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ABSTRACT

Financial market activity is increasingly controlled by algorithms, interacting
through electronic markets. Unprecedented information response times, autonomous
operation, use of machine learning and other adaptive techniques, and ability to pro-
liferate novel strategies at scale are all reasons to question whether algorithmic trading
may produce dynamic behavior qualitatively different from what arises in trading un-
der direct human control. Given the high level of competition between trading firms
and the significant financial incentives to trading, it is desirable to understand the
effect incentives have on the behavior of agents in financial markets. One natural
way to analyze this effect is through the economic concept of a Nash equilibrium,
a behavior profile of every agent such that no individual stands to gain by doing
something different.

Some of the incentives traders face arise from the complexities of modern market
structure. Recent studies have turned to agent-based modeling as a way to capture
behavioral response to this structure. Agent-based modeling is a simulation paradigm
that allows studying the interaction of agents in a simulated environment, and it has
been used to model various aspects of financial market structure. This thesis builds
on recent agent-based models of financial markets by imposing agent rationality and
studying the models in equilibrium.

I use empirical game-theoretic analysis, a methodology for computing approxi-
mately rational behavior in agent-based models, to investigate three important as-
pects of market structure. First, I evaluate the impact of strategic bid shading on
agent welfare. Bid shading is when agents demand better prices, lower if they are buy-
ing or higher if they are selling, and is typically associated with lower social welfare.
My results indicate that in many market environments, strategic bid shading actu-
ally improves social welfare, even with some of the complexities of financial markets.
Next, I investigate the optimal clearing interval for a proposed market mechanism,
the frequent call market. There is significant evidence to support the idea that traders
will benefit from trading in a frequent call market over standard continuous double

auction markets. My results confirm this statement for a wide variety of market



settings, but I also find a few circumstances, particularly when large informational
advantages exist, or when markets are thin, that call markets consistently hurt wel-
fare, independent of frequency. I conclude with an investigation on the effect of trend
following on market stability. Here I find that the presence of trend followers alters
a market’s response to shock. In the absence of trend followers, shocks are small
but have a long recovery. When trend followers are present, they alter background
trader behavior resulting in more severe shocks that recover much more quickly. I
also develop a novel method to efficiently evaluate the effect of shock anticipation
on equilibrium. While anticipation of shocks does make markets more stable, trend

followers continue to be profitable.
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CHAPTER 1

Introduction

Over the past couple of decades the landscape of U.S. financial trading has changed
significantly. Automated trading algorithms accounted for over half of all U.S. eq-
uities trading in 2017, up from a little over a quarter in 2006 (Meyer, Bullock, and
Rennison 2018). Much of this activity—known as high-frequency trading (HFT)—is
from algorithms that have incredibly fast access to market information and react near
the fundamental limits of communication, These developments have evolved our fi-
nancial system from one where changes took place on the order of minutes and every
event was the result of human decision making, to one where every market in the
world is connected by low-latency, autonomous, independent algorithms. These al-
gorithms respond to both internal and external information, creating feedback and
market dynamics that are hazily understood at best.

This shift in market dynamics and its potential effect on participants hasn’t gone
unnoticed. Many academics and financial insiders have argued about whether HFT
is beneficial or detrimental to modern markets. Evidence suggests that HFT im-
proves liquidity and enhances the informativeness of quotes (Hendershott, Jones, and
Menkveld , but it also fuels wasted investment in low-latency communication
and reduces the welfare of other market participants (Budish, Cramton, and Shim
2015, Wah and Wellman . While the two negative studies cited present differ-
ent causes for welfare loss, each cause can be traced back to one underlying feature
of modern markets: trades are matched as soon as they arrive. This instantaneous
matching results in a winner-takes-all system for the fastest participant. A proposed
solution to restore welfare is to switch from continuous time markets to discrete time
call markets with frequent periodic clearing, which reduce the benefits from incre-
mental speed advantages. While there has been some research surrounding frequent
call markets, including their effects on HFT and how they could comply with mar-
ket regulation (Budish, Cramton, and Shim , most of the existing studies that



suggest a choice of frequency do so with little evidence.

Perhaps the most obvious and pressing effect of these financial market changes is
the rise in catastrophic financial events. Some such events are simply the result of
negligence, like the 2012 Knight Capital incident, where a software bug resulted in
the loss of over $440 Million, and a subsequent indictment by the SEC (SEC 2013).
But some, like the 2010 Flash Crash, where major equity indices fell 5% in minutes
before rebounding almost as quickly, were still being actively investigated as recently
as last year (Kirilenko et al. R017). The Flash Crash has been attributed to multiple
causes including a large misplaced order and alleged market manipulation (Popper
and Anderson , although the latter is widely disputed as a cause of the Flash
Crash. The lengthy analysis and general uncertainty about factors contributing to
the Flash Crash underscores the difficulty in understanding the cause of catastrophic
market events.

In order to explore the issues brought on by automated trading, I use a method-
ology that I believe exposes aspects of modern financial markets that are difficult to
express via alternative methods. There are three common ways with which scientists
study financial markets, 1) using analytic models and classical game theory to predict
the behavior of agents, 2) using historic data and financial analysis to extrapolate fu-
ture market behavior, 3) and using agent-based models to ascribe behavior to market
participants and study market outcomes predicated on that behavior.

Analytic models have proven to be quite useful; they sometimes allow characteri-
zation of the space of equilibria beyond simple enumeration, and they offer a precise
characterization of effects within their models (Budish, Cramton, and Shim Du
and Zhu ; Satterthwaite and Williams . However, analytic models are often
simplified to make them more amenable to analysis techniques. For example, I am
unaware of any analytic model that incorporates agent reentry in a continuous double
auction (CDA), an important detail of the models presented in this thesis. This is
not to say that analytic models are not insightful, but they often remove complexity
by design, which is a problem if the complexity is a relevant feature.

A second approach, using empirical analysis of historic financial data, can remedy
this problem as it reflects whatever complex interactions generate it. However, historic
data is observational, and it can only be used to answer observational questions, like
“are market crashes frequently preceded by a large sell order?” What they cannot
directly address are counterfactual questions, like “will a novel market intervention
prevent large sell orders from triggering market crashes?”

The third technique lies somewhere between these first two. Agent-based mod-



els simulate the interactions between autonomous agents. They can account for the
complexity lacking in analytic models, by expressing any desired complexity in simu-
lation. Agent-based models also provide a means to answer counterfactual questions.
Once created, the model can run under many environments to investigate how a new
environment changes qualitative or quantitative behavior. These models still have
one large flaw: the behavior of agents is entirely prescribed by the model designer.
Agents change their behavior only in explicitly designed ways. Often, these models
are calibrated to market data, but the rules agents follow remain fixed.

The technique employed in this thesis, known as Empirical Game-Theoretic Anal-
ysis (EGTA) (Wellman , improves on standard agent-based models by allowing
agents to strategically react. Instead of prescribing agent behavior in an environment,
EGTA uses parameterized strategies and agent utilities to induce a normal-form game
from the agent-based model. From this game, any game-theoretic solution concept
can be used to determine agent behavior. In the market settings investigated in this
thesis we solve for Nash equilibria, where agents are mutually best responding. This
makes aggregate agent behavior less dependent on the design of individual agent
strategies because agents will adopt different strategies depending on the utility they
achieve for adopting them. The result is agent behavior that is more dependent on
the utilities and solution concept, which in turn reduces the potential for experi-
menter bias in strategy design. In addition, Nash equilibration with even a set of
simple parameterized strategies often makes agents competitive with more compli-
cated strategies. The general form of the agent-based model I employ is detailed in
Chapter I, and the details of the EGTA analysis are covered in Chapter [II.

This dissertation analyzes three different case studies of agent behavior in finan-
cial markets. I investigate when strategic bid shading improves agent welfare over
truth telling in Chapter IV. Bid shading is when agents submit orders that guarantee
some level of profit conditioned on transaction. This reduces the chance of an order
transacting, which can lower overall welfare, but is often beneficial to shading agent.
My results indicate that even with the complexities of financial markets, strategic
bid shading improves welfare in most environments, mirroring prior work with simple
CDAs (Zhan and Friedman . In Chapter V' I use empirical mechanism design
to evaluate how the length of the clearing interval in frequent call markets affects
agent welfare. I find that in many environments a sufficiently short clearing inter-
val provides a benefit to agent welfare. However, in markets that are thin and have
a large amount of adverse selection, frequent call markets hurt welfare. I conclude

with a study on how trend followers, agents that extrapolate value from price trends,



affect market stability in Chapter VI. My results indicate that trend followers alter
the dynamics of how a market responds to external shocks. Without trend followers,
background agents have incentive to use price information in their value estimate,
causing recovery after a shock to be slow as agents’ beliefs reset. Trend followers
crowd out background agents, removing their incentive for using price information.
As a result, market shocks with trend followers are much more severe, amplified by
the trend followers, but recover much more quickly because agent beliefs do not need
to reset. The models and methodologies underpinning these results are robust and
extensible to further forms of analysis predicated on agent rationality. They build on
previous work in this area and continue to demonstrate that empirical microeconomic

models of financial markets produce useful insight into market microstructure.



CHAPTER 11

Financial Market Simulator

My experiments employ a configurable financial market simulator, originally de-
veloped by Elaine Wah and since edited by student researchers in the Strategic Rea-
soning Group, including many contributions by myself. The simulator in some form
has been used in many experiments covering topics as diverse as strategic market
choice (Wah, Wright, and Wellman and spoofing (Wang and Wellman [2017)).
Actors in financial markets hold multiple units of a security which they both buy and
sell. They frequently do not have perfect information about the security’s value, and
they often trade with more informed agents. This simulator was designed to capture
all of these qualitative aspects in order to accurately model the agent interactions
and incentives in modern financial markets.

Almost all modern financial markets use the same basic mechanism. Agents in-
teract with the market by placing limit orders representing the maximum (minimum)
price an agent is willing to buy (sell) a single unit of the security. If at any point two
agents are willing to transact—one agent’s maximum price to buy a unit is greater
than or equal to another agent’s minimum price to sell a unit—the orders match, and
the agents trade at the price of the incumbent order. This mechanism is also known
as a continuous double auction (CDA).

For simplicity, I model a single security traded in a CDA market. Prices and time
are fine-grained but discrete, and agent interactions are strictly ordered. If two agents
arrive at the market at the same time ¢ they act in a random order; one will always
interact with the market before the other. Therefore, even though time is discrete,
agent interaction with the market is continuous. Simulations run for a finite horizon
T. The market maintains and reveals price quotes reflecting the best outstanding
orders at the current time as well as past transaction prices; other bids in the market

are not visible to agents.



2.1 Valuation Model

Each agent has an individual valuation for the security comprised of private and
common components. The private component provides agents a reason to trade.
There are many reasons for why an agent would have a private valuation for security,
such as liquidity demands or hedging with a correlated asset. This simulation simply
models a general private value as a way to abstract an agent’s desire to trade. The
common component serves to model the resale value of a security and to provide a
source of adverse selection, described shortly. The two components are added together
to compute an agent’s utility.

The common component is modeled as a stochastic fundamental value. Let f; de-
note the fundamental value for the security at time ¢. The fundamental is generated by

a mean-reverting stochastic process, the discrete analogue of the Ornstein-Uhlenbeck

process (Doob [1942)):

ft:Tf+(1—T)ft—1+St, Jfo=1, sth(O,af). (2.1)

sy is a random Gaussian shock at time ¢, with variance o>—hereafter referred to as the
fundamental shock variance. The fundamental shock variance controls the volatility
of the fundamental value. Parameter r € [0, 1] specifies the tendency by which the
fundamental reverts back to the mean f; r = 0 corresponds to a martingale Gaussian
fundamental.

The time-varying fundamental presents agents with an issue of adverse selection
(Akerlof —trading with agents who have better information—as standing orders
reflect outdated information from the time submitted. If the fundamental shifts
significantly, subsequently arriving agents are more likely to transact with orders on
the side opposite the direction of change. That is, a positive price shock will tend
to trigger transactions with stale sell orders, and negative price shocks with stale
buys. Say there are two agents B and S, where B has a $10 private value to buy
and S has a $10 private value to sell. Say Agent B observes the fundamental at $100
and submits a buy order at $100 attempting to make $10 from their private value.
After submitting the order, a negative price shock occurs, and the fundamental drops
to $50. Then Agent S arrives and observes the fundamental. Agent S is going to
take the resting order for $60 of profit, leaving Agent B with a $40 loss. A similarly
sized positive shock does not compensate for Agent B’s loss, as Agent S will choose
not to transact instead. Strategic agents who leave orders in the market must ask for

additional profit, beyond their unbiased estimate of the marginal value of transaction,



to account for these events. This strategic bid adjustment is known as shading.

The degree of adverse selection in this model depends on both the fundamental
shock variance o2 and the degree of mean reversion r. As elaborated in the previous
paragraph, an agent risks trading with inferior information if they leave a resting
order in the market and there is a subsequent shift in the fundamental value. If the
fundamental shock variance increases, the probability of large fundamental shifts also
increases, exposing agents to more adverse selection. Higher values of mean reversion
damp early fundamental variations, making their effect on the final fundamental
value small, thus a higher mean reversion exposes agents to less adverse selection. To
illustrate this point, imagine the mean reversion, r, equals 1. After every shock, the
fundamental returns immediately to the mean; only agents arriving at the final time
step have an information advantage.

The private component of agent i’s valuation is a vector 6; containing the agent-
specific marginal utility for acquiring one more unit, relative to the fundamental
value—similar to the model of Goettler, Parlour, and Rajan . The vector is of
size 2¢max, Where ¢uax > 0 is the maximum number of units the agent can be long or

q

7 ¢ € [—Qmax; qmax) N Z is the incremental benefit, over

short at any time. Element 6
the fundamental, to agent ¢ for gaining one unit of the security given current position
q, where positive ¢ indicates a long position.

0; is generated from a set of 2¢n.« values drawn independently from a Gaussian
distribution. Let § ~ A (0, Ufw) denote one of these drawn values. To ensure that the
valuation reflects diminishing marginal utility, the 6 values are sorted in descending
order and assigned to 07 respectively.

Agent 7’s incremental surplus for a trade is based on its position g before the trade,
the value of the fundamental at the end of the trading horizon T, and the transaction
price p:

fr—p+6! if buying 1 unit
surplus =
p— fr—07" if selling 1 unit.
An agent’s total surplus is the sum of the agent’s surplus over all transactions. Since
the price and fundamental terms cancel out in exchange, the total surplus achieved
when agent B buys from agent S is 0% —9%5_1, where ¢; denotes the pre-trade position

of agent 1.



2.2 Background Trading Strategies

There is an extensive literature on autonomous bidding strategies for CDAs (R.
Das et al. ; Friedman and Rust Wellman . In this thesis, I primar-
ily consider trading strategies that are variants of the Zero Intelligence (Z1) family
(Gode and Sunder. The ZI strategy is exceedingly simple, but often employed in
agent-based study of financial markets (Cason and Friedman ; LeBaron, in-
cluding recent Al studies of market making (Chakraborty, S. Das, and Peabody ;
Wah, Wright, and Wellman , because they have been found to generate realistic
patterns of market behavior (Farmer, Patelli, and Zovko . Though ZI agent
instances are typically outperformed by more sophisticated alternatives (Tesauro and
R. Das Vytelingum, Cliff, and Jennings , using game-theoretic selection
to set ZI strategy parameters can produce highly competitive behavior for a given
market environment (Wright and Wellman [2018). Game-theoretic equilibration com-
petitively tunes naive ZI agent parameters, a result achieved through adaptation and
evolutionary search by the ZI Plus agents of Cliff .

In this market model, agents get information about the fundamental according to
an independent geometric process with probability A of arriving and observing the
fundamental (f;) at any specific time. Upon observing the fundamental, agents also
observe the price quote, withdraw any outstanding orders, and have the opportunity
to submit new ones. If multiple agents get information at the same time step, they
act in a random order. Agents are assigned on each arrival to either buy or sell,
with equal probability, and accordingly submit an order to buy or sell a single unit.
This style of order submission is representative of studies employing the standard ZI
strategy. Agents may trade any number of times, as long as their net positions do
not exceed their maximum position (gmayx) (either long or short).

A 7ZI agent assesses its expected valuation at the time of market entry ¢, using an
estimate ftT of the terminal fundamental fp. The estimate is based on the current

fundamental, f;, adjusted to account for mean reversion:

fl=0-p)f+pf p=1-r"" (2:2)

The ZI agent then submits a bid shaded from this estimate by a random offset—the
amount of expected surplus it demands from the trade. The amount of shading is
drawn uniformly from the range {d, 8}. d and d are strategic parameters that agents
can choose.

Background agents use an extended form of the ZI strategy (Wah, Wright, and



Wellman that includes a strategic threshold parameter n € [0, 1], whereby if the
agent could achieve a fraction n of its requested surplus at the current price quote, it
simply takes that quote rather than posting a limit order to the book. Setting n =1
is equivalent to the strategy without employing the threshold. Settings of n < 1 are
often highly advantageous in my simulation environments, suggesting that providing
even this simple ability to condition on price quote is an important feature in CDA
trading strategy.

The threshold parameter can also be used as a means to submit so-called “fill-or-
kill” orders, designed to trade immediately or not at all. Consider the strategy where
d=d= DZ and n = Z! for very large Z. This strategy takes the outstanding order
at the quote—if a surplus of at least D is available—or else posts an order at such an
unattractive price that it will never transact. Interestingly, a similar strategy appears
in empirical equilibrium in several of the analyzed environments.

This model, as presented, is still missing key features necessary to analyze the
scenarios in later chapters. In Chapter IV, I extend the background order submission
strategy by allowing agents to place simultaneous buy and sell orders. This modi-
fied strategy combined with with a maximum position of one makes it so agents can
achieve their competitive surplus position in one arrival—removing trader urgency
as motivation to shade less. Chapter |V| extends the model by adding call markets,
markets that clear at periodic intervals instead of at order submission, and agent
strategies tailored to call markets. In Chapter VI I add imperfect fundamental ob-
servations and trend-following agents to the model. While each chapter represents
a unique contribution to market modeling, the incremental scope of each extension

speaks to the robustness of this base model.

1Since the fill-or-kill strategy never leaves reasonable orders, in self-play it never trades. It can
however be profitable in mixtures with other strategies.



CHAPTER III

Empirical Game-Theoretic Analysis

Traditional game theory focuses on games with full knowledge of of the payoffs
for every strategy profile, the assignment all players to strategies. This information
typically comes from enumerated payoffs in small games, or larger games with an
entirely analytic specification. Many sufficiently complex game models may not yield
a tractable analytic form or may otherwise be too large for distinct enumeration of
payoff values, yet may be relatively straightforward to simulate and obtain samples
from the payoff distribution of a profile. These games are generally referred to as
simulation-based games (Vorobeychik and Wellman [2008)).

The standard procedure for analyzing simulation-based games can be broken down

into four parts:

1. Exploit any symmetry in the game by assigning the players to roles. Roles are
groupings of agents that are symmetric. For two agents to share a role, each
agent must have access to the same strategies, be ex-ante identical, lack coordi-
nation, and be anonymous (switching the agents has no effect on the rest of the
game). | will refer to a game with roles as role symmetric. A fully symmetric
game is role symmetric with a single role; any arbitrary game is role symmetric
with a unique role for every agent. A role-symmetric mixed-strategy equilib-
rium is an equilibrium of a role-symmetric game, where every player within a
role independently chooses a strategy from the same distribution. Every finite
role-symmetric game is guaranteed to have at least one role-symmetric mixed-

strategy Nash equilibrium.

2. If the game has a large strategy set select some finite subset of the strategies
to covert the game to normal form. What defines a large strategy set varies

by computation time of the simulator and available resources, but two common
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game types that require subset selection are extensive form games, where the
number of strategies scales exponential with the depth, and continuous games,

which must have a finite subset of strategies selected.

3. Define how to evaluate profiles. A profile is evaluated if the payoffs to each player
are known with reasonable certainty. If simulator payoffs are deterministic then
only one run of the simulator is necessary to evaluate the payoffs, but if simulator
payoffs are samples from a distribution, then some sufficient number of runs is
necessary to get a low variance estimate of the expected payoffs for that profile.
Selecting a number of profiles in advance is not strictly necessary, nor is it
necessarily optimal, but adaptively evaluating profiles is beyond the scope of
this thesis.

4. Evaluate profiles in such a way to construct role-symmetric normal-form em-
pirical games, and use numeric techniques to identify solutions in these cre-
ated games. Simulation-based games often have too many distinct profiles
for complete profile evaluation. I use the techniques in Sections [3.2 and 3.3
to evaluate fewer profiles. In this thesis, I aim to identify approximate role-
symmetric mixed-strategy Nash equilibria. An approximate equilibrium has
regret bounded below some small threshold, where the regret is the maximum
an agent can gain by unilaterally deviating to any strategy. Approximate solu-
tions are, to some extent, necessary as I use numerical methods from game data
to compute them and the results will be subject to some numerical instability.
The regret also serves as a measure of plausibility; if the gain from deviating to a

new strategy is small, agents are less likely to perceive a benefit from deviating.

This entire process, as well as related techniques for analyzing the empirical data
from simulation-base games are known under the umbrella of empirical game-theoretic
analysis (EGTA) (Wellman [2006)).

The model presented in Chapter Il and its derivatives presented later in this thesis
have no known analytic solution, but are readily amenable to simulation, making them
ideal for use with EGTA. In each of the remaining chapters, I use the techniques
presented here to identify role-symmetric mixed-strategy equilibria in the relevant

game models.
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3.1 Strategy Selection

To make the games amenable to normal-form game analysis, I choose a finite set
of individual strategies from the entire strategy space to define the game of interest.
Such a choice inevitably loses guarantees with respect the true strategy space, but my
goal is to minimize the chance that equilibria in the game with a finite set of strategies
have low regret in the true game. To this end, each analyzed strategy set was chosen
via an iterative process inspired by Schvartzman and Wellman . Starting from
an original set of candidate strategies, I identify role-symmetric equilibiria within that
set. I then attempt to find beneficial deviations outside the strategy set, and upon
finding one add it to the finite set considered for equilibria. This search gives better

confidence that the reported equilibria have low regret in the full game.

3.2 Profile Search

Even with a finite number of strategies, the number of distinct profiles that would
need to be evaluated to induce payoffs for a complete normal-form game is astro-
nomical, significantly larger than the number of stars in the universe.! I employ a
heuristic profile search that biases towards low-support equilibria—equilibria where
a small set of strategies are played with nonzero probability—to reduce the number
of profiles that need to be evaluated. By evaluating only a small number of strategies
played simultaneously I hope to confirm equilibria while only having to evaluate a
small number of profiles. 1 adopt a set of heuristic criteria that promote thorough
coverage of the profile space, in order to avoid being too unduly biased by equilibria
found early in the search process. This search process was heavily inspired by the
work of Jordan, Schvartzman, and Wellman (2010)).

The search criteria rely on exploring games where agents are restricted to playing
only a small subset of the strategies, referred to as restricted games. 1 consider a
restricted game explored if 1 have (i) evaluated every profile in the restricted game,
(7i) found at least one candidate equilibrium in the restricted game, and (%ii) for each
candidate equilibrium, evaluated all of the one-player deviations to strategies outside
the restricted game . A candidate equilibrium is an equilibrium of a restricted game,
but whose deviations to strategies in the unrestricted game may be unevaluated, thus
it may or may not be an equilibrium in the full game. The stopping criteria are as

follows:

IThere are more 10°7 profiles in the largest games I study and an estimated 10?4 stars in the
universe (How many stars are there in the universe?| |2004|).
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Criterion 1. [ have found at least one role-symmetric Nash equilibrium.

Criterion 2. [ have explored every restricted game with a single strategy per role

(i.e., every strategy in self-play).

Criterion 3. For every candidate equilibrium found in an explored restricted game,
I have explored the restricted game formed by adding the best-response strategy to the
support of that candidate, providing that the number of strategies in the restricted

game is below a threshold.

To meet these criteria, I iteratively apply EGTA using a process adapted from the
inner loop of the procedure defined by Wellman, Kim, and Duong . Pseudocode
for the profile search process is listed as Algorithm 1/and Figure 3.1 features a diagram
roughly describing the process.?

The search process starts with a set of restricted games R that are required to be
explored per the criteria. We adopt the notation that a restricted game is the set of
allowed strategies. This set is initialized to the restricted games comprising exactly
one strategy per role.

For each restricted game G in this set, evaluate all of the profiles in the restricted
game and then compute Nash equilibria on the empirical game. Finding a Nash
equilibrium is PPAD Complete (Daskalakis, Goldberg, and Papadimitriou, but
often a couple of polynomial-time incomplete algorithms—such as regret minimiza-
tion and replicator dynamics—are sufficient to find at least one equilibrium. These
algorithms are incomplete because they may fail to find an equilibrium in the re-
stricted game. In the event that that happens, I run simplicial subdivision for fixed
points to guarantee an equilibrium is found.

For every candidate equilibrium ) found in a restricted game, I evaluate every
deviating profile to the unrestricted game. If none of the deviations is beneficial,
then the candidate is a confirmed equilibrium and saved in set C. Otherwise, if
the restricted game has few enough strategies, add the best response to the restricted
strategy set and explore the new restricted game. Other beneficial-deviation restricted
games are kept as backups in set B to explore in case every required restricted game
has been explored but no equilibria were found. In the unlikely event that no backup
restricted games exist, [ take a random unexplored restricted game with the lowest

support and explore it.

2 My implementation of this procedure is available at [https://github.com /egtaonline/quiesce} It
is integrated with EGTA Online and fully automatic.
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Algorithm 1 Profile Search

define br > Returns the best-response strategy to a restricted game
define brs > Returns all beneficial response strategies to a restricted game
define ¢ > Restricted game size threshold
define & > The power set
define S > The set of strategies
C+— o > Confirmed equilibria
R+ {{s}|seS} > Required restricted games
E— o > Explored restricted games
B+ o > Backup restricted games

while C =g or R\ £ # @ do
if R\ € # @ then
GeR\E > Required game
else if B\ £ # @ then
GeB\E& > Backup game
else
G € argmin |G| > Minimum size unexplored game
GeP(S)\E
end if
&+ EU{G}
Evaluate all profiles in G
for all equilibria @ of G found do
Evaluate all deviating profiles from @)
if brs(Q)) = @ then

C+ Cu{Q} > Add confirmed equilibrium
else if |G| < ¢ then
R+ RU{GUDbr(Q)} > Explore best response
B BU{GU{s}|sebrs(Q)\{br(Q)}}
else
B+ BU{GU{s}|se€brs(Q)}
end if
end for
end while
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y I
Backup Required .
Q%D Games (®) Best Response Beneficial
Responses
A
Take one game A
Y >
Yes
Evaluate Profiles
]
L] ]
Compute Equilibria
Y
Evaluate Beneficial Confirmed
Deviations Deviations? Equilibrium

Figure 3.1: Flow chart illustrating the profile search algorithm.

required games but found no equilibria.
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Required games
starts with all of the restricted games with only one allowed strategy per role. For
each restricted game, profiles are evaluated to compute equilibria along with their
deviations. If there are no beneficial deviations, we have confirmed an equilibrium.
Otherwise, if the game is small enough we require the best response be evaluated.
Finally add any beneficial deviations to backup games in case we’ve explored all




3.3 Player Reduction

The number of profiles necessary to evaluate in low-support restricted games is still
infeasible if there are a large number of players. I employ an aggregation technique
known as deviation-preserving reduction (DPR) (Wiedenbeck and Wellman [2012)) to
approximate games with many players as reduced games with a smaller number of
players. DPR is a heuristic that constructs a reduced normal-form game with payoffs
from the unreduced game. It selects payoffs such that the regret of symmetric pure
profiles is preserved and the regret of symmetric mixed profiles is approximated. The
approximation for symmetric mixed profiles typically works well if the payoff impact
of single other agents is small. The number of profiles DPR evaluates is proportional
to the number of profiles in the reduced game. While other methods to reduce profile
evaluation in games with many players exist (Wiedenbeck, Yang, and Wellman,

their usage in evaluating large games is still experimental.

3.4 Bootstrapping Regret

The combination of all of these techniques allows low-support-biased discovery
of role-symmetric equilibria in the DPR reduced game, but not in the full-player
game. Despite knowing that our equilibria have low regret in the reduced game, it
is important to estimate how plausible they are by putting confidence bounds on the
regret in the full-player game.

For every confirmed equilibrium in the reduced game, I gather additional devi-
ating payoff samples from the mixture distribution in the full-player game and use
bootstrapping to compute an upper confidence bound on regret. This is a slight vari-
ation on the bootstrap regret technique of Wiedenbeck, Cassell, and Wellman (2014]),
and has been shown to produce calibrated confidence bounds.

The heuristics these techniques employ mean that I have no guarantees about the
coverage of the whole solution space. More pragmatically, evaluating every profile
from even a relatively small game might be prohibitively expensive, as the number of
distinct profiles in a symmetric game grows exponentially. In spite of these difficulties,
the combination of these analysis techniques allows the use of game theory to analyze
strategic interaction between agents that is much richer than tractable analytic models

can provide.
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CHAPTER IV

Shading and Efficiency in Limit-Order Markets

4.1 Introduction

The continuous double auction (CDA) (Friedman is a simple and well-
studied auction mechanism, ubiquitous as the mechanism implementing limit-order
markets for financial trading. All major stock exchanges, as well as commodity and
futures trading institutions, employ some form of CDA for the bulk of their trading ac-
tivity, and have for a century or more. Given the centrality of this market institution,
it is striking that some basic strategic properties remain hazily understood. Financial
trading features dynamic interaction with incomplete information (both private and
common value elements), in a setting where one’s own bid can determine the price of
the current transaction, and influence prices of subsequent trades. To date, auction
theory has not successfully tackled this combination of issues in a setting approaching
the richness of financial markets.

It has long been understood that CDAs can exhibit allocative inefficiency (Gode
and Sunder : at the end of trading the goods may not be held by those who
value them the most. Biais, Glosten, and Spatt survey an extensive literature
on reasons for inefficiency, and ways in which concentrating trading in time (as in
a call market) can improve efficiency. Prior studies in my research group have also
found efficiency gaps in continuous trading (Wah and Wellman. Stated simply,
when agent arrivals to the market are spread over time and randomly ordered, the
myopic matching procedure of the CDA may produce suboptimal allocations.

In addition, strategic bidders shade their bids from their true values to account
for the potential effect of their bids on the transaction price. In a one-shot double
auction setting, such shading can only degrade allocation quality, from the perfect

efficiency that would be achieved with truthful bidders. Strategic financial agents

17



should also be expected to shade their bids, so it bears considering how that affects
allocative efficiency in a dynamic limit-order market.

This question was previously addressed within a standard CDA model by Zhan
and Friedman , who found that profiles of shading (markup) strategies in a
restricted form of Nash equilibrium are highly efficient, and often yield better allo-
cations than truth-telling. I replicate key parts of this prior work and extend it in
two major directions. First, I conduct a more comprehensive game-theoretic anal-
ysis, evaluating a much larger space of strategy profiles and considering mixed as
well as pure strategies in my search for Nash equilibria. Second, in addition to their
standard model, I also investigate a richer family of market environments (derived
from the model in Chapter II) designed to capture key features of financial markets,
including private and common valuation elements, significant dynamic structure, and
a broader space of agent strategies. Importantly, the common value element of this
market model introduces adverse selection, which adds an extra incentive for agents
to shade their bids that is not present in independent private value model of previous
work.

Like Zhan and Friedman, I evaluate profiles of shading strategies through simula-
tion. Analytic solutions of CDA games are intractable beyond simple instances, and
all the more out of reach for my richer class of financial trading scenarios. I conduct
an extensive empirical game-theoretic analysis, to identify the direction of the effect
on efficiency in the region of equilibrium trading behavior. My results confirm that
the efficiency improvements of pure-strategy equilibria found by Zhan and Friedman
are also exhibited by mixed-strategy equilibria in their simple model and in more
complex financial markets. However, shading equilibria are not always more efficient
than their truth-telling counterparts. Only with a large number of agents, meaning-
fully limited agent arrivals, or large adverse selection do I find outcomes produced by

strategic bidders superior to the results of truth-tellers.

4.2 Stylized Examples of Shading’s Effect on CDA Equilib-

rium Efficiency

I develop insight on the effect of strategic shading on CDA efficiency through
inspection of some simple CDA bidding scenarios. I measure efficiency by the ratio
of the expected total surplus of a profile to the expectation of the maximum sur-
plus possible—also known as the competitive equilibrium (CE) surplus. As I show,

equilibrium shading can either increase or decrease overall efficiency when compared
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Figure 4.1: How shading can improve efficiency in the scenario of Example 1. Dia-
monds represent agent valuations, dashed intervals represent inefficient shading, and
solid intervals represent efficient symmetric shading.

to truth-telling. In this section, I present an instance that demonstrates how shad-
ing can benefit efficiency, then I analyze an instance where the benefits are obtained
in perfect Bayesian equilibrium (PBE), and put forth another instance where PBE
shading degrades surplus.

The first example was previously employed by Wah, Wright, and Wellman (2017)

to illustrate the allocative inefficiency of CDAs.

Example 1. Consider a market with two buyers and two sellers. The buyers have
private values by and by, and sellers have private values s, and so, such that values

are ordered by > s1 > by > s9.

Suppose that the agents arrive at the market in order from greatest valuation to
least valuation. This sequence is shown in Figure 4.1. If the agents indeed submit
orders at their valuations (the diamonds), then buyer 1 trades with seller 1, yielding
surplus b; — s, and buyer 2 trades with seller 2, yielding by, — s9. If instead buyer 1
just trades with seller 2, the total surplus is b; — s, which is socially optimal. The
greedy matching of the CDA in this instance executes trades that preclude efficient
allocation. Whether this happens depends on how the limit orders are sequenced.
With bids priced at these valuations, a random permutation of limit orders has a
two-thirds probability of being suboptimal.

Suppose instead that the agents shade their bids away from their true valua-
tions. For simplicity, they all shade symmetrically, and their valuations are uniformly
spaced. If the agents shade more than  (by — s1), then the inefficient trades will not
happen. As long as b; and s, shade less than % (by — s2), then these two still trade,

and the allocation is efficient.
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There is a simple explanation for why a little shading promotes efficiency in CDA
markets. When there is variation in agent values, competitive equilibrium trades
provide relatively high surplus to most agents involved, and are therefore tolerant to
some amount of shading. In contrast, the inefficient trades generate lower surplus
and can be prevented by a moderate amount of shading.

Having demonstrated that non-shading strategies can produce inefficient out-
comes, and that some shading can restore efficiency, the natural next question is
what happens in equilibrium? Strategic agents will clearly shade bids away from
their valuations. Will the shading levels be sufficient to restore efficiency, or will they
perhaps shade too much? The next example is a stylized situation where PBE is

more efficient.

Example 2. Let there be two buyers and one seller. One buyer, BL, has valuation
vpr, with Pr(vg, = 1) = Pr(vp, = 2) = 0.5. The other buyer, BH, has valuation vpy
with Pr(vpy = 2) = Pr(vgy = 3) = 0.5. The sole seller, S, has valuation vg = 0.
The agents arrive at the market in a uniform random ordering, and get to observe

the order book and their position in the ordering.

In the optimal outcome BH trades with S, for expected welfare (total surplus)
2.5.

The truth-telling outcome is straightforward. If everyone bids their valuations,
then when S arrives first, it will trade with the first buyer to enter the market
(welfare = 1E[vp,] + 3E[vpn] = 2). When S arrives second, it will also trade with
the first buyer to arrive (welfare = 2); when S arrives last, it will trade with the
best order in the market (welfare = 2.5). The expected welfare under truth-telling is
3(242425) ~ 2.167.

To characterize strategic behavior in this example, I adopt perfect Bayesian equi-
librium (Fudenberg and Tirole solution concept. A perfect Bayesian equilibrium
is a solution concept of a sequential game with incomplete information where each
agent updates their beliefs according to Bayes’s rule and acts optimally according to
those beliefs. I also assume for this construction that players break ties by accepting
indifferent trades; this assumption does not affect welfare, but allows me to avoid
discussing the multitude of qualitatively similar equilibria due to indifference. If S
enters first, it bids 2. This offer will always trade, since at least one and possibly
both of the subsequently arriving buyers have value at least this high.

If a buyer arrives first, the PBE behavior of that buyer can be described by the

following cases:
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1. BL arrives first, vg;, = 1. BL offers any = < 1.
2. BL arrives first, vgy, = 2. BL offers %.

3. BH arrives first, vgy = 2. BH offers

o~

4. BH arrives first, vgy = 3. BH offers

ol

4
3

it will accept. If another buyer arrives second, it will bid € over the current bid if it

If the seller arrives second, it will reject any offer less than 3, and ask for 2, otherwise
can profit from doing so. The last agent will take the best offer it can.

First I show that when S arrives second, it is best responding under its presump-
tion that the third agent is a price-taker. In Case 1, the third agent is BH (and S
infers this), in which case offering to sell at 2 maximizes surplus. Cases 2-4 form
an information set for S, in which the third agent is BL with probability % Its
were to reject the first agent’s bid, its optimal offer would be 2, yielding an expected
surplus of (£)(3)2 + (3)2 = 3. So it may as well accept the first agent’s bid. Given
S’s strategy, no first-round buyer bid less than % would suffice. The only advantage
from a greater bid would be to BH with vgy = 3 if could prevent being outbid by BL
with vy, = 2. If BH bid 2 in this instance, then it would make a guaranteed profit
of 1, but by bidding % it makes an expected profit of g = g%, due to being outbid
25% of the time. As a result, no first-round buyer benefits from bidding more than
%. The strategies are therefore in PBE.

A simple way to look at the outcome of this equilibrium is to see that when
vgr, = 2, the seller trades with whichever of BL or BH arrives first. When vg;, = 1,
the low buyer’s shading precludes the trade, and so the seller trades with the high
buyer regardless of arrival order. Thus, % of the time the seller sells to BH and the
other i the seller sells to BL when it has a valuation of 2. The expected welfare
in this equilibrium is 2.375 = %2.5 + %2. Strategic shading significantly improves
the efficiency of this market from 0.86 (2.167 / 2.5) to 0.95 (2.375 / 2.5). However,
equilibrium efficiency is not guaranteed to improve over truth-telling in CDAs, as

demonstrated in my final stylized example.

Example 3. Let there be two buyers and one seller, all with i.i.d. uniform private
values in [0, 1]. The agents arrive in a uniform random ordering, and observe the

current state of the order book, and the ordering of agents.

Since the buyers are ex ante identical, I refer to the first buyer as buyer 1 (b;) and

the second buyer as buyer 2 (bs).
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The social optimum occurs when the seller trades with the largest buyer. If I let

7, represent the largest buyer valuation, then
) . 1
Optimal Welfare = E [t, — v | vs < ) = 7

If agents tell the truth, and the seller arrives last, it trades with the maximum of

1
1

In the other two instances the seller has a chance to trade with the first buyer before

the buyer valuations, and so the welfare is the same as the optimal social welfare

trading with the second. Therefore

Welfareseller not last — E [Ubl — Us | Vs < vb1] +E [sz — Vs | Us > Upy, Us < sz]
9
Zy

The efficiency of truth-telling is the expected welfare for truth-telling divided by
the maximum social welfare, or % =4 (%% + %i)

The PBE solutions can be calculated using backward induction. To calculate the
efficiency in PBE, I first consider the case when the seller arrives first. In this case,
both buyers will accept any offer below their valuation. The only strategic decision
is the bid the seller should make. Using similar notation to the social optimum, the

seller’s expected profit for a bid s is
Profitseyer = E[s —vs | s <] = (s — vs) (1 — s2> )

This profit is maximized at s* = %(vs + \Jvi+ 3). The welfare calculation is the
same as in the truthful case, except that the conditions are in terms of s* instead of
vs. The social welfare when the seller arrives first is therefore v3/.

When the seller arrives in the middle, the last buyer takes the sellers bid if it
exists and the buyer can profit. The seller has a choice between taking the existing
bid or placing a new one, attempting to get more surplus from the second bidder.

The seller makes profit

by — v, take order
Profit, =

E[s —vs|s <] place order s.

The optimal bid in the later case is s* = § (1 + v;), which implies that the seller takes
the existing order if v, < 24/b; — 1, otherwise it places an ask at s*. A placed ask will

always be greater than the existing bid, that is, it never transacts with the old bid.
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The first buyer’s profit conditioned on this information is

Profity, = Efvy, — by | vy < 2¢/by — 1] = (vg, — b1) (2y/b1 — 1).

Which is maximized when b} = & (1 + 6vy, + /T20;, + 1), conditioned on vy, > 1.
The resulting social welfare conditioned of these strategies is =g (47 + 8v/13).
When the seller arrives last, the first buyer knows it can win only by bidding over

the second buyer’s valuation, thus
PI‘Oﬁtbl = ]E[Ubl - b1 | Vby < bl,US < bl] = b?(vbl — bl)

The optimal bid is b] = %Ubl. The second bidder will over bid the existing order if
it can profit, but might bid more than epsilon over if it can extract more expected

profit from the seller. The profit for placing a new order is
Pl"Oﬁtb2 = E[Ub2 — bQ | Vs < bg,bl < bg] = bg(?}b2 — bg)

This profit is maximized at b; = %vbQ as long as b3 > by. Buyer 2’s optimal strategy is
to bid min{vp,, max{b3, b, +¢}}. The social welfare of this permutation is {2, making
the expected social welfare in PBE roughly 0.19.

The efficiency in PBE is the average of each permutation, which is approximately
0.77, significantly less than the corresponding truth-telling efficiency of approximately
0.89.

Of course, these are only particular instances; it is easy to construct other simple
instances where strategic shading either helps or harms efficiency. In the remainder of
this chapter I explore the effect of shading in richer scenarios, an expanded form of the
model from Zhan and Friedman and a model more representative of trading
situations that arise in financial markets. I overlay game-theoretic reasoning on a
systematic simulation-based process, to investigate the impact of strategic bidding on

outcomes realized in approximate equilibria, across a range of market environments.

4.3 Prior Work

There are many prior studies that attempt to characterize the efficiency of CDAs,
however most do so from the perspective of semi-strategic agents, such as human

lab participants or fixed algorithms designed without concern for equilibrium (Cason
and Friedman [1996] Gjerstad and Dickhaut [1998 Rust, Miller, and Palmer [1993]).
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In contrast, Zhan and Friedman address the question with respect to Nash
equilibrium shading. In their model, there are N buyers and N sellers with uniform
i.i.d. private values for a single unit. The authors considered three different values of
N: 4 (thin), 10 (medium), and 100 (thick); and three different classes of parameterized
shading strategies: Standard, Exponential, and Shift. In order to analyze their model
as a normal-form game, each strategy class was discretized into 11 strategies, with
shading amounts uniformly spaced from 0 to 1. An agent’s strategic choice is the
amount of shading conditioned on a global shading class and market thickness. Agents
arrive in a random ordering' and submit limit orders applying their shading strategies
to their private values. In this model strategies do not consider market information,
such as price quotes or transaction history; they are functions solely of private value.

Separate from their analysis of equilibrium shading, Zhan and Friedman used this
model to explore how uniform non-strategic shading affects market efficiency. Their
investigation of uniform shading in the thick-market standard-shading scenario follows
the intuition from Example 1: that moderate shading mostly precludes inefficient
trades. I replicated this experiment with my own implementation, and present the
relationship between shading and efficiency in Figure 4.2 (which faithfully reproduces
Zhan and Friedman’s Figure 6).?| Let IM inefficiency refer to the inefficiency caused
because agents who would trade in competitive equilibrium do not (missing intra-
marginal trades), and EM inefficiency refer to the inefficiency caused because agents
who would not trade in competitive equilibrium do (present eztra-marginal trades).
The figure shows that as symmetric fixed shading increases from truth-telling, EM-
inefficiency significantly decreases, while IM inefficiency remains close to zero. A little
before 0.3 shading, both sources of inefficiency are minimized, and then as shading
increases more, the IM inefficiency significantly increases. This suggests that the
majority of inefficient trades have relatively small margins, and are inhibited by a
small amount of shading, whereas the efficient trades have larger margins and so are
uninhibited by modest shading.

In addition to analysis of the market environment under uniform shading, Zhan
and Friedman also empirically found role-symmetric pure-strategy Nash equilibria in
the nine variations of this game. In a role-symmetric strategy profile, each player
within a role (here buyer or seller) plays the same pure or mixed strategy. Con-

veniently, each of their game instances had a single role-symmetric pure-strategy

IThis description is slightly different from the original, but produces identical results.
2This is true despite the fact that I use a different definition of expected efficiency, stated in the
beginning of Section 4.2. Section [4.4| discusses this difference in more detail.
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Figure 4.2: Moderate shading reduces inefficiency from suboptimal trades (EM-
inefficiency) without introducing significant inefficiency from missed optimal trades
(IM inefficiency). The data presented is from a replication of Zhan and Friedman

(2007, Figure 6).

equilibrium, or a single e-approximate one for small €. Zhan and Friedman conclude
from the efficiency of these equilibria that CDA equilibrium surplus is close to opti-
mal surplus. However, their results for the thin market—with four buyers and four
sellers—indicate that the equilibrium surplus, while high, can be much worse than
truth-telling. The issue of non-universal improvement over truth-telling is not dis-
cussed much by Zhan and Friedman, but is the focus of my extended investigation.
In Section 4.4 I present the rest of the results of my replication and extension of this

work.

4.4 Replication of Zhan and Friedman

I first present a replication of Zhan and Friedman (2007), which extends their
study in three key ways:

1. The original study separately analyzed games with three classes of discretized
strategies. I investigated a fourth strategy class where agents can choose any

strategy from the original three classes.

2. The original study restricted solutions to € pure-strategy Nash equilibria. I
broadened consideration to include mixed-strategy equilibria, and accordingly

searched more extensively over strategy profiles.

3. I evaluated the found equilibria with many more samples and report statistical
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confidence on regret.

My replicated CDA market simulator is identical to that specified by Zhan and
Friedman except for one detail. Instead of allowing agents to rebid at the same price,
I simply shuffle the agents once and have them submit bids in that order. Aside
from subtle effects on time priority, this should produce identical results. I confirm
empirically that any differences are negligible.

Also, while the precise aggregate efficiency measure used was unspecified in the
original paper, I were able to reproduce the reported efficiency results exactly only by
calculating averages over instance efficiencies (i.e., surplus obtained as a fraction of
CE surplus for each instance). I argue that the proper measure of expected efficiency
is the expected surplus over the expected CE surplus. This definition appropriately
gives more weight to random instances that allow more surplus and removes the
necessity of defining efficiency in a no-trade scenario.

With this simulator, I applied the equilibrium search methodology presented in
Chapter [1I| using the same strategy discretization as the original authors. I evaluated
at a total of twelve scenarios formed by three levels of market thickness combined with
four classes of shading strategies. Three of the strategy classes—Standard, Exponen-
tial, and Shift—were introduced by Zhan and Friedman. I added a union shading
class (“All”), containing 31 strategies: eleven shading levels from each original class,
minus two that are redundant because zero shading corresponds to truth-telling in
every shading class. In order to tractably explore each game, I applied DPR, and
reduced the number of players in each role to four.® To consider a profile in each of
these games explored, I sampled it 250,000, 50,000, and 25,000 times respectively for
the thin, medium and thick markets, or an order of magnitude more samples than
the previous study. Finally, I set the restricted game size limit for equilibrium search
to four, meaning I stopped exploring profiles after I had found at least one equilib-
rium and all unexplored best response restricted games had at least five strategies in
support between both roles.

A summary of the experimental results is presented in Figure 4.3. The equilibrium
efficiency between shading classes in a single market thickness varies slightly. This
oscillation is likely due to a few factors including the choice of discrete strategies,*
the sampling error inherent in random simulation, and the fact that my profile search

biases towards low support equilibria. Despite these factors, there is a strong overall

3The thin market games were unreduced.

4In particular, any Exponential shading can be achieved by a Standard shading at some trans-
formed level, so the essential difference between the classes is really the choice of discrete shading
levels.
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trend in the data. As the market gets thinner, the efficiency of truth telling improves,
and that of equilibrium shading degrades.

Standard i
Exponential |
Shift H

All

Standard ¢
Exponential ¢
Shift

All |

Standard ¢
Exponential | ¢
Shift H

All |

Figure 4.3: Efficiencies of all found equilibria compared to truth-telling in every sce-
nario.  Yellow bars represent the truth-telling efficiency in each market thickness.
Blue bars with a line connecting them represent the efficiency of every role-symmetric
equilibria found via my profile exploration method. Red diamonds represent the ef-
ficiencies of each symmetric pure-strategy equilibrium found in Zhan and Friedman
(2007). Efficiency is computed as the mean surplus over the mean competitive equi-
librium surplus for a large sample of profiles drawn from the equilibrium distribution.

In addition, my search process failed to find two equilibria from the previous work.
However, not all found equilibria are equally important. Approximate equilibria with
low regret are more plausible descriptions of rational agent behavior than those with
high regret, and while I cannot confirm that regret of any equilibrium is low, I can
compute confidence bounds on the regret. Table 4.1 lists all of the equilibria, their
efficiency, and a 95% bootstrap upper confidence bound on regret. The previous
equilibria that I did not find have significantly higher—roughly double—the regret

bound of my comparable found equilibria.

4.5 Financial Market Environment

My extension enriches the CDA scenario to more closely resemble current financial

markets by using a modification of the model presented in Chapter II. Agents observe
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Table 4.1: Equilibria found in CDA games, by Zhan and Friedman or my
replication.  Where multiple equilibria were found, they are given numbers to dif-
ferentiate. Equilibria numbered “ZF” correspond to equilibria found in the previous
work, but not this one, while equilibria labeled with a  were also identified in the
previous work. In the “All” shading class agents can play any strategy from Standard,
Exponential, or Shift. To differentiate these strategies in the “All” class, standard
shading strategies have no suffix, exponential strategies have an “E” suffix, and shift
strategies have an “S” suffix. “95% Regret” is the bootstrapped 95% upper confidence
interval on regret.

Shading Buyers’ Buyers’ Sellers’ Sellers’ 95%
Density  Class Num Strategies Prob (%) Strategies Prob (%) Efficiency Regret
Thick Truthful - 0.0 100 0.0 100 0.697 -
Standard 1f 0.4 100 0.3 100 0.936 0.466
2 04 100 04,0.2 69.4, 30.6 0.941 0.235
Exponential 1f 0.5 100 0.3 100 0.930 0.521
2 0.5, 0.6 73.9, 26.1 0.2 100 0.945 0.198
3 0.5 100 0.2,0.3 38.7,61.3 0.938 0.132
Shift 1 04 100 0.4 100 0.959 0.255
2 04 100 0.3,0.5 125,875 0.942 0.537
All 1 0.4 100 0.2S 100 0.951 0.845
2 0.4E 100 0.4S, 0.3S  86.9, 13.1 0.953 0.566
3 0.3,0.4, 0.5E 16.1, 27.9, 56 0.35 100 0.934 0.910
4 0.4, 04E, 0.5E 12.8, 63, 24.2 0.3S 100 0.946 0.421
5 0.4 100 0.35,0.2S 95.9,4.1 0.950 0.423
Medium  Truthful - 0.0 100 0.0 100 0.789 -
Standard 1f 0.3 100 0.3 100 0.880 0.045
Exponential 1 04 100 0.3 100 0.861 0.030
Shift 1t 04 100 0.4 100 0.878 0.000
All 1 0.3 100 0.3S 100 0.892 0.165
Thin Truthful - 0.0 100 0.0 100 0.841 -
Standard 1t 0.3 100 0.3 100 0.838 0.151
Exponential ZF 0.3 100 0.2 100 0.870 0.565
1 0.4 100 0.3 100 0.812 0.066
Shift ZF 0.3 100 0.3 100 0.880 0.285
1 0.3 100 0.4 100 0.848 0.043
2 0.4 100 04,03 93.1,6.9 0.846 0.198
3 0.3, 0.4 43.7, 56.3 0.4 100 0.825 0.098
4 0.3, 0.4 9.8, 90.2 04,03  23,97.7 0.812 0.180
5 0.3,04 11.8, 88.2 0.4,0.3 425,575 0.829 0.094
All 1 0.3E 100 0.35 100 0.859 0.032
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a positive integer truncation of the fundamental f, = { fi + %J# which is nearly
identical given the high shock variance and large mean in the analyzed environment
settings. In addition, I consider two cases for order submission. In the first (single-
unit order) case, agents are assigned on each arrival to either buy or sell, with equal
probability, and accordingly submit an order to buy or sell a single unit. This style
of order submission was described in base market model in Section 2.2. In the second
(full-demand order), agents submit orders to both buy and sell. Agents with this
style of order submission are not subject to the random direction selection of the
single-unit order case.

Since agents withdraw stale orders at arrival, the arrival rate A\ serves as a rough
proxy for agent urgency. If an agent has a lower arrival rate, then it has fewer
opportunities to submit orders, which is particularly constraining in the single-unit
order case. With single-unit ordering, agents may find it difficult or impossible to
achieve their efficient position levels. In such settings, they have a strong incentive
to make each arrival count. In the full-demand order case agents can achieve their
efficient position levels in one arrival, thus providing a way to evaluate the effect of
reducing urgency.

Similar to Zhan and Friedman , I restrict my analysis to a discretized finite
set of the entire strategy space—shown in Table 4.2—so I can apply normal-form game
analysis techniques. I selected strategies using the technique detailed in Section 3.1,
with the hope that equilibria in the normal-form game exhibit low regret in the
continuous game. The initial set of strategies was chosen as a roughly exponential grid
of the max shading (d) parameter (Table 4.2a). Strategies that appeared frequently
as best responses to equilibria of games with this initial set were also considered
(Table 4.2b). The union of these two sets has thirteen strategies, which are the
only strategies I consider for the financial market games. Discretization provides no
guarantees about regret in the continuous game, but it does allow me to make precise
statements about regret in this specific normal-form game.

Generalizing the ZI strategy to multiple units in the same direction is not obvious,
so I consider only a restrictive version of the full-demand order case. Specifically,
my full-demand environments assume a maximum absolute position (gnax) of one, in
which case when agents hold no position, they submit a full demand schedule. Agents
need to arrive only once to reach CE position. The agent draws its desired surplus

(shading) once per arrival, and applies it to both trade directions.
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Table 4.2: Strategies considered for equilibrium analysis. Agents shade from their
true belief by a random offset in [d, d], the result of this draw is the amount of expected
surplus the agent demands from trade. If an agent could get an 7 fraction of their
desired surplus from an outstanding order, they will take the order instead. Detailed

descriptions of the strategies can be found in Section [2.2.

(a) Initial set of strategies at roughly ex- (b) Best response strategies, found via it-
ponentially spaced intervals. erative process of adding best response to
— previous equilibria.

d d n _

0 0 1 d d il

0 50 1 125 500 1

0 125 1 2000 4000 1

0 250 1 0 500 0.8

0 500 1 0 2000 0.8

0 1000 1 125 1000 0.4

0 2000 1 29000 30000 0.001

4.5.1 Market Environment Parameter Settings

I focus my analysis on two basic market settings, with parametric variations.
Restricting my analysis to these two settings allows me to investigate qualitative
effects without having to do an infeasible exhaustive grid search over the space of
parameter configurations. Baseline parameter values for these settings are available
for reference in Table |4.3. In both settings I vary the arrival rate, mean reversion,
and market thickness.

The multi-position setting most closely matches the environment for which ZI
agents were originally defined (Gode and Sunder . Agents have a maximum
absolute position of ten (hence the name multi-position), and follow the single-unit
order scheme. As a result, the agents never have more than one outstanding single-
unit order in the market at a time.

The second setting I call the single-position setting. In this setting, agents have a
maximum position of one, and follow the full-demand order scheme. This setting lifts
the restriction that agents have exactly one outstanding single-unit order at a time,
but agents will never hold an absolute position greater than a single unit (hence the

name single-position).

4.5.2 Uniform Shading Analysis

One would hope that the intuition behind the tradeoff of EM and IM inefficiency in

the Zhan and Friedman model—seen in Figure 4.2—would carry over to this financial
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Table 4.3: Baseline environment parameters, by setting. Arrival rate is double in the
multi-position setting because agents need to trade more in competitive equilibrium.

Parameter Symbol Multi-position Single-position
Number of Agents 66

Trading Horizon T 60000
Fundamental Mean f 107

Mean Reversion r 0.05

Shock Variance o2 109

Private Value Var o, 5 x 106

Arrival Rate A 1074 5x 107
Maximum Position Qmax 10 1

Order Submission Single-unit Full-demand

market model as well. Figure 4.4a/is a plot of EM and IM inefficiency for the baseline
multi-position setting. Unlike the standard CDA model, EM and IM inefficiency do
not provide clear clues as to how shading affects efficiency in this model. I hypoth-
esize that the definitions of EM and IM inefficiency are muddled when agents have
the opportunity to trade counter to their competitive equilibrium, that is, an agent
who should buy a unit might opportunistically sell one due to advantageous market
conditions. In this environment, EM trades happen when an agent trades beyond
their CE position—or at all if their CE position is zero. When every agent submits
truthful orders, the incentive to take an opportunistic trade overshadows the incen-
tive to trade towards competitive equilibrium, resulting in agents not achieving their
desired positions. The incentive to trade counter to competitive equilibrium produces
high IM inefficiency even when agents are truthful, but moderate shading reduces this
effect slightly. Figure|4.4b is an identical plot of EM and IM efficiency for the baseline
multi-position setting, except half of the agents were assigned to be buyers, half were
assigned to be sellers, and each agent could only trade in their assigned directions.
When this structure is applied to the market, the illustrative breakdown of efficiency
presented in the standard CDA model (Figure 4.2) is recovered. It’s clear from these
figures that the ability for agents to trade in both directions adds a significant level
of complexity to analyzing the effect of shading on efficiency in CDAs. I leave a more
appropriate dissection of efficiency when agents can trade in both directions as an

open problem, and instead focus on the effects of shading in equilibrium.
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(a) EM and IM inefficiency in the financial
market model. Unlike the standard CDA
model, this decomposition does not present
a clear picture of how shading affects effi-
ciency.
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(b) EM and IM inefficiency in the financial
market model when agents are assigned to
be buyers or sellers. With this condition,
the effect of shading on efficiency is qualita-
tively similar to the results from Zhan and

Friedman (2007) (Figure 4.2).

Figure 4.4: Uniform shading analysis of the financial market model

4.6 Financial Market Equilibrium Analysis

Using the model described in Section 5.3, and the methodology to find approxi-
mate role-symmetric Nash equilibria described in Chapter 11, T investigate the effects
of equilibrium shading and truth-telling on financial market efficiency. To measure
efficiency in this model, I calculate an agent’s competitive equilibrium position con-
strained by its number of arrivals. This is necessary since some agents may not arrive
at all. Due to the large number of agents in the simulation, I used DPR to reduce
the effective number of agents to six. I considered a profile explored if I sampled it
10,000 times, at this level, the standard error of profile payoffs was sufficiently small.
I set the restricted game size limit to three, meaning I stopped exploring profiles after
I had found an equilibrium, and all best response restricted games had support over
at least four strategies.

In both the single- and the multi-position setting I varied three key parameters
from their baseline value: number of agents, arrival rate, and fundamental mean rever-
sion. Increasing the number of agents in a simulation increases the market thickness.
Increasing the arrival rate increases agents’ access to relevant information, decreases
the amount of time potentially stale order sit in the market, and gives agents more
opportunities to trade. Finally, increasing the mean reversion exposes agents to less
adverse selection due to the smaller impact of a shock on the final fundamental price.
In each setting, I analyze twelve distinct environments corresponding to different lev-

els of these three parameters. With no mean reversion and other settings at baseline,
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the adverse selection is severe enough to preclude all trading. To restore some prof-
itability in this environment, I compensate by also reducing the shock variance o2 to
100.

Figure 4.5 compares the efficiency achieved in equilibrium with that produced
by truth-telling agents for each parameter variation. Both the single- and multi-
position setting show identical trends for each variable. Increasing the number of
agents increases the benefit from equilibrium shading. This is the same trend that
was found in the simple CDA model. Unlike that model, truth-telling efficiency
also increases with the number of agents. This is probably because agents in this
model can retrade, effectively making initial extra-marginal trades less important
to final efficiency. Increasing either arrival rate or mean reversion has the opposite
trend, the benefit to equilibrium shading decreases, despite an increase in truth-telling
efficiency. This is to be expected, as a limited number of trader arrivals means little
time to correct for bad trades and the increase in adverse selection from low mean
reversion tends to generate more inefficient trades. Shading ameliorates inefficient
trades, yielding an improvement in efficiency in both environments.

Tables 4.4 and 4.5 list all of the equilibria I found. None of the equilibria had large
regret upper confidence bounds, so while DPR may have affected which equilibria
I found, the statistical evidence suggests that it did not degrade the quality—Ilow
regret—of the equilibria I found. In addition, in games where I found both pure
and mixed-strategy equilibria, the upper confidence regret bound on mixed-strategy
equilibria was always close to the confidence bound for pure-strategy equilibria. Since
pure strategy equilibria found by DPR are also equilibria in the unreduced game, this
evidence suggests that the regret caused by DPR may be small compared to the

inherent variability of the models.

4.7 Conclusions

I employed a simulation-based approach to analyze the effect of strategic bid
shading on the efficiency of standard CDA markets and richer financial markets. I
confirmed most of the results from Zhan and Friedman using a more complete
equilibrium search. In both market models that I investigated, I consistently found
that strategic bid shading helps efficiency when there are more agents in the market.
In the financial market, I also observe a benefit to strategic shading when there is a
large amount of adverse selection due to a noisy common valuation or a high level of

urgency due to limited trading opportunities. My results strengthen the claims made
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(a) Equilibrium efficiency as a function of number of agents.
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(b) Equilibrium efficiency as a function of arrival rate.

0xMean Reversion |
YhioxXMean Reversion |
sxMean Reversion
sxMean Reversion
Baseline

= =

0xMean Reversion |
YhoxMean Reversion H
¥sxMean Reversion
sxMean Reversion
Baseline

==

(¢) Equilibrium efficiency as a function of mean reversion.

Figure 4.5: Fraction of optimal surplus for truth-telling agents (yellow), and the
efficiencies in equilibrium (blue) for each of the environments. The equilibrium values
are displayed as a range because multiple equilibria were found in each environment.
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Table 4.4: Equilibria found in multi-position financial market environments.

Where

multiple equilibria were found, they are given numbers to differentiate. Profiles num-
bered “T” correspond truth-telling profiles. “95% Regret” is the bootstrapped 95%
upper confidence interval on regret.

Environment Num Uviin Upax n Prob (%) Efficiency 95% Regret
4/5x Arrival Rate T 0 0 1 100 0.702

1 0 500 0.8 100 0.743 33.954

2 0,125 500,500 0.8,1 19.4,80.6 0.734 23.894
6 Agents T 0 0 1 100 0.739 -

1 0,125,125 500,500,1000 1,1,0.4 2.2,3.5,94.3 0.607 3.486
36 Agents T 0 0 1 100 0.768 -

1 0,0,125 500,500,500 0.8,1,1  25.3,10.4,64.3 0.776 24.880

2 0,125 500,500 1,1 67.5,32.5 0.779 19.546
0OxMean Reversion T 0 0 1 100 0.469 -

1 125,29000  1000,30000  0.4,0.001 55.2,44.8 0.602 33.773
1/10xMean Reversion T 0 0 1 100 0.757 -

1 0,125,125 500,500,1000 1,1,0.4 3.5,46.6,49.9 0.761 47.824
1/sxMean Reversion T 0 0 1 100 0.766

1 0,125 500,500 0.8,1 9.3,97.7 0.783 54.921

2 0,0,125 250,500,1000 1,1,0.4 26.3,63,10.6 0.793 73.490
2/sxMean Reversion T 0 0 1 100 0.770 -

1 0,0 250,500 1,1 70.9,29.1 0.811 26.887

2 0,125 500,1000 0.8,0.4 97.5,2.5 0.797 63.857

3 0,125,125 500,500,1000 0.8,1,0.4 3.1,82.1,14.8 0.781 22.112

4 0,0,125 125,500,500 1,0.8,1 10.7,45.1,44.1 0.795 21.439
Baseline T 0 0 1 100 0.771 -

1 0,0 250,500 1,0.8 19.3,80.7 0.803 16.131

2 0,0,125 250,500,500 1,0.8,1 8.5,90.6,0.9 0.800 15.544

3 0,0,125 250,500,500 1,0.8,1  29.6,27.1,43.3 0.800 17.152

4 0,0,0 125,250,500 1,1,1 20.8,23.4,55.7 0.805 17.261

5 0,0,125 500,500,500 0.8,1,1 21.4,10.9,67.7  0.790 3.687
2x Arrival Rate T 0 0 1 100 0.955 -

1 0,125 250,1000 1,0.4 94.7,5.3 0.957 24.640

2 0,29000 500,30000 1,0.001 87.3,12.7 0.941 43.369

3 0,125 500,500 1,1 24.1,75.9 0.923 16.494

4 0,00 50125500 1,1,0.8 87.7.7.83.6  0.945 38.080

5 0,0,125 500,500,500 0.8,1,1  36.7,13.1,50.1 0.931 26.133
5x Arrival Rate T 0 0 1 100 0.997 -

1 0,0 50,500 1,0.8 9.5,90.5 0.990 40.257

2 0,125 1000,500 1,1 7.1,92.9 0.963 62.199
10x Arrival Rate T 0 0 1 100 0.994 -

1 0,125 1000,500 1,1 7.9,92.1 0.970 51.134

2 0,0,125  250,2000,500 1,081  0.57.691.9  0.969 25.813
216 Agents T 0 0 1 100 0.774 -

1 0,0 250,500 1,1 78.1,21.9 0.823 19.123

2 0,125 500,1000 0.8,0.4 98.1,1.9 0.809 41.196

3 0,0,125 500,500,500 0.8,1,1 45.2,23.8,31 0.808 43.869
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Table 4.5: Equilibria found in single-position financial market environments.

Where

multiple equilibria were found, they are given numbers to differentiate. Profiles num-
bered “T” correspond truth-telling profiles. “95% Regret” is the bootstrapped 95%
upper confidence interval on regret.

Environment Num Usnin Upnax 7 Prob (%) Efficiency 95% Regret
4/5x Arrival Rate T 0 0 1 100 0.938 -

1 125 500 1 100 0.958 10.511

2 0,125 1000,1000 1,04 31.7,68.3 0.947 8.514
6 Agents T 0 0 1 100 0.863 -

1 0,125,29000 2000,1000,30000 0.8,0.4,0.001 49.1,45.7,5.2 0.780 8.143
36 Agents T 0 0 1 100 0.936 -

1 125,125 500,1000 1,04 9.1,90.9 0.934 0.958
0xMean Reversion T 0 0 1 100 0.736 -

1 0,29000 2000,30000 0.8,0.001 66.6,33.4 0.824 35.347
1/10xMean Reversion T 0 0 1 100 0.925 -

1 0 2000 0.8 100 0.880 45.380

2 0,125 2000,1000 0.8,0.4 84.9,15.1 0.889 29.130

3 0,125 2000,1000 0.8,0.4 16.8,83.2 0.926 29.222
1/sxMean Reversion T 0 0 1 100 0.942 -

1 0,125 1000,1000 1,0.4 92.9,77.1 0.947 11.404

2 0,125 500,500 0.8,1 28.2,71.8 0.956 29.546
2/sxMean Reversion T 0 0 1 100 0.949 -

1 0,125 1000,1000 1,0.4 44.9,55.1 0.951 2.847

2 0,0,125 500,500,500 0.8,1,1 33.7,4.7,61.5 0.961 17.122
Baseline T 0 0 1 100 0.952 -

1 0 1000 1 100 0.949 14.405

2 0,125 500,500 1,1 22.7,77.3 0.963 13.473
2x Arrival Rate T 0 0 1 100 0.976 -

1 125,125 500,1000 1,0.4 58.2,41.8 0.969 7.768
5x Arrival Rate T 0 0 1 100 0.975 -

1 0,0,125 1000,2000,500 1,1,1 0.2,90.8,9 0.964 15.971

2 0,125 1000,1000 1,04 34.4,65.6 0.972 6.737

3 0,125,125 1000,500,1000 1,1,04 17.7,22.3,60 0.972 11.430

4 0,125,125 2000,500,1000 0.8,1,0.4 15.4,13.2,71.3 0.970 11.174
10x Arrival Rate T 0 0 1 100 0.971

1 0,0 1000,2000 1,1 68.4,31.6 0.971 19.954

2 0,125 2000,1000 1,04 24.7,75.3 0.970 15.222

3 0,125 2000,1000 0.8,0.4 22.1,77.9 0.970 13.117
216 Agents T 0 0 1 100 0.966

1 125 500 1 100 0.983 7.130

2 0,125,125 500,500,1000 1,1,0.4 89.5,0.7,9.8 0.980 14.469
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by Zhan and Friedman by broadening the search for Nash equilibria and extending
the model to environments with dynamic elements.

More generally, this phenomenon is highly germane to design of rules and regu-
lations surrounding CDA markets. For example, measures aimed at promoting true
value revelation—following the typical intuition of mechanism designers—may be
counter-productive to mechanism design goals in this setting. My analysis also un-
derscores the need for accounting for strategic behavior when comparing CDAs to
alternative mechanisms, particularly those (e.g., call markets) that may not exhibit

this phenomenon.
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CHAPTER V

Empirical Mechanism Design for Optimizing

Clearing Interval in Frequent Call Markets

5.1 Introduction

Most modern financial markets operate a continuous double auction (CDA). A
consequence of the continuous-time property of CDAs is that there is no lower bound
on the speed differential that could be pivotal in deciding the trade. Financial mar-
kets adopting this mechanism foster a latency arms race, where traders may obtain
significant benefit by achieving small access-time advantages over their counterparts.

The apparent first-order cost of the latency arms race has led several to advocate
switching from continuous to discrete-time clearing mechanisms (Budish, Cramton,
and Shim Schwartz and Wu Sparrow Wah and Wellman. Ina
discrete-time, or call market, orders are accumulated (or batched) over specified time
intervals, with matches determined only at the end of each interval.

The call market mechanism has been known and in substantial use for a long time;
in fact typical financial markets open each day with a call market. What is new is the
opportunity to run call markets with short clearing intervals, say on the order of one
second. The Chicago Stock Exchange recently launched a similar mechanism called
a SNAPSM auction,!| which is roughly a temporary half-second call that occurs in
an otherwise standard CDA market. The clearing interval in frequent call markets is
intended to be long enough to undermine most of the benefit of tiny speed advantages,
yet short enough to avoid imposing serious delays on economic activity. The literature
discussing discrete-time markets uses a number of different names, including frequent
batch auction (Budish, Cramton, and Shim, periodic auction (Madhavan,

1|h‘ctp ://www.chx.com/snap/snap-auction-cycle. htm1|
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and frequent call market (Wah and Wellman ; I simply refer to them as call
markets, with the understanding that the clearing interval will be relatively short.

There are many ways a call market could trigger a clear, such as by volume or
time, deterministically or randomly. Random choice of clear time has been proposed
as a way to prevent a form of sniping, where a fast trader with an edge on information
or market access can snipe a stale order. In a call market, this applies only right at
the end of the clearing interval, say for a fraction 0 of that interval. Randomization
prevents such deterministic sniping, but allows the fast trader to snipe with a 0
probability of success for the entire time. Thus randomization provides no protection
benefit in expectation. It also poses the problem of trusting the mechanism to honestly
randomize, which is not easy to audit.

For both of these reasons I focus on deterministic clearing, and the question of
how long the interval should be. A specific choice of around one second, which has
often been suggested as a reasonable interval, is quite arbitrary. Market designers
should prefer a principled basis for deciding exactly how much time should elapse
between market clears. I investigate this question by examining how the quality of
the market—measured as allocative market efficiency and price discovery—is affected
by the clearing interval when traders are strategic and utility maximizing, playing
according to an approximate form of Nash equilibrium.

My model posits finitely many agents trading a single security in a single market,
where agents respond to asymmetric private information as they repeatedly enter
the market to buy or sell, conditioning on market observations. This model allows
me to investigate how the presence of adverse selection, and market parameters that
affect it, contribute to the optimal selection of a clearing interval. I do not model
agents’ response to public information or other important aspects of modern financial
markets such as opportunities to invest in better information or faster market access.
We should expect the duration of the clearing interval to have certain qualitative
effects on a call market. If the clearing interval is sufficiently short, then a frequent
call market should behave almost identically to a CDA.? Frequent clearing reduces
transaction times at the expense of making hasty matching decisions and thereby
potentially inefficient trades. If the clearing interval is sufficiently long, then the
behavior approaches a one-shot double auction (Satterthwaite and Williams ;
Wellman . Infrequent clearing produces more efficient trades at the expense of

2Even at infinite frequency, the behavior is not exactly identical, because the markets price
differently. CDAs price at the incumbent order price, whereas call markets price at the midpoint of
the clearing range.
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delayed execution. Waiting for the next clear can be costly, for example when other
market actions serially depend on the present one. At some point, the efficiency
benefit of longer clears will be outweighed by this time cost. The question then
becomes, is there some clearing interval where the benefit of more efficient trades
outweighs the loss of immediacy, or is the most efficient call market the one that
behaves like a CDA?

My market model is too complex to analyze using traditional means, so I use
the techniques from Chapter III to find approximate equilibria in a CDA market
and in call markets with a discrete set of clearing intervals. In effect, I perform
empirical mechanism design (Vorobeychik, Kiekintveld, and Wellman with the
goal of maximizing allocative efficiency on a much richer model than would be possible
to analyze with standard economic analysis. My analysis indicates that frequent
batch auctions do not always improve market efficiency, but in markets with low
adverse selection, lengthening the clearing interval produces greater efficiency until a
point where agent impatience dominates and efficiency falls sharply. I also find that
the benefit of switching to a frequent call market is significantly improved in thick
markets. These conclusions suggest practical considerations that should be taken

when implementing such a mechanism.

5.2 Related Work

Wah and Wellman and Budish, Cramton, and Shim were among
the first to propose call markets as a design response to the negative effects of latency
arbitrage. Both papers demonstrate that continuous clearing creates arbitrage op-
portunities that arise at imperceptible frequencies, and that exploiting them reduces
market liquidity and efficiency. Budish, Cramton, and Shim also roughly
calculate what batch interval should be sufficient to prevent latency arms races for
various calibrations of their model. Their results yield a lower bound of one millisec-
ond to one second depending on assumptions about the information arrival process
and the magnitude of speed improvement available to high-frequency traders (HFTs).
Other studies have also found benefits to frequent call markets. Schnitzlein
performed a laboratory experiment comparing a call markets and CDAs and found
that the call market was more liquid and better for noise traders, while not harming
price efficiency. Baldauf and Mollner compared CDAs, frequent call markets,
and delayed CDAs® in a model with costly research. Both frequent call markets and

3CDAs with delayed submission but immediate cancels.
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delayed CDAs performed at the Pareto frontier of price discovery and spread, but
traditional CDAs did not. Madhavan considered a model where risk-averse
traders start with some initial endowment of both a risky asset and cash and found
that, in equilibrium, call markets offered greater price efficiency than CDAs. Follow-
up studies have investigated how frequent call markets could coexist with traditional
CDAs (Li and S. Das Wah, Hurd, and Wellman , have outlined practical
considerations necessary to implement a frequent call market compliant with current
regulations (Budish, Cramton, and Shim, and present some tangential evidence
of a smooth tradeoff between immediacy and batching (Wah and Wellman R016]). All
these have relegated the question of optimizing call frequency to future work.

In response, several recent papers have developed stylized analytical models that
propose definitions of an optimal clearing interval. Fricke and Gerig studied a
financial market model that is very similar to the model used in Garbade and Silber
. Like the earlier paper, the authors attempted to determine the optimal clear-
ing frequency based on a version of liquidity risk. The authors then calibrated their
model with aggregate current market data and estimated that the optimal clearing
interval for current S&P 500 securities is somewhere between one and three seconds.
Du and Zhu solve for Nash equilibrium in linear strategies of a model with a
divisible good and shocks to both common and private information. In this model,
faster auctions allow agents to more quickly respond to information, but also cause
them to be more aggressive with their orders. A key result is that when information
arrives via a Poisson process, then the optimal clearing rate can be much slower than
the average arrival rate of information, except when there are few traders or a large
amount of adverse selection. Their approach is similar to mine, but several aspects
of the model, including divisible units, private value shocks, and maintained order
books, make it difficult to directly compare results. Haas and Zoican propose
a model in which they measure market liquidity as a function of clearing interval in
equilibrium. Their market model has two types of participants: HFTs and liquidity
agents, where HF'Ts respond to random information and the liquidity traders are im-
patient and respond to random private value shocks. Their model parallels Budish,
Cramton, and Shim until the clearing interval gets long enough, at which point
traders’ impatience gives out and longer clearing intervals cease to improve liquid-
ity. The authors find that liquidity may still be worse in these call markets than in
traditional CDAs.
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5.3 Market Model

My experiments employ a parameterized financial market model, extended from
the base model described in Chapter I by adding a call market. The market re-
veals price quotes reflecting the best outstanding orders after the most recent clear;
other bids in the market are not visible to agents, and no new information is pro-
vided between clears. During a market clear, the mechanism determines the range
of prices that would match supply and demand, and executes all compatible trades
at the midpoint of this range. If there is an imbalance of supply and demand at the
clearing price (due to multiple units with the same price), the ties are broken first by
orders that arrived in earlier clearing intervals, and then in a random manner. CDAs
are a special case of call markets that clear after every order submission and price

transactions at the incumbent order price instead of the midpoint.

5.3.1 Call Market Trading Strategies

Since the ZI family of trading strategies was conceived for CDA markets, it stands
to reason that effective call market strategies would have a different parameterization.
To my knowledge, there is no prior literature analyzing strategies for periodic call mar-
kets. I propose a simple extension to the ZI class of strategies that allows agents to
condition their shading on their location in the clearing interval. My extension pro-
vides the first step in exploring effective call market strategies. An agent that arrives
close to a clear has better information about the fundamental than the other agents
with orders in the market, and as a result, faces lower adverse-selection. Instead of
being parameterized by only d and d, this strategy class has four shading parameters
d;, dy, d;, and dy, where i and f stand for initial and final respectively. When an
agent arrives, it linearly interpolates its effective d and d based on its position in the
interval. That is, if an agent arrives « fraction of the way through the interval, then its

demanded surplus is drawn uniformly from the range [(1—a)d;+ad;, (1—o)d;+ady].

5.3.2 Environments

Characterizing all possible model parameter settings under all possible agent
strategies is infeasible and would be largely uninteresting. Many possible parame-
ter settings are degenerate—they provide no opportunities to trade, or insufficient
information to trade safely, or fail to present strategic tradeoffs. For example, as
fundamental shock variance diminishes, adverse selection vanishes and almost any

trading strategy is sufficient to reach an efficient allocation, but if fundamental shock
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variance is too high, the shading required to leave a profitable resting order will make
transacting unlikely. My analysis provides an understanding of how different aspects
of a market affect optimal mechanism design by analyzing many discrete parameter
settings. I refer to each distinct point in parameter space as an environment.

Each environment I study shares a base set of parameter settings. These fixed
parameters either have an unimportant effect on the simulation, or can be appro-
priately scaled by settings of the parameters I do vary. The fundamental mean f is
set very high at 10° so that boundary effects at zero never happen in practice. The
private value variance afw is 5 x 10° and the maximum position gmax is 10 so that
the importance of public and private value components are loosely balanced. With
gmax = 10, there is a 0.0002% chance that an agent’s optimal position is 10, thus
agents rarely reach their maximum position. The arrival rate X is 5 x 1073, The re-
maining parameters are dimensions that I vary in my analysis: the number of agents
(market thickness), the simulation length (number of trade opportunities), and the
fundamental parameters (mean reversion, shock variance). I explore three different
numbers of agents: 25, 58, and 238 respectively referred to as the thin (} V), medium
(—N), or thick market (T/V). I investigate two different simulation lengths: 5000 and
10000 respectively short ({T") or long (17"). Given the arrival rate, agents are expected
to arrive 5 times in |7 and 10 times 177". Finally, I consider two different levels of ad-
verse selection: 2 x 1072 mean reversion with 5 x 10° fundamental shock variance and
2 x 107* mean reversion with 5 x 10* fundamental shock variance, respectively (| A)
or (1A). The two adverse selection settings have roughly equal a priori final funda-
mental variance (LA has 1.26 x 10® variance versus 1.23 x 10® in 1A4) in the long time
horizon (17°) setting. These two settings differ in how the adverse selection changes
over the time horizon. With high mean reversion there is less adverse selection at the
beginning of the simulation, when most fundamental variation is damped by mean
reversion. An environment is the combination of these three parameter settings, so I
describe an environment in shorthand as the combination of the associated symbols.
For instance, TN|T]A is the environment with 238 agents and time horizon 5000,
with a fundamental that has mean reversion of 0.02 and shock variance of 5 x 10°.

The ZI strategy space defined in Section 2.2 is continuous, not necessarily compact,
and not differentiable with respect to utility. I discretize the strategy space in order to
make these games amenable to normal-form analysis. I want a set of discrete strategies
such that equilibria in the discrete game have low regret in the continuous game. How
to guarantee this property is unknown, but I nevertheless select what I consider a

reasonable set of discrete strategies by starting with a set of feasible strategies, and
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then adding best responses to initial equilibria from a significantly larger set, as
described in Section 3.1. The strategies I ultimately consider for equilibrium analysis
are listed in Table /5.1.

Table 5.1: Strategies considered for equilibrium analysis.  See Section 2.2 for pa-
rameter details. The first strategy is truth-telling, and the last strategy is effectively
fill-or-kill where agents demand between 29 and 30 surplus.

0 0 0 0 0 0 0 0 125 250 500 500 1000 29000
0 125 250 500 1000 1500 2500 2500 1000 500 1000 1000 2000 30000
1 1 1 1 1 0.6 04 1 0.4 1 0.4 1 0.4 0.001

S Al

In order to test the effect of tailoring strategies to the call mechanism, I also
found equilibria in environments where agents have access to a select number of
call strategies in addition to the regular background strategies. In the same way I
chose a discrete set of standard strategies, I chose this set of call market strategies by
looking for best responses from existing equilibria. The additional call market specific
strategies are listed in Table 5.2. lists the three strategies agents had additional
access to when finding equilibria with call strategies. All of these strategies exhibit
decreasing levels of shading as the clear approaches, that is, as agents trade in a call

market with better information, they shade less.

Table 5.2: Additional strategies considered for equilibrium analysis with call market
strategies. See Section 5.3.1 for parameter details.

d; 250 29000 39000
d; 1250 30000 40000
d;s 0 20000 30000
dy 1000 21000 31000
n 04 0.001 0.001

5.4 Analysis

In order to understand how clearing interval affects market efficiency, I first demon-
strate the effects when agents are non-strategic—specifically, when agents are truth-
telling. I measure efficiency by fraction of optimal social welfare: average total trader
surplus divided by the expected maximum possible trader surplus for the correspond-
ing environment. This appropriately gives more weight to sampled instances with

higher achievable surplus.
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When the clearing interval is sufficiently small, I expect efficiency—as well as most
other statistics—to be almost identical for call and CDA markets. The market types
still will not be identical due to their different pricing schemes, and the discreteness
of time. When the clearing interval is sufficiently large, I expect efficiency to degrade,
because traders lack sufficient opportunities to trade. I also expect that at some
point between almost-continuous clearing and a single clear, the efficiency of the
call market will exceed CDA efficiency. The optimal clearing interval would ideally
balance improvement in matching from aggregation over time, and provision to traders
of ample opportunities to trade. In the words of Haas and Zoican , when the
clearing interval is short, the friction due to trader impatience is minimized, when
the clearing interval is long, the friction due to imperfect information is minimized,
and ideally at some intermediate interval, the two are balanced.

I simulated environment —N71TT'|A ten thousand times for each clearing interval
when agents submit truthful bids. Figure 5.1 shows the results of that simulation,
which matches my expectations. The call market is generally more efficient than the
CDA, as the clearing interval increases, the agents see the allocation benefit of batched
clearing, until the point that infrequent trading opportunities dominate the benefit
of batching, and there is a sharp decline in efficiency. Even at a clearing interval of
1 there is still a slight effect of batching as multiple agents may arrive at the same
time interval. If the call market cleared after every interaction the incentives would
still be different because the call market prices at the midpoint of trades not at the
incumbent price.

Agents are unlikely to behave truthfully in real markets, and the model I investi-
gate is too complex to support analytical solutions. I compute approximate empirical
equilibria using the simulation-based process described in Chapter [I1I—reducing the
number of players down to four—on the environments discussed in Section 5.3.2.
Figure 5.2 contains plots of clearing interval versus equilibrium efficiency for the six
environments with low adverse selection. Since environments may have multiple equi-
libria, I plot a range of efficiencies for all of the equilibria found at a given clearing
interval. In each CDA environment, I found exactly one equilibrium. These methods
are not perfect, and occasionally produce artifacts—for instance, the dip in Fig-
ure |5.2d—which may be attributable to discretizations imposed in modeling. Despite
the few artifacts, the general trends are unmistakable. The trend in efficiency closely
matches what was expected and what we see in Figure 5.1, but to a lesser extent.
Call markets provide less efficiency improvement over CDAs when agents are in equi-

librium than when agents are truth telling. This decrease in efficiency improvement
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Figure 5.1: Call market efficiency in the —N1T|A environment as a function of
clearing interval when agents are truthful. In this environment, there is a large region
of clearing intervals where call market efficiency is near optimal, and significantly
higher than CDA market efficiency. Call market efficiency is slightly higher even
when clearing every time step because multiple agents can arrive in a single time step
and still benefit from batching.

is likely due in part to the surprising equilibrium efficiency of CDAs (Chapter V).

As clearing interval increases, call markets go from being quite similar to CDAs to
being significantly more efficient. In most of the environments the optimal call market
mechanism reduces inefficiency by half when compared to the CDA. This trend is
stronger as the number of agents increases, which I attribute partially to effective
batching that does not happen when the markets are thinner. This suggests that
frequent call markets would actually benefit thick markets more than thin, matching
the result of Du and Zhu . It also suggests that given an ideal market setting
for call markets, the specific choice of clearing interval frequency is less important to
efficiency improvement that using a call market at all.

There are other measures of market quality besides allocative efficiency, and the
nature of this model allows me to compute arbitrary market statistics in equilibrium.
Price discovery is a general measure of how closely the market represents the true
price of a security; I calculate it as the root-mean-square deviation (RMSD) of the
transaction prices relative to the unbiased estimate of the final fundamental at the
time of transaction. A market with worse price discovery would have a larger RMSD.
Call markets present a fundamental tension between common and private information
aggregation: as the call interval gets longer, orders in the market represent more

outdated fundamental information and may be less accurate, but as the call interval
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Figure 5.2: Equilibrium efficiency as a function of clearing interval in six environments

with low adverse selection.

Rows from the top represent environments with 238, 58,

and 25 agents respectively. The left column has a time horizon of 10000, while the
right has a time horizon of 5000. Games where I found multiple equilibria have their
efficiency represented as a range. These plots show the expected tradeoff between
the benefits of batching and harm of limited execution opportunities. As the markets
become thicker, the range of clearing intervals that are near optimal significantly

increases.



gets longer more orders are present in each clear, and so more private information
is aggregated in each transaction. Figure 5.3 presents the median RMSD for every
low adverse-selection environment. CDAs exhibit better price discovery in every
environment except for thick markets, and as for efficiency, when the clearing interval
is long, price discovery significantly degrades. The price discovery improvement in
thick markets likely arises because batching large numbers of orders helps to reduce
the noise caused by private valuations, while still ensuring that orders represent recent
information.

A common measure of liquidity is the market spread. The spread is the difference
between the highest outstanding buy order and the lowest outstanding sell order. The
size of the spread roughly corresponds to the transaction cost for impatient traders,
as they must meet the quote to trade immediately. Since my model does not contain
a dealer or market maker, there are times when spread is not defined, and I therefore
report the median spread over all time. Increasing clearing interval should reduce
the spread as agents have more protection from mispriced orders, since transactions
happen at the midpoint of all orders instead of the incumbent price, and are therefore
willing to price closer to their beliefs. This trend is present in Figure 5.4, which
shows the equilibrium median spread for every low adverse-selection environment.
The spread decreases as the clearing interval increases, but the benefit disappears as
the clearing interval becomes prohibitively long.

My results indicate that long clearing intervals can result in low efficiency, poor
price discovery, and large spreads, and the transition to this regime of poor market
performance can be very fast. My results also indicate that appropriate clearing
interval selection in thick markets with low adverse selection can significantly improve
performance over CDAs. However, these results hold for strategies intended for use in
CDAs. How robust are these results when agents can condition their strategy on their
location in the clearing interval? Figure 5.5 shows the difference between equilibrium
market statistics when call market agents have access to call market strategies. 82% of
equilibria and 90% of games had equilibria where at least one call market strategy was
in support, which indicates that it can be effective to develop customized strategies for
call markets. However, despite incorporating some call market strategies, qualitative
market performance in equilibrium is essentially the same.

My analysis to this point has considered only environments with low adverse-
selection. Figures |5.6-5.8 show the same set of experiments for varying numbers
of agents with a long time horizon and large adverse selection. I find that in high

adverse-selection environments, the optimally efficient clearing interval approaches a
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Figure 5.3: Equilibrium price discovery as a function of clearing interval in low

adverse-selection environments.

Rows from the top represent environments with

238, 58, and 25 agents respectively. The left column has a time horizon of 10000,
while the right has a time horizon of 5000. Higher RMSD indicates worse price dis-
covery. Call markets improve price discovery only in thick markets with relatively

short clearing intervals.
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Figure 5.4: Equilibrium median spreads as a function of clearing interval in low

adverse-selection environments.

Rows from the top are for environments with 238,

58, and 25 agents respectively; columns from the left represent time horizons of
10000 and 5000 respectively. Following intuition, longer clearing intervals decrease
the spread; however, excessively long clearing intervals increase the spread.

CDA. Even when the number of agents is increased, short clearing intervals match,

but do not exceed CDA efficiency. Thick markets do not restore price discovery as

they do with low adverse selection, but the spread is generally tighter.
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Figure 5.5: How equilibrium statistics change when agents have access to call market

specific strategies in environment —NTT|A.

The left column contains equilibria

when agents have access only to CDA strategies; the right column contains equilibria
when agents additionally have access to call market specific strategies. Call market
strategies have weak effect on the qualitative trends in market quality.
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Figure 5.6: Equilibrium efficiencies in two environments with high adverse selection.
Even in a thick market (Figure b), short clearing intervals are on par with a CDA,
but never surpass it.
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Figure 5.7: Equilibrium price discovery with high adverse selection. = Unlike with
low adverse selection, price discovery in call markets with high adverse selection is
consistently worse.

52



Median Spread Median Spread

2045.51 ¢ call 761.72
639.09
1563.35

\

Call
0.00 *, ) 0.00 &, )
1 . 2k 1 2k
Log Scale Clearing Interval Log Scale Clearing Interval
(a) Environment —N1T1A (b) Environment TN1T1A

Figure 5.8: Equilibrium spread with high adverse selection. Spreads are reduced at
large clearing intervals, even with high adverse selection.

5.5 Conclusion

I employed empirical mechanism design to investigate the effects of clearing inter-
val on market statistics. Given the significant difference between equilibrium trading
behavior in a call market and in a CDA, I believe analyses of strategic interaction,
like the results presented here, are necessary to characterize expected behavior in
call markets where little historic data exists. My analysis has produced a number of
unique insights.

In a first exploration of agent strategies geared toward call markets, I find evidence
suggesting that even simple consideration of the call interval can provide gains. How-
ever, while these strategies appear in equilibrium, they do not qualitatively change
equilibrium market quality in my experiments. Are the lack of qualitative differences
due to insufficient exploration of call market specific strategies, or does effective call
market trading not need a significantly different strategy space? I leave this question
for future work.

More to the point, there are a number of practical revelations about frequent call
markets that I demonstrate. Environments with high adverse selection may be served
more efficiently by CDAs than by frequent call markets. Otherwise, call markets
tend to have some clearing interval region where they operate more efficiently, and
this region is significantly wider in thick markets. Thick markets also universally saw
improved spreads and price discovery than their thinner counterparts. These results
roughly parallel those of Du and Zhu (2017), who also found long optimal clearing
intervals in thick markets with low adverse selection. My results suggest that contrary

to what might seem natural, the markets best suited to frequent call markets are thick
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with low adverse selection.

More generally, my methodology adapts readily to other metrics of interest, other
market designs, and other agent behaviors, and provides a unique perspective on
complex problems where models will always be stylized. For example, analyzing the
effectiveness of random or volume-based clearing and other market-quality metrics

can be easily factored into this model.
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CHAPTER VI

Trend-Following Trading Strategies and Financial
Market Stability

6.1 Introduction

What are the potential effects of trading automation on financial market stabil-
ity? This is an obviously important question to answer in a time when trading activ-
ity is increasingly controlled by algorithms, interacting through electronic markets.
Unprecedented information response times, autonomous operation, use of machine
learning and other adaptive techniques, and ability to proliferate novel strategies at
scale are all reasons to be concerned that algorithmic trading may produce dynamic
behavior qualitatively different from what arises in trading under direct human con-
trol.

The question is also an extremely difficult one to answer. Though we already have
significant experience with algorithmic trading, the available data can provide only

limited support, for many reasons:

1. Algorithms operate at fine time scales over many markets (due to venue frag-
mentation or strategies operating across multiple securities), and so getting a

consolidated view of behavior and cause-effect relations is challenging.

2. Trading strategies are proprietary and typically well-controlled secrets, limiting

public knowledge about the specific methods in active use.

3. Market data reflects order actions and information flows, but does not directly

reveal strategies.
4. New strategies are developed and deployed all the time.

5. Technology and market rules likewise are evolving.
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6. The primary concern about stability relates to extreme but rare events, in-
cluding possibility for severe reactions to conditions that have not yet been

experienced and are thus not manifest in data.

6.1.1 Extreme Financial Market Events

The paradigmatic event of interest is a market crash, as exemplified by historical
events of 1929 and 1987, and more recently the 2010 Flash Crash. The Flash Crash
in particular has received a great deal of attention and analysis from regulators as
well as academic researchers (Aldrich, Grundfest, and Laughlin Kirilenko et
al. ; Menkveld and Yueshen . As a result, there is a good overall under-
standing of the sequence of activity in that episode, and some insight into its causes
and surrounding phenomena. Despite all this analysis, certain aspects remain quite
mysterious, particularly regarding the unanswered question: could this happen again
tomorrow? Many have suggested a positive answer—indeed observing that less in-
tense flash crashes have happened, so actually the more salient questions would be
under what circumstances would such crashes be likely to occur, and how could they
be prevented or mitigated.

Stability concerns are particularly acute for high-frequency trading (HFT) strate-
gies, due to the fine time scale at which they operate. Precisely because they adapt
to changing conditions faster than any human could intervene, the potential for un-
intended reactions to rare events looms large.

Johnson et al. claim to find evidence of such HFT interactions in financial
market data, which they term “ultrafast extreme events” (UEEs). Specifically, they
document 18,520 instances in a five-year period of relatively large crashes or spikes
in specific equity prices, lasting 1.5 seconds or less. The brief duration rules out hu-
man reactions in these price movements, and suggests the possibility of “new machine
ecology” (or as Cartlidge and Cliff call it, a “robot phase transition”) where
algorithms interact in a series of responses, potentially producing novel price dynam-
ics. However, Golub, Keane, and Poon shed doubt on the machine-ecology
explanation of UEEs, demonstrating that these UEEs are actually better explained
as the result of Intermarket Sweep Orders (ISOs), a kind of special order type intro-
duced in the wake of market fragmentation. ISOs are exempt from the usual rules of
order routing between exchanges, and can cause a mini crash or spike due to a large
order on one single exchange.

The apparent confusion in interpreting these UEEs underscores the difficulty of

characterizing algorithmic behavior in financial markets. It is highly likely that sig-
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nificant bot-only interactions do exist. Identifying their signatures and understanding
their effects remain open problems for research. Effective monitoring of markets by
regulators requires a fundamental detection capability, and ability to predict desta-
bilizing conditions is prerequisite for designing market rules and interventions to pro-

mote stability.

6.1.2 Agent-Based Simulation

My simulations are agent-based, in that they directly model the decision behavior
of trading agents interacting through market mechanisms, implemented at a level
preserving key microstructural features. There is an extensive literature on agent-
based modeling for generation of extreme events like flash crashes (Lee, Cheng, and
Koh ; Paddrik et al. . Bookstaber even argues that agent-based
models are particularly suited to studies of financial stability, given the complexity
of environments and interactions that raise stability issues.

A common criticism of agent-based modeling is that the results may be sensitive
to details of the simulation implementation, and in particular the choices of agent
behavior. In the present context, the fact that some configuration of agent behaviors
could lead to extreme events in financial markets is not very conclusive, as these
behaviors may themselves be highly implausible. I directly address this concern using
the methodology presented in Chapter III.

To capture the causal pathways that may engender such instability, a financial
market simulation must implement in detail the information structure and transmis-
sion by which agents’ actions may influence subsequent actions by others. I specifically
adopt a recent model (Wang and Wellman that limits the amount of information
agents have about the fundamental price, thereby incentivizing them to incorporate
market information in their strategies. This structure gives rise to a market that
is more susceptible to shocks. I characterize stability by examining the impact of a
market shock, one modeled as a large sell order, on the price of the security with
and without trend followers. I find the presence of trend followers has weak effects
on markets under normal conditions, but completely changes the nature of their in-
stability. Without trend followers agents rely heavily on market information, which
leads to market crashes with a long recovery time. When trend followers are present
they disincentivize the use of market information, but amplify the impact of a market
crash. The net result of introducing trend follows is a more significant market crash
that recovers very quickly.

I also demonstrate a novel methodology to efficiently compute equilibria in games
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with an arbitrary probability of market shock. Equilibria with trend followers and
endogenous shocks are more resistant to shocks that happen more frequently, but the

presence of market shocks does not prevent trend following, keeping them unstable.

6.2 Related Work

Much of the research analyzing stability comes from empirical finance and econo-
metric literature. Cetorelli et al. define a stable market as “one that can endure
shocks to supply or demand without collapsing—that is, without experiencing surg-
ing (or wildly oscillating) prices”. They focus their attention on centralization’s effect
on stability, and model their shock as a large supplier leaving the market. Their
conclusions are mixed, finding both positive and negative relationships between cen-
tralization and stability. Baur and Schulze classify market shocks as systematic
(frequent but small) and systemic (infrequent but large). Instead of directly charac-
terizing the results of a shock, they focus on the change in impact between normal
and extreme market conditions. Stable markets respond identically in both, whereas
unstable markets exhibit a worse response during extreme conditions.

Empirical studies like these provide useful insights, but are not capable of address-
ing counterfactual questions that get at the causal factors underlying market stability.
Agent-based simulation does support counterfactual comparison, and indeed has been
extensively applied in this area. Lux and Marchesi describe a dynamic mar-
ket model where agents alternate between being fundamentalists and effective trend
followers. This simple model is expressive enough to give rise to large fluctuations in
price despite low fluctuations in information and independent volatility, indicating a
key relation between trend following and market instability. Hommes and Wagener
use models with prescribed agent types and analyze the stability of the system
as the parameters of strategies change. Their analysis finds bifurcation points where
small levels of trend following are tolerable, but significant trend following leads to
instability. A dynamic limit-order model of trend following—similar to the one pre-
sented in this paper—was introduced by Chiarella and lori and extended by
LeBaron and Yamamoto (2008]). The latter paper demonstrates a connection between
statistical observations from financial markets and the degree of trader imitation in
their model. Lee, Cheng, and Koh propose a model where various aspects
of market quality decrease as the number of trend following agents increase. Feng
et al. use both an agent based and a purely stochastic model to recreate sta-

tistical phenomena found in transaction data. Technical trader imitation, i.e. similar
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behavior by non-fundamental traders, was necessary to exhibit fat tails in return
distributions among other properties. These papers focused on statistical stability
properties of markets with technical traders.

More recently, several authors have used agent based models to predict counter-
factual responses to market shocks. Bookstaber and Paddrik present a model
with agents that demand liquidity, supply liquidity, and market-make. They intro-
duce a market shock by increasing the sell-side liquidity demand and analyze how
that affects the overall liquidity of their model. The model proposed by Leal and
Napoletano (2017)) is closest to our own in that they precisely analyze the effect of
a shock in a limit-order model. They study the effects of proposed policies on the
volatility, frequency of crashes, and recovery time post-crash. Adding frictions to
cancellations, such as minimum resting times or cancellation fees, proved to reduce
volatility and frequency of crashes, but also lengthened recovery times.

My main point of departure from these prior agent-based studies is my imposition

of a game-theoretic selection process on agent strategies.

6.3 Financial Market Simulator

I employ a version of the simulator presented in Chapter [I, modified to capture
imperfect fundamental observation, trend following, and market shocks. My sim-
ulations are composed of 66 background traders and optionally 486 trend followers.
Table 6.1 lists the default configuration parameters, some of which are described later

in this section.

Table 6.1: Default Environment Parameters

Parameter Variable Value
Background Arrival Rate B 2 x 1073
Fundamental Mean f 10°
Fundamental Mean Reversion r 0
Fundamental Shock Variance o2 10°
Max Position Qmax 10
Observation Variance o2 109
Private Value Variance o, 10°
Trading Horizon T 10
Trend Arrival Rate A\ 5x 1073
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6.3.1 Market Shocks

I model a shock to the market as a large incoming sell order, from a liquidating
shock agent otherwise treated as outside the system. As a large sell order triggered
the Flash Crash, this a natural form of shock for evaluating market stability.

In order to avoid having the shock agent directly set the price of trade during
the shock, in our implementation the agent liquidates its holdings evenly throughout
a given interval (Bertsimas and Lo . Specifically, the shock agent arrives at
every time step and tries to to reduce its fraction of holdings to the proportion of
liquidation time remaining by taking any, possibly all, outstanding buy orders. This is
slightly different from the liquidation strategy used by traders blamed for instigating
the Flash Crash, which chose the amount to liquidate proportional to the previous

net trading volume.

6.3.2 Background Agents

Background agents arrive at the market and act with probability 2 x 1073 every
time step, giving them twenty opportunities to trade in expectation. This rate is
typically sufficient to obtain much of the potential gains from trade, as competitive
equilibrium with this valuation structure more than 95% of agents hold an absolute
position less than five!'| I adopt the information structure from Wang and Wellman
as an attempt to account for the (realistic) prospect that agent actions can
reveal meaningful information about common value components. At every arrival,
agents observe a noisy signal drawn around the fundamental, formally f, = f, +
ne, e ~ N(0,02). The observation variance (¢2) is set to to 10% by default, roughly
equal in magnitude to the expected variance of the fundamental between arrivals,
5 % 10°.

A background agent assesses its expected valuation at the time of market entry ¢,
using an unbiased estimate ft of the current fundamental f;. In all environments in
this chapter, the fundamental mean reversion (r) is set to 0, making ft an unbiased
estimator of the final fundamental fr. The estimate is updated every market entry
using posterior inference from the new noisy fundamental observation ( ft) and the
last estimate from time ¢'. As the Gaussian distribution is its own conjugate prior,

and closed under linear transformations, an agent’s belief about the fundamental at

T estimate this by sampling populations from the valuation distribution, and solving for com-
petitive equilibrium in the population instance. Of course background traders do not accrue all
available gains due to inefficiencies of CDAs, including strategic effects—though shading per se can
improve efficiency in CDAs (Chapter IV)).
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a specific time can also be represented compactly as a mean (f;) and variance (62).
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When the market forbids market orders, the threshold parameter (1) can be used
as a means to submit so-called “fill-or-kill” orders, which are designed to trade im-
mediately or not at all by leaving unfilled orders at an unreasonable price (described
in Section [2.2). With the prospect of large market shocks, however, it is difficult to
set a fixed price that is guaranteed to be unreasonable, and so I explicitly support

fill-or-kill orders that are submitted only when they trade immediately.

6.3.3 Shock Transmission

In order for an agent to be significantly influenced by another’s actions, and thus
amplify a shock, it must be through some impact of those actions on the state of the
world or the agent’s beliefs. Consider two agents. Agent 1 may affect the world state
by issuing a buy order, which will either get placed in the order book or transact with
an existing sell order. If agent 2’s values and belief are unchanged, then this state
change would make it only more likely that agent 2’s action in response will tend to
counteract agent 1’s. It is only if agent 1 changes agent 2’s beliefs or values in the
direction of its own action that we might expect to see propagation or amplification.

Background agent valuations have private and common components. An agent’s
action may reveal something about its own private component, but in most contexts
this is weak information relative to the common prior. Of greater potential signifi-
cance is how the action reflects the agent’s information about the common fundamen-
tal. This potential hinges on imperfect observation of the common value component.
If each agent observes the true fundamental immediately prior to submitting orders
(02 = 0), as was the case in the previous chapters, the Markovian nature of fundamen-
tal evolution (2.1) renders irrelevant any prior observations of the fundamental, and
thus agents gain no information about common value by considering others’ actions.

Figure 6.1a shows an example time series when a shock is introduced to a market
where agents do not consider consider the actions of others. When I introduce a price
shock (formally specified in Section 6.3.1), there is an impact to the order book, but
agent strategies are oblivious to transaction prices and so continue submitting orders
based on observed fundamental signals.

When agents receive noisy information about the fundamental (62 > 0) other-

o

agent behavior leaks relevant information about the fundamental value. I extend the
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(a) Agents do not regard one another’s ac-
tions (i.e., ignore price history). In this case,
the large shock impacts the order book, but
agents values still stay close to the true fun-
damental, and prices return to normal al-
most immediately after the shock.
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(b) Agents account for transaction prices
in their estimate of the fundamental value,
rendering the market more vulnerable to
shocks. In this case, the shock influences
agents’ fundamental estimates, which deep-
ens the effect and makes it more persistent.

Figure 6.1: Effect of market shocks in the absence and presence of price-conditional
strategies.  The y-axis (“Deviation”) represents deviation from the initial funda-
mental value. In both plots, the yellow line represents the fundamental value of the
security, the gray line is the transaction price series without a market shock, and the
blue line is the same price series, but with a market shock from time 5,000 to time
5,500. Due to common randomness, the price series are identical prior to the market
shock.

background trading strategy to allow agents to use past market data to enhance their
estimate of the fundamental. Specifically, the agents use price information from past
transactions as if they were drawn from a Gaussian distribution centered around the
fundamental at the time of transaction. Whenever an agent observes a transaction
it runs the update step in (6.1) but it uses the transaction price instead of f; and

an assumed strategic variance az € [0, 0] instead of the fundamental observation
2

variance o,. Setting ag to infinity is equivalent to ignoring transaction prices and
using the normal background strategy. When 012) is finite, agents still use fundamental
information in their value estimate, but weighted with previous transaction prices.
When agents choose to use market information in estimating their value, it exposes the
market to shocks, as agents will use asset pricing during a shock to update their belief
about the fundamental value. This effect is present in Figure |6.1b, where everything

else is as in Figure 6.1a, but background agents are using market information.

6.3.4 Trend Following

I next consider the possibility of exploiting price trends, which has the potential to
exacerbate price shocks. As noted above, when the fundamental shifts significantly,

subsequently arriving background agents are more likely to transact with orders on
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the side opposite the direction of change. Due to the limited arrivals of background
agents, their stale orders can persist for some time. As a result, market price lags
behind the fundamental during large shifts inducing a correlation between long price
trends and fundamental mispricing. This correlation can be seen in the yellow line
in Figure 6.2, where I plot the difference between the current transaction price and
current fundamental value with respect to the length of a monotonic price trend.

Formally, the plot represents the following:
Fundamental Difference(r) = E[f; — pi | pi > -+ > pies1)s (6.2)

where / is the length of a trend, p; is the i*" transaction price, and f; is the fundamental

value at the time of the i*" transaction.
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Figure 6.2: Price trends correlate with mispricing of the fundamental value. A trend
of length ¢ is present if each of the last /—1 transactions were at greater prices than the
preceding transaction. “Fundamental Difference” is the average difference between
the current fundamental value and the current transaction price (Equation (6.2)), here
plotted in yellow as a function of trend length in equilibrium without the presence
of a market shock. Introducing trend followers (blue), acting on trends at least four
long (L = 4) in equilibrium, helps rectify this inefficiency and brings the expected
fundamental at transaction time closer to transaction prices.

Agent-based models of trend-following agents have been studied in prior work
(Leal and Napoletano ; Lee, Cheng, and Koh , but none are close fits to
our market environment due to the way they match orders. Chiarella and Iori
present some analysis of a model with trend followers, that has similar structure to
ours—with a limit-order book and single unit orders. Their trend followers linearly
interpolate a fundamental value from past transactions prices. I introduce a simple

trend-following agent, designed specifically to exploit the mispricing during funda-
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mental shifts, highlighted in Figure [6.2, so that I can measure its effect on market
stability and evaluate whether this behavior is sustainable in equilibrium. Trend fol-
lowers arrive in the market with the same geometric process as background agents,
but at a higher rate, 2.5 times that of background traders or 5 x 1073, Upon arrival,
a trend-following agent checks whether the past L transaction prices are monotone.
If they are monotonically increasing, the agent first takes the outstanding ask at
price p, which exposes the next lowest outstanding ask of ¢ (interpreted as infi-
nite if the quote is missing). The trend follower then resubmits a new sell order at
min {p + I, max {g — 1,p}}, attempting to make up to II profit, but guaranteeing
they place the best ask. In this way, the trend follower actively continues (follows)
price trends. If the new order does not transact within time Z.y, it is withdrawn and
the agent accepts the final liquidation price for the unit it bought. Trend followers
perform symmetrically when the trend is decreasing. They have no private value, and
do not get any information about the fundamental value; they act solely on the basis
of the correlation between price trends and fundamental shifts.

The blue line in Figure 6.2 illustrates that introducing trend followers (with L =
4), removes some of the mispricing, bringing the trend-conditional transaction prices
closer to the fundamental on average. When I exogenously add trend followers to
an environment with a shock, as seen in Figure 6.3, their effect is stark. The trend
followers slightly help the market respond to the change in fundamental before the

shock hits, and afterward exacerbate the security’s precipitous decline.
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Figure 6.3: Trend following exacerbates the market’s response to a price shock. The
yellow line represents the fundamental value of the security. The gray line represents
transaction prices during a market shock without trend followers, and the blue line
represents the same transaction prices, but with trend followers.
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6.4 Market Shocks on Equilibrium Behavior

For considerations of stability, a key question is how widely agents will adopt
strategies that make significant use of transaction information. Will they still adopt
those strategies in the presence of trend followers, and if so, will there still be a
significant impact due to market shock? I can address this question with the EGTA
methodology discussed in Chapter [1I. I systematically simulate strategy profiles from
the market game defined in Section 6.3 where agents can play only strategies from
the restricted strategy space defined in Tables 6.2 and 6.4, in order to identify sym-
metric mixed-strategy Nash equilibria. I sampled each selected profile 30,000 times
to consider it evaluated, and used DPR to reduce background agents down to 6 and
trend followers down to 2. I stopped requiring that restricted games be explored if
they had more than three strategies in support for games without trend followers, or

four strategies in support across both roles for games with trend followers.

Table 6.2: Background agent strategies considered in systematic equilibrium search.
d and d are bounds on the amount of extra surplus a background agent demands with
each trade. 7 is what fraction of the random surplus an agent is willing to accept
if it gets immediate execution; when 7 is fill-or-kill (FOK), agents submit an order
only if it will transact for the desired surplus. 02 is the assumed transaction price
variance around the fundamental; when it is infinite, the strategy ignores transaction
price information. In the default environment, the empirical variance of price around
the fundamental is 3 x 10°.

d d n o?

p

500 1000 0.8 106
500 1000 0.8 107
500 1000 0.8 oo
1000 1500 0.8 109
1000 1500 0.8 10°
1000 1500 0.8 o0
0 200 1 00
30 30 FOK 10°
30 30 FOK 10°
30 30 FOK oo
90 90 FOK 106

My first experiment entails a quantification of the response to an exogenous market
shock when agents are in Nash equilibrium. I compute equilibria with and without
trend followers and for each equilibrium I verified there is low regret with respect to

the larger strategy sets of Tables 6.3/ and 6.5. Every confirmed equilibrium includes

65



Table 6.3: Larger set of background agent strategies considered for potential deviation
from found equilibria

d d n Og
500 1000 0.8
1000 1500 0.8 103
0 500 1 106
30 30 FOK 10°

90 90 FOK

Table 6.4: Trend follower strategies considered in systematic equilibrium search. L
is the length of transaction price trend necessary to act. A setting L = 2 would
be trivially satisfied by any two transactions. II is the profit sought, conditioned on
seeing a trend. t.q, indicates how long a trend follower waits after placing a trend
order before withdrawing it.

L I te
4 100 50
5 100 20

Table 6.5: Larger set of trend follower strategies considered for potential deviation
from found equilibria

S TR
4
s ox 20, 20
. 50 50
o oo 100

positive support for a strategy that uses price information, but when trend followers
are present, the only background strategies that use past price information are fill-or-
kill. When I allow trend-following agents to exist, they are present in equilibrium, and
background agents continued to use pricing information, although to a lesser degree.

I analyze the effect of trend followers with three characteristics of market perfor-
mance: transaction price volatility, mispricing, and maximum fundamental difference
(Max Difference). Transaction price volatility is the sample standard deviation of
transaction prices. Common empirical measures of market stability tend to relate
to volatility. Mispricing is the root-mean-squared difference (RMSD) between each
transaction price, and the fundamental value at the time of transaction, first in-

troduced in Section 5.4. Mispricing roughly corresponds to the area between the
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fundamental and transaction price time series. In the presence of a shock, mispricing
also indicates the impact of the shock, accounting for both the significance of the
price change and the duration. Maximum fundamental difference, is the largest ab-
solute difference between a transaction price and the fundamental value at the time
of transaction. This metric emphasizes the instantaneous magnitude of the shock
ignoring the recovery time.

For each equilibrium I found in the environment with and without trend followers,
I sampled ten thousand deviation profiles for each strategy to estimate the empirical
regret in the restricted game, and the expected value of each metric over the equilib-
rium distribution. The empirical regrets, bootstrap confidence bounds, and regrets
to the expanded strategy space are presented in the first rows of Table 6.6, where

shock variance is 1000 and observation variance is 10°.

Table 6.6: Empirical and bootstrap regrets for equilibria with and without trend
followers in five environment settings. “Shock Variance” and “Observation Variance”
are environment variables. “Trend Followers” indicates the presence (') or absence
(X) of trend followers. “Num” labels the equilibria. “Mean Regret” is the mean
empirical regret obtained from taking i.i.d. samples from the equilibrium distribution.
“95% Regret” is the bootstrapped 95% regret confidence interval calculated from the
same samples as “Mean Regret.” “Full Regret” is the DPR Deviation regret for
deviating to the full strategy sets in Tables 6.3 and 6.5.

Shock Observation Trend Mean  95% Full
Variance (62) Variance (02) Followers Num Regret Regret Regret
1000 106 X 1 129.20 206.46 0.00
2 100.42  162.36 0.00

v 1 82.62 155.02 1.37

1000 10° X 1 76.24 121.16 0.00
4 1 73.86  85.63 0.00

2 77.58  96.54 4.08

1000 10 X 1 117.67 166.95 7.89
2 77.06 127.54 0.39

v 1 77.99 135.23 0.00

100 100 X 1 9.01 2612  1.96
2 0.00 1537 10.85

4 1 037  11.89 0.19

10 106 X 1 0.00 8.94 3.15
v 1 0.08 0.16 6.70

2 0.00  11.08 6.70

First, I investigate how the presence of trend followers affects volatility and price
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discovery in equilibrium. Figure 6.4 shows the volatility with and without trend
followers. Trend followers appear to lower volatility, but the magnitude is small and
could easily be an artifact of strategy set. Figure 6.5 shows the price discovery,
measured as RMSD, in the market with and without trend followers. There is a
small reduction in price discovery (larger RMSD) in the presence of trend followers,
however similar to volatility the magnitude is not large enough to make any claims
with confidence. The only market statistic that did change noticeably was the volume,

an expected consequence of significantly more traders.

Without TFs 1054
Without TFs 1054
with TFs I 1008

Figure 6.4: Trend followers slightly reduce volatility in equilibrium.  Volatility is
measured as the standard deviation of transaction prices, and in light of the forty
times increase in trading volume with trend followers, a small reduction in volatility
is not unexpected. There are two bars without trend followers because I found two
equilibria in that environment. These equilibria have similar makeup and, therefore,
have similar volatility.

Without TFs 572
Without TFs 572

with TFs I, ¢

Figure 6.5: Trend followers slightly increase mispricing in equilibrium. Mispricing is
measured as the root mean squared difference (RMSD) between the fundamental and
transaction prices. There are two bars without trend followers because two equilibria
were found in this environment, however these equilibria are very similar which is
why their volatilities are similar.

I now investigate how markets with and without trend followers respond in the
presence of an exogenous market shock. I expose each market to various levels of mar-
ket shocks, up to an agent liquidating 100 units (the average volume in the market
without trend followers). The liquidation rate of the shock is held constant between
magnitudes, so a shock of 10 units takes twice as long as a shock of 5 units. Fig-
ure 6.6 shows the maximum difference between a transaction price and the current
fundamental price in markets without and without trend followers for various levels
of market shock. For shocks under 20 orders, the markets behave roughly identical.
The shock takes deep orders in the order book, but otherwise has a similar level of

effect between markets without and without trend followers. Once the shock goes
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beyond 20 units, the trend followers amplify the effect. Large market shocks are

roughly twice as severe in markets with trend followers.

Max Difference
42007 ) With TFs
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Figure 6.6: Trend followers amplify the decline in price in the presence of large market
shocks.  When market shocks are small markets with and without trend followers
behave almost identically, but once a shock destroys the order book, trend followers
amplify it. “Max Difference” is the largest absolute difference between a transaction
price and the fundamental price at the time of transaction.

Figure 6.7 shows the mispricing in markets with and without trend followers for
various levels of market shock. Just like maximum difference, for small shocks, mar-
kets with and without trend followers behave almost identically, but when the shocks
get large enough, something strange happens, the mispricing is actually worse in
the market without trend followers. The cause of this strange phenomenon lies in
the strategies that are played in equilibrium. Without trend following, price making
agents use transaction information in both equilibria. This makes non-trend-following
environments prone to shock like Figure 6.1b. Since only fill-or-kill strategies use price
information with trend followers, market shocks do not get amplified by background
agents. The result is that shocks in trend-follower equilibrium look more like Fig-
ure 6.8, a market with trend followers but where background agents don’t use price
information. Shocks are more severe in terms of maximum fundamental difference,
but are also much quicker to recover.

Trend followers change the fundamental style of the crash that results from a
large shock order. Without trend followers, the crash is slow and changes funda-
mental traders beliefs. There is a period where fundamental traders slowly observe
new information and adjust their beliefs back towards the true fundamental. When
trend followers enter the market, the incentives shift to reduce the use of transaction
information. Crashes are now much more severe, but recover just as quickly, taking

a form more qualitatively similar to the Flash Crash.
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Figure 6.7: Trend followers improve the mispricing (RMSD) in response to market
shocks. They crowd out background traders, removing their incentive to learn from
historic prices. The recovery post shock is faster because background agents beliefs
do not need to reset to the true fundamental. Trend followers also follow trends in
either direction, helping increase the magnitude of the shock, but also helping its
recovery. These two factors contribute to a lower shock mispricing in the presence of
trend followers. The mispricing with 0 shock orders are the same values as presented
in Figure 6.5.
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Figure 6.8: Trend followers in markets where agents do not use transaction infor-
mation produce instantaneous crashes, where price drops significantly, but recovers
just as quickly. This style of market shock is what we actually see when equilibrat-
ing markets with trend followers, as background agents primarily ignore past price
information.

6.5 Effects in Alternate Environments

The previous results characterize effect of trend followers on stability in one en-
vironment, but the viability of trend following is heavily predicated on the delayed
response of background agents to fundamental shifts. I investigate the effect of mar-
ket shocks in equilibrium as the fundamental volatility or the observation variance is

reduced. Regrets for the equilibria found in these environments is listed in Table 6.6.
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In order to prevent confusion between a market shock, instigated by a large sell order,
and the fundamental shock variance o2, which controls the magnitude of fundamen-
tal shifts, I use the term “fundamental volatility” in the place of “fundamental shock
variance.” Lower fundamental volatility reduces the likelihood of large fundamen-
tal shifts, the source of trend follower profit, while lower observation variance lowers
the incentive to use transaction price information and reduces the mispricing after a
fundamental shift.

Figure 6.9 shows the maximum fundamental difference and RMSD for a 50 unit
shock as the fundamental volatility is decreased. When fundamental volatility is
reduced to 10, trend following is no longer profitable, so trend followers exit the
market making it very stable in the presence of shock. The middle fundamental
volatility produces shock response between the first two. The same qualitative effects
are still present: trend followers significantly increase the instantaneous drop of the
market shock and lower the RMSD. Each effect is damped as background agents
can use more conservative strategies and trend followers have fewer opportunities for

profit.

Max Difference Mispricing
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(b) Mispricing (RMSD) in response to a 50
unit exogenous shock in equilibrium as a
function of fundamental shock variance.

(a) Maximum fundamental difference in re-
sponse to a 50 unit exogenous shock in equi-
librium as a function of fundamental shock
variance.

Figure 6.9: Reducing fundamental shock variance, one part of the friction that trend
followers exploit, increases market stability. When fundamental shock variance is 10,
trend following is no longer profitable, and trend followers leave the market making it
very stable in the presence of shocks. Between both extremes the qualitative effects
are the same, but exist to a lesser magnitude. These results serve to validate that
the model behavior matches expectations, and that the magnitude of shock impact
is dependent on the specific environment, but that the qualitative effect is preserved.

Figure 6.10 shows the maximum fundamental difference and mispricing for a 50
unit shock as the fundamental volatility is decreased. When observation variance is

reduced, trend following is no longer profitable, so trend followers exit the market.
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(b) Mispricing (RMSD) in response to a 50

unit exogenous shock in equilibrium as a
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Figure 6.10: Reducing observation variance removes incentives to trend follow, in-
creasing market stability:.

These results are expected given the results from Section 6.4, and so serve to
validate the consistency of the model and that the qualitative effects are less sensitive
to market parameter settings—as long as there is enough fundamental variation and

observation variance for trend followers to exist.

6.6 Anticipating Market Shocks

The results from Sections 6.4/ and 6.5 are derived assuming an unanticipated mar-
ket shock. These sections discuss market effects when agents assume market shocks
never happen, but how do these results change when agents anticipate a low proba-
bility shock?

In principle, I want the equilibrium strategies when the environment has some
probability of shock. These results could be naively obtained by simply defining a
new environment where a shock happens with some probability, and reapplying the
methodology from Chapter [1I for every anticipated probability of shock I wished to
measure. However, each of these games has an important structure, the payoffs are a
convex combination of the payoffs in the environment without shocks and the environ-
ment with shocks. If agents anticipate a shock with probability ¢, then the expected
payoffs in that environment are ¢(payoff with shock) + (1 — ¢)(payoff without shock).
Instead of defining new environments for every probability of anticipated shock, an
environment can evaluate payoffs by simply weighting the evaluated payoffs from each
of these games. This would still require running the profile search methodology for

each probability ¢ I wished to evaluate.
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I refer to the general class of games, whose payoffs are the convex combination of
two other games, as mixture games. 1 present a novel technique to compute nearby
empirical mixture game equilibria requiring the minimal number of profile evaluations.
I use this technique in combination with the profile search algorithm form Chapter I1I

to compute equilibria for a wide range of anticipated shock probabilities.

6.6.1 Nearby Mixture Game Equilibria

To compute nearby mixture game equilibria, I construct an ODE that dictates
how an equilibrium changes with respect to the mixture between two games. Let m,
be an equilibrium of the ¢t mixture game, defined as as the game where payoffs come
from game A a 1—t fraction of the time, and game B otherwise. In general, there may
be more than one equilibrium, so my is set valued function where the set in nonempty.
However, we can defined a choice function that selects a specific equilibrium at each
t. There are often specific choice functions that are continuous and differentiable for
most values of ¢t as demonstrated in the examples in Section |6.6.2. We assume that m,
is the result of one such choice function so that it is continuous and differentiable at ¢
and compute its derivative under this assumption. Note that for a specific equilibrium,
there may not exist a choice function such that m; is continuous and differentiable at
t. Since equilibria are easy to verify, if the ODE ever returns an invalid equilibrium,
we know this assumption was violated.

We also assume that m; has full support, without loss of generality. Note that
if m; is an equilibrium in the unrestricted game, we can restrict the strategy set to
only strategies that are in support. m,; is an equilibrium in the restricted game and
we can verify if it is an equilibrium of the unrestricted game by checking the payoffs
to unilaterally deviating; if deviating outside the support is ever beneficial then m,
is not an equilibrium. Define as(m;) and bs(m;) to be the payoff of unilaterally
deviating to strategy s when all other agents play according to m; in games A and B
respectively, where s € S, |S| = S. Both as(m;) and bs(m;) are the expectations of
multinomial distributions and are therefore continuous and differentiable w.r.t. m;.
Dot notation is used to indicate the derivative with respect to ¢, and V is used to
represent Jacobian.

From the definition of the mixture game, the payoff for unilaterally deviating to
strategy s when all other agents play according to m; in the ¢ mixture game, pys(m;),

is:

pes(my) = (1 — t)as(my) + thy(my).
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Since ag and b, are continuous and differentiable, and we assume m; is continuous
and differentiable locally, p, is also locally continuous and differentiable. Taking the

derivative with respect to ¢ yields:

pts(mt) = (1 - t)VLtas(mt)rht + tVLtbs(mt)rht - as(mt) + bs(mt),

- fg—r(mta t)mt - gs(mt)v
where
gs(my) = as(my) — by(my), fo(my,t) = (1 — )V, as(my) + t Vi, bs(my).

All strategies in support of a Nash equilibrium must have equal expected payoffs,
therefore py.(my) = pis(my) Vt € [0,1] A7, s € S, since m; is an equilibrium of the
t mixture game and all strategies are assumed to be in support. Since the payoff to
unilaterally deviating is also continuous and differentiable at ¢, the derivatives are

also equal, py-(my) = pys(my). Substituting our derivation of the derivatives yields:

(£ (my, t) — £ (my, 1)) 1y = g,(my) — g, (m,).

From here, S — 1 independent pairs of strategies can be chosen to generate S — 1
independent equalities; one simple choice of pairs is {(s,i) | i € S\ {s}}. One final
equality constrains the equilibrium mixture to remain in the simplex, >, m; = 0 or
1", = 0. If I take the strategies as indices from 1 to S and use the pairs suggested,

I can represent these S equations in matrix form,

F(m,,t)m, = g(m,)
m; = F~'(my, t)g(m,)

where
£ (my,t) — £ (my, t) g1(my) — go(my)
F(my, t) = ‘ g(m,) =
flT(mmt) - fsT(mta t) g1(my) — gs(my)
17 0

This final equation represents the derivative of the components of an equilibrium
mixture with full support in a ¢ mixture game. There are four possible events that

can happen when solving this ODE to compute equilibria in a mixture game:
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1. ¢t becomes 0 or 1: The ODE is undefined as it is only valid for ¢ in [0, 1].

2. a strategy probability drops to zero: The zero probability strategy can be re-
moved from the support and the ODE is still defined for the smaller support.

3. a strategy outside of support becomes a beneficial deviation: The ODE is no

longer defined as m; is not an equilibrium.

4. F becomes singular: the derivative may exist, but it is not the unique solution
to the system of equations and it would therefore require other information to

derive. For simplicity we just assume the ODE is no longer defined.

5. my is no longer an equilibrium: The ODE is no longer defined. This can happen

when the equilibrium is not differentiable, but F is nonsingular.

Notably, computing the derivative only requires all payoff data in support of the
equilibrium (to compute the deviation payoffs and their Jacobians) and the payoffs for
unilaterally deviating outside the support to know if the equilibrium is still defined,
for each game. This is also all of the data needed to verify an equilibrium, and is

therefore minimal.

6.6.2 Mixture Game Equilibria Examples

In order to better understand the space of mixture game equilibria, and what
their derivatives look like, I present mixture equilibria in two simple two-player two-
strategy symmetric games. The game matrices are presented as row play payoffs.

Figure 6.11 shows a mixture game with a continuous set of equilibria when ¢ = %
The mixture game transitions from a game where Down is the dominant strategy to
a game where Up is the dominant strategy. When the mix is slightly biased towards
either game, only the dominant strategy exists as an equilibrium. The derivative
is a constant zero in either of these regions, and ceases to be valid once deviating
to the other strategy becomes beneficial. When the games are evenly mixed, all
distributions are equilibria, but there is no choice function such that an equilibrium
is differentiable. Matrix F' is singular at all of these points.

Figure 6.12 shows a discontinuity in the space of equilibria. The mixture game
transitions from a game with one equilibrium of always play Up, to a game where
either pure strategy and the mixture between the two are equilibria. When the
games are evenly mixed, playing Down is a Nash equilibrium, but is not trembling
hand stable. As the second game becomes dominant, multiple equilibria exist, each

of which is locally continuous and differentiable w.r.t. ¢.

5



Probability of Up
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when ¢ = 0. Down is when ¢t = 1. Up is the Mixture (t)
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(¢) Equilibria as a function of mixture

fraction between games

Figure 6.11: Mixture equilibria where multiple equilibria exist. Matrix F is undefined
when ¢t = 0.5.
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Figure 6.12: Mixture equilibria where equilibria are discontinuous. As ¢ approaches
0.5, two of the equilibria converge and then cease to exist.
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6.6.3 Mixture Game Equilibria Tracing Technique

The ODE from Section 6.6.1| can be readily applied to compute an equilibrium
for any value of the mixture parameter ¢. The technique I describe is recursive, and
finds a continuous range of equilibria for every ¢ within a range [¢,#]. The technique
uses numerical ODE solving to compute equilibria as a function of . The numeric
nature means there is no closed form solution for each equilibrium as a function of t,
but instead a range of ¢ for which the equilibrium is continuous is identified. Within

that range, the ODE can be used to find an equilibrium value for any specific ¢.

1. Compute equilibria of the %(t + 1) = 7 mixture game using the technique from
Chapter III. The mixture game can be computed by mixing profiles after sam-

pling them to minimize profile evaluation.

2. Use the ODE from Section 6.6.1 on each 7 game equilibrium to find an equi-
librium for the large and smallest values of ¢ possible. Let 7 (7) represent the

minimum (maximum) ¢ with which an equilibrium was confirmed.

3. Recursively apply this procedure on the ranges [t, 7] and [7,?], if they are not
empty.

Starting with the range [0, 1], this procedure will find a set of continuous equilibria

as a function of ¢ that cover t € [0, 1].

6.6.4 Results

I applied the technique from Section 6.6.3 to the environment from Section 6.4
to evaluate how the equilibria change as agents anticipate different probabilities of
a 50 unit shock. I plot results with and without shock, even though agents are in
equilibrium for the environment when shocks happen a certain fraction of the time.
This allows comparison of market behavior between normal and extreme conditions
while agents’ prior over the probability of shock changes. Figure 6.13 shows the equi-
librium maximum fundamental difference with and without a shock as the probability
of endogenous shock increases. Trend following remains profitable even when shocks
happen 98% of the time. Shocks provide a large influx of surplus as the shock agent
trades below market value. Trend followers are net profitable despite losing money
during the downward crash; they recoup enough of their losses on the rebound. In
addition, as agents anticipate shocks more, the market becomes more resilient to

their effects. As the probability of endogenous shock increases, background agents
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use transaction price information less, resulting in lower equilibrium maximum fun-

damental difference.

Max Difference

4000  =rmmne .
With Shock
1500}
0.0t . ,
0.00 0.36 0.46 1.00

Anticipated Shock Probability

Figure 6.13: Maximum fundamental difference with and without market shocks as
the equilibrium market shock probability changes. On the left side, market shocks
are completely unanticipated, that is, agents are in a nash equilibrium when a shock
never happens. On the right, agents anticipate a shock every simulation. A small
amount of anticipation produces more stable markets in the presence of trend fol-
lowers, but the result is small. Trend followers continue to exist, even when market
shocks always happen. When the anticipated shock probability increases above 0.46 a
new equilibrium exists, but its maximum difference is close to the other equilibrium.

Figure |6.14 presents the same style of plot, but showing RMSD instead of max-
imum fundamental difference. The RMSD is mostly constant as endogenous shock

probability changes.

Mispricing
8407.— With Shock
590t
0.0t . :
0.00 0.36 0.46 1.00

Anticipated Shock Probability

Figure 6.14: Mispricing (RMSD) as the probability of anticipated shock changes.
Mispricing remains relatively constant even when agents highly anticipate a shock.
Trend followers recoup most of their losses on the rebound, and so continue operating
even when shocks are frequent.
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6.7 Conclusion

The simple and realistic assumption that traders have imperfect information about
a common (fundamental) value opens a path for these agents to seek information
in each others’ action, which in turn enables the propagation of market shocks—
implemented as a large exogenous sell order. I studied the effects of such a large
market shock when agents play according to approximate Nash equilibrium strategies.
In this environment, market shocks have a low price impact with a slow recovery
time. Agents’ delayed market access allows for profitable equilibrium trend following,
which changes market shocks to have high price impact but a fast recovery. Absent the
presence of triggering shocks, these two response types have nearly identical volatility
and price discovery. When agents anticipate a low probability of shock the stability
of the market increases, but it does not remove the incentive for trend following or

significantly alter the impact of the shock.
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CHAPTER VII

Conclusion

Financial market activity is increasingly influenced by algorithms, accounting for
over half of all trading volume in U.S. exchanges. Unprecedented information response
times, autonomous operation, use of machine learning and other adaptive techniques,
and ability to proliferate novel strategies at scale are all reasons to question whether
algorithmic trading may produce dynamic behavior qualitatively different from what
arises in trading under direct human control. Given the high level of competition be-
tween trading firms and the significant financial incentives to trading, it is reasonable
consider the effect incentives have on the behavior of agents in financial markets.

In this dissertation I examined how market structure incentivizes agent behavior,
and the effect of that behavior on market performance. I approached these analyses
using agent-based models that capture the relevant microstructural aspects of finan-
cial markets and trading strategies of interest. Using agent-based models to study
financial markets is not new, but my thesis builds on recent work applying empirical
game-theoretic analysis to study agent based models in equilibrium. I explored three
distinct case studies on the effect of market structure on performance. What follows

is a summary of my contributions from the three case studies.

Shading and Efficiency in Limit-Order Markets (Chapter IV)) In this Chap-
ter I significantly extended a previous work showing notable equilibrium efficiency in
continuous double auctions (CDAs) (Zhan and Friedman 2007)). I extended the scope
of the previous results in two significant ways. First, I improved upon the analysis
techniques for finding Nash equilibria, including developing a system to more eas-
ily analyze games of this size (Section 3.2). More importantly, I also extended the
market model from a very stylized model of a CDA, to a model with the significant
informational, heterogeneous, and strategic complexities of modern financial markets.

My research shows that even with the complexities of financial markets, CDAs are
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still remarkably efficient in equilibrium. This is true despite the fact that the ability
to trade in both directions undoes the clear dissection of extramarginal and intra-
marginal inefficiency—the major justification for the effect. 1 also showed that in
our models, market aspects that are thought to generally hurt efficiency, e.g. limited
trader arrivals, improve the equilibrium efficiency gain relative to truth telling, and

are therefore less harmful than may be naively thought.

Empirical Mechanism Design for Optimizing Clearing Interval in Frequent
Call Markets (Chapter V) In this chapter, I evaluate the optimal setting for the
clearing interval in a frequent call market using empirical mechanism design. This
mechanism has been proposed as a way to prevent the deleterious effects of certain
high-frequency trading strategies, but has also shown promise in increasing general
trader welfare. Despite a large body of research suggesting why they should be
implemented, very few studies have thoroughly discussed how the frequency should
be set. My results indicate that while call markets provide helpful aggregation of
private valuations, they hurt the aggregation of common information by giving equal
importance to stale orders. In thick markets with low adverse selection, frequent
call markets provide welfare improvement for a wide range of frequencies, but with
high adverse selection, any call market may actually hurt welfare. I also provide the
first implementation of call market specific strategies in an agent-based model. These
strategies appear in equilibrium, but they do not change any qualitative aspects of
my results. Their specification still serves as a baseline for further agent-based studies

of call markets.

Trend-Following Trading Strategies and Financial Market Stability (Chap-
ter VI) In my final study I examine the impact of introducing trend followers on
financial market stability. I measure a market’s stability as its response to a large
exogenous sell order—a shock. When trend followers are present in the market, mar-
ket shocks are more severe, producing a larger instantaneous mispricing. Markets
with trend followers also recover from shocks faster than markets without trend fol-
lowers. The faster recovery happens for two separate reasons: 1. trend followers help
the recovery by also following the trend back to the fundamental price, and 2. trend
followers remove the incentive for background agents to use past transaction price
information, removing the delay for background agents to update their beliefs about
the fundamental post shock. These results are robust to the amount of fundamental

volatility, providing it is high enough for trend followers to be profitable.
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This thesis expands upon the scalability of the underlying methodology, broadening
the scope of problems EGTA can address. In it, I have advanced the understanding
of three important structural questions facing modern financial markets by using

agent-based modeling and game-theoretic strategy selection.
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