level sensor into

any of the dark blue regions should correspond, on average, with a higher likelihood of

successfully mapping NWM outputs to water levels using the DM approach.

Figure 3.10: Map of site performance potential across the state of Iowa, showing a spectrum of
locations where the dynamical mapping approach is expected to perform well in predicting local
water levels from flows (blue) to those where it will likely not perform well (red).
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3.4 Discussion

In lieu of recalibrating or expanding the complexity of a large numerical model, there may

instead be immediate benefits to be gained by using sensor data to “learn” how larger-

scale model outputs map to site-level conditions. To start, at approximately 30 of the 180

sites, a strong flow-to-height relationship already existed. Some of those sites were located

close to USGS gages, which are assimilated into the NWM. Due to direct assimilation, the

numerical model is likely to represent the nuanced flow dynamics more accurately at these

locations, which leads to more reliable rating curves. In these instances, even a simple

regression would have sufficed to predict local water levels. Naturally, the dynamical

mapping approach performed well in all of these cases, too, since it can be generalized as

a linear transformation [70].

While a simple regression may work in some cases, the number of instances where it

can be used is fairly small. By comparing modeled flows from the NWM to measured

water levels, this analysis demonstrated that these mappings are often not straightforward.

Given the lack of a clear one-to-one mapping, a regression-based approach, or one that is

based on simple physical equations, may not perform well because it does not account for

the temporal transformation of the input signal. As such, a major benefit of this approach

relates to its ability to make predictions when modeled values and local measurements

do not exhibit a clear point-to-point relationship. This is particularly evident in cases

where site-scale dynamics were accurately reconstructed despite the fact that large-scale

NWM outputs appeared like a rapid set of impulses (Figure 3.7). To this end, a dynamical

mapping, parameterized through system identification, shows promise as a general tool to

transform modeled values to more accurate local predictions.

Our specific case study of the NWM reveals a number of generalizable requirements

for the dynamical mapping to work well. Regardless of model- or site-specific dynamics,

the modeled values and sensor measurements should generally agree in relative magnitude
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and timing. In other words, if the modeled flows show an increase over a period of time, a

corresponding rise in water levels should be measured as well. This could occur irrespec-

tive of specific dynamical features. Namely, even if the modeled values appear as a set

of sudden impulses, they can be adequately mapped to the more continuous in-situ sensor

values if a sufficient level of agreement exists between the two times series. In the case of

a hydrologic model, when using routing procedures like Muskingum-Cunge, particularly

in headwater areas, it is not uncommon for flows to be modeled as “flashy” or as a series

of brief spikes. While the physical model may not be designed to account for nuanced site-

level dynamics, it may, in fact, be routing the mass of water correctly. In such cases, this

approach can be used to represent these site-level dynamics by relying on the ability of the

larger model to explain the underlying inputs. This is quite powerful, as it suggests that in

many cases the site-level complexity can be explained without changing much, if anything,

about the larger underlying numerical model. Rather, it may often be possible to rely on

local sensor data to explain how modeled values are transformed to local observations.

Our classification analysis brings to bear under which conditions the DM approach

may not perform well. In fact, at over two thirds of the evaluated sites, this approach did

not perform well in mapping NWM flows to local water levels, as quantified by the 50%

nRMSE criterion. This may not necessarily be a limitation of the actual approach, but

rather an indicator that the approach will improve as the physical model becomes more

generally representative of local flows. In many cases, there was simply a general lack

of temporal agreement between the numerical model and the measured data, with many

instances of false positives and false negatives (e.g Figure 3.8). There were many instances

during which the NWM predicted a change in flows, while no change in heights was ever

measured. Similarly, many sensors measured storms that were never seen in the NWM.

Naturally, this approach will not work under these conditions, since it requires changes in

the inputs to be mapped to changes in outputs. Of course, this DM approach could benefit

by including additional local data (e.g. rainfall), but this increases its complexity, increases
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implementation overhead, and decreases its generalizability. This would defeat the original

goal of simply relying on a publicly-available physical model that someone else updates

and maintains. To that end, the performance of the DM approach is expected to improve

as the underlying physical model is improved, which is an ongoing and promising effort

within the NWM community.

A number of insights, specific to the NWM, also emerged from the performance classi-

fication. Given the size, complexity, and collinearity of the data set, it is clear that a simple

classification of performance, based on individual physiographic features, does not pro-

vide much insight (Figure 3.9a). One take-away, though not strongly consistent, appears

to be that the dynamical mapping performs well on larger streams and rivers. This should

be intuitive, since the NWM would be expected to represent larger gauged rivers more ef-

fectively than smaller upstream headwater catchments. Furthermore, Muskingum-Cunge

methods have been shown to work quite well in laboratory settings, but can introduce er-

rors in field settings that, while negligible at small scales, can have major impacts as these

errors propagate [79, 80].

While the the application of PCA removed the challenge of using correlated features

to explain the performance of the DM approach, the intuitive interpretation of principal

components reaches a limit quickly. To that end, the application of Logit Boosted Ran-

dom Forests allowed for the creation of a map that summarizes the expected performance

of the approach across all 62,000 streams in Iowa (Figure 3.10). This visual representa-

tion provided an intuitive means by which to assess broader performance. As expected,

the DM approach is expected to perform well across the major rivers in the state (thicker

lines in map). Given their size, these streams are more likely to be instrumented by USGS

gauges, meaning the NWM is more likely to accurately estimate flows. Many of the re-

maining streams on the performance map (Figure 3.10) showed roughly a 50% probability

of successfully applying the dynamical mapping. Most of these were characterized by

a mid-level stream order. These streams are likely more sensitive to local precipitation
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dynamics, which may not be captured by the MRMS precipitation product used by the

NWM. As water is routed through the system, the spatiotemporal accuracy of the precipi-

tation estimates likely has less of an impact as the overall volume is correct. This suggests

that improved precipitation inputs have the potential to dramatically improve the accuracy

of the NWM at higher resolutions, which should, in turn, improve the performance of the

dynamical mapping.

Given its impressive extent and recent operationalization, the NWM already shows

great promise to provide high-resolution forecasts. Increasing the resolution, parameter-

ization, and complexity of the underlying numerical model is one way of reaching the

ultimate goal of hyper-resolution forecasts. Alternatively, as this case study demonstrated,

the existing model may already be very strong in many locations, but its outputs just have to

be mapped to site-specific features using locally-available sensor data and a suitable math-

ematical transform. Nonetheless, these results may also provide a guide to help improve

the numerical model. The map in Figure 3.10 intuitively conveys a general assessment

of the performance of the underlying numerical model. Since the NWM is a relatively

new model, it would be expected to initially perform well at larger scales. Even with this

general trend, there are still lower-order streams on the map that suggest the possibility

of successfully applying the DM approach. These red and purple regions on the map (0-

50% chance of applying the dynamical transformation) may be of interest to modelers as

locations at which the numerical model could be improved to reduce false positive and

negative forecasts. Improving the model on these stream sections will likely also trans-

late to better model performance on stream reaches that share similar physiographic or

PCA-transformed features.

From a water management perspective, the benefits of the DM approach may already

be realizable operationally. This is true for a number of already existing sensor locations,

as well as potentially other similar streams on the map in Figure 3.10. A simple web-

service application [3] could be written to extract NWM outputs and fuse them with local
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sensor data. If the dynamical mapping is reliable at this location, the site would benefit

immediately from a localized water level forecast. Alternatively, if local measurements are

not available, the map in Figure 3.10 could be used to deploy low-cost sensors at locations

that maximize the probability of using the DM approach. Given the general structure and

input data of the NWM across the US, similar maps could be created for regions outside

of Iowa by relying on the results from this study.

3.5 Conclusions

In this chapter, a means by which outputs from a large-scale model can be fused with local

sensor data to provide site-level forecasts is provided. The novelty of the approach relies

on using the outputs of the physical models as the inputs into a dynamical mapping that

learns what a specific sensor will measure. This is quite powerful, as it does not rely on the

modification of the actual physical model or the direct assimilation of the sensor data, both

of which would be infeasible for smaller communities. Instead, the approach is general,

in that it can be directly repeated for any combination of sensor-model pairs. As such, the

approach developed here could be applied directly without any modification of the open-

source code. While the approach will not work under all conditions, it may already provide

an immediate benefit to a large number of locations.

In the age of Big Data in Hydrology, even models can be viewed as just one of many

streams of data that will enable decision making. Overall, the approach of dynamically

mapping outputs form large models to local sites may work for a number of models beyond

just the NWM. The ability to use the approach with short data histories (e.g. only a few

months of training data) makes it appealing for urban applications, where land use changes

may occur rapidly and system re-identification may need to occur frequently. In such cases,

this approach could be combined with popular urban water models, such as the stormwater

management model (SWMM) to provide improved forecasts of urban flooding or sewer
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flows. More examples can be given, but the data-driven approach could be generalized for

many hydrologic and hydraulic models.
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CHAPTER 4

Model reduction for real-time change detection

across complex water systems

4.1 Introduction

Much of the urban water infrastructure across the world is approaching or has exceeded its

design life [12]. In the particular case of urban stormwater systems, it is not uncommon for

clogged pipes to remain undetected or for basins to fill with sediment. This compromises

system performance and can lead to dangerous flooding and water quality impairments

[81]. As such, it has become imperative to detect subtle changes in aging urban water

infrastructure before they become bigger problems.

To that end, asset management has risen to prominence as a data-driven concept to en-

able better maintenance of urban water infrastructure systems [82]. In most cases, however,

asset management is just now taking its first and simple first step – namely, documenting

where infrastructure assets are, but not tracking if they are performing as intended. For

municipalities that take it a step further, inventories are also supplemented with more ad-

vanced inspection schedules in which the age, criticality and repair cost of the asset are

used as factors to inform predictive maintenance [82]. This, however, has limitations since

unexpected problems can often arise during periods between inspections. In many cases,

by the time a problem is detected, a significant amount of damage may have already been
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incurred.

In the age of adaptive water management, novel solutions are needed to more rapidly

detect critical changes in infrastructure [11]. This brings to bear the notion of real-time

asset management, where streaming data will be used to continuously update knowledge

of changing urban water systems. The steep reduction in cost of modern wireless sensing

technologies is now empowering even small communities to begin measuring water flows,

water quality, and meteorological variables [49]. This promises to enable the detection of

problems as they occur, thus allowing for rapid maintenance and emergency response.

4.1.1 Background

While real-time infrastructure measurements are on the rise, it may be unreasonable to

assume that every single infrastructure asset will be measured. Instead, sensors will likely

only be located at major points of interest or will be placed to maximize system-level

coverage [81]. Sensor data may easily reveal that something may have changed or been

damaged, but locating where the change occurred is difficult using data alone if the entire

system is not instrumented. As such, streaming sensor data will need to be supplemented

with effective models and and fast computational methods to map real-time system changes

to potential causes.

The complexity of the built environment makes changes difficult detect, especially

when popular numerical models are used. Most water systems are difficult to model effi-

ciently, with even simple models having thousands or even millions of parameters needing

calibration. For instance, the Stormwater Management Model (SWMM) includes param-

eters for conduit size, storage node volumes, storage curves, subcatchment runoff, and

infiltration, to name a few[83]. As a result, even a simple 20 node system can have well

over 1000 parameters. The curse of dimensionality thus makes locating a change in the

system very time consuming [84], requiring computationally complex re-calibration algo-

rithms and intimate knowledge of the system.
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Some approaches have been proposed to automate damage detection, particularly in

the fields of water distribution systems and structural health monitoring. Methods such

as error domain model falsification [85], vulnerability analysis [86], and graph theoretic

approaches [87] can automate the detection of faults, but are highly computationally com-

plex, requiring an exhaustive simulation of every possible damage scenario. Alternatively,

a number of real-time approaches have been proposed, able to detect a damaging event

but not localize it [88, 89]. Efficient localization algorithms generally require a long time

history to train on [90, 91]. Most importantly, however, many of these methods require

very well-observed systems with many sensors.

4.1.2 Contribution

This chapter asks the question: how can changes in partially-observed urban stormwater

or sewers systems be quickly detected and located? Answering this question will allow for

downstream changes, as detected by one sensor, to be mapped to upstream causes. This

approach abstracts a stormwater system as a linear graphical model, which is parameter-

ized with sensor data at the outlet of an urban watershed. This computationally-efficient

abstraction is rapidly-identifiable, which means that it can be quickly re-parameterized

to spatially localize changes in the stormwater system. The specific contributions of this

chapter are:

• A computationally efficient methodology, based on System identification and Kalman

Fitlering, that parameterizes a linear model of a storm water system using only

knowledge of infrastructure connectivity and a single sensor observation at the outlet

of a stormwater system

• A likelihood-based probabilistic approach that uses the linearized model to estimate

and localize potential damage in the entire system
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• A physically-based simulation of the approach, with a case study focused in detect-

ing and localizing clogged stormwater pipes in an urban watershed

• A discussion of the performance and limitations, seeking to specifically identify the

conditions and scale across which the methodology should be applied

The outcome of this chapter builds toward a larger goal of enabling real-time asset

management, which will transform emerging forms of streaming sensor data into action-

able insights for city water managers.

4.2 Methods

Our methodology for damage detection in stormwater systems is shown in Figure 4.1.

The urban watershed is represented as multi-input, single-output linear state-space system

where the only observable state is the flow at the outlet of the storm water network. The in-

puts are the subcatchments’ rainfall runoff, which are are assumed to be known. The outlet

of the watershed is measured by a flow sensor. It is assumed that only network connectivity

(nodes and pipes in the network) is known, and no other information is needed. Using the

sensor measurements, a maximum likelihood estimation approach is used to estimate the

parameters of the model, which is very computationally efficient given the linear model

assumption. Given a new rainfall event, if the measurements do not match the flows pre-

dicted by the model, an efficient search is then performed to determine which parameter

had the highest likelihood of change. Simulations yielding the highest likelihood scores

then indicate where the damage is most likely located. As an initial step, this chapter only

focuses on damage in the form of complete pipe blockages, with other types of damage to

be investigated in the future.
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Figure 4.1: A simplified abstraction of a complex system is generated through system identification
from a sensor observation. Then, when an anomalous signal is detected, an iterative search can be
performed quickly to probabilistically identify likely locations for damage.

4.2.1 Initial Model Fit

Here, a stormwater system is represented as a directed graph of connected nodes (pipes

and junctions). A larger system can be structured as a series of N discrete-time linear

differential equations, where N is the number of nodes in the system:

xi(t+ 1) = aiixi(t) + akixk(t)− ajixj(t) + biuk(t)

y(t) = xN(t) (4.1)

where xi(t) is the volume of water passing through node i at time t, y is the sensor

measurement at the outfall, and uk(t) is the runoff from subcatchment k at time t. The

volume of water passing through a node at any time is a function of the runoff, outflow,

and inflow for that node at the previous time step. This is shown graphically in Figure

4.2. The coefficients a and b are the parameters, which are to be estimated using the

downstream sensor data. For a junction node, the aii parameter is simply zero, whereas for

a storage node, the aii parameter will be on the interval [0, 1]. This is because the state at

the current time step is dependent on the state at the previous time step. Structuring these

equations in matrix form yields:

76



Figure 4.2: Node i where the flow passing through the node at the next time step (xi) is a function
of the runoff (bimum), the flow from upstream (akixk), the flow going downstream (aijxi), and the
flow staying at the node (aiixi)

x(t+ 1) =



a11 0 0 · · · 0 a1j 0 · · · 0

0 a22 0 · · · 0 a2j 0 · · · 0
... . . . ...

0 · · · aNj 0 · · · 0 aNN


x(t) +



b1k 0 · · · 0

0 · · · 0 b2k
...

... . . . ...

0 · · · bNk 0


u(t)

y(t) =

[
0 · · · 0 1

]
x(t) (4.2)

We simplify this notation as:

x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) (4.3)

Note that by coupling the differential equations in this form, the−aij parameter in Fig-

ure 4.2 (the flow to the downstream node) disappears, reducing the number of parameters

needing estimation. This results in a very sparse discrete time state-space system. The

problem can then be formulated in the context of a Maximum Likelihood system identi-
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fication framework to identify the parameters θ = [a11, a12, ..., aNN , b11, b12, ..., bNK ] that

define the system given a known topology. This procedure is explained in detail in [92].

The joint probability density of the observations is:

p(y(T )|θ) = p(y(0)|θ)
T∏
t=1

p(y(t)|y(t− 1), ..., y(1); θ) (4.4)

Defining the likelihood function as L(θ) = − log p(y(T )|θ) and assuming Gaussian

noise on the observations (runoff and sensor measurements, with unknown variance qk and

o, respectively), yields:

L(θ) =
T∑
t=1

log det Λt(θ) + εt(θ)
ᵀΛt(θ)

−1εt(θ) (4.5)

εt(θ) = yt − ŷt|t−1(θ) (4.6)

ŷt|t−1(θ) := E[yt|yt−1, θ] (4.7)

Λt(θ) := E[εt(θ)εt(θ)
ᵀ|yt−1, θ] (4.8)

To determine these quantities, a time-varying Kalman filter framework is used, yield-

ing:
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ŷt|t−1(θ) = Cx̂t|t−1(θ) (4.9)

x̂t+1|t(θ) = A(θ)x̂t|t−1(θ) +B(θ)ut +K(θ)εt(θ) (4.10)

K(θ) = (A(θ)Pt|t−1(θ)C
ᵀ)Λ−1t (θ) (4.11)

Pt+1|t = A(θ)Pt|t−1(θ)A(θ)ᵀ +B(θ)Q(θ)B(θ)ᵀ −

K(θ)Λt(θ)K(θ)ᵀ (4.12)

Λt(θ) = CPt|t−1(θ)C
ᵀ + o(θ) (4.13)

where ŷ is is the predicted signal, x̂ is the predicted state, Q is a diagonal matrix of

the observation noise (q1...qk) for each subcatchment k, K is the Kalman gain, P is the

covariance of the state estimate, and Λ is the innovations (the covariance of the residual).

Taking the gradient of the likelihood function with respect to θ, via the following recursive

terms, yields:
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∂L
∂θ

=
T∑
t=1

tr

(
Λ−1t

∂Λt

∂θ

)
+ 2

∂εᵀt
∂θ

Λ−1t εt − εᵀtΛ−1t
∂Λt

∂θ
Λ−1t εt (4.14)

∂εt
∂θ

= −C
∂x̂t|t−1
∂θ

(4.15)

∂x̂t+1|t

∂θ
=

∂A

∂θ
x̂t|t−1 + A

∂x̂t|t−1
∂θ

+
∂B

∂θ
ut +

∂Kt

∂θ
εt +Kt

∂εt
∂θ

(4.16)

∂Kt

∂θ
=

(
∂A

∂θ
Pt|t−1C

ᵀ + A
∂Pt|t−1
∂θ

Cᵀ −Kt
∂Λt

∂θ

)
Λ−1t (4.17)

∂Pt+1|t

∂θ
=

∂A

∂θ
Pt|t−1A

ᵀ + A
∂Pt|t−1
∂θ

Aᵀ + APt|t−1
∂Aᵀ

∂θ
+
∂B

∂θ
QBᵀ +B

∂Q

∂θ
Bᵀ +

BQ
∂Bᵀ

∂θ
− ∂Kt

∂θ
ΛtK

ᵀ
t −Kt

∂Λt

∂θ
Kᵀ
t −KtΛt

∂Kᵀ
t

∂θ
(4.18)

∂Λt

∂θ
= C

∂Pt|t−1
∂θ

Cᵀ +
∂O

∂θ
(4.19)

To determine the minimum of Equation 4.5, a Gauss-Newton approach is used, where

the update for θ is:

θi+1 = θi +Hi
∂L
∂θ

(4.20)

Hi = (JᵀJ)−1Jᵀ (4.21)

Jtk =
∂εt
∂θk

(4.22)

4.2.2 Detecting System Change

Once the initial state-space model is parameterized, it can then be used to predict flows at

the outlet. For damage detection, the likelihood function L(θ) can be modified slightly:
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L(θi) = − log p(y(T )|θi) (4.23)

where θi is the parameter subset associated with node i. With this formulation, when

an anomalous signal is detected and suspected, an iterative search over all the nodes in

the system can be quickly performed to identify the node with the highest likelihood of

having a pipe blockage. Focusing on a pipe blockage in a single output system provides

two benefits for the analysis. First, a single outfall will have a likelihood equivalent to the

mean squared error (MSE, with scaling). Second, when performing the iterative search

for possible damage locations, instead of implementing a complete system identification

procedure (as outlined in the previous section), each of the parameters in θi can simply be

set to zero to indicate damage (pipe blockage). Therefore, when performing the search, the

algorithm simply changes θi to zero, feeds the input signal into the modified state-space,

and checks the MSE of the signal against the anomalous signal. The result is a highly

efficient algorithm that takes mere seconds to analyze a large system (Algorithm 4.3).

The output of this procedure is not just one candidate site, at which damage is sus-

pected, but a list of possible damage locations, ordered by likelihood. This is an important

feature since many stormwater systems contain elements that are very similar (storage vol-

umes or travel times). This means that a very similar change in the outflow signal could

be caused by multiple sites. As such, it becomes important to reduce the search space to

the most likely damage locations, rather than just one point of interest. Nonetheless, it is

expected that one site will generally be returned as the location of highest likelihood of

damage.

It should be noted that if the damage scenario is only a partial blockage, then the system

identification approach outlined in Section 4.2.1 would need to be implemented iteratively

for each parameter set θi. While this is type of damage is not considered in this chapter,

the search could nonetheless be carried out over only a small number of parameters and be
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performed very efficiently.

1 Fit Initial Model
2 Initialize check =∞;
3 for m=1,2,...,10 do
4 Randomly initialize θ = [a11, a12, ..., aNN , b11, b12, ..., bNK ];
5 Estimate θm = argmin L(θm);
6 if L(θm) <check then
7 Set check← L(θm);
8 Set θ̂ ← θm;
9 end

10 end

11 Search
12 for node in nodes do
13 Set θnode ← [0 · · · 0];
14 lnode = L(θnode)

15 end
16 Output Damaged Node = min(lnode)

Figure 4.3: Change Detection Algorithm

4.2.3 Implementation

The water system being analyzed in this chapter is a real-world stormwater system in the

Midwestern United States. (Figure 4.4). Given the size of the watershed (5km2), a number

of sub-networks (up to 30 nodes) are delineated and analyzed. In this case study, the

sensor is located at the outlet of each sub network. For evaluation purposes, the sensor

readings are simulated using a SWMM model of the system, which provides physically

realistic flow values that could be expected in the field. Furthermore, the SWMM model

is used to simulate pipe blockages, which would not be possible in the field. A series of

scaled rain events from May of 2016 are used to force the SWMM model and the “virtual”

sensor readings are used in the analysis. These precipitation events are scaled to be roughly

equivalent to a 1-year storm. This ensures that the storm events were significant, but not

enough to fully flood the system. All simulations are carried out in MATLAB using the
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Linear System Abstractions

Figure 4.4: The stormwater network to be analyzed in this chapter. This particular network has an
area of nearly 5km2. Here, the SWMM model is overlaid on a map of the area.

MatSWMM toolbox [93].

Once the time series of the inputs and output of each systems are simulated, the initial

model is fit. The initial parameterization of the state space is randomized, and 10 random

restarts are used to ensure that the algorithm does not converge on a local minimum. The

random restart resulting in the best likelihood is then used as the initial model. The com-

putational time is also noted for performance evaluation. For reference, the full approach

was implemented on a laptop.

After fitting the initial linear model, pipes in the SWMM model are then “blocked,” one

at a time, by setting their cross-sectional area to zero. A new simulation is run to generate

the anomalous sensor signal at the outfall. With the new time series of the output, the

likelihood search is performed by iteratively setting the parameters for a given node to zero,

feeding the inputs into the state space model, and generating a modeled flow at the outfall.

83



Here, the likelihood is simply the MSE between the modeled flow and the simulated “true”

flow. All of the sub networks are then analyzed across a series of damage scenarios and

the performance of the approach is analyzed to determine how well it is able to detect the

location of the damages. The performance of the approach is also broadly evaluated across

a number of network topology types (sizes of the system, volume distributions, etc.) to

determine if the performance can be explained through features of the network.

The likelihood of damage is evaluated visually by plotting the network and color-

coding each node based on the likelihood it would yield the measured flow at the outfall.

For interpretability, the likelihood is expressed using normalized RMSE, which is equiva-

lent to the Nash Sutcliffe Efficiency:

E = 1− ‖y − ŷ‖
‖y − ȳ‖

(4.24)

where ‖·‖ is the 2-norm, y is the observed signal, ŷ is the estimated signal, and ȳ is the

mean of the observed signal. This yields a score between negative infinity and 1, where

a value equal to zero indicates that the signal has a fit equivalent to just taking the mean

value of the signal. A strong NRMSE is considered those above 0.7.

4.3 Results

4.3.1 Fit and Computational Complexity

The method proposed in this chapter is very computationally efficient compared to iter-

atively searching the parameters in a large scale hydrodynamic model. A network of 90

nodes (Figure 4.5) can be fit with a simplified state-space model in less than 30 minutes.

This fit is purely based on the topology of the network and the training data for the system

(the inputs from runoff and the output at the outfall as measured by a sensor). Further,

fitting the models is done in linear time, with some small variability due to some random
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Figure 4.5: The computational time required to fit the initial state space model as a function of the
number of nodes in the network. The model is fit in linear time, with some variation in convergence
time due to random initialization of the parameters
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Figure 4.6: Time Series of modeled vs observed flows. The linearized model abstraction is capable
of capturing the dynamics both before and after a pipe is damaged.

restarts converging faster than others.

Overall, the linear model is able to represent the flow dynamics across the studied

system with a large degree of agreement (Figure 4.6). This is true for both the undamaged

systems, as well as in cases when a pipe is damaged (linear model parameter set to zero).

While model fit was not the intended goal of this work, this nonetheless validates the ability

of simpler liner models to represented complex stormwater dynamics.

The search algorithm executes nearly instantaneously on a laptop (Figure 4.7). This is

primarily due to the fact that the focus is on pipe blockages, and therefore no optimization

procedure is needed to fit the parameters θi.

4.3.2 Damage Detection

Damage detection is evaluated across a number of different scenarios. Here, a set of exam-

ples is selected, including some that are able to localize the damage and some that do not.

As an initial proof of concept, a small test subcatchment covering just under half a square
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Figure 4.7: The computational time required to iterate over each node in a pipe blockage scenario
and identify the damaged location.

mile (northwest corner in Figure 4.4) is first analyzed. The results are shown in Figure 4.8,

where a main pipe was blocked and the algorithm was able to identify the proper node at-

tached to the pipe. It is important to note that other candidate nodes were identified as well,

but that the correctly identified node had the largest likelihood score. This is a relatively

simple network with one main trunk line, so more complex networks must be analyzed.

In Figure 4.9, a complex network with multiple storage nodes and two main branches

is tested. The algorithm is able to identify the broken pipe with a likelihood significantly

larger than any of the other candidate nodes. In Figures 4.10 and 4.11, the networks com-

prise of two main branches that intersect near or at the outfall. In each of these cases as

well, the algorithm was able to detect the broken pipe, even though many other locations

had similarly large likelihoods.

However, there are scenarios where this algorithm does not identify damage correctly.

The first scenario in which it cannot work is relatively simple (Figure 4.12). The pipe that
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Figure 4.8: Example performance on a simple network. The green link represents the broken pipe,
the green outlined node represents the node with the highest likelihood of damage, and the color
of the node shows the relative likelihood as a measure of the normalized RMSE, with negative
NRMSE values being set to zero. The more red a node, the higher the likelihood that it may be
damaged, according to the proposed approach. Circles represent junctions while squares represent
storage nodes.
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Figure 4.9: The algorithm is able to detect a pipe blockage with high confidence. The damaged
pipe is very close to the outfall and contributes the majority of the flow.
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Figure 4.10: The algorithm is able to detect the pipe blockage when each branch of the system is
contributing similar magnitudes of flow. Note that while many candidates were selected, the most
likely candidate was the correct node.
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Figure 4.11: The algorithm is again able to detect the pipe blockage when each branch of the system
is contributing similar magnitudes of flow.
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Figure 4.12: The algorithm does not identify the correct pipe because the contributing flow and
time of concentration from that pipe is quite similar to the identified node.

was broken and the pipe that was identified by the algorithm each have similar volumes

of water and travel times to the outfall, making it difficult to separate their contributing

dynamics at the outlet of the system.

A second major scenario where this algorithm does not perform well is when the flow

contribution from the broken pipe is small compared to the overall flow being measured

at the outfall. This is evident in Figure 4.13. The flow that would normally pass through

the broken pipe is approximately 2ft3/s at its peak, while the flow passing through the

outfall is approximately 100ft3/s. As such, the algorithm selects all the terminal nodes as

the likely candidates because their RMSE values will all be only slightly different from the

initial model.

The third major scenario where the algorithm does not perform well is when linearity

does not sufficiently describe actual dynamics. This happens in two ways. First, when the

water passes through too many segments of the system before reaching the outfall. The

result is that the flow at the outfall can be represented similarly by a number of different

parameterizations. Therefore, the initial model may not be accurately representing real-
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Figure 4.13: The algorithm does not identify the correct pipe because the contributing flow from
the pipe is relatively small, with the majority of the flow entering the network from the top left
branch. Therefore, all the terminal nodes are highlighted as candidate sites.
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Figure 4.14: The algorithm does not identify the correct pipe because it is too far from the outfall
and passes through too many storage nodes, resulting in non-linear dynamics at the outfall.
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world dynamics. It is observed that linearity is also challenged at storage nodes, which

have highly non-linear dynamics. The greater the volume of water in a storage node, the

more rapidly it will discharge, which makes it difficult to capture the dynamics at a storage

node using a single parameter. In Figure 4.14, the broken pipe is far upstream and the flow

of water passes through many storage nodes (represented by squares in figure). As a result,

none of the possible damage scenarios are given a very high likelihood.

4.4 Discussion

Currently, when an underlying process changes in a hydraulic or hydrologic model, de-

tecting that change is a time consuming process, requiring many simulations and, often,

intimate knowledge of the system being modeled. The method proposed herein is very

efficient at identifying system changes because it leverages the directed graph topology of

many water networks. With search simulations taking less than a second for networks as

large as 100 nodes, it is possible to efficiently iterate on not just single blockage scenarios,

but potentially for multi-blockage scenarios as well (Figure 4.7). This should make it very

suitable for real-time applications.

While efficiency is important for enabling real-time asset management, the accuracy

must still be strong. Currently, the method is reliable for a subset of scenarios, which can

be generalized to provide guidelines for sensor deployment. These scenarios are tied to the

identifiability of the system [94, 95]. For a system to be uniquely identifiable a number of

requirements must be met to ensure that there can only be a single parameterization that

defines the system. First, the system must be sufficiently excited. That is, the inputs must

be large enough to perturb the system components. Therefore, small rain events will not

be sufficient for detecting system changes. This is why larger rain events, roughly 1-year

storms, were used for this analysis.

The second is centered around the parameters themselves. For a system to be globally
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identifiable, the Jacobian of its Markov Parameter Matrix must be full rank [94], where the

Markov Parameter Matrix is:

G(θ) =



D(θ)

C(θ)B(θ)

C(θ)A(θ)B(θ)

...

C(θ)A(θ)2n−1B(θ)


(4.25)

where A,B, and C are the matrices as outlined in Equation 4.3 and D = [0 · · · 0] ∈ Rm

where m is the number of inputs (subcatchments). Unfortunately, due to the sparse nature

of this problem with a single output and few terms on the diagonal of the A matrix, the

large majority of stormwater systems will not be globally identifiable. This means that

there will be multiple parameterizations of the initial model fit that can yield identical

results at the outflow of the system as measured by a sensor.

However, there is the potential to determine if subsystems of the overall system are

uniquely identifiable. For instance, the work detailed in [96] describes how compartments

of systems can be identified. Compartments are essentially subsystems that are each in-

put/output connectable. This test can be used to determine if simplifications and subdivi-

sions into compartments can be made to yield an identifiable system. Then, the algorithm

outlined herein can be used to determine which “compartments” are likely to have under-

gone some change as opposed to finding one specific node. At this time, however, there is

no heuristic for optimally determining the best compartmentalization of the system. This is

because much of the research to date has focused on systems with only a few components,

and therefore an exhaustive search can be done efficiently. More research is necessary to

enable the efficient compartmentalization of systems larger than a few nodes.

In general, this chapter is able to identify a few requirements for an identifiable system

based on the simulations presented. The first requirement for successful identification is
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heterogeneity of the stormwater system. For example, two pipes with similar contributing

volumes and times of concentration will be indistinguishable from each other at the out-

fall. Alternatively, two pipes with similar times of concentration but different contributing

volumes will still be distinguishable by the algorithm. If a network has homogeneous el-

ements, the algorithm will be effective at proposing multiple candidates, instead of just

one. This ties back into the requirement that the Jacobian of the Markov parameter ma-

trix should be full rank. If we have a system that is nearly full rank, then subsystems of

the overall network should be identifiable. This should still help decision makers because

it reduces the number of nodes that need to be inspected for damage. The algorithm will

work best at locating the exact damage when the network is heterogeneous so that different

pipes are distinct.

The algorithm also does not perform strongly when flows at damaged locations are rel-

atively small compared to the outlfow. This is tied to the sufficient excitation requirement.

Simply put, if a small pipe breaks upstream, it is hard to detect this change at the outflow

to begin with. If the blocked and unblocked signals are very similar, then the algorithm

will have trouble distinguishing smaller upstream nodes from each other. While this is

difficult to avoid, there is promise to being able to distinguish the “true” broken link from

the others. As illustrated in Figures 4.10 and 4.11, the identified nodes did not have signifi-

cantly higher likelihoods than other nodes within the system. However, the proper damage

location was still identified. This was a consistent trend. Despite a relatively large number

of likely candidates, the most likely candidate was consistently the node that was actually

damaged. This, of course, depends on having an initial fit for the state-space model that

well represents the real-world system dynamics.

Additionally, if a network is too large, it becomes difficult to identify broken pipes

due to the complexity of flows, again tying back to the full rank requirement of G′(θ).

Each time the flow passes through a node, the state space transforms the flow. In these

cases, a challenge arises related to the uniqueness of the linear model fit. As the number of
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flow transfers increases, a wider array of potentially equivalent parameterizations becomes

possible for representing the output signal. Identifying which of those parameterizations is

correct is not necessarily possible with only a single observation at the outflow. Therefore,

when a pipe is blocked, there can be a number of locations in the network that may match

the dynamics similarly. More research must be done to determine how large the model

may be before uniqueness becomes an issue, and whether constraint-based optimization

may enable unique parameterizations to arise. Here, networks of around 30 nodes or fewer

are detectable for damage.

Finally, linear-time-variant and nonlinear storage nodes pose a challenge to the linear-

time-invariant representation. In a stormwater network there may often be underground

cisterns, ponds, swales. Most of these storage nodes behave non-linearly. Larger volumes

of water tend to discharge at a faster rate, many nodes have multiple outlets for various

heights of water, and some can even have passive or active controls. To address this chal-

lenge, a number of modifications can be made. If a storage node has multiple outlets, then

indicator functions are needed. That is, the parameterization is a function of the magnitude

of xi being above or below a certain threshold. Other storage nodes are designed to have a

certain retention time, so the parameterization is a function of the time since the flow en-

tered the pond. These nodes may be linear, but are not time-invariant. Work must be done

to evaluate how these situations can best be represented and estimated using linear models.

This process most likely will involve adding further states to the model. For instance, if

representing a storage node requires knowledge of the previous m time steps, then m more

states would need to be added to the model and parameterized. Finding a simple yet robust

way to model these non-linear processes will go a long way towards making this approach

operationally viable.

While there are a number of issues to still address, this methodology does show signif-

icant promise. It has proven capable of detecting pipe blockages on smaller heterogeneous

networks (Figures 4.9, 4.10, 4.11), and it has done so without the need for a hydrodynamic
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model. This is an important distinction. If a municipality already has accurate data for

runoff and outflow, or are capable of simulating it accurately using SCS or other methods,

then this method can represent the system effectively. The downside, in the specific case

of this current implementation, is that the method can currently only detect new damage.

However, if a municipality had a well-calibrated stormwater model at some point in its

history, then this method could also be used to detect changes to the system in the past, not

just for real-time detection.

Another advantage of this method is that it probabilistically locates candidates. Even

if it does not always identify one single problem location, the method poses a great first

step towards providing decision makers with information that would otherwise be difficult

to systematically detect. As the initial model fit becomes more representative of real-

world dynamics, the detectability of the blocked pipe will increase. Yet, as is evident in

Figure 4.11, even with multiple candidates, the algorithm detects the proper pipe on many

occasions among a group viable locations.

A further benefit of this methodology is that it can provide decision makers with a lower

bound sensor placement strategy. The method can reliably identify blocked pipes with low

network depth and high contributing flow ratio, so with this knowledge a municipality can

begin to deploy sensors to partition the network into many subnetworks of approximately

30 nodes. As the method is improved, the spacing of these sensors, and therefore the size

of the subnetworks, will likely be able to be increased. With an expanded formulation,

multiple sensors could also be used to help refine the damage estimates by eliminating

unlikely candidates.

Finally, while the case study presented here focused on real-time asset management,

the method may be directly applicable to any situation where a complex model can be

represented by a directed graph. This may one day include other water systems such as

stream networks, sewer systems, and possibly even integrated models, where there are

many submodels feeding into a larger forecast. Representing each of these submodels by
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a small parameter set can guide the modeler towards understanding where changes may be

occurring.

4.5 Conclusion

This work provides a valuable first step to demonstrating the utility of simplified model

abstractions for damage localization in stormwater systems. Presently, real-time asset

management is limited by the ability to either deploy large observation networks or the

ability to compute many simulations rapidly. This method, while still in its early stages,

will enable municipalities to perform real-time asset management with limited sensing re-

sources. Future work will be necessary to address non-linearities at storage nodes and the

level of heterogeneity needed to enable unique and accurate representations of real-world

dynamics.
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CHAPTER 5

Thesis Conclusion

5.1 Summary of Discoveries

The goal of this dissertation was to advance the ability to understand water systems by

enabling the fusion of large hydrologic and hydraulic models with new forms of sensor

data. To that end, a number of fundamental discoveries were made in each chapter:

Chapter 2: I discovered that noisy, irregular observations could be fused with state of the

art models to reveal dynamics that were being modeled insufficiently through nu-

merical modeling alone. This work will allow operational models to ingest a greater

wealth of calibration data so that future forecasts can better capture hydrometeoro-

logical dynamics and improve decision making.

Chapter 3: I discovered that coarse forecasts from large scale models could be dynami-

cally mapped to site-scale estimates by coupling with sensor observations. This work

will allow decision makers to deploy sensors and rapidly couple their measurements

with a large-scale model. This will save time and money while also providing much

more useful and timely information.

Chapter 4: I discovered that simplified model abstractions can be used to detect where

a hydrologic or hydraulic process may have changed in near real-time. This will
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enable real-time asset management without the need re-calibrate large models or

maintain very large sensor networks.

5.2 Future Directions

This dissertation made a number of foundational discoveries that should be investigated

further to support the emergence of Big Data Hydrology. In Chapter 2, much of the work

was performed in a post-processed setting, months to years after the observations were

made. To incorporate non-standard sensor measurements into operational forecasts, more

research should be conducted to create an on-line machine learning platform. Additionally,

while the method itself will be valuable to the scientific community, more research should

be done to analyze the specific results from the case study on the Great Lakes. Given

the time period of 2006-2014, this dataset provides the scientific community with valuable

estimates of overlake dynamics during the time period in which the Great Lakes rebounded

from the El Niño as well as experienced to the “polar vortex”. Further, there is a consensus

within the community that wind speeds will continue to increase on the Great Lakes due

to rising air temperatures, but there is evidence to suggest in this dataset that this may not

be the case.

For the research performed in Chapter 3, the method was based on a causal relationship

between the forecasted flow and the observed water level. But because these two variables

are coupled, introducing a non-causal relationship may yield improved results. The major

limitation, however, was the assumption of accurate, near perfect, forecasts. As such,

more work is needed to investigate the role of uncertain forecasts and weather inputs. As

understanding improves of how the methodology behaves in other cities and locales, this

method may be used for sensor placement strategies or even enable forecasting of stream

heights at ungaged locations.

For the research performed in Chapter 4, a significant amount of future work is needed
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before the method can become operational. As stated previously, the method works across

a specific set of network types. Research must be conducted to effectively and efficiently

model non-linear processes within the systems. Further, improved constraints on the initial

model fit should limit the issue of non-uniqueness caused by the “curse of dimensional-

ity”. Once these primary issues are addressed, more research should then be conducted

to understand at what scales this method can work effectively, which will aid in sensor

placement .

As novel sources of water data continue to emerge, improved tools and methods are

needed to properly combine these data with knowledge embedded in more classical hy-

drologic and hydraulic models. By extracting information from non-standard data sources

and coupling it with the domain expertise embedded in large-scale models, the field of

hydrology will be able to move forward into the era of Big Data. The work in this disser-

tation only scratches the surface of what may be learned by applying machine learning and

systems theory to hydrology, but much research remains to be conducted to support this

emerging field.
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[41] Blöschl, G., Bárdossy, A., Koutsoyiannis, D., Kundzewicz, Z. W., Littlewood, I.,
Montanari, A., and Savenije, H., “On the future of journal publications in hydrology,”
Water Resources Research, Vol. 50, No. 4, 2014, pp. 2795–2797.

[42] Office of Water Prediction, “The National Water Model,” 2017.
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APPENDIX A

Supporting Information for Big Ship Data:
Using Vessel Measurements to Improve

Estimates of Temperature and Wind Speed on
the Great Lakes

This section presents figures similar to Figure 2.1 in the main article, but broken down by
variable measured (Figures S1-S3).

This section also presents figures similar to Figures 2.9 and 2.10 in the main article,
but for every season in the dataset (Figures S4-S39).
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Figure A.1: Comparison of ship measurement densities to the stationary observations of tempera-
ture. Red color indicates few measurements, yellow corresponds with locations which contain over
100 measurements, while blue indicates no available ship measurements.
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Figure A.2: Comparison of ship measurement densities to the stationary observations of surface
temperature. Red color indicates few measurements, yellow corresponds with locations which
contain over 100 measurements, while blue indicates no available ship measurements.
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Figure A.3: Comparison of ship measurement densities to the stationary observations of wind
speed. Red color indicates few measurements, yellow corresponds with locations which contain
over 100 measurements, while blue indicates no available ship measurements.
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Figure A.7: Fall 2006
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Figure A.8: Spring 2007
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Figure A.9: Summer 2007

118



-9
0

-8
5

-8
0

Original

4
2

4
4

4
6

4
8

02468

-9
0

-8
5

-8
0

Corrected

4
2

4
4

4
6

4
8

02468

-9
0

-8
5

-8
0

Adjustment

4
2

4
4

4
6

4
8

-3-2-101

A
ir

 T
e

m
p

e
ra

tu
re

-9
0

-8
5

-8
0

Standard Deviation

4
2

4
4

4
6

4
8

1
.8

1
.9

22
.1

2
.2

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

24681
0

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

24681
0

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

-6-4-2024

W
in

d
 S

p
e

e
d

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

2
.7

2
.8

2
.9

3

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

681
0

1
2

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

681
0

1
2

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

-3-2-101

S
u

rf
a

c
e

 T
e

m
p

e
ra

tu
re

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

1
.6

1
.7

1
.8

1
.9

22
.1

Figure A.10: Fall 2007
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Figure A.11: Winter 2008
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Figure A.12: Spring 2008
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Figure A.13: Summer 2008
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Figure A.14: Fall 2008
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Figure A.15: Winter 2009
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Figure A.16: Spring 2009
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Figure A.17: Summer 2009
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Figure A.24: Spring 2011
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Figure A.25: Summer 2011
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Figure A.28: Spring 2012
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Figure A.29: Summer 2012
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Figure A.30: Fall 2012
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Figure A.31: Winter 2013
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Figure A.35: Spring 2014
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Figure A.36: Summer 2014

145



-9
0

-8
5

-8
0

Original

4
2

4
4

4
6

4
8

0246

-9
0

-8
5

-8
0

Corrected

4
2

4
4

4
6

4
8

0246

-9
0

-8
5

-8
0

Adjustment

4
2

4
4

4
6

4
8

-3-2-101

A
ir

 T
e

m
p

e
ra

tu
re

-9
0

-8
5

-8
0

Standard Deviation

4
2

4
4

4
6

4
8

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

4681
0

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

4681
0

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

-6-4-202

W
in

d
 S

p
e

e
d

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

22
.2

2
.4

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

4681
0

1
2

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

4681
0

1
2

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

-2024

S
u

rf
a

c
e

 T
e

m
p

e
ra

tu
re

-9
0

-8
5

-8
0

4
2

4
4

4
6

4
8

1
.2

1
.4

1
.6

1
.8

Figure A.37: Fall 2014
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APPENDIX B

Supporting Information for Using in-situ
measurements to dynamically map large-scale

models to site-scale forecasts: A case study using
the National Water Model

This file provides figures comparable to Figures 3.6, 3.7, and 3.8 for all the other sites
studied.
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Figure B.1: Site BEARCRK01
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Figure B.2: Site BEAVER01
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Figure B.3: Site BEAVER02
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Figure B.4: Site BEAVER03

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

0.5

1

1.5

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

1.4

1.6

1.8

2

2.2

2.4

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

0

5

10

15

20

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

BEAVERCRK01, Mean nRMSE = -10.12%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-2

-1

0

1

2

3

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.5: Site BEAVERCRK01
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Figure B.12: Site BOYERRV01
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Figure B.14: Site BRCHFLD01
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Figure B.15: Site BRCKCMP01
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Figure B.16: Site BRSHYCR01
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Figure B.17: Site BVRCR01
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Figure B.18: Site CAMPCR01
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Figure B.19: Site CEDARRV02
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Figure B.20: Site CEDARRV04
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Figure B.22: Site CHQSTCR01

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

0.5

1

1.5

2

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

1

1.2

1.4

1.6

1.8

2

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

0

1

2

3

4

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

CHQSTCR02, Mean nRMSE = 12.31%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-1

-0.5

0

0.5

1

1.5

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.23: Site CHQSTCR02
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Figure B.24: Site CHSLSCR01
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Figure B.25: Site CLRCRK01
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Figure B.26: Site CLRCRK03
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Figure B.28: Site CLRCRKW01
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Figure B.30: Site CRANECR02
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Figure B.31: Site CTFSHCR01
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Figure B.32: Site DEEPCRK01
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Figure B.33: Site DEERCR01
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Figure B.34: Site DRNGDTCH01
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Figure B.35: Site DRYCR01
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Figure B.36: Site DRYCR02
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Figure B.37: Site DRYCRK02
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Figure B.38: Site DRYRNCRK01
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Figure B.39: Site DSMNSRV01
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Figure B.40: Site DSMNSRV03
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Figure B.42: Site DUCKCR01
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Figure B.43: Site EFDSMNS01
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Figure B.44: Site EINDNCR01
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Figure B.45: Site ELKRN01
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Figure B.46: Site ENDWY01
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Figure B.47: Site ENISH01
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Figure B.48: Site ENISH02
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Figure B.50: Site ENISH04
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Figure B.52: Site FOURMLE01
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Figure B.54: Site FOURMLE03
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Figure B.55: Site GENEVACR01
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Figure B.56: Site GRANCRK01
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Figure B.57: Site GRNGRCR01
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Figure B.58: Site HOOSRCR01
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Figure B.59: Site HRGVCR01
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Figure B.60: Site INDCR01

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

5

10

15

20

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

1.5

2

2.5

3

3.5

4

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

0

1

2

3

4

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

INDCR04, Mean nRMSE = 32.25%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-0.5

0

0.5

1

1.5

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.61: Site INDCR04
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Figure B.62: Site INDIAN01

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

0.1

0.2

0.3

0.4

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

1.8

2

2.2

2.4

2.6

2.8

3

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

0

0.5

1

1.5

2

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

INDIAN02, Mean nRMSE = -7.18%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-0.4

-0.2

0

0.2

0.4

0.6

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.63: Site INDIAN02
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Figure B.64: Site IOWARV01
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Figure B.65: Site KEGCR01
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Figure B.66: Site LAKECR01
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Figure B.67: Site LTLCEDAR01
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Figure B.68: Site LTLCEDAR02
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Figure B.69: Site LTLSIOUX01
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Figure B.70: Site LTLSIOUX02

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

5

10

15

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

3.5

4

4.5

5

5.5

6

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

10

15

20

25

30

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

LTLSIOUX03, Mean nRMSE = 23.88%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-1

-0.5

0

0.5

1

1.5

2

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.71: Site LTLSIOUX03
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Figure B.72: Site LTLSIOUX04
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Figure B.73: Site LTLSIOUX05
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Figure B.74: Site LTLSOAP01
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Figure B.75: Site LTLTKY01
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Figure B.76: Site LTLTKY02
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Figure B.77: Site LTLWAPSI01
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Figure B.78: Site LTLWLNT01
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Figure B.79: Site MADCRK01
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Figure B.80: Site MADCRK02
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Figure B.81: Site MAPLERV01
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Figure B.82: Site MAPLERV02
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Figure B.83: Site MCHKNCK01

188



Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

5

10

15

20

25

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

2.2

2.3

2.4

2.5

2.6

2.7

2.8

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

0

1

2

3

4

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

MDCRK01, Mean nRMSE = 7.97%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-0.2

-0.1

0

0.1

0.2

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.84: Site MDCRK01
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Figure B.85: Site MDDLRCCN01
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Figure B.86: Site MDDLRCCN02
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Figure B.87: Site MDDLRCCN03
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Figure B.88: Site MQKTARV01
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Figure B.89: Site MQKTARV02
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Figure B.90: Site MQKTARV04
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Figure B.92: Site MSQUTOCR01
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Figure B.93: Site MSQUTOCR02
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Figure B.94: Site MUDCR01
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Figure B.95: Site MUDCRK01
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Figure B.96: Site NENGLSH01
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Figure B.97: Site NFCTFSH01
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Figure B.98: Site NFMQKTA01
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Figure B.99: Site NRCCNRV01
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Figure B.100: Site NRCCNRV02
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Figure B.101: Site NRCCNRV03
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Figure B.102: Site NSKNK01
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Figure B.103: Site NWLNTCR01
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Figure B.104: Site NWLNTCR02
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Figure B.105: Site OCHYDNRV01
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Figure B.106: Site OTTERCR01
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Figure B.107: Site OTTRCRK01
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Figure B.108: Site OTTRCRK02
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Figure B.109: Site OTTRCRK03
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Figure B.110: Site OTTRCRK04
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Figure B.111: Site PRAIRIECRK01

202



Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

0

2

4

6

8

10

12

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Learning Phase: Modeled Flow

Oct 10 Oct 24 Nov 07 Nov 21 Dec 05

Date 2016   

1

1.5

2

2.5

3

M
e

a
s
u

re
d

 W
a

te
r 

L
e

v
e

l 
(f

t)

Learning Phase: Measured Water Level

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

0

0.5

1

1.5

2

2.5

M
o

d
e

le
d

 F
lo

w
 (

c
fs

)

Prediction Phase: Modeled Flow

PRICECR02, Mean nRMSE = 9.16%

Feb 25 Mar 04 Mar 11 Mar 18 Mar 25 Apr 01

Date 2017   

-0.4

-0.2

0

0.2

0.4

S
ta

g
e

 (
ft

)

Prediction Phase: Measured and Predicted Water Level

Measured Water Level

Predicted Water Level

Dynamical Mapping Ensemble

Figure B.112: Site PRICECR02
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Figure B.113: Site RAPIDCR01
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Figure B.114: Site RAPIDTRB01
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Figure B.115: Site RAVENCR01
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Figure B.116: Site RBRTSCR01
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Figure B.117: Site RCCNRV01
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Figure B.118: Site RLSTNCR01
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Figure B.119: Site ROCKCR01
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Figure B.120: Site ROCKCR02
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Figure B.121: Site SBVRCRK01
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Figure B.122: Site SCHQSTCR01
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Figure B.123: Site SENGLSH01
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Figure B.124: Site SFIOWA01
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Figure B.125: Site SFIOWA03
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Figure B.126: Site SHLRK01
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Figure B.127: Site SHLRK02
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Figure B.128: Site SHLRK03
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Figure B.129: Site SHLRK04
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Figure B.130: Site SHLRK05
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Figure B.131: Site SLOUGHCR01
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Figure B.132: Site SLVRCR01
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Figure B.133: Site SOAPCR01
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Figure B.134: Site SOAPCR03
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Figure B.135: Site SPRINGCR01
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Figure B.136: Site SPRNGCRK01
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Figure B.137: Site SQWCR01
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Figure B.138: Site SQWCR02
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Figure B.139: Site SQWCR03
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Figure B.140: Site SQWCR04
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Figure B.141: Site SRCCNRV01
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Figure B.142: Site SSKNK01
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Figure B.143: Site SSKNK02
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Figure B.144: Site SSKNK03
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Figure B.145: Site SSKNK04
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Figure B.146: Site SUGARCR01
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Figure B.147: Site TIPTNCR01
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Figure B.148: Site TIPTNCR02
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Figure B.149: Site TKYRV01
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Figure B.150: Site TKYRV03
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Figure B.151: Site TRBLSM01
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Figure B.152: Site UIWARV01
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Figure B.153: Site VLGARV01
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Figure B.154: Site VLGARV02
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