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ABSTRACT

Any survey specifically constructed so that at least some variables are unobserved on a subset

of participants is a planned missing data design, where missing data represent an intentional

feature of the study. Use of planned missing data designs can potentially reduce costs,

improve data quality, and reduce unplanned missing data, and advancements in missing

data methodology and multiple imputation software make planned missing data designs

more attractive than before. Two commonly used planned missing data designs are two-

phase sampling and split questionnaire design. Two-phase sampling is used to improve

the efficiency of an estimate for a single outcome that is costly to measure, while the split

questionnaire design is primarily used to reduce survey length.

First, we propose new methods for selecting our second phase sample in two-phase surveys

to reduce the variance of our estimate. When our outcome variable is continuous, we can

use the data collected in Phase I for selecting our Phase II sample in order to increase the

precision of the estimates. For other instances, we propose an adaptive sampling method to

select Phase II samples in order to improve estimation of the quantity of interest.

Next, we examine the performance of several design allocations for implementing a split

questionnaire survey in a longitudinal study. While many papers examined the admin-

istration of split questionnaire designs in cross-sectional studies, research in applying these

methods to longitudinal studies has been limited. For our project, we focus on the commonly

used 3-form design and propose several methods to administer the 3-form split questionnaire

in a longitudinal study. Using simulations and data from the Health and Retirement Study,

we compare the performance of each proposed design under several correlation structures.

Finally, we propose a method for improving variable allocation in split questionnaire

designs. We establish a criterion that allows us to determine which variable allocations

minimize the loss of information due to missing data. We use the Kullback-Leibler divergence

between the posterior distribution of the parameters with missing data and the posterior

distribution without missing data to locate optimal designs. After establishing a criterion

for comparing designs, we propose a search algorithm to find optimal variable allocations,

as it would be difficult to enumerate all possible designs as the number of variables grows.

ix



Chapter 1

Introduction

In most instances, missing data are treated as a nuisance. In the presence of missing data,

we usually require additional methods for statistical analysis that are unnecessary when no

values are missing, often making analysis more difficult and time consuming. In addition,

missing values result in a loss of statistical power due to a reduction in the effective sample

size, and can potentially bias results from analysis. For that reason, most studies do their

best to try to avoid missing data. Interestingly, advancements in missing data methodology

and software for handling missing data, especially the multiple imputation approach, have

made missing data less problematic for analysis. Some have advocated that designing a

survey to purposely include missing data could improve that study (Graham et al., 1996,

2006; Littvay, 2009). Any study purposely constructed to include missing values is a planned

missing data design. Planned missing data designs are typically used to either reduce study

costs or improve the quality of collected data by reducing the burden placed on participants.

It is also important to note that researchers directly control missing data resulting from

the study design, which means planned missing data will not create any systematic bias in

results for most methods of statistical analysis. Due to this, missing values resulting directly

from these designs will either be Missing Completely at Random (MCAR) or Missing at

Random (MAR), which allows us to easily use multiple imputation, maximum likelihood, or

Bayesian approaches to analyze our data. Graham et al. (2006) describe two popular types

of planned missing data designs, which they refer to as the 2–method measurement design

and the 3–form design.

The 2–method measurement design described by Graham et al. (2006) comes from the

two-phase sampling method proposed by Neyman (1938). It is used to either decrease the

variance of an estimate compared to a traditional study design or decrease the cost of a

study. Two-phase survey sampling was originally developed for measuring the population

mean of a costly outcome to measure. Neyman suggested breaking the sampling into two
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parts or phases. In Phase I, we measure a cheaper variable correlated with the outcome

on a large sample of the population. In Phase II, we use that surrogate variable to stratify

the initial sample and then measure our outcome on a subsample. Due to subsampling, the

more expensive outcome is missing on a large proportion of study participants by design.

In general, using the information from the Phase I variable or variables to aid in estimation

of the outcome variable produces a smaller variance than using the Phase II outcome by

itself. For instances where both variables are highly correlated and measuring the surrogate

variable is much cheaper than the desired outcome, this design provides a more efficient

estimate for the mean of our outcome variable than a traditional survey design that costs

the same (McNamee, 2003; Graham et al., 2006).

Most literature on the topic of two-phase sampling focuses on using this method to

estimate disease prevalence (Alonzo, 2003; McNamee, 2003, 2004; Gao et al., 2000; Shrout &

Newman, 1989). Typically, an inexpensive screening test is conducted in Phase I. In Phase II,

a costly but more accurate gold standard disease diagnostic is administered after stratifying

by the initial screening test. Two-phase sampling can also be used for case-control studies

(Breslow & Cain, 1988; Cain & Breslow, 1988). Pierce & Burgess (2013) examined the use of

two-phase sampling in the context of instrumental variables and Mendelian randomization,

where either an exposure or outcome is only available for a subsample of study participants.

In their paper, they discuss two-phase sampling as a potential method for estimating the

effect of an exposure on an outcome by incorporating data from previous genetic association

studies. For continuous outcomes, such as biomarkers, the population mean can be estimated

either through stratification on Phase I data or with a regression estimator, which uses both

linear regression estimates and the sample mean of our outcome to estimate the population

mean (Sitter, 1977). Linear regression is used to adjust for differences between the Phase I

and Phase II samples. This estimator will provide a more precise estimate of the population

mean, compared to using the Phase II sample mean on its own, when the Phase I variable

or variables are correlated with our outcome in Phase II.

Both the Great Smokey Mountain study (Costello et al., 1996) and the paper by Patton

et al. (2000) use two-phase sampling for estimating the prevalence of psychiatric disorders in

a population. These studies administered a screening test questionnaire to a random sample

of the population of interest. Participants failing the screening test, along with a random

sample of those passing, were recruited into Phase II and underwent further diagnostics for

psychiatric disorders.

In addition to the studies explicitly using the design proposed by Neyman, several large-
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scale studies utilize sub-sampling similar to two-phase sampling in order to save costs. One

such study, the Sacramento Area Latino Study on Aging (Mayeda et al., 2013), explored nu-

merous health related outcomes in older Mexican Americans, including disease and cognitive

impairment. Annual questionnaire and lab test variables were collected on all participants,

and all subjects underwent a multistage screening process to diagnose dementia and cogni-

tive impairment (Haan et al., 2003). Participants failing initial screening tests were subject

to further examination, while only a subset of individuals passing these tests received further

evaluation, resulting in a subset of individuals having an observed dementia diagnosis. This

process was very similar to what is done in a typical two-phase study; however, traditional

two-phase studies would focus on measuring a single outcome and not include dozens of

other important outcomes of interest. Another study, the Health and Retirement study, also

incorporated sub-sampling, where only a subset of participants were selected for the “en-

hanced interview,”(Crimmins et al., 2008a,b). Only for this subset were measurements taken

of biomarkers and physical characteristics, similar to a two-phase study. Additionally, some

studies may take a subsample from a larger study to measure a specific outcome. Thus, some

of the methods used in two-phase study designs can be applied to a wide range of studies

using sub-sampling that are not explicitly conducted as a two-phase study.

The other planned missing design described by Graham et al. (2006), the 3–form design,

is an example of a split questionnaire design, which reduces the number of questions that

any individual participant responds to without reducing the total number of questions in

the study (Raghunathan & Grizzle, 1995). This is done by dividing the survey questionnaire

into multiple components and having each participant receive a fraction of the components.

For the 3–form design, the survey questionnaire is divided into four components (X,A,B,C).

Each participant receives component X and two of the three other components. This results

in a total of three survey forms, (X,A,B), (X,A,C), and (X,B,C), which are usually given

in equal proportions to participants (Graham et al., 2006; Rhemtulla & Little, 2012). The

3–form design achieves an approximate 25% reduction in survey length. We could use a

different number of components and splits if we desire further reduction in survey length.

The 3–form design has been used in multiple studies (Graham et al., 2006).

A split questionnaire design is used for the purpose of lowering the burden and fatigue

placed on study participants by reducing the length of the survey. This is useful because

longer surveys have been shown to have higher nonresponse rates (Adams & Darwin, 1982;

Dillman et al., 1993; Roszkowski & Bean, 1990; Beckett et al., 2016), and item nonresponse

tends to occur more towards the end of a questionnaire (Raghunathan & Grizzle, 1995).
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Participants are more likely to lose interest in a longer study, which affects the quality

and accuracy of responses (Herzog & Bachman, 1981; Gonzalez & Eltinge, 2007; Peytchev

& Peytcheva, 2017). Since a split questionnaire design reduces the burden of a survey, it

makes item nonresponse less likely to occur, making us less likely to encounter missing not

at random (MNAR) data (Rhemtulla & Little, 2012; Jorgensen et al., 2014; Kaplan & Su,

2016). As a result, missing data are less likely to introduce bias in our analysis.

The split questionnaire design provides a simple way to reduce the survey length with-

out forcing researchers to omit any variables of interest. This can be beneficial for large

national surveys that examine many outcomes related to the population of interest, such as

the National Health and Nutrition Examination Survey (NHANES). Graham et al. (2006)

demonstrated how using a split questionnaire design allows for the testing of many more hy-

potheses than simply using a standard questionnaire form with the same length. In practice,

the split questionnaire design was found to produce estimates similar to those obtained using

a standard questionnaire containing all variables of interest, though it causes a decrease in

power due to the lower number of observations per variable (Raghunathan & Grizzle, 1995;

Littvay, 2009). The loss of power can be mitigated by using an increased sample size, which

may be easy to obtain when the split questionnaire design decreases the cost per participant

(Littvay, 2009).

The split questionnaire design originates from multiple matrix sampling, where partici-

pants were assigned a random sample of available items within a study (Shoemaker, 1973;

Raghunathan & Grizzle, 1995). Multiple matrix sampling places no constraint on the items

assigned, making it possible that some items never appear together during the study. Split

questionnaire design explicitly assigns items beforehand so that all two-way associations can

be estimated. Multiple matrix sampling has frequently been used in education assessment

(Shoemaker & Shoemaker, 1981). Students are evaluated on several subjects, but a full

evaluation on an individual student would be extremely disruptive. Since investigators are

interested in evaluating the student population instead of individuals, they can implement

multiple matrix sampling to lower the burden on students. This also makes the study more

likely to be approved by administrators. For multiple matrix sampling, each student re-

ceives both a set of common items administered to all participants and a randomly selected

subset of items. This type of design has been used in the Kentucky Instructional Results

Information System, the Massachusetts Comprehensive Assessment System, the National

Assessment of Educational Progress, and the Dutch National Assessment Program (Childs

& Jaciw, 2003).
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In this paper, we further explore both two-phase sampling and split questionnaire design

and propose ways of implementing these designs to further improve analysis. Chapter 2

focuses entirely on two-phase sampling, where we explore several methods for selecting our

subsample with the goal of further lowering the standard errors of our estimates. We present

several different methods for selecting the Phase II sample, depending on the distribution of

our variables, and demonstrate the gain in efficiency from using these methods. We propose

a novel method for choosing our Phase II subsample when our outcome variable is continuous

and we have multiple Phase I variables. In these instances, we can select our subsample using

the distribution of our Phase I variables to lower the variance of our estimate for the mean of

our Phase II variable or the parameter estimates from the regression of our Phase II variable

on the Phase I variables. For other cases, we derive estimates for the mean of our Phase

II outcome and the relationship between our outcome and the Phase I variables. We then

determine the sample size allocation that minimizes the variance of these estimates. Since

the variance often depends on parameters from the conditional distribution of our Phase II

variable given the Phase I variables, which are likely unknown beforehand, we propose an

adaptive approach for selecting our subsample in order to improve efficiency.

Chapters 3 and 4 focus on implementation of split questionnaire designs. In chapter 3,

we investigate several designs for administering a split questionnaire design in a longitudinal

or panel study. There has not been very much work done to explore longitudinal split ques-

tionnaire designs (Jorgensen et al., 2014). Due to the repeated measures component of these

studies, implementation of a split questionnaire differs for longitudinal studies compared to

cross–sectional studies. In the chapter, we keep the split questionnaire forms the same at

each visit and examine how rotation of those forms affect estimation. We propose six dif-

ferent methods for rotating the forms. Our goal is to determine under what circumstances

we would prefer one type of form rotation over another. We then use simulations and data

from the Health and Retirement Study to examine the performance of each of our proposed

longitudinal designs under a number of different data structures.

In chapter 4, we propose a method for creating split questionnaire designs based on

minimizing the loss of information due to missing data. We want to determine an optimal

method to place variables into different components of a split questionnaire so that the

inference obtained for the data we observe is as close as possible to the inference we would

have obtained from using a tradition questionnaire. Since prior information on the joint

distribution of our variables is necessary for determining an optimal design, we propose

using a Bayesian framework. This allows us to incorporate our prior knowledge. Within

5



this framework, we use the Kullback-Leibler divergence between our observed data posterior

distribution and the posterior distribution with no missing data to determine which design

minimizes the loss of information. We also propose a search algorithm for locating good

split questionnaire designs, as it is almost impossible to perform an exhaustive search of all

designs. Finally, we discuss the limitations of our methods and future directions to explore

for two-phase sampling and split questionnaire design in chapter 5.
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Chapter 2

Sample Selection to Improve Estimation Efficiency in

Two-phase Studies

2.1 Introduction

Two-phase survey sampling or double sampling was first proposed by Neyman (1938) for

measuring the population mean of a variable, Y, which is costly to measure. Neyman sug-

gested that if there were a variable, X, correlated with the outcome of interest, then first

the variable X should be measured on a large sample, and, stratifying by X, then mea-

sure Y on a subsample. For instances where X is highly correlated with Y and the cost of

measuring X is small compared to Y, this design provides a more precise estimate for the

population mean of Y than a conventional survey design with the same cost (McNamee,

2003). Since Neyman’s proposal, much of the two-phase sampling literature has focused on

estimation of disease prevalence, where variables collected in Phase I are used as an inexpen-

sive screening test and the more costly disease diagnostic is measured in Phase II (Alonzo,

2003; McNamee, 2003, 2004; Gao et al., 2000; Shrout & Newman, 1989); however, two-phase

studies are not limited to these designs. Breslow and Cain describe design and analysis of

two-phase case-control studies using logistic regression (Breslow & Cain, 1988; Cain & Bres-

low, 1988). Pierce & Burgess (2013) consider using two-phase sampling to lower the costs of

observational studies using Mendelian randomization by only measuring either the exposure

or outcome on subsample of individuals. Two-phase studies can also be used for continuous

outcomes, such as biomarkers. When Y is continuous, the population mean can be estimated

either through stratification on Phase I data or with the regression estimator, which uses the

conditional distribution of Y given X from linear regression to more precisely estimate the

mean of Y(Sitter, 1977). Examples of studies implementing the two-phase design for disease

diagnosis include the Great Smokey Mountain study (Costello et al., 1996) and the paper by
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Patton et al. (2000), both of which employed two-phase sampling to estimate the prevalence

of psychiatric disorders.

In addition to studies using two-phase sampling as proposed by Neyman, some large-scale

studies may employ sub-sampling and other similar designs due to cost limitations. These

large-scale studies with sub-sampling differ from traditional two-phase sampling as there are

typically multiple variables of interest to investigators. An example of this can be seen in the

Sacramento Area Latino Study on Aging, which examined many diseases in an older Mexican

American population (Mayeda et al., 2013). The study conducted annual questionnaires

and lab tests on all participants, but, due to costs, used a screening process to diagnose

dementia and cognitive impairment, resulting in an observed diagnosis on only a subset of

participants (Haan et al., 2003). The Health and Retirement study also only selected a

subset of participants to measure biomarkers and physical characteristics (Crimmins et al.,

2008a,b). Thus, two-phase sampling can be an effective way to reduce survey costs even

for studies that are not explicitly interested in a single outcome measurement. Any large

survey that performs lab tests, genotyping, or anthropometric measurements on a subset of

participants could be considered a two-phase design. The methods presented in this chapter

can be applied to a wide range of studies using sub-sampling.

Throughout this chapter, we will let X denote the variable or variables obtained in Phase

I and let Y denote the variable collected in Phase II. Most literature on two-phase designs

focuses on estimation of the population mean for Y; however, for some studies, investigators

may be more interested in the relationship between Y and X, i.e. regression analysis. In this

chapter, we discuss new methods for selecting our Phase II sample based on the estimand

of interest. Our selection methods assume Phase I variables are available for everyone prior

to Phase II. In section 2.2, we detail how to choose our sample when we have multiple X

variables and Y is continuous. In section 2.3, we describe estimation and sample selection for

a single binary X and Y when estimating the mean of Y, risk difference, and natural logarithm

of the odds ratio. In section 2.4, we extend the methods used in section 2.3 to when we have

an additional categorical variable measured in Phase I. In section 2.5, we extend our method

to the case of a binary X variable and normally distributed Y variable. Finally, we apply our

methods to data from NHANES in section 2.6 and discuss our conclusions in section 2.7.
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2.2 Sample Selection for Continuous Y

In this section, we discuss how to improve estimation for the mean of Y and how to improve

parameter estimates from the regression of Y and X when Y is continuous.

2.2.1 Estimation of the Mean of Y

Let X = (X1, ...Xp) denote the p variables collected in Phase I of the study and let Y denote

the variable collected on the Phase II subsample. Let n and r denote the sample size for

Phase I and Phase II, respectively. When Y is continuous, we can estimate the mean of Y

using the regression estimator (Sitter, 1977)

µ̂Y = Y + (Xn −Xr)
T β̂∗, (2.1)

where β̂∗ is a column vector containing the OLS estimates for β1, ..., βp in the regression of

Y on X, Y is the sample mean for Y, Xn is a column vector of the sample means for X

among all study participants, and Xr is a column vector of the sample means for X among

participants in Phase II. Note that X does not contain a column of 1s and β∗ does not contain

an intercept term. If X is correlated with Y, µ̂Y is a more efficient estimate than Y . If the

Phase II sample is a simple random subsample of Phase I, µ̂Y is an unbiased estimate for

µY even if the regression model is misspecified.

Suppose Yi = β0 + XT
i β
∗ + εi, E(εi|Xi) = 0, V (εi|Xi) = σ2, and the εi are independent,

where β0 is the intercept term from linear regression. We can calculate the variance of µ̂Y

under simple random sampling using the law of total expectation, V (µ̂Y ) = E{V (µ̂Y |X)}+

V {E(µ̂Y |X)}.
First note that the regression estimator can be written as

µ̂Y = β̂0 +X
T

n β̂
∗,

with β̂0 being the OLS estimate for the intercept in the regression of Y on X. Then, we have

E{V (µ̂Y |X)} = E{V (Y ) + (Xn −Xr)
TV (β̂∗)(Xn −Xr)}

=
σ2

r
+

σ2

r − 1
E{(Xn −Xr)

T (S2
r )
−1(Xn −Xr)},

where S2
r is the sample variance of X for individuals in Phase II of the study.
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Looking at the last term,

σ2

r − 1
(Xn −Xr)

T (S2
r )
−1(Xn −Xr)

=
σ2(n− r)
nr(r − 1)

(n− r)r
n

(Xn−r −Xr)
T (S2

r )
−1(Xn−r −Xr),

where Xn−r is the sample average of X for individuals in Phase I, but not Phase II. When

X follows a multivariate normal distribution, we have

(n− r)r
n

(Xn−r −Xr)
T (S2

r )
−1(Xn−r −Xr) ∼ T 2

p,r−1,

where T 2
p,r−1 denotes a Hotelling’s T-squared distribution with p and r−1 degrees of freedom.

The above distribution still holds approximately for large samples even when X does not fol-

low a multivariate normal. Taking the expectation of the Hotelling’s T-squared distribution,

we get

E(V (µ̂Y |X)) =
σ2

r
+

σ2(n− r)p
nr(r − p− 2)

.

For small sample sizes and when X is not multivariate normal, we can approximate this

expectation using an empirical distribution. We can calculate this distribution by repeatedly

choosing random samples of size r and computing the quantity (Xn−Xr)
T (S2

r )
−1(Xn−Xr).

We would then take the average value to approximate the expectation.

V {E(µ̂Y |X)} = V {E(X
T

n β̂
∗ + β̂0)}

= V (X
T

r β
∗ + β0)

=
1

n
β∗TΣβ∗

=
σ2R2

(1−R2)n
,

where Σ is the variance-covariance matrix for X and R2 is the coefficient of determination

from the OLS regression of Y on X1, ..., Xp.

Therefore,

V (µ̂Y ) =
σ2

r
+

σ2R2

(1−R2)n
+

σ2(n− r)p
nr(r − p− 2)

(2.2)
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for large samples or when X is multivariate normal.

Note that the second term and the last term in the variance tend towards zero as the

Phase I and Phase II sample size increase, respectively. With all else constant, increasing the

number of X covariates that Y is regressed on will increase the variance of µ̂Y , unless those

additional covariates reduce σ2 enough to offset the increase in p. The contribution of the

last term to the variance can be considerable if the Phase II sample size is not substantially

larger than the number of covariates.

Note that σ2 = σ2
Y (1 − R2), where σ2

Y is the unconditional variance of Y. Plugging this

quantity into (2.2), the variance of the regression estimator can be written as

σ2
Y

r

{
1−R2 +

R2r

n
+

(1−R2)(n− r)p
n(r − p− 2)

}
.

If R2 is small, the variance of the regression estimator for µY is greater than σ2
Y/r, the

variance of Y . The regression estimator should be more efficient for a moderately large

R2, provided we have not used up too many degrees of freedom by conditioning on a large

number of covariates. Table 2.1 shows the relative efficiency of the two-phase regression

estimator compared to Y (the ratio of the variances of µ̂Y and Y ) at different values of R2

and p. A value greater than 1 indicates that Y is more efficient. From the table, we can see

that the regression estimator is always less efficient when R2 equals zero, but the regression

estimator is far more efficient than using Y on its own for large values of R2. Additionally,

the regression estimator becomes less efficient if we increase the number of covariates (p)

without changing R2.

Table 2.1: Variance of the two-phase regression estimator (µ̂Y ) divided by the variance of Y
at different values of R2 and p, when n = 500 and r = 50.
p R2 = 0.00 R2 = 0.25 R2 =0.50 R2 = 0.75
1 1.02 0.79 0.56 0.33
5 1.10 0.85 0.60 0.35

10 1.24 0.95 0.67 0.38
20 1.64 1.25 0.87 0.49

The last term in (2.2) comes from the expectation

σ2

r − 1
E
{

(Xn −Xr)
T (S2

r )
−1(Xn −Xr)

}
under simple random sampling. If we could select our Phase II sample so that Xn = Xr, the
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last term in the variance equation disappears, reducing the variance. Getting Xn = Xr is

difficult when there is a large number of covariates for which we would need to match Phase

I and Phase II means. Instead, we use the distribution of the last term to select our sample.

The last term is proportional to

r − p
p(r − 1)

(n− r)r
n

(Xn−r −Xr)
T (S2

r )
−1(Xn−r −Xr),

which is distributed as Fp,r−p exactly when X is multivariate normal and approximately for

large samples. In these instances, we can use the quantiles of the F-distribution to choose

an upper bound for our last term and only select Phase II samples satisfying this bound.

We propose first choosing a subsample for Phase II using simple random sampling, and then

computing the F-value using the available data from Phase I. If our F-value is greater than

the selected upper bound, we reject that sample and randomly select another sample. We

repeat this process until we obtain a F-value below our targeted upper bound. This method

is similar to the approach for balancing covariates in re-randomization described by Morgan

& Rubin (2012). The use of quantiles assures us that we can select a feasible upper bound,

and enables us to calculate, on average, how many samples we would need to reject before

finding a suitable sample.

In order to find the variance of µ̂Y under this sampling scheme, we need to calculate the

expectation of a truncated F-distribution, which can be approximated through simulation.

A faster approach, however, is to use a χ2 approximation to the F-distribution. If C ∼ Fv,w,

then vC converges to χ2
v as w increases (Li & Martin, 2002). Taking q = vC, q ∼ w

w−2
χ2
v

provides a better approximation to the quantiles and expectation of an Fv,w distribution.

From this, we can approximate the expected value of C, when C < b, by taking w
w−2

times

the expectation of a χ2
v distribution truncated at b∗ = bv. We have

E(q|q < b∗) =
w

w − 2

vP (b∗, v + 2)

P (b∗, v)
,

where P (b∗, v) is the cdf for the χ2
v distribution evaluated at b∗.

Let ∆(b, v) =
P (bv, v + 2)

P (bv, v)
, then E(C|C < b) ≈ ∆(b, v)E(C).

Thus for any selected upper bound, b, we have

V (µ̂Yb) ≈
σ2

r
+

σ2R2

(1−R2)n
+ ∆(b, p)

σ2(n− r)p
nr(r − p− 2)

, (2.3)
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with µ̂Yb denoting the estimate for Y under bounded sampling. Note that 0 < ∆(b, p) < 1,

and we can think of {1 − ∆(b, p)} × 100 as the percent reduction in the last term of the

variance. Under our restricted sampling method, µ̂Yb is still an unbiased estimate for the

mean of Y since E(Xn) = E(Xr).

Figure 2.1 displays how well our proposed scaled χ2 distribution approximates the F-

distributed quantity from the regression estimator using various values of n, r, and p. From

the figure, the χ2 approximation appears to work reasonably well across many different

sample sizes and number of covariates. Data were generated from a multivariate normal

distribution.

A major advantage to using a χ2
v approximation for estimating the variance is that it

allows us to work backwards to compute the upper bound needed to achieve a specified

reduction in variance, if possible, over using simple random sampling. There is a limit to

the amount this method can decrease the variance, however, with the maximum decrease

occurring as ∆(b, p) approaches zero. For any percent decrease less than this maximum,

we can algebraically solve for the ∆(b, p) needed to achieve this decrease and then find our

approximate bound from the ratio of the cdfs of the χ2 distribution. Similarly, when using

simple random sampling, we can calculate the Phase II sample size required to match the

variance of our estimate when selection is based on an upper bound. We can work backwards

to find the bound needed to achieve a specific increase in sample size over simple random

sampling, provided the specified sample size increase is less than the maximum possible

sample size increase. We will go into more details on how these computations work in the

following subsections.

Figure 2.2 displays the approximate percent reduction in variance from bounded sampling

with a fixed ∆(b, p) of 0.15. We are using equation (2.3) to approximate variance. From the

figure, we can see how this sampling method reduces the variance of the regression estimator

for a different number of covariates and varying Phase II sample sizes. This method has its

greatest effect when the Phase II sample size is small relative to the number of X covariates.

We can only achieve a modest reduction in variance for a single covariate unless the Phase

II sample size is very small, while for twenty covariates, we can achieve notable variance

reductions for even moderate sample sizes. This is because the use of our bound reduces the

size of the last term in our variance, which is related to the number of covariates that we

are conditioning on. When using the bounded sampling method, we are no longer as heavily

penalized for adding additional covariates to our regression estimator. The difference in

efficiency at the same value of R2 between using 1 versus 20 covariates is nowhere near as
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Figure 2.1: Distribution of r−p
p(r−1)

(n−r)r
n

(Xn−r − Xr)
T (S2

r )
−1(Xn−r − Xr) from simulations

at various values of n, r, and p. Kernel density plots from the F-distribution and our χ2

approximation are overlayed.
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pronounced as what we saw in table 2.1 when we were using simple random sampling to

select the Phase II sample.

Figure 2.2: Decrease in variance from using bounded sampling over simple random sampling
as a function of the Phase II sample size and the number of X covariates, with a fixed Phase
I sample size of 500, ∆(b, p) of 0.15, and R2 of 0.5.

For small sample sizes where X is not multivariate normal, we would instead use the

empirical distribution of (Xn−Xr)
T (S2

r )
−1(Xn−Xr). We can approximate the quantiles by

repeatedly selecting samples of size r and computing that quantity. We could use those quan-

tiles to select an upper bound. We would then approximate the expectation under bounded
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sampling by taking the average value of our computed quantity when we are restricted to

samples greater than the selected bound.

Computing Variance Reduction from Bounded Sampling

Here we examine the approximate variance reduction from using bounded sampling for large

sample sizes. Taking the ratio of V (µ̂Yb) and V (µ̂Y ) we have

V (µ̂Yb)

V (µ̂Y )
≈

1 + R2r
(1−R2)n

+ ∆(b, p) (n−r)p
n(r−p−2)

1 + R2r
(1−R2)n

+ (n−r)p
n(r−p−2)

,

and

1− V (µ̂Yb)

V (µ̂Y )
=
{1−∆(b, p)} (n−r)p

n(r−p−2)

1 + R2r
(1−R2)n

+ (n−r)p
n(r−p−2)

,

which only depends on R2, n, r, p, and b and not on σ2.

As the Phase I sample gets very large compared to the Phase II sample size, as n→∞,

1− V (µ̂Yb)

V (µ̂Y )
≈
{1−∆(b, p)} p

(r−p−2)

1 + p
(r−p−2)

,

and the variance reduction no longer depends on R2.

The maximum variance reduction achievable with this method occurs when ∆(b, p) = 0.

For very large n, this upper bound is approximately

p
(r−p−2)

1 + p
(r−p−2)

,

and we can see that a greater variance reduction occurs when the number of parameters is

large compared to the Phase II sample size. If r = 5p + 2, the largest percent reduction is

20%, if r = 10p + 2, the largest reduction would be 10%, and if r = 20p + 2, this reduction

would be 5%.

Not ignoring the second term of the variance, the maximum possible variance reduction,

denoted as α0, is

α0 =

(n−r)p
n(r−p−2)

1 + R2r
(1−R2)n

+ (n−r)p
n(r−p−2)

.
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The actual reduction for a given bound, denoted as α, is

α =
{1−∆(b, p)} (n−r)p

n(r−p−2)

1 + R2r
(1−R2)n

+ (n−r)p
n(r−p−2)

.

If we desire a certain percent reduction in variance, α, then we can calculate the upper

bound needed to achieve this reduction, when α < α0, using

∆(b, p) = 1− α− α{1−R2(n− r)}n(r − p− 2)

(1−R2)n(n− r)p
.

Once we have solved for ∆(b, p), we can approximate b using statistical software.

Sample Size Gained from Bounded Sampling

Here we look at the equivalent Phase II sample size necessary under simple random sampling

in order to achieve the same variance as using bounded sampling for large sample sizes.

Letting m denote the additional Phase II sample size, we have

1

r

{
1 + ∆(b, p)

(n− r)p
n(r − p− 2)

}
=

1

r +m

{
1 +

(n− r −m)p

n(r +m− p− 2)

}
.

The maximum sample size increase achievable, m0, occurs when ∆(b, p) = 0.

m0 =

√
(nr + rp− np− 2n)2 − 4n(r2p− nrp)− (nr + rp− np− 2n)

2n
.

If a certain sample size gain is desired, we can specify a value for m, where m < m0, and

determine the bound necessary to achieve that sample size gain. Our bound can be found

taking

∆(b, p) =
r(n− r −m)(r − p− 2)

(r +m)(n− r)(r +m− p− 2)
− mn(r − p− 2)

p(r +m)(n− r)

and solving for b from ∆(b, p) using statistical software.

2.2.2 Estimation of Regression Parameters

For many studies, the relationship between X and Y is more important than the mean of

Y. In those cases, we propose an alternative criterion for selecting the Phase II sample that
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increases the precision of the regression parameter estimates.

Let Z = (1n×1, X1, ..., Xp) denote the collection of X covariates plus a column of 1s corre-

sponding to the intercept term in a regression model. In two-phase studies, only individuals

having Y measured contribute to the regression of Y on Z. Using ordinary least squares

regression, we have

β̂ = (ZT
r Zr)

−1ZT
r Y,

where Zr are the Z variables for individuals in Phase II. The variance of β̂ from this regression

is given as σ2(ZT
r Zr)

−1. We can see that samples with larger values of ZT
r Zr will produce

a smaller variance for β̂. The Z variable that corresponds to β̂0 will always be a column of

1s and will not be affected by choosing large values of ZT
r Zr. As result, we can ignore the

intercept term and focus on the other regression parameters, β̂∗, whose variances are given

by

σ2{(Xr − 1r×1X
T

r )T (Xr − 1r×1X
T

r )}−1,

where σ2 is the conditional variance of Y given X, Xr is the r × p matrix of X values for

individuals in Phase II, Xr is a p×1 vector containing the Phase II sample means of X1, ...Xp,

and 1r×1 is a r×1 vector of 1s. Xr does not contain a column of 1s. Xr−1r×1X
T

r is simply the

X values for individuals from Phase II centered at their Phase II mean. If Xi ∼ Np(µX ,Σ),

(Xr − 1r×1X
T

r )T (Xr − 1r×1X
T

r ) ∼ Wp(Σ, r− 1), with Wp(Σ, r− 1) denoting a p dimensional

Wishart distribution with r− 1 degrees of freedom and scale matrix Σ. For other instances,

we can instead find the empirical distribution by re-sampling.

We propose using bounded sampling to lower the variance of our regression parameters,

similar to our method for lowering the variance of our estimate of the mean. In this instance,

we only want to select Phase II subsamples where (Xr − 1r×1X
T

r )T (Xr − 1r×1X
T

r ) is large;

however, since (Xr−1r×1X
T

r )T (Xr−1r×1X
T

r ) is a p×p positive definite matrix, determining an

upper bound is more complicated. We recommend using log|(Xr−1r×1X
T

r )T (Xr−1r×1X
T

r )|
and only selecting Phase II samples where this quantity is greater than some specified lower

bound.

Taking the determinant reduces the bound to a scalar, which is easier to work with.

We can easily approximate the distribution of log|(Xr − 1r×1X
T

r )T (Xr − 1r×1X
T

r )| when

X is multivariate normal by simulating from a Wp(Σ, r − 1) and taking the appropriate

transformation, enabling us to again use approximate quantiles in selecting an achievable
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bound. Applying the natural logarithm to the determinant makes the distribution asymp-

totically normal and the limiting distribution has a closed form (Cai et al., 2015), which

allows us to determine approximate quantiles without using simulations when X is multi-

variate normal and our sample size is large. We can instead use the empirical distribution

of log|(Xr − 1r×1X
T

r )T (Xr − 1r×1X
T

r )| to find quantiles when X is not multivariate normal.

We can estimate the expected value of [(Xr − 1r×1X
T

r )T (Xr − 1r×1X
T

r )]−1 when using this

bound, through simulations or from the empirical distribution. We can then approximate the

reduction in the variance of β̂∗ for a selected bound compared to simple random sampling.

The percent reduction in variance is the same across all regression parameters when X is

multivariate normal.

When interest lies in estimating both the mean and regression parameters, we can select

a Phase II sample using both the upper bound for the F-distribution and the lower bound

for the regression parameters. Selecting a sample using both bounds will simultaneously

improve estimation of the mean of Y and the parameters from the regression of Y on X.

When X is multivariate normal, we need only examine each individual bound on its own.

For other instances, we have to consider the joint distribution of both bounds, which we can

calculate empirically.

2.2.3 Simulations

We performed simulations to evaluate how the use of two bounds would affect the estimates

and variances for mean and regression parameters. Using a fixed Phase I sample size of 500, X

was generated from a multivariate Gaussian distribution. We then selected observations for

the Phase II sample and generated values for Y conditional on X from a normal distribution.

We computed µ̂Y and β̂ and their variance from the data. Table 2.2 displays the results

for parameter estimates and their variances based on selecting our Phase II sample using

either simple random sampling or using the bounds for improving the mean and regression

parameters. The table displays the average of the parameter estimates and variances under

each sampling scheme. We also calculated the empirical variance of each estimate, which

was similar to the average variance. The use of either bound for selecting the second phase

sample did not affect the bias of parameter estimates. From the table, we can see that

the mean bound lowers the variance of µ̂Y and β̂0 but does not have much of an effect on

the other parameters, while the regression bound does not affect the variance of those two

parameters but improves the precision of the other parameter estimates. Using both bounds

simultaneously lowers the variance of all parameters. The variance of each parameter when

19



using both bounds is similar to its variance when using each bound on its own. The variance

of µ̂Y and β̂0 are nearly lowered to that obtained when using a sample size of 55 for simple

random sampling in Phase II. For the other regression parameters, the variance is the same as

the variance obtained from a Phase II sample size of 60 when using simple random sampling,

equivalent to a 20% increase in Phase II sample size.

Table 2.2: Simulation results for parameter estimates and variances for simple random sam-
pling versus using either the F-distribution bound for mean estimation, the bound for re-
gression parameter estimation, or both bounds simultaneously.

SRS Bounded r = 50
Type Parameter r = 50 r = 55 r = 60 Mean Regression Double
Estimate µY 10.00 10.03 10.00 10.00 10.01 10.01

β0 10.00 10.02 9.99 10.01 10.03 10.01
β1 1.00 0.99 0.99 1.00 0.99 1.00
β2 -1.00 -0.99 -1.01 -1.00 -1.01 -1.00
β3 2.00 2.01 2.01 1.99 2.01 2.00
β4 -3.00 -3.00 -3.00 -2.99 -2.99 -2.99
β5 0.98 1.00 1.00 0.99 1.01 1.00

Variance µY 1.268 1.156 1.070 1.174 1.267 1.172
β0 1.09 0.982 0.893 1.00 1.069 0.997
β1 0.291 0.260 0.236 0.282 0.236 0.237
β2 0.213 0.191 0.174 0.209 0.174 0.174
β3 0.242 0.216 0.197 0.238 0.197 0.196
β4 0.438 0.391 0.356 0.431 0.357 0.356
β5 0.639 0.565 0.521 0.625 0.521 0.519

2.3 Sample Selection for Single Binary X and Y

Thus far, we have discussed selecting our Phase II sample to improve parameter estimation

for a continuous Y. We now examine sample selection to improve the efficiency of our esti-

mators for the case of a single covariate, X, where X and Y are both binary. We first discuss

the maximum likelihood and Bayesian posterior estimates and variances for the mean, risk

difference, and log odds ratio for two-phase designs and the sample size allocation that will

minimize that variance. We then discuss our adaptive two-phase sampling approach to lower

the variance of these estimators and present simulation results. Similar methods to those

presented in this section can be applied to cases where we have a single binary X and a

normal Y.
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2.3.1 Estimation of the Mean

Let Xi ∼ Bernoulli(p), Yi|Xi = 0 ∼ Bernoulli(π0), and Yi|Xi = 1 ∼ Bernoulli(π1). Then

we can estimate the mean of Y using

µ̂Y = p̂ π̂1 + (1− p̂)π̂0,

where p̂, π̂0, and π̂1 are the maximum likelihood estimates for their respective parameter.

The variance of µ̂Y is approximately

p2π1(1− π1)

r1

+
(1− p)2π0(1− π0)

r0

+
p(1− p)(π1 − π0)2

n
,

where n is again the Phase I sample size, and r0 and r1 are the Phase II sample sizes when

X = 0 and X = 1, respectively. Assuming the first phase has already taken place, then for

a fixed Phase II sample size, r = r0 + r1, selecting

r0 =
r

1 +
√

p2π1(1−π1)
(1−p)2π0(1−π0)

(2.4)

would yield the smallest variance for the estimate µY .

Unfortunately, implementation of the optimal design for improving the variance of our

mean estimate requires some knowledge of the conditional probabilities of Y given X. If we

possessed a priori information on π0 and π1, we might be interested in using a Bayesian

estimator. Erkanli et al. (1997) discussed Bayesian estimation and optimal designs for two-

phase studies. In their paper, both the first and second phase sample size could vary, but

we only consider the case where the Phase I and Phase II sample sizes are fixed and Phase

I has been completed. We can write the joint likelihood for X and Y as

n∏
i=1

f(Xi|p)
r∏
i=1

f(Yi|Xi = a, π0, π1)

=
n∏
i=1

f(Xi|p)
r0∏
i=1

f(Yi|π0)

r1∏
i=1

f(Yi|π1).

If we use independent beta priors for p, π0, and π1, π(p) ∼ Beta(αp, βp), π(π0) ∼ Beta(α0, β0),

and π(π1) ∼ Beta(α1, β1), the posterior distributions are independent beta distributions.

21



The posterior distribution of the population mean of Y, π(µY |Y,X, r0, r1, n),

= π(p|X,n)π(π1|Y, r1) + {1− π(p|X,n)}π(π0|Y, r0),

with π(p|X,n), π(π0|Y, r0), and π(π1|Y, r1) indicating the posterior distribution for p, π0,

and π1. Then,

E{π(µY |Y,X, r0, r1, n)} = p̃ π̃1 + (1− p̃)π̃0,

where p̃, π̃0, and π̃1 are posterior expectations for p, π0 and π1. The posterior variance,

V {π(µY |Y,X, r0, r1, n)} ≈ p̃2π̃1(1− π̃1)

r1 + α1 + β1 + 1
+

(1− p̃)2π̃0(1− π̃0)

r0 + α0 + β0 + 1
+
p̃(1− p̃)(π̃1 − π̃0)2

n+ αp + βp + 1
,

is very similar to the MLE variance. For a fixed Phase I sample and a Phase II sample size

of r, this variance is minimized by choosing

r0 =
r + α1 + β1 + 1−

√
p̃2π̃1(1−π̃1)√

(1−p̃)2π̃0(1−π̃0)
(α0 + β0 + 1)

√
p̃2π̃1(1−π̃1)√

(1−p̃)2π̃0(1−π̃0)
+ 1

. (2.5)

2.3.2 Estimation of the Risk Difference

Another potential quantity of interest when Y and X are binary is the risk difference, π1−π0,

whose mle variance is given by

π1(1− π1)

r1

+
π0(1− π0)

r0

.

For a fixed Phase II sample size, this is minimized by choosing

r0 =
r

1 +
√

π1(1−π1)
π0(1−π0)

. (2.6)

For Bayesian estimation, the posterior distribution for the risk difference (RD) is given

by

π(RD|Y, r0, r1) = π(π1|Y, r1)− π(π0|Y, r0), with
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E{π(RD|Y, r0, r1)} = π̃1 − π̃0, and

V {π(RD|Y, r0, r1)} =
π̃1(1− π̃1)

r1 + α1 + β1 + 1
+

π̃0(1− π̃0)

r0 + α0 + β0 + 1
.

This is minimized for a fixed Phase I and Phase II sample size by selecting

r0 =
r + α1 + β1 + 1−

√
π̃1(1−π̃1)√
π̃0(1−π̃0)

(α0 + β0 + 1)
√
π̃1(1−π̃1)√
π̃0(1−π̃0)

+ 1
, (2.7)

which is equivalent to minimizing the variance of the mean estimate of Y when p = 0.50.

Minimizing the variance of the risk difference does not explicitly depend on the distribution

of X, and is only affected by X for cases where the optimal choice for r0 is greater than the

number of subjects in the Phase II sample where X = 0 or, equivalently, if the ideal value of

r1 is greater than the number of individuals with X = 1.

2.3.3 Estimation of the Log-Odds Ratio

If, instead, we were interested in the parameter estimate for β1 from the logistic regression

of Y on X, the estimate of the natural logarithm of the odds ratio, log( π1
1−π1 ) − log( π0

1−π0 ),

would be of primary interest. The mle variance of the log-odds is given by

1

r1π1(1− π1)
+

1

r0π0(1− π0)
,

and for a fixed Phase II sample is minimized by choosing

r0 =
r

1 +
√

π0(1−π0)
π1(1−π1)

. (2.8)

The posterior distribution for the natural logarithm of the odds ratio (logOR) of π0 and π1

is given by

π(logOR|Y, r0, r1) = logit{π(π1|Y, r1)} − logit{π(π0|Y, r0)}, with

E{π(logOR|Y, r0, r1)} =
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ψ

(
α1 +

r1∑
Yi

)
− ψ

(
β1 + r1 −

r1∑
Yi

)
− ψ

(
α0 +

r0∑
Yi

)
+ ψ

(
β0 + r0 −

r0∑
Yi

)
,

and

V {π(logOR|Y, r0, r1)} =

ψ1

(
α1 +

r1∑
Yi

)
+ ψ1

(
β1 + r1 −

r1∑
Yi

)
+ ψ1

(
α0 +

r0∑
Yi

)
+ ψ1

(
β0 + r0 −

r0∑
Yi

)
,

with ψ denoting the digamma function and ψ1 denoting the trigamma function. As with the

risk difference, the variance does not explicitly depend on X. Computing the variance given

the data is fairly straight forward, but finding which allocation produces the best variance for

a fixed Phase II sample size given the parameter estimates is somewhat difficult. We could

replace
∑r0 Yi and

∑r1 Yi with their expectation given the parameters and then compute the

variance for each possible value of r0 and r1 to determine which sample allocation produces

the smallest variance. Another possibility is using

1

(r1 + α1 + β1 + 1)π1(1− π1)
+

1

(r0 + α0 + β0 + 1)π0(1− π0)

to approximate the posterior variance. This equation comes from using the delta method on

the posterior variances of π0 and π1. Note that when α0, β0, α1, and β1 are fairly large the

posterior distributions of π0 and π1 are approximately normal and the delta method works

well as an approximation for the variance. Using this approximation, we would use

r0 =
r + α1 + β1 + 1−

√
π̃0(1−π̃0)√
π̃1(1−π̃1)

(α0 + β0 + 1)
√
π̃0(1−π̃0)√
π̃1(1−π̃1)

+ 1
(2.9)

to determine our sample size allocation. We recommend using this approximation for esti-

mating the optimal allocation, as it is computationally simple, and then using the trigamma

function for the variance calculation after sampling.

2.3.4 Adaptive Sample Selection

The variance and optimal design depend on π0 and π1, which will likely not be known

before Phase II sampling. This makes it more difficult to design a strategy for selecting the
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second phase subsample than in the continuous case. To overcome this, we propose using

an adaptive approach where the Phase II sample is conducted in several batches. We can

use the information obtained in earlier batches for preliminary estimates of π0 and π1, and

choose the best allocation for the next batch based on both our current estimates and the

previous allocations. A Bayesian approach is more suited for this method of sampling since

after each batch we can compute the posterior estimates for our parameters and use our

posterior distribution as the prior for our next batch, allowing us to update our parameter

estimates at each step. Additionally, use of a vaguely informative prior is helpful for cases

where either π0 or π1 are rare, as the maximum likelihood estimate of π̂0 or π̂1 could end up

being zero. In which case, equations (2.4), (2.6), and (2.8) would not work for choosing the

next allocation.

Our simulations have shown very little change in efficiency from increasing the number

of batches beyond three, and two or three batches would be sufficient in most cases. For the

first batch, we either select an equal sample size for r0 and r1 or sample sizes proportional

to p̃. After our first batch is collected, we compute our posterior distributions for π0 and π1,

which become our prior distributions for the next batch. We then allocate the sample size

in that batch by plugging our prior means for π0 and π1 in equations (2.5), (2.7), or (2.9).

If r0 is less than zero, we take r0 = 0, similarly, if r0 is greater than the next batch size, we

take r0 equal to the batch size. The sum of r0 and r1 always equals the batch size.

2.3.5 Simulations

We performed simulations to compare the performance of our proposed adaptive design

against Bayesian estimation using proportional sampling in each strata, an equal sample

size in each strata, and the optimal allocation. The optimal allocation is impossible unless

π0 and π1 are known beforehand. We used a fixed Phase I sample size of 1,000 but varied

π0, π1, p, and the total Phase II sample size in our simulations. We performed simulations,

optimizing on the mean, risk difference, or log-odds. Table 2.3 displays the average variance

for estimating the mean of Y under each of the proposed designs. Our adaptive approach

always performs at least as well as proportional and equal allocation. When π0(1 − π0)

equals π1(1 − π1), adaptive sampling will not improve the variance; however, when those

values greatly differ, adaptive sampling can substantially lower the variance. For very large

sample sizes or if π0 and π1 are not too small or large, the variance produced by our adaptive

method approaches the variance under the best possible allocation. While for smaller sample

sizes or when π0 or π1 are close to 0 or 1, the deviation in variance from our method to the
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best allocation becomes more pronounced, likely due to the difficulty in estimating π0 or π1

in initial batches. However, our method still performs considerably better than proportional

or equal sampling in these scenarios. We took α0, β0, α1, and β1 equal to 1 for a vaguely

informative prior in the adaptive, proportional, and equal sampling designs. This prior was

chosen as it did not provide much information about the parameters, and guaranteed the

posterior for π0 and π1 would not be degenerate. For the optimal design, we fixed the sum

of α0 and β0 and the sum of α1 and β1 at the same value as the other designs, but selected

values so the prior mean would match the true means. The variance for our adaptive design

would likely be improved from using priors distribution for π0 and π1 whose means are closer

to the actual means.

Tables 2.4 and 2.5 display simulation results for the risk difference and log-odds ratio.

Results are very similar to those from mean estimation. The only major discrepancy is

the difference in the variance from our adaptive design and the optimal design does not

improve as the sample size increases for the log-odds ratio. This is likely to due us having to

approximate the posterior variance for allocation purposes, unlike when estimating the mean

or risk difference. Since the value of p does not directly affect estimation and proportional

allocation generally does not work well for these two quantities, they have been omitted from

the table.

Table 2.3: Comparison of the variance of the estimated mean for adaptive sampling, pro-
portional sampling, equal strata size, and optimal allocation. Phase I sample size is fixed at
1000 for each scenario.

r p π0 π1 Proportional Equal Adaptive Best
300 0.50 0.01 0.50 0.000491 0.000491 0.000399 0.000352
300 0.50 0.05 0.50 0.000541 0.000542 0.000482 0.000469
300 0.50 0.10 0.50 0.000598 0.000599 0.000566 0.000560
300 0.50 0.30 0.70 0.000725 0.000726 0.000724 0.000722
300 0.65 0.01 0.50 0.000605 0.000753 0.000530 0.000475
300 0.35 0.01 0.50 0.000366 0.000297 0.000276 0.000241
200 0.50 0.01 0.50 0.000705 0.000707 0.000588 0.000492
400 0.50 0.01 0.50 0.000383 0.000384 0.000308 0.000281

2.3.6 Simultaneous Estimation for Multiple Quantities

Sample selection of Phase II samples for binary X and Y has focused on estimating either

the mean, the risk difference, or natural logarithm of the odds ratio. In practice researchers

may be interested in two or more of those estimates. Unfortunately, selecting an allocation
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Table 2.4: Comparison of the variance of the estimated risk difference when using either
adaptive sampling or equal size in each stratum with the variance under the optimal design.
Phase I sample size is fixed at 1000 for each scenario.

r π0 π1 Equal Adaptive Best
300 0.01 0.50 0.00173 0.00137 0.00117
300 0.05 0.50 0.00197 0.00173 0.00167
300 0.10 0.50 0.00223 0.00210 0.00208
300 0.50 0.50 0.00325 0.00325 0.00325
200 0.01 0.50 0.00259 0.00213 0.00173
400 0.01 0.50 0.00130 0.00100 0.00881

Table 2.5: Comparison of the variance for the estimated natural logarithm of the odds ratio
when using either adaptive sampling or equal size in each stratum with the variance under
the optimal design. Phase I sample size is fixed at 1000 for each scenario.

r π0 π1 Equal Adaptive Best
300 0.01 0.50 0.758 0.545 0.484
300 0.05 0.50 0.177 0.148 0.145
300 0.10 0.50 0.102 0.096 0.095
300 0.50 0.50 0.053 0.053 0.053
200 0.01 0.50 1.002 0.802 0.726
400 0.01 0.50 0.602 0.404 0.363

that is optimal for all three estimates is impossible. We instead propose several methods for

choosing a sample that will produce good results when estimating two or more quantities,

again using adaptive sampling.

The first and simplest method is finding the best allocation under each estimate individ-

ually and then taking the average for r0 and r1. Each variance is parabolic across the values

for r0, and generally there is some region r0 < a or r0 > b that produces poor results for

all three estimates. By averaging the best allocation for all three estimates, we can avoid

regions that are suboptimal for all three estimates. We could use a weighted average if we

are more interested in estimating certain quantities.

Two more possibilities are minimizing the average se/estimate or minimizing the average

percent increase in variance over the optimal allocation for each estimate. The se/estimate

places more weight on estimates with a smaller standard error compared to parameter es-

timate. This quantity can be thought of as analogous to 1/Z, where Z is the Z-statistic for

testing the null hypothesis that the estimate equals zero. This tends to down weight the

mean in determining the allocation. Both quantities require computation of the variance

across all possible Phase II allocations and calculation of the quantity to be minimized.
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Again, we could use a weighted average if we place higher importance on certain estimates.

2.4 Categorical Z and Binary X and Y

Finally, for two-phase estimation with a binary outcome, we consider the case where we have

a categorical variable, Z, with k categories and a binary variable, X, collected in Phase I. Note

the categories for Z could be constructed from multiple continuous or categorical variables.

The k categories could represent propensity score classes from the logistic regression of X

regressed on numerous covariates, allowing us to apply this scenario to any two-phase sample

where Y is binary and at least one Phase I covariate is binary.

Let qj denote the probability of belonging to category j and pj denote the probability

that X equals 1 given Z equals j. Let π1j denote the probability that Y equals 1 given X =

1 and Z = j and π0j denote the probability that Y equals 1 given X = 0 and Z = j. Within

category j, we can estimate the mean of Y and the variance of that estimate the way we

estimated the mean and variance with a single binary X and Y. We have

µ̂Y j = p̂jπ̂1j + (1− p̂j)π̂0j, and

V (µ̂Y j) ≈
p2
jπ1j(1− π1j)

r1j

+
(1− pj)2π0j(1− π0j)

r0j

+
pj(1− pj)(π1j − π0j)

2

nj
,

where nj denotes the Phase I sample size where Z = j, r1j denotes the Phase II sample size

where Z = j and X = 1, and r0j denotes the sample size where Z = j and X = 0. After

computing the mean and variance within each category of Z, we can compute the overall

mean as

µ̂Y =
k∑
i=1

q̂iµ̂Y i,

and the variance as

V (µ̂Y ) =
k∑
i=1

q2
i V (µ̂Y i) +

k∑
i=1

µ2
Y iV (q̂i) +

∑
i 6=j

cov(µY iq̂i, µY j q̂j)

=
k∑
i=1

q2
i V (µ̂Y i) +

k∑
i=1

µ2
Y i

qi(1− qi)
n

+
∑
i 6=j

µY iqiµY jqj
n

.
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For a fixed Phase I and Phase II sample size, the variance is minimized by choosing

r0j

r1j

=

√
(1− pj)2π0j(1− π0j)√

p2
jπ1j(1− π1j)

, and

r1j

r1i

=

√
q2
jp

2
jπ1j(1− π1j)√

q2
i p

2
iπ1i(1− π1i)

.

If our primary interest is in the relationship between X and Y, adjusted for Z, then we can

instead calculate the risk difference or natural logarithm of the odds ratio in each category

of Z and combine the estimates with a weighted sum to obtain the adjusted risk difference

or log of the odds ratio. The overall variance is given by

k∑
i=1

q2
i V (R̂Di) +

k∑
i=1

RD2
i V (q̂i) +

∑
i 6=j

cov(RDiq̂i, RDj q̂j)

for the risk difference, and

k∑
i=1

q2
i V (ÔRi) +

k∑
i=1

OR2
iV (q̂i) +

∑
i 6=j

cov(ORiq̂i, ORj q̂j)

for the log-odds ratio, where RDj and ORj are the risk difference and log odds ratio when

Z = j. The variance within each category can be computed from the variance formulas with

a single binary X and Y. For fixed Phase I and Phase II sample sizes, we can minimize these

variances by choosing

r0j

r1j

=

√
π0j(1− π0j)√
π1j(1− π1j)

and
r1j

r1i

=

√
q2
jπ1j(1− π1j)√
q2
i π1i(1− π1i)

for the risk difference, and

r0j

r1j

=

√
π1j(1− π1j)√
π0j(1− π0j)

and
r1j

r1i

=

√
q2
jπ1i(1− π1i)√
q2
i π1j(1− π1j)

for the log odds ratio.

Since π0j and π1j are likely unknown prior to Phase II sampling, we suggest obtaining
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Phase II samples in a small number of batches and using a Bayesian approach to update our

estimates for π0j and π1j. We then use this information to select our Phase II sample, as

in section 2.3. Using a Dirichlet prior for q1, ...qk and independent beta priors for p1, ..., pk,

π11, ..., π1k, and π01, ..., π0k give us conjugate priors. We can estimate the posterior mean, risk

difference, and log odds ratio within each category for Z and combine the posterior estimates

and variances the same way we did with the frequentist estimates to obtain the posterior

mean and variance of the overall mean and the adjusted risk difference and log odds ratio.

Estimates within each category are the same as those obtained with a single binary X and

Y. For estimating the overall mean, we can minimize the variance by choosing

r0j + α0j + β0j + 1

r1j + α1j + β1j + 1
=

√
(1− pj)2π0j(1− π0j)√

p2
jπ1j(1− π1j)

and

r1j + α1j + β1j + 1

r1i + α1i + β1i + 1
=

√
q2
jp

2
jπ1j(1− π1j)√

q2
i p

2
iπ1i(1− π1i)

,

where α1j, β1j, α0j, and β0j are the prior parameters for π1j and π0j. We can similarly find

the best sample size allocation for the risk difference and use the approximation for the best

allocation for the log odds ratio, as we did in section 2.3.

2.5 Normal Y and a Single Binary X

In the following section, we show how to estimate the overall mean and difference in means

for a two-phase study where Y is normal and X is binary. For this instance, if we assume

that Yi|Xi = 0 ∼ N(µ0, σ
2
0) and Yi|Xi = 1 ∼ N(µ1, σ

2
1), then we can estimate the mean of Y

as

µ̂Y = p̂µ̂1 + (1− p̂)µ̂0,

where p is the probability that X = 1. The variance is given by

V (µ̂Y ) ≈ p2σ
2
1

r1

+ (1− p)2σ
2
0

r0

+
p(1− p)

n
(µ1 − µ0)2.
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This variance is minimized for fixed Phase I and Phase II sample sizes by choosing

r1

r0

=
pσ1

(1− p)σ0

.

If we are interested in the effect of X on Y, then we could look at the difference in means,

µ1 − µ0, which is analogous to β1 from the linear regression of Y on X. The variance of the

difference in means is given by

σ2
1

r1

+
σ2

0

r0

,

and is minimized for a fixed Phase I and Phase II sample size with

r1

r0

=
σ1

σ0

.

When σ1 and σ0 are unknown, we might consider using an adaptive approach for selecting

our Phase II sample using Bayesian estimation. We suggest using conjugate priors for our

parameters, π(p) ∼ Beta(αp, βp), π(µ0|σ2
0) ∼ N(µφ0, σ

2
0/kφ0) , π(σ2

0) ∼ Inverse χ2(νφ0, σ
2
φ0),

π(µ1|σ2
1) ∼ N(µφ1, σ

2
1/kφ1) , and π(σ2

1) ∼ Inverse χ2(νφ1, σ
2
φ1). The posterior distributions

of µ0 and σ0 are independent of µ1 and σ1, which are independent of p, making calculating

the posterior for µ0 and σ0 the same as in the case of a single normal variate with unknown

mean and variance. The variance for the posterior expectation of µY is given by

V (µ̂Y ) ≈ p̂2 σ̂2
1

r1 + kφ1

+ (1− p̂)2 σ̂2
0

r0 + kφ0

+
p̂(1− p̂)

n+ αp + βp + 1
(µ̂1 − µ̂0)2,

with p̂, σ̂0, σ̂1, µ̂0, and µ̂1 denoting the posterior mean corresponding to those parameters.

This is minimized by solving

r1 + kφ1

r0 + kφ0

=
p̂σ̂1

(1− p̂)σ̂0

.

The variance for the posterior estimate of difference in means is given by

σ̂2
1

r1 + kφ1

+
σ̂2

0

r0 + kφ1

,
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which is minimized by

r1 + kφ1

r0 + kφ0

=
σ̂1

σ̂0

.

As in the case of binary X and Y, these methods for estimating the mean and difference in

mean for a normal Y and binary X can easily be extended to the case of a binary X and

categorical Z.

2.6 Example with NHANES Data

The National Health and Nutrition Examination Survey (NHANES) is a research program by

the National Center for Health Statistics (CDC) examining health and nutrition in the United

States (Curtin et al., 2012). The survey conducts both interviews and physical examinations,

including laboratory tests. We used data from NHANES to examine how effective our

methods for sample selection would be in practice for a two-phase study. Selected variables

to represent Phase I included demographic information on race, gender, age, marital status,

and income, as well as general health information on diet, self reported diabetes diagnosis,

blood pressure, BMI, smoking status, minutes of activity, television watching, computer

usage, and self-reported overall health status. Our Phase II outcome was the laboratory

variable glycohemoglobin, a blood test measuring how much sugar is bound to hemoglobin.

This test is used to diagnose diabetes and prediabetes. Our main interests in this study are

estimation of the mean of glycohemoglobin for this population and the relationship between

obesity and glycohemoglobin, adjusted for our other covariates.

We chose all 30,468 NHANES participants from 2010 through 2015 with any available

data on selected variables. Missing values were singly imputed through predictive mean

matching, creating our pseudo-population. From this population, we first selected 3,000 in-

dividuals as our Phase I sample. In our Phase I sample, we created three propensity score

classes using the predicted probability of obesity given the other selected covariates. The

propensity score classes form our categorical Z variable, as described in section 2.4, and the

indicator for obesity is our binary X. Afterwards, we selected 500 individuals for our Phase

II sample and obtained their glycohemoglobin as our Y, which was approximately normal.

We first conducted our Phase II sampling with the goal of estimating the mean of glyco-

hemoglobin in this population. We used several different methods for selecting our Phase

II sample and computed the parameter estimates and standard errors over many iterations.
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This experiment was latter repeated for estimating the difference in mean glycohemoglobin

between individuals with obesity and those without.

Table 2.6 displays results for estimating the population mean using multiple methods

to select the Phase II sample and estimate the mean. The estimates for the population

mean are similar across all methods. For the first method, Y , we select our Phase II sample

using simple random sampling (SRS) and then use Y as our estimate for the population

mean. This method does not make use of any Phase I variables for sample selection or

estimation and produces the largest standard error. Stratification by obesity selects the

Phase II sample using the optimal allocation when stratifying by obesity, and then estimates

the population mean through that same stratification. Use of obesity on its own lowers

the standard error over using Y by a small amount. The next method again selects the

Phase II sample using SRS, but then uses obesity and the propensity score for stratification

to estimate the population mean. This further lowers the standard error over using Y or

only stratifying by obesity. It should be noted that when using simple random sampling to

select the Phase II sample, we may not always be able to use the stratified estimator due to

empty strata. For this analysis, we only looked at instances where it was possible to use the

stratified estimator.

The other three methods used both obesity and the propensity score for stratification to

choose the Phase II sample and estimate the population mean. The standard error from the

proportional allocation was similar to using simple random sampling and then stratifying.

This is unsurprising, as on average SRS will give us a sample size proportional to the size of

each strata. Explicitly stratifying by obesity and the propensity score to select the Phase II

sample guarantees that we can always use the stratified estimator, unlike SRS. Our adaptive

sample selection method greatly outperformed proportional allocation in terms of variance.

The average standard error from the adaptive design was close to the standard error from the

optimal design, and the optimal design can only be achieved if the population parameters

are known beforehand.

Table 2.7 compares several methods in estimating the difference in the average value of

glycohemoglobin between individuals with obesity and those without, adjusted for the other

Phase I variables through stratification on the propensity score classes. We selected the

Phase II sample using either SRS, proportional allocation, an equal sample size in each strata,

our adaptive approach, or the optimal allocation. In terms of standard errors, SRS again

performed similarly to proportional allocation, having an equal sample size in each strata

worked much better than both methods, and the adaptive design performed better than those
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three methods. Our adaptive approach produced standard errors close to those obtained

from the optimal design, which of course depended on unknown population parameters, and

produced relatively similar estimates to the other approaches. Note that only the adaptive

approaches used Bayesian estimation in these instances.

Table 2.6: Estimate and standard error for the mean of glycohemoglobin.
Method Estimate Standard Error

Y 5.570 0.0403
Stratification by Obesity 5.571 0.0396

Stratifying by Obesity and PS after SRS 5.571 0.0383
Proportional Allocation using Obesity and PS 5.572 0.0383

Adaptive Allocation using Obesity and PS 5.568 0.0355
Optimal Allocation using Obesity and PS 5.571 0.0350

Table 2.7: Estimate and standard error for the difference in mean glycohemoglobin between
those with obesity and those without, adjusted for propensity score classes.

Method Estimate Standard Error
Simple Random Sampling 0.207 0.1183

Proportional Allocation 0.204 0.1137
Equal Sample Size in Each Strata 0.206 0.0819

Adaptive Allocation 0.206 0.0766
Optimal Allocation 0.208 0.0754

2.7 Discussion

Two-phase survey sampling can be used to reduce costs for estimating a costly outcome in

a study. Although two-phase sampling as proposed by Neyman (1938) is most frequently

used in epidemiological studies on disease prevalence, it can be applied to any large-scale

study where a disease, biomarker, or other outcome is too expensive to measure on the entire

survey sample. Most literature on two-phase sampling focuses on estimating the population

mean of the outcome measured in Phase II.

In this chapter, we discussed both mean estimation and estimating the relationship be-

tween our outcome in Phase II with the Phase I variables. We presented several methods

for selecting our second phase sample, depending on the distribution of our variables. When

Y is continuous, we can improve estimation of the mean of Y by only choosing Phase II

samples where r−p
p(r−1)

(n−r)r
n

(Xn−r−Xr)
T (S2

r )
−1(Xn−r−Xr) falls below a pre-selected bound.
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This method will always outperform simple random sampling, though how large of an im-

provement greatly depends on the sample sizes and number of X covariates. Also, there is an

upper bound for the maximum possible percent reduction in variance. Similarly, estimation

of the regression parameters for the conditional distribution of Y given X can be improved

by selecting Phase II samples with large values of log|(Xr−1r×1X
T

r )T (Xr−1r×1X
T

r )|, which

only depend on X. Unlike for the mean, we do not have a formula to approximate how much

this method will improve regression parameter estimation, but we can use simulations to

estimate the reduction in variance. These criteria can be applied simultaneously to improve

estimation of the mean and regression parameters. The increased difficulty in finding a

suitable subsample is the only major drawback to applying these criteria.

We also presented methods for improving precision for two-phase estimation when Phase

II variables are non-normal and Y is binary or normal, which typically depended on unknown

parameters. To overcome this limitation, we proposed selecting our Phase II sample in

batches and using Bayesian estimation to update our estimates after each batch. Using this

adaptive method over other simpler methods can greatly improve the variance for estimating

our quantity of interest. One potential downside of this approach is the use of Bayesian priors

can introduce small bias in our parameter estimates. Also, this method only improves the

precision of a single estimate.

The methods we have presented in this chapter can be used in a number of studies where

an outcome is measured in only a subsample of total participants. By using propensity score

classes to construct a categorical variable, Z, we can apply our method from section 2.4 in

numerous instances. We have only considered cases where Y is continuous or binary, and

may want to explore instances where Y follows other distributions. Additionally, we only

considered cases with a single Y variable as our Phase II outcome. It may be worthwhile to

examine designing two-phase studies where multiple variables are measured at the second

phase.
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Chapter 3

Split Questionnaire Design for Panel Surveys

3.1 Introduction

Longitudinal or panel surveys are essential for any study of change in the key outcome vari-

ables and their correlates. Given the cost of conducting and recruiting participants into such

studies, researchers often try to get the most information they can out of study participants.

Survey questions often are pooled from several investigators with multiple research interests,

resulting in long questionnaires and increasing the burden on participants. These studies,

therefore, are also subject to drop-out or nonresponse, which may lead to biased results.

Furthermore, longer surveys can affect the quality of participants’ responses. Several stud-

ies have shown that nonresponse rates tend to be high in surveys with long questionnaires

(Adams & Darwin, 1982; Dillman et al., 1993; Roszkowski & Bean, 1990; Beckett et al., 2016),

and item nonresponse is more frequent towards the end of a questionnaire (Raghunathan &

Grizzle, 1995). Past a certain length participants become more likely to lose interest in the

study, making responses less accurate (Herzog & Bachman, 1981; Gonzalez & Eltinge, 2007;

Peytchev & Peytcheva, 2017). The problems caused by lengthy questionnaires are exacer-

bated in longitudinal studies due to calling on respondents to fill out the same questionnaires

repeatedly. A shorter survey length alleviates these problems and potentially decreases the

cost of data collection per subject. The goal, therefore, is to balance collecting a set of rich

variables while not placing an undue burden on participants.

Meanwhile, advancements in software for handling missing data, especially the multiple

imputation approach, have made missing data less problematic for data analysis, and, in

fact, designing a survey to purposely include missing data could improve the quality of

the study (Littvay, 2009). A planned missing data design provides an effective way to

reduce questionnaire length while maintaining all relevant questions of interest. Furthermore,

missing values resulting from the planned missing approach are by design either Missing
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Completely at Random (MCAR) or Missing at Random (MAR). As a result, we can use

multiple imputation, maximum likelihood, or fully Bayesian approaches to handle the missing

data just by focusing on the model for variables in the survey. In fact, since planned missing

data designs reduce the burden on participants, the probability of nonresponse decreases,

making it less likely to observe values that are missing not at random (MNAR), and, as

a result, multiple imputation and maximum likelihood approaches are more likely to be

valid (Rhemtulla & Little, 2012; Jorgensen et al., 2014; Kaplan & Su, 2016). Planned

missing data approaches have frequently been used for educational assessment where students

are evaluated on several subjects (Shoemaker & Shoemaker, 1981). Evaluating a student’s

proficiency on every subject would take a great deal of time, making it disruptive for students

and unlikely to be approved by administrators. For this reason, many assessments utilize

multiple matrix sampling, where the questionnaire is divided into several sets. Each student

responds to a common set of items, which are shared among all participants, as well as

a randomly selected subset of remaining questions. The Kentucky Instructional Results

Information System, the Massachusetts Comprehensive Assessment System, the National

Assessment of Educational Progress, and the Dutch National Assessment Program have all

used matrix sampling to reduce the testing burden on students (Childs & Jaciw, 2003).

Split questionnaire design, as proposed by Raghunathan & Grizzle (1995), is an extension

of multiple matrix sampling that places constraints on item assignment so that all two-way

associations are estimable. Split questionnaire design divides the survey questions into mul-

tiple components and each participant responds to a fraction of the total components. One

common variant, the 3-form split questionnaire, divides the survey into four components

(X,A,B,C). Each participant responds to all items in X and two of the three other com-

ponents, resulting in three unique survey forms, (X,A,B), (X,A,C) and (X,B,C), which are

administered in equal proportions (Graham et al., 2006; Rhemtulla & Little, 2012). This

particular 3-form design reduces the survey length by approximately 25%, but modifications

can be made to both the number of total components used and fraction that each participant

answers, depending on the survey composition and desired reduction in length. The split

questionnaire is simple to implement and has been used in a number of studies (Graham et

al., 2006).

In cross-sectional studies, the split questionnaire design was found to produce estimates

similar to those obtained in the absence of missing data (Raghunathan & Grizzle, 1995;

Littvay, 2009), but with a decrease in power. The loss of statistical power can be somewhat

mitigated by the increased sample size obtainable due to the decrease in cost per participant
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(Littvay, 2009). Peytchev & Peytcheva (2017) demonstrated that responses to questions from

a split questionnaire design more closely resembled responses to questions at the beginning

of a lengthy survey than at the end of the survey. They also demonstrated that correlations

between variables attenuated when those variables were collected at the end of a survey.

This research indicated that data collected from a split questionnaire design could be more

useful than data collected at the end of a long survey. Until recently, little research had been

done on the implementation of split questionnaires for longitudinal studies (Jorgensen et al.,

2014). In this chapter, we consider several longitudinal designs for split questionnaires and

compare their performance through results obtained from both simulations and data from

the Health and Retirement Study (HRS).

3.2 Longitudinal Split Questionnaire Survey Design

The administration of split questionnaires in longitudinal surveys is more complex due to

repeated variable measurements on the same subject at different time points. Usually, these

repeated measurements are highly correlated (Hardt et al., 2012). Prior to designing a study,

we need to determine whether to administer the same form to each participant throughout

the entire study, or rotate the form each participant receives from year to year, or employ

some combination of those two designs where we administer the same form to some partic-

ipants and rotate the forms for other participants. Which design works best likely depends

on the correlation structure of the data, more specifically, how the correlation between com-

ponents measured at the same wave (within-wave correlation) compares to the correlation of

measurements on the same variable over time (autocorrelation) and the correlation between

two separate components measured at different waves (between-wave correlation). When the

autocorrelation is greater than the within-wave correlation, we expect it would be preferable

for most estimates to not measure the same components at each wave. We also think that,

when most correlations are non-zero, more complex form rotations can better measure these

different correlations and will produce more precise estimates. Which quantity is of primary

interest to investigators could also influence which design should be administered. If we

are primarily interested in estimating the change in a variable over time, then it might be

preferable to administer the same components throughout the study.

We consider six different design options for allocating a 3–form questionnaire in longitu-

dinal studies. Table 3.1 displays how each component A, B, and C would be allocated under

the first five proposed designs in a three wave study, but each design could be easily modified
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depending on the number of waves and desired reduction in survey length. For the first two

options, the participants are placed into three groups. With Option 1, each group receives

either form (A,B), (A,C), or (B,C) through out the study, while the forms each group re-

ceives are rotated in a manner that allows each form to be given in equal proportions at each

wave for Option 2. For Option 3, we again administer to participants a different form at

each wave, but we instead create six groups, which provides more ways of cycling the forms.

We believe that the more complex design of Option 3 may allow us to better model variable

correlations than Option 2 and will outperform it when most correlations are fairly strong.

Combining aspects of the first two options may produce more robust split questionnaire

designs that perform well for more estimates and under more correlation structures. As

such, Option 4 represents a combination of the first and second options, with a total of

six groups, half get the same form throughout and the other half follow the rotation for

Option 2. Option 5, the most complex of the planned study designs, contains nine groups,

three of which receive the same forms as in Option 1 and the other six are rotated like

in Option 3. The final design considered, Option 6, randomly assigns forms at each wave,

making it simple to administer. This option allows every possible rotation to occur, which

is beneficial when most correlations are non-zero, but makes the form design unbalanced.

Our hypothesis is that the more complex designs would prove to be more robust, performing

well under many types of correlation structures and for multiple estimands, but might not

necessary be optimal under any scenario or for any estimate.

3.3 Analysis of Split Questionnaire Surveys

Due to the presence of missing data, maximum likelihood, fully Bayesian approaches, or

multiple imputation are necessary for data analysis. We focus on results from data analysis

using both maximum likelihood and multiple imputation in this chapter.

3.3.1 Multiple Imputation

The multiple imputation (MI) approach is particularly convenient for analysis done with

split questionnaire surveys. In multiple imputation, we fill in missing values to create several

complete data sets and perform standard statistical analysis on each data set. The estimated

parameters and standard errors from each analysis are combined using Rubin’s rules (Rubin,

1987) to obtain our final estimates. Often multiple imputation is done using a Sequential

Regression Multiple Imputation (SRMI) framework where missing values are drawn using
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Table 3.1: Form allocation for each design option.

Option Wave 1 Wave 2 Wave 3

AB AB AB
1 AC AC AC

BC BC BC
AB AC BC

2 AC BC AB
BC AB AC
AB AC BC
AB BC AC

3 AC BC AB
AC AB BC
BC AB AC
BC AC AB
AB AB AB
AB AC BC

4 AC AC AC
AC BC AB
BC BC BC
BC AB AC
AB AB AB
AB AC BC
AB BC AC
AC AC AC

5 AC BC AB
AC AB BC
BC BC BC
BC AB AC
BC AC AB

Gibbs sampling from the posterior predictive distribution of a regression model, with each

missing variable regressed on all other variables (Raghunathan et al., 2001).

Since imputation uses information from other variables to estimate missing values, having

observed values highly correlated with missing values will better predict those missing values

and improve imputations (Collins et al., 2001; Thomas et al., 2006; Hardt et al., 2012).

Ideally, we would design split questionnaire surveys that take advantage of this attribute. For

this reason, Raghunathan & Grizzle (1995) and Thomas et al. (2006) assign variables using

correlations, where variables with high partial correlations are placed in different components.

Thus, for most cross-sectional studies, we simply administer forms AB (X,A,B), AC (X,A,C),

and BC (X,B,C) in equal proportions and focus our attention on how to place the variables
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into each component; however, in a longitudinal study not all variables are collected at the

same time, adding an extra dimension to consider.

3.3.2 Maximum Likelihood Estimation

Missing values resulting directly from the split questionnaire survey implementation are

typically MAR by design. As a result, we can ignore the missing data mechanism and base

our inference on only the observed data likelihood. For most instances, we can compute the

maximum likelihood estimator (MLE) using an iterative method, such as Newton−Raphson

or the EM algorithm, and asymptotic standard errors can be obtained by inverting the Fisher

information matrix or using other methods (Little & Rubin, 2002).

In the case where complete data from each individual follows a p dimensional multivariate

normal distribution with mean µ and variance Σ, we can obtain closed form solutions for

the information matrix. Hartley & Hocking showed how to compute the Fisher information

of the joint likelihood of Y1, ...Yn for any arbitrary missing data pattern (Hartley & Hocking,

1971).

For each observation, Yi, we can construct a p× p matrix such that each entry aj,j = 1 if

variable j was observed and 0 otherwise, where 1 ≤ j ≤ p. We can then take di equal to this

constructed matrix after all rows of zeros have been deleted, creating a oi× p matrix, where

oi denotes the number of variables observed on subject i. Then each Yi follows a multivariate

normal distribution with mean diµ and variance diΣd
T
i .

In the multivariate normal case, the information matrix is block diagonal, allowing us

to compute and invert the information for µ and Σ separately. For µ, we can conveniently

write the Fisher information for the total sample as

Iµ =
n∑
i=1

dTi (diΣd
T
i )−1di. (3.1)

Now, let σjk denote the element of Σ located at row j and column k. For the informa-

tion matrix of Σ, it is convenient to create a vector of length
(
p+1

2

)
, δ, which contains all

unique elements of Σ, or all σjk such that j ≤ k. The information matrix based on δ is a(
p+1

2

)
×
(
p+1

2

)
matrix. Let Σi = diΣd

T
i denote the variance matrix for subject i and let IΣi

denote the information matrix for Σ from subject i. The expected information for subject
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i, corresponding to the negative partial derivative,

−E
[
∂2logL

∂σjk∂σlm

]
=

1

2
tr(Σ−1

i ΣijkΣ
−1
i Σilm), (3.2)

where Σijk is a oi×oi matrix with entries corresponding to elements σjk and σkj in Σi equal to

one and all other elements equal zero. Thus, −E
[

∂2logL
∂σjk∂σlm

]
= 0 if σjk or σlm are not elements

of Σi. From this formula, we can calculate the information matrix for each observation. Due

to the additive property of the Fisher information, the total information for Y1, ...Yn is equal

to the sum of the information for each individual observation, hence

IΣ =
n∑
i=1

IΣi, (3.3)

where IΣ is the Fisher information for Σ. We can then obtain the asymptotic variances for

our MLE estimates of µ and Σ by inverting their information matrices, assuming that all

elements of µ and Σ are estimable from our study.

3.4 Simulation and Analysis with Proposed Split

Questionnaire Designs

3.4.1 Simulation Set Up

We performed simulations to examine how well each proposed design performs under a

number of different correlation structures when data follow a multivariate distribution. We

compared the performance of each design in estimating three primary quantities of interest:

variable means, variance-covariance components, and the linear change in a variable’s mean

over time. The means and covariance are the sufficient statistics for the multivariate normal

distribution, and, for longitudinal studies, change in a variable over time is likely one of the

primary interests. We estimated our quantities of interest using both maximum likelihood

estimation and multiple imputation.

For our data, we took three variables at each wave to represent the A, B, and C com-

ponents of the split questionnaire, with the X component omitted for simplicity, using a

sample size of 108. The nine variables came from a multivariate normal distribution with

the variance-covariance structure displayed in Table 3.2. We used five parameters for the

covariances, ρ1 denotes the within-wave correlation, ρ2 and ρ3 are the autocorrelations, and
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ρ4 and ρ5 represent the correlation between two separate components measured at different

waves. The means of each variable changed linearly over time.

By varying the values of ρ1, ρ2, ρ3, ρ4, and ρ5, we can create numerous correlation

structures. Table 3.3 displays the correlation values we used to test the performance of the

different options. For the first three correlation structures, only one of the within-wave, au-

tocorrelation, or between-wave correlations is non-zero, enabling easy comparisons between

the performance of each design under extremely different conditions. These correlations are

rather unrealistic for repeated measures data, especially structure 3 where the between-wave

correlation is the only non-zero correlation. They were chosen because they allow us to

test the performance of each design at the boundary conditions. The last three structures

more accurately reflect correlations for longitudinal data, where within-wave and autocorre-

lations are greater than between-wave correlations. In structure 4, within-wave correlation

is largest, while for structure 5 autocorrelation is greatest. Structure 6 follows an autore-

gressive structure, where correlations decrease over time, with two main correlations, the

correlation between different variables and the autocorrelation. In addition, we tested the

performance of each design under a random correlation structure, with the correlation drawn

from a Wishart distribution. This allows us to test which design will perform best on average

across all possible correlations.

Table 3.2: Structure of the variance-covariance matrix used in simulations.
Wave 1 Wave 2 Wave 3

A B C A B C A B C
A 1 ρ1 ρ1 ρ2 ρ4 ρ4 ρ3 ρ5 ρ5

Wave 1 B ρ1 1 ρ1 ρ4 ρ2 ρ4 ρ5 ρ3 ρ5

C ρ1 ρ1 1 ρ4 ρ4 ρ2 ρ5 ρ5 ρ3

A ρ2 ρ4 ρ4 1 ρ1 ρ1 ρ2 ρ4 ρ4

Wave 2 B ρ4 ρ2 ρ4 ρ1 1 ρ1 ρ4 ρ2 ρ4

C ρ4 ρ4 ρ2 ρ1 ρ1 1 ρ4 ρ4 ρ2

A ρ3 ρ5 ρ5 ρ2 ρ4 ρ4 1 ρ1 ρ1

Wave 3 B ρ5 ρ3 ρ5 ρ4 ρ2 ρ4 ρ1 1 ρ1

C ρ5 ρ5 ρ3 ρ4 ρ4 ρ2 ρ1 ρ1 1

We then compared performance of each design option under the proposed correlation

structures by computing the variance for the variable means, variance-covariance compo-

nents, and the linear change in means over time using both MLE and mutliple imputation.

For maximum likelihood estimation, we calculated the variance of the means, and variance-

covariance components from inverting the Fisher Information using the true underlying co-
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Table 3.3: Different correlation values used in simulations.
ρ1 ρ2 ρ3 ρ4 ρ5

Structure 1 0.50 0.00 0.00 0.00 0.00
Structure 2 0.00 0.50 0.50 0.00 0.00
Structure 3 0.00 0.00 0.00 0.50 0.50
Structure 4 0.80 0.50 0.50 0.40 0.40
Structure 5 0.50 0.70 0.70 0.30 0.30
Structure 6 0.50 0.70 0.49 0.25 0.125

variance matrix. We estimated the linear change in means over time for a variable using

contrasts. The variance of these linear combinations of means from the contrasts can be

computed from the variances obtained by inverting the Fisher Information. For MLE, the

variances of our estimates of interest did not require data simulation to compute; however,

we used many iterations to assess the overall performance of Option 6, the random form

assignment.

For multiple imputation, we simulated complete data from the multivariate normal dis-

tribution. Values were then set to missing so observed data matched what would have been

obtained under each study design option and we performed multiple imputation. We then es-

timated the mean, variance-covariance, and linear change in mean over time. We performed

a log transformation on the sample variance for each variance component and a Fisher z-

transformation for the correlations to make the estimates approximately follow an normal

distribution in order to apply Rubin’s rules. We used a linear mixed model of the variable

regressed on time for estimating the change in mean and stored the parameter estimates and

standard errors for the slope and intercept.

Due to the transformations needed to normalize the distributions for the variance-covariance

components and the use of repeated measures regression for multiple imputation, the esti-

mated variances for MLE and MI are not directly comparable; however, the relative perfor-

mance, rankings, and conclusions are largely the same when using either MLE or MI. We

mostly focus on simulation results using multiple imputation, as MI will more likely be used

in practice. The simulation results for MI can be found in 3.4.2 and the results for MLE can

be found in section 3.4.3.

3.4.2 Simulation Results fo Multiple Imputation

Table 3.4 displays the average percent increase in variance for the mean and variance-

covariance components from using the proposed split questionnaire design versus complete
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data for correlation structures 1, 2, and 3 and the random correlation. Since relative rank-

ings for the mean and variance-covariance were very similar, we combined them into one

category in the table. Similarly, table 3.5 displays the variance increase for repeated mea-

sure regression using the same correlation structures. All of the design options performed

very similarly for structure 1, where only variables within the same wave are correlated. The

longitudinal selection of split question forms did not matter very much due to the lack of

correlation across waves, though, Option 5 and Option 6 did perform slightly better at esti-

mating variable correlations due to the additional form rotations, even if most correlations

were zero.

Results from structure 2, where only the autocorrelations are non-zero, show that Option

2 and Option 3 performed best in terms of estimating variable means and variance-covariance

components while Option 1 performed the worst, but the opposite occurred for estimating

the change in mean over time. In this scenario, a variable is predictive of its values measured

at different time points for the same subject. Since Option 2 and Option 3 rotate split

questionnaire forms for all individuals, we measure each variable on a subject during the

study, which enables us to better estimate missing values for that variable and leads to a

better estimate for the mean and variance. On the other hand, Option 1 measures the same

variables on an individual for every wave, which provides a larger sample of individuals with

a variable measured at all time points than the other options, allowing a better estimate for

how a variable changes over time.

For the unusual correlation structure 3, where a variable is only correlated with other

variables measured at different waves, Option 6, the random form assignment, performed the

best overall by far. Option 5 was the second best under this correlation while Option 1 and

Option 2 performed terribly, especially Option 2. This indicates that extra form rotations

and more complex designs are beneficial when between-wave correlations are large. Finally,

for the random variable correlation, Option 5 and Option 6 again performed the best and

Option 1 and Option 2 did the worst. Based on this, it appears that the more complex designs

perform better across all possible variable correlations; however, all correlation structures

are not equally likely for longitudinal studies.

After testing each design option at the boundary conditions, we examined the capability

of each design across the more realistic correlation structures 4, 5, and 6. Table 3.6 displays

the average percent increase in variance over complete data for those three structures, broken

down by mean, variance, covariance, and repeated measures change in mean. We averaged

results across all three correlations, since the relative performance of the designs were similar
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Table 3.4: Average percent increase in variance from complete data for mean and variance-
covariance components using MI.

Structure 1 Structure 2 Structure 3 Random Structure

Option 1 50.95 82.62 57.41 70.59
Option 2 50.68 51.72 188.49 72.34
Option 3 48.13 47.75 32.18 62.84
Option 4 48.68 59.19 18.57 61.84
Option 5 46.30 53.87 17.77 57.53
Option 6 47.47 52.73 6.52 59.87

Table 3.5: Average percent increase in variance from complete data for repeated measures
regression change in mean over time using MI.

Structure 1 Structure 2 Structure 3 Random Structure

Option 1 52.44 74.92 83.02 45.23
Option 2 51.24 100.15 149.79 45.21
Option 3 52.81 99.15 32.53 36.48
Option 4 51.81 85.07 25.92 36.97
Option 5 52.85 88.72 21.63 33.95
Option 6 53.18 92.86 7.25 33.70

for each correlation. Option 3 performed the best in terms of estimating the mean, variance,

and covariance, while Option 5 and Option 6 were close behind. For these structures, within-

wave and autocorrelation were greater than between-wave correlation, which is likely why

Option 3 outperformed Option 5 and Option 6 in estimating the sufficient statistics. Option

3 likely outperformed Option 2 because the extra rotations allowed us to better estimate

the between-wave correlations. Option 1 was by far the worst at estimating the mean and

variance-covariance, but was the best at estimating the change in mean over time. Option

4 and 5 were fairly close to Option 1 for repeated measures, probably because both of those

options measure the same variables at each wave on a subset of study participants. Those

two options are also quite a bit better at estimating the sufficient statistics than Option 1.

3.4.3 Simulation Results for MLE

Tables 3.7 and 3.8, analogous to tables 3.4 and 3.5 from multiple imputation analysis, display

the average percent increase in variance for the mean, variance-covariance components, and

linear change over using complete data for correlation structures 1, 2, and 3 and the random

correlation using MLE to compute variance. Once again, design options performed very

similarly for structure 1, but Option 5 and Option 6 performed slightly better in estimation
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Table 3.6: Average percent increase in variance from complete data for means, variance-
covariance components, and repeated measures regression parameters averaged over correla-
tion structures 4, 5, and 6 using MI.

Mean Variance Covariance Repeated Measures

Option 1 20.03 50.83 11.02 38.07
Option 2 13.23 39.70 2.63 59.34
Option 3 10.75 33.05 1.87 48.60
Option 4 13.53 37.35 3.18 38.62
Option 5 11.74 33.51 2.27 39.22
Option 6 11.18 33.30 2.05 45.89

for variance-covariance components.

For structure 2, Option 3 again had the most precision for estimating the variable

means and variance-covariance components; however, both Option 5 and Option 6 per-

formed slightly better than Option 2 for MLE estimation due to a small improvement in

estimating the covariance components, unlike in the MI case. Option 1 again performed

worst in estimating the mean and variance-covariance. Under structure 2, the performance

order for the change in mean over time was identical to the results from MI, with Option 1

performing the best and Option 2 and Option 3 doing the worst.

For correlation structure 3, Option 6 again does best with all estimates, while Option 4

performed the second best instead of Option 5, which was third best overall. The rankings

of Option 4 and Option 5 are switched from MI. In addition, Option 1 performed slightly

better than Option 3 using MLE, but Option 3 was superior for MI. Option 2 was again the

worst under this correlation structure. Finally, the relative performance under the random

correlations was consistent with what we saw for multiple imputation, with the more complex

designs performing better.

Table 3.7: Average percent increase in variance from complete data for mean and variance-
covariance components using MLE.

Structure 1 Structure 2 Structure 3 Random Structure

Option 1 80.79 120.59 38.50 65.13
Option 2 80.79 80.79 53.93 65.45
Option 3 72.87 72.87 46.76 39.89
Option 4 72.87 85.36 15.07 39.89
Option 5 70.48 77.62 25.33 34.79
Option 6 71.87 76.34 4.17 34.17

Table 3.9, analogous to table 3.6, displays the average percent increase in variance over
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Table 3.8: Average percent increase in variance from complete data for change in mean over
time using MLE.

Structure 1 Structure 2 Structure 3 Random Structure

Option 1 35.00 50.00 25.00 23.79
Option 2 35.00 80.00 33.33 27.58
Option 3 35.00 80.00 25.00 22.15
Option 4 35.00 63.64 12.50 20.69
Option 5 35.00 68.75 15.39 19.66
Option 6 35.49 73.65 4.66 19.66

complete data for correlation structures 4, 5, and 6 using MLE. Option 3 again performed

best in terms of estimating the mean, variance, and covariance, with Options 6 close behind,

followed by Option 5, with Option 1 doing the worst. For the change in means over time,

the rankings for each option is identical to the multiple imputation case, with Option 1

performing the best, followed by Option 4 and Option 5.

Table 3.9: Average percent increase in variance from complete data for means, variance-
covariance components, and change in means over time averaged across correlation structures
4, 5, and 6 using MLE.

Mean Variance Covariance Repeated Measures

Option 1 27.66 38.88 67.99 20.01
Option 2 15.10 26.70 35.94 39.63
Option 3 12.12 21.71 22.11 31.59
Option 4 17.20 26.79 33.05 25.58
Option 5 14.63 23.63 26.73 26.98
Option 6 12.89 21.86 22.79 31.00

3.4.4 Conclusions from Simulation Results

From the analysis, we see that the optimal design for a longitudinal study with planned

missingness depends on the structure of the data and the estimates of interest. If the variables

have high autocorrelations, we prefer Option 2 or Option 3 where participants change forms

every year for estimating the mean and variance-covariance parameters, but Option 1 would

be better for estimating the change in mean over time. If the data follow a more unusual

structure, it would be better to use Option 5 or Option 6 which are more complex, but the

added form rotation better allows them to estimate covariance parameters and makes them

more robust to the correlation structure. For more realistic correlations, Option 3 appears

to perform best for estimating the mean and variance-covariance and Option 1 is best at
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estimating the change in mean. Option 4 and Option 5 can measure the mean and variance-

covariance, as well as the change in mean, fairly well. While our simulations are useful for

evaluating how each option performs, our data structures are more simplistic than what we

would observe in practice. Next, we examine which planned missing design option works

best using data from a longitudinal survey.

3.5 Analysis of HRS Data

The Health and Retirement Study (HRS), beginning in 1992, is an ongoing longitudinal

study of U.S. adults age 50 and older (Juster & Suzman, 1995). HRS collects information

pertaining to the health, income, and job status of participants. New samples of individuals

enter the study after turning 50, while some older participants exit due to death or loss to

follow up. For our purposes, we selected seven components from the survey data collected

in the 2004, 2006, 2008, and 2010 waves of the study. The first component (X) contains

basic demographic information (age, gender, race, height, and education) and health behav-

ior information (smoking status and drinking history). The next five components contain

questions related to health: diabetes (D), hypertension and blood pressure (B), heart dis-

ease and stroke (H), cancer (C), and weight (W). The final component contains information

regarding income and wealth (I). We consider all participants with no missing values in each

of the seven modules for all four study waves as our complete data (ideal), a total of 3059

subjects. The survey questions from the X module were taken from baseline only. We then

set values to missing, mimicking the data pattern that would have been observed had we

used a planned missing data design. Table 3.10 displays the five structured design options

we used, corresponding to a similar design option from the simulations. In addition to the

designs listed in the table, we included a random form assignment at each wave, Option 6.

We performed multiple imputation on the missing values using IVEWare (Raghunathan et

al., 2002). To assess the validity of the imputations, we examined the marginal distribution of

the imputed values compared to the observed values and checked for any major discrepancies

between the two. Since data are MCAR by design, we would not expect the marginal

distribution of imputed values to differ from the observed values. Furthermore, we performed

diagnostics on the regression models through goodness of fit testing and diagnostic plots to

examine the validity of our imputation models. For linear regression models, we plotted the

residuals versus the fitted values, shown in figure 3.1. If the imputation model was correctly

specified, we would expect to see a random scatter centered around the X-axis, with no
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discernible difference between observed and imputed values, like in figure 3.1.

Figure 3.1: Imputation diagnostic plot of residual versus fitted values.

3.5.1 Univariate Analysis of HRS Variables

After performing multiple imputation, we analyzed the mean, median, and quartiles of the

continuous variables under the different options. We estimated πj, the probability that vari-

able j is equal to one, for categorical variables. For each population parameter, we took the

difference between the estimates under the planned missing designs and the estimates from

the complete data. The differences for the mean and quantile estimates were standardized

by dividing by the complete data standard deviation of the variables, while the difference

in πj was standardized by dividing by πj(1− πj) under complete data. Figure 3.2 plots the

distribution of the differences under the six options. Option 3 produced the best estimate

for univariate parameters with the bias distributed tightly around zero, followed closely by

Option 6 and Option 2, while Option 1 performed the worst. Most of the bias in Option

1 came from poor estimation of the quartiles for continuous variables. Figure 3.3 displays

the ratio of the standard error of the mean estimates for each option to the standard error

from the complete data. Once again, Option 3 performed best, generally producing smaller

standard errors. Most of the other designs performed fairly similarly, but Option 1 and
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Option 4 performed considerably worse than the others.

Figure 3.2: Distribution of standardized bias for univariate estimates (a single outlier was
removed for Option 1).

Figure 3.3: Ratio of standard errors for the estimated variable means under each design to
complete data standard errors.

3.5.2 Regression Analysis from Previous Publications on HRS

We also evaluated the performance of each option using three different regression analyses

based on three previous publications with HRS data: a paper by Bowen (2010), a paper by

Best et al. (2005), and a paper by Avendano & Glymour (2008).
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The paper by Bowen (2010) studied associations with coronary heart disease (CHD). For

our model, CHD was the outcome variable, and, using logistic regression, we examined how

hypertension, diabetes, obesity, income, wealth, age, years of schooling, and being born in

the United States affect CHD. The variable CHD was an indicator for whether a subject

was ever told by a doctor that they had coronary heart disease. We specified a subject

level random intercept to account for repeated measures. Table 3.11 shows the parameter

estimates and standard errors obtained from the complete data (CD) and six design options.

Hypertension and Diabetes are indicator variables for whether the subject was ever diagnosed

with either condition by a doctor. Obese and US Born are dummy variables indicating if the

subject had a BMI greater than 30 or was born in the United States, respectively. Income

measures the amount in U.S. dollars that the participant and his/her spouse earned for the

year, while Wealth measures their total net worth in dollars. Both Income and Wealth were

transformed by taking the cube root divided by 1,000 to diminish the influence of outliers

in the regression model and make coefficients easier to distinguish between designs. Age

and School Yrs are the subject’s age during the 2004 wave and years of school. Option

1 performed the worst out of all options, producing the worst estimates for the effects of

hypertension, diabetes, age, years of schooling, and being born in the US on the effects

of CHD. Option 4 was the second worst in terms of parameter estimation, while Option 3

produced the closest parameter estimates and performed the best overall, though Option 2

and Option 6 also performed fairly well.

Our next model, similar to the Best et al. (2005) paper, used a mixed logistic regression

model with a random intercept to examine the effect that age, race, gender, weight, income,

wealth, and years of schooling have on diabetes. The results of this regression model are

shown in table 3.12. Black and Female are indicators for whether the subject is of African

ancestry and female, respectively. An Age and Age2 term were included in the model. We

again used the cube root of Income and Wealth divided by 1,000. Weight represented the

subject’s weight in units of ten pounds. In this regression model, Option 1 again performed

the worst, followed by Option 5. Options 2 and 3 achieved the best overall parameter

estimates for this model, producing similar estimates for Age, Age2, Black, Female, and

Wealth. Option 6 also performed fairly well.

Our final model was based on the paper by Avendano & Glymour (2008), which used

survival analysis to study the association of income, wealth, and education on the incidence

of stroke, stratified by age. Since our data cover a smaller time frame and there were very

few new stroke cases from 2004 to 2010, we instead used a mixed logistic regression model
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to measure the association between stroke and age, income, wealth, and years of schooling.

Table 3.13 shows the results, we should note that the prevalence of stroke was around 3% and

analysis is based on a small number of cases. Once again, we took the cube root of Income and

Wealth divided by 1,000. In this instance, Option 1 was the worst at estimating the intercept

and the effect of age, but did comparatively well at estimating income and wealth effects.

Option 5 performed the best, producing the best estimates for Age, Income, Wealth, but

was one the worst for estimating School Years. Option 2 and Option 4 performed similarly

in this instance. Option 6 performed the worst for this regression model. Surprisingly, both

Income and Wealth were only moderately correlated with themselves across waves, having

a correlation between 0.3 and 0.6 in most cases, in contrast to hypertension, diabetes, and

heart disease, which had correlations greater than 0.8 across waves. This may explain why

Option 3 did not perform the best overall in this instance and why all six options were fairly

similar in terms of performance.

After recreating the analysis from the three previously published papers, we combined the

parameter estimates and standard errors across the different models to determine how the

options performed overall. Figure 3.4 shows how each option performed in terms of parameter

estimation bias across the three regression models, by taking the difference in parameter

estimates under the design option and the complete data and dividing by the complete

data standard error. Option 3 performed the best at estimating regression coefficients while

Option 1 performed the worst, though it was only slightly worse than Option 4. Option

2 was second best, followed by Option 5. In Figure 3.5, we display the ratio of the MI

standard errors under each option to the complete data standard errors. Ratios greater than

2 were removed from the plot, removing a single point from options 1, 2, 3, 4, and 6, while

two points were removed from Option 5. From the figure, we see that Option 3 produced

the smallest standard errors, followed by Option 2 and Option 6. The other three options

performed fairly similar to each other.

3.5.3 Conclusions from HRS Data

Overall, Option 3 performed the best with the HRS data, followed by Option 2, while Option

1 performed the worst in terms of mean and regression analysis. The strong performance

of Option 2 and Option 3 in this instance is not surprising since the autocorrelation was

quite large for most variables, and we saw from simulations that Option 2 and Option 3

performed better in terms of mean and variance estimation when the autocorrelation is much

greater than the other correlations. Had the within-wave and between-wave correlations been
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Figure 3.4: Distribution of regression parameter estimation bias.

Figure 3.5: Distribution of the ratio of regression parameter standard errors under each
design to complete data standard errors.

stronger, Option 5 and Option 6 would likely have performed better.

3.6 Discussion

The use of a split questionnaire in a survey can reduce the burden and fatigue on participants,

leading to an increase in the quality of the data and a reduction in unplanned missing values.

This could also reduce the drop out rate in longitudinal studies. There is a good deal of

literature on implementing planned missing designs in cross-sectional studies, commonly
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using a 3-form design, but, until recently, there has been little research on implementing

planned missing data designs in longitudinal studies. One exception was Jorgensen et al.

(2014), which considered multiple longitudinal assignment methods for 3-form survey designs

in a latent variable setting.

In this chapter, we examined six different design options for allocating forms in a longi-

tudinal study. We saw from our simulation study that the performance of each design option

depended on the correlation structure of the data and which estimates were of interest. We

later tested these designs on survey data from the HRS. From the simulations and HRS data,

it seems that if investigators are primarily concerned with estimating the mean or regression

parameters for a variable regressed on a subset of study variables, then Option 3 will likely

perform the best due to high autocorrelations. Option 2 performed similarly to Option 3

when autocorrelations were very strong, but was usually slightly worse. Option 2 did a lot

worse when autocorrelations were weak. One reason to use Option 2 over Option 3 is its

simplicity to implement. If interest lied in the change in a variable over time, Option 1 would

be preferable in most instances. Option 4 generally performed fairly similar to Option 1 in

terms of estimating change in mean over time, but performed better in estimating the mean

and variance-covariance.

Prior information regarding the data structure would help in determining the optimal

design option for a study and can help in the imputation. We used seven modules from the

HRS study, and our choice for dividing the questions was based on simplicity and not based

on any method for determining an optimal design. Several papers have considered dividing

the survey questions into forms based on correlation structures or other methods to improve

estimation, but require prior information on the variables (Raghunathan & Grizzle, 1995;

Adigüzel & Wedel, 2008). Using these methods to create the form design could affect which

option performs best. We should also beware that our results when using planned missing

designs will be biased if we do not specify a correct imputation model, which by no means

is a trivial matter.
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Table 3.10: Longitudinal design options for the Health and Retirement Study.

Wave 1 Wave 2 Wave 3 Wave 4

DBH DBH DBH DBH
Option 1 DWC DWC DWC DWC

IWH IWH IWH IWH
IBC IBC IBC IBC

DBH IWH DWC IBC
Option 2 DWC DBH IBC IWH

IWH IBC DBH DWC
IBC DWC IWH DBH

DBH IWH DWC IBC
DWC IBC IWH

DWC DBH IBC IWH
IBC IWH DBH

Option 3 IWH IBC DBH DWC
DBH DWC IBC

IBC DWC IWH DBH
IWH DBH DWC

DBH DBH DBH DBH
IWH DWC IBC

DWC DWC DWC DWC
DBH IBC IWH

Option 4 IWH IWH IWH IWH
IBC DBH DWC

IBC IBC IBC IBC
DWC IWH DBH

DBH DBH DBH DBH
IWH DWC IBC
DWC IBC IWH
IBC IWH DWC

DWC DWC DWC DWC
DBH IBC IWH
IBC IWH DBH
IWH DBH IBC

Option 5 IWH IWH IWH IWH
IBC DBH DWC
DBH DWC IBC
DWC IBC DBH

IBC IBC IBC IBC
DWC IWH DBH
IWH DBH DWC
DBH DWC IWH
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Table 3.11: Parameter estimates and standard errors for regression 1: coronary heart disease.

Parameter CD Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6

Intercept -5.142 -2.616 -3.981 -4.373 -3.565 -4.078 -4.003
Hypertension 0.474 0.124 0.486 0.462 0.272 0.291 0.376
Diabetes 0.513 0.187 0.371 0.449 0.223 0.394 0.438
Obesity 0.052 -0.006 -0.004 0.009 -0.008 - 0.014 0.055

Estimate Income* 0.772 -1.091 -6.281 -2.184 -1.509 -2.396 1.476
Wealth* -0.933 -0.671 0.307 -0.317 -1.164 -0.975 0.210
Age 0.058 0.028 0.043 0.047 0.039 0.046 0.044
School Yrs -0.002 0.011 0.003 0.004 -0.003 0.001 -0.016
US Born -0.100 -0.033 -0.081 -0.087 -0.083 -0.095 -0.087
Intercept 0.392 0.396 0.360 0.369 0.439 0.366 0.356
Hypertension 0.085 0.075 0.082 0.084 0.076 0.087 0.070
Diabetes 0.106 0.117 0.081 0.092 0.096 0.100 0.097

Standard Obesity 0.054 0.051 0.036 0.040 0.044 0.047 0.058
Error Income* 1.773 2.264 2.018 1.968 2.066 1.947 2.082

Wealth* 0.648 0.641 0.682 0.655 0.678 0.802 0.568
Age 0.005 0.005 0.004 0.005 0.005 0.005 0.004
School Yrs 0.014 0.015 0.014 0.013 0.014 0.014 0.014
US Born 0.042 0.044 0.039 0.040 0.044 0.043 0.041

* indicates variable transformation through diving the cube root by 100

Table 3.12: Parameter estimates and standard errors for regression 2: diabetes.

Parameter CD Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6

Intercept -21.712 -8.383 -18.662 -17.842 -14.565 -11.259 -17.918
Age 0.582 0.203 0.498 0.475 0.383 0.279 0.477
Age2 -0.004 -0.001 -0.003 -0.003 -0.003 -0.002 -0.003
Black 0.861 0.467 0.735 0.759 0.637 0.578 0.694

Estimate Female -0.179 -0.139 -0.158 -0.149 -0.119 -0.070 -0.200
Income* 1.626 -1.324 -1.730 0.519 -1.389 -1.554 -1.490
Wealth* -0.197 -0.385 -0.268 -0.230 -1.038 -0.485 -0.616
Weight 0.012 0.001 0.005 0.004 0.005 0.006 0.000
School Yrs -0.071 -0.042 -0.060 -0.073 -0.067 -0.051 -0.048
Intercept 2.842 2.892 2.778 2.753 3.298 2.727 2.605
Age 0.085 0.087 0.083 0.084 0.099 0.086 0.078
Age2 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0006

Standard Black 0.135 0.144 0.131 0.132 0.132 0.143 0.133
Error Female 0.106 0.117 0.102 0.103 0.100 0.122 0.102

Income* 1.006 1.880 2.010 1.409 1.646 2.724 1.866
Wealth* 0.189 0.452 0.609 0.586 0.516 0.537 0.492
Weight 0.004 0.004 0.003 0.004 0.003 0.005 0.005
School Yrs 0.017 0.018 0.017 0.017 0.018 0.018 0.017

* indicates variable transformation through diving the cube root by 100
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Table 3.13: Parameter estimates and standard errors for regression 3: stroke

Parameter CD Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6

Intercept -6.222 -5.581 -6.521 -6.392 -6.774 -6.693 -6.195
Age 0.059 0.043 0.057 0.056 0.060 0.058 0.052

Estimate Income* -14.54 -10.47 -8.23 -4.84 -9.07 -12.36 -5.31
Wealth* -4.902 -6.397 -2.185 -4.657 -2.528 -4.914 -0.680
School Yrs -0.044 -0.058 -0.048 -0.057 -0.044 -0.027 -0.070
Intercept 0.775 0.948 0.911 0.899 0.962 0.953 0.899
Age 0.009 0.011 0.010 0.010 0.011 0.011 0.011

Standard Income* 7.425 10.680 5.564 5.816 5.898 10.110 7.196
Error Wealth* 2.266 2.751 1.866 1.741 2.537 2.429 1.488

School Yrs 0.032 0.033 0.033 0.031 0.032 0.033 0.034
* indicates variable transformation through diving the cube root by 100
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Chapter 4

Optimal Variable Allocation for Split Question Designs

4.1 Introduction

Split questionnaire designs, where participants only respond to a subset of total questions,

are used to reduce survey questionnaire length and lower the burden and fatigue placed on

participants without reducing the total number of variables measured in a survey (Raghu-

nathan & Grizzle, 1995). The reduction in burden and fatigue should improve the quality

of responses given in surveys. There is a good deal of literature regarding the use and per-

formance of split questionnaire designs (Raghunathan & Grizzle, 1995; Graham et al., 2006;

Littvay, 2009; Rhemtulla & Little, 2012; Peytchev & Peytcheva, 2017), and details on how

to create and reasons to use a split questionnaire have been discussed in chapters 1 and 3 of

this paper.

In the previous chapter, we examined the performance of several design options for ad-

ministering a split questionnaire in the longitudinal setting. For our analysis, we fixed the

split questionnaire variable assignments beforehand, using the same variable allocation at

each time point, and examined how to best administer the questionnaire longitudinally by

rotating the forms. We did not consider how to assign variables to splits within the cross–

sectional split questionnaire forms.

For this chapter, we revisit split questionnaire design to focus on variable allocation

within splits. To do this, we first must establish a criterion for comparing the performance

of proposed split questionnaire designs, with the goal of minimizing the impact of missing

data on our final analysis. There is less literature on how to assign variables into splits.

Raghunathan & Grizzle (1995) discussed using partial correlation coefficients for allocat-

ing variables. They proposed placing variables with high partial correlation into separate

splits. Our simulations from chapter 3 also indicated the importance of using variable corre-

lations in designing optimal splits. Generally, we would like observed variables to be highly
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predictive of missing values to minimize the impact of missing data. While this information

is useful and can be used as a guideline, it still does not establish an objective criterion for

comparing proposed split questionnaire designs.

Thomas et al. (2006) developed an algorithm for creating split questionnaires based on

improving the variance of the estimated marginal means of each variable. This is a useful

design method when the population means are of primary interest; however, for many settings

the main interest lies in estimating the relationship between variables. Adigüzel & Wedel

(2008) proposed minimizing the Kullback-Leibler (KL) divergence between the complete data

likelihood obtained when there is no missing data and the observed data likelihood obtained

using a split questionnaire design as a method for determining the optimal variable allocation.

The KL divergence provides a measure of discrepancy between two probability distributions

and a smaller divergence would indicate less loss of information from the missing data. This

method accounts for the full parameter space when determining the optimal design, not just

the variable means.

All the described methods at the very least require preliminary estimates of the joint

variable correlations, if not all parameters, in order to implement. Adigüzel & Wedel (2008)

recommended to first conduct a pilot study to obtain estimates for the likelihood parameters

and then treat those estimates as the true parameter values to determine the KL divergence

under the proposed splits. Preliminary estimates for some parameters may also be obtained

from previous publications.

There is no objective way to determine which split questionnaire design is going to per-

form best without some knowledge of the parameter values, but taking the preliminary point

estimates for the true parameter values ignores any variance associated with those estimates.

There may be more information available for some parameter estimates than for others, in

which case it is probably beneficial to design a split questionnaire that allows for better

estimation of parameters with more uncertainty. A Bayesian framework will better allow us

to incorporate prior information and uncertainty through the prior distribution, instead of

using point estimates, and can account for differing levels of uncertainty in each parameter.

An informative prior is necessary in this instance as uninformative priors provide no

help in determining the best split questionnaire. We will need to use previously collected

data to construct our prior distributions, since it makes little sense to use any method

for constructing an optimal split questionnaire design without having estimates or prior

distributions based on actual data. We would most likely use data from a single pilot study

to construct our prior, though we could incorporate several sources with data on some of
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the variables being used in our survey, including previous publications. The use of a prior

distribution can incorporate differing levels of uncertainty in our parameters, such as when

certain parameters have been measured on a larger sample size. When using a pilot study,

we would use the posterior distribution from our pilot study as our prior distribution.

We propose using a Bayesian framework to determine the optimal variable allocation in

a split questionnaire design by minimizing the KL divergence between the complete data

and the observed data posterior distributions. In section 4.2, we discuss our method for

determining the optimal split questionnaire design using the KL divergence. Section 4.3

focuses on methods for computing the KL divergence between posterior distributions and

provides specific examples. Section 4.4 describes how to use the KL divergence to select

split questionnaire designs through a search algorithm. We present simulation results from

using our method in section 4.5. In section 4.6, we revisit the HRS data and longitudinal

designs from chapter 3 using the methods presented in this chapter. Finally, in section 4.7,

we provide our conclusions and discussion.

4.2 Determining Optimal Split Questionnaire Designs

4.2.1 Kullback-Leibler Divergence

For the purpose of creating the best possible split questionnaire design, we wish to determine

the variable allocation that would result in the smallest loss of information from missing

data or make our inference from the split questionnaire as close to what it would have

been had we used the full questionnaire. In order to find the best variable allocation, we

require some a priori information on the variables being used in the survey. As a result,

we propose using a Bayesian framework for determining the optimal allocation to better

account for uncertainty in our prior knowledge. Within this framework, all inference will be

based on the posterior distribution. Our goal then is to minimize the difference or loss of

information from the posterior distribution under the split questionnaire design compared to

the posterior distribution under the full questionnaire. In order to minimize this difference,

we first need a metric that measures the discrepancy between the split questionnaire and

the full questionnaire posterior distribution for any given split questionnaire design. We can

then apply this metric to every potential split questionnaire design and use it to determine

which design achieves the smallest loss in information.

For a metric to determine the difference in the two posterior distributions, we turn to

the Kullback-Leibler (KL) divergence. The Kullback-Leibler divergence first described by
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Kullback & Leibler (1951) is a measure of discrepancy between two probability distributions.

The KL divergence from distribution Q to distribution P for two continuous distributions is

defined as:

DKL(P ||Q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx.

The KL divergence is always greater than or equal to zero, and the KL divergence equaling

zero implies that P = Q almost surely. In addition, DKL(P ||Q) < DKL(P ||R) implies that Q

is closer in distribution to P than R is to P. Although it is not a true distance metric due to

the lack of symmetry in the KL divergence from Q to P and the KL divergence from P to Q,

it is still a useful quantity for measuring the discrepancy of distributions. The KL divergence

is often used in information theory and DKL(P ||Q) can be thought of as a measurement for

how much information is lost if the distribution Q is used as an approximation for P, where

P is an ideal measure (Adigüzel & Wedel, 2008).

Returning to our problem for measuring the discrepancy between the complete data pos-

terior distribution under the full questionnaire and the observed data posterior distribution

under a split questionnaire design, we let Y denote the complete data matrix with n rows

and p columns that would have been obtained had the full questionnaire been answered.

We let A denote the assignment matrix under a split questionnaire design. A has the same

dimensions as Y and we take Aij equal to 0 if variable Yj is not assigned to individual i

and 1 if Yj is assigned to individual i. Each possible split questionnaire design has indicator

matrix A, which can be determined from the form assignments. Let Yobs denote the data

that would be observed given A. For any given Y and proposed split questionnaire design,

we can use the KL divergence between the complete data posterior distribution, π(θ|Y ),

and the observed data posterior distribution, π(θ|Yobs), to evaluate the performance of that

split questionnaire design. Note that the missing data mechanism under split questionnaire

design is ignorable and we can base our inference on the observed data posterior distribution

in the presence of missing data. This KL divergence for the posterior distributions is given

by

∫ ∞
−∞

π(θ|Y )log
π(θ|Y )

π(θ|Yobs)
dθ. (4.1)

For now we assume that this integral is solvable when both Y and Yobs are known. We
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discuss methods to approximate this integral when no analytical solution exists in section

4.3. Unfortunately, when administering a split questionnaire design, we will only observe

Yobs and not Y . After getting Yobs from a split questionnaire design, our goal is to estimate

the KL divergence between the Yobs obtained and the data we would have observed using the

complete questionnaire. To do this, we partition Y into (Yobs, Ymiss), where Ymiss denotes

the values of Y that are unobserved due to the split questionnaire design. Our goal should

be to minimize the KL divergence across plausible values of Ymiss given our prior knowledge

of the data before conducting the split questionnaire design. Since Ymiss is unobserved, we

need to incorporate uncertainty on Ymiss into our calculation for the KL divergence between

the complete data and observed data posterior distributions. To do this, we draw values of

Ymiss from the prior predictive distribution of f(Ymiss|Yobs, θ) for a given Yobs. This is done

by first drawing a value of θ from the prior π(θ) and then drawing Ymiss conditional on Yobs

and the draw of θ. Taking Y (l) = (Yobs, Y
(l)
miss), where Y

(l)
miss is a draw of Ymiss from the prior

predictive distribution, we can compute the KL divergence at each value of Y (l). This gives

us a prior predictive distribution of the KL divergence for a given Yobs. We can use this

method to obtain the prior predictive distribution of the KL divergence for any potential

split questionnaire design conditional on our observed data.

4.2.2 Criteria for Determining the Optimal Split Questionnaire

Design

We will not be able to obtain Yobs before administering the split questionnaire, but, ideally,

we want to determine which split questionnaire design will perform best before beginning

the study. As a result, simulations will be necessary to determine which design does best

at minimizing the loss of information due to missing data. We want to minimize the loss of

information based on our prior distribution in order to determine which design performs best

based on our current knowledge of the data structure. We first generate underlying data from

our prior distribution. From that data, we can determine Yobs and the distribution of the KL

divergence for every potential split questionnaire design. Due to sampling uncertainty, we

should repeat this process, generating multiple datasets and determining the prior predictive

distribution of the KL divergence under each Yobs. Figure 4.1 displays how the prior predictive

distributions of the KL divergence might look for m complete datasets and under d different

designs, where we have a unique prior predictive distribution for each generated dataset and

split questionnaire design.

Once we have the prior predictive distributions for the KL divergence of each proposed
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Figure 4.1: Illustration of prior predictive distributions of the KL divergence for m complete
datasets and d designs.

questionnaire design under multiple datasets, we need a criterion for determining which one

performed the best. There are several possible choices, the most straight forward being to

first take the mean of the simulated prior predictive distribution of the KL divergence for

each proposed design within each generated dataset. With m complete datasets and under

d different designs, we would have a matrix with d row and m columns containing the prior

predictive means. From the d×m matrix, we can take the average for each row and take the

design with the smallest average as our preferred split questionnaire design. In this instance,

we are choosing the design with the lowest average KL divergence across all simulated data

from our prior distribution.

Another possibility is, after taking the mean of the prior predictive distributions of the

KL divergence and obtaining the d×m matrix, to determine the rank for each design within

a generated complete dataset. Essentially, we are ranking each row within a single column

of the d×m matrix. We can then determine which split questionnaire design had the lowest

average ranking across the different datasets, giving us the design with best ranking across

our plausible data. This method also gives us a better idea for how often a certain design

performs better than other designs for a given dataset. There could be other additional

criteria for selecting a split questionnaire design based on the simulation output, but these

two are the only options we considered. In most instances, the rankings based on both criteria

were quite similar, so we opted to use the average KL divergence across the simulations.
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Since determining the optimal split questionnaire design requires simulating the underly-

ing data from the prior, one might consider simulating complete data using the prior distri-

bution and then directly computing the KL divergence between the observed and complete

data posterior distributions for that generated dataset and repeating the process. While it

is possible to use that method, we recommend using the proposed method as it was more

computationally efficient in the examples that we examined. In many instances, we are

likely to have a closed form for π(θ|Y ), but have to approximate π(θ|Yobs) using MCMC. In

which case, estimating π(θ|Yobs) is the most time consuming step for determining the KL

divergence. By drawing Ymiss conditional on Yobs and draws of θ from our prior distribution,

we only have to estimate π(θ|Yobs) using a MCMC once for each design and dataset and can

quickly approximate the prior predictive distribution for each Yobs. In addition, simulations

indicate that both methods will lead to very similar conclusions, but the proposed method

produces a much smaller standard error in the average KL divergence across the same num-

ber of generated datasets. This makes sense as in both instances we are generating our data

from the prior distribution and averaging across generated values. For our method, we first

generate Yobs from the prior distribution and then generate values of Ymiss conditional on

Yobs. More details on how these two methods compare can be found in section 4.5.1.

4.3 Computing the KL Divergence

For this section we focus on how to compute the KL divergence for a given value of Yobs and

Y .

4.3.1 Approximating the Integral when there is no Analytical

Solution

The KL divergence between the complete data and observed data posterior distribution is

given by equation (4.1). If π(θ|Y ) and π(θ|Yobs) are known, we can directly solve the integral

and it is fairly straight forward to calculate the KL divergence for a given value of Y . For

some cases this integral may not have an analytical solution even when π(θ|Y ) and π(θ|Yobs)
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have known distributions. In which case we can see that,∫ ∞
−∞

π(θ|Y )log
π(θ|Y )

π(θ|Yobs)
dθ

=

∫ ∞
−∞

π(θ|Y )logπ(θ|Y )− π(θ|Y )logπ(θ|Yobs)dθ

= Eπ(θ|Y ) {logπ(θ|Y )} − Eπ(θ|Y ) {logπ(θ|Yobs)} .

The KL divergence is equivalent to the difference in the expectation, under the complete data

posterior, of the natural logarithm of both posterior distributions. We can approximate the

KL divergence using

1

g

g∑
j=1

{
logπ(θ(j)|Y )− logπ(θ(j)|Yobs)

}
, (4.2)

where θ(j) are draws of θ from π(θ|Y ), yielding a simple way to approximate the KL diver-

gence when both posterior distributions have a closed form.

Example: KL Divergence for Multivariate Normal Y with Known Covariance

and Unknown Mean

We now examine estimating the KL divergence when data follow a multivariate normal

distribution with a known covariance matrix. Let Yi|µ,Σ ∼ Np(µ,Σ), where Np is a p

dimensional multivariate normal distribution. Y is a matrix containing the collection of Yi.

We will assume that Σ is a fixed constant and take our prior for µ as the conjugate prior when

we have no missing data, π(µ) = Np(µ0,Λ0). In which case, we have π(µ|Y,Σ) = Np(µn,Λn),

where Λn = (Λ−1
0 + nΣ−1)−1 and µn = Λn(Λ−1

0 µ0 + nΣ−1Y ) (Hoff, 2009).

When Σ is a known constant, the observed data posterior, π(µ|Yobs,Σ), has a closed

form solution as well. For each observation, we can take Yiobs = diYi, where di is a matrix

constructed by taking the identity matrix, Ip, and deleting all rows j corresponding to

where variable yj is missing for subject i, with 1 ≤ j ≤ p. The matrix di is used to

marginalize the multivariate normal distribution over the missing values. We then have

Yiobs|µ,Σ ∼ Npi(diµ, diΣd
T
i ), where pi is the number of observed variables for individual i.
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We have

f(Yobs|µ,Σ) ∝ exp

{
−1

2

n∑
i=1

(Yi − µ)TdTi (diΣd
T
i )−1di(Yi − µ)

}
,

π(µ) ∝ exp

{
−1

2
(µ− µ0)TΛ−1

0 (µ− µ0)

}
,

and the posterior

π(µ|Yobs,Σ) ∝

exp

{
−1

2
µT [Λ−1

0 +
n∑
i=1

dTi (diΣd
T
i )−1di]µ+ µT [Λ−1

0 µ0 +
n∑
i=1

dTi (diΣd
T
i )−1diYi]

}
.

So, we have

π(µ|Yobs,Σ) ∼ Np(µnobs ,Λnobs),

where

Λnobs =

{
Λ−1

0 +
n∑
i=1

dTi (diΣd
T
i )−1di

}−1

and

µnobs = Λnobs

{
Λ−1

0 µ0 +
n∑
i=1

dTi (diΣd
T
i )−1diYi

}
.

Therefore, given Y , we can compute both logπ(µ|Y,Σ) and logπ(µ|Yobs,Σ) and estimate the

KL divergence using (4.2) or we can directly solve (4.1), with the KL divergence being

1

2

{
tr(Λ−1

nobs
Λn) + (µnobs − µn)TΛ−1

nobs
(µnobs − µn)− p+ ln

|Λnobs |
|Λn|

}
.

4.3.2 Observed Data Posterior has no Known Distribution

Unfortunately, due to missing data, we will not be able to obtain a closed form for π(θ|Yobs)
in many instances, even if we use a conjugate prior for π(θ|Y ). For cases where π(θ|Yobs)
does not have a closed form, we can approximate the posterior distribution through Gibbs

sampling by adding a data augmentation step. Data augmentation is performed by taking

Y and partitioning it into Yobs and Ymiss and running a Gibbs sampler where, at iteration t,

we draw Y
(t)
miss from the conditional distribution p(Ymiss|Yobs, θ(t−1)) and then draw θ(t) from
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π(θ|Yobs, Y (t)
miss) (Tanner & Wong, 1987; Little & Rubin, 2002). If we are already running a

MCMC to approximate the full data posterior, π(θ|Y ), then we only need to add a extra step

to each iteration of the MCMC where we draw Ymiss conditional on Yobs and our last sampled

value of θ. This allows us to approximate the distribution of π(θ|Yobs) in most instances where

π(θ|Y ) has a known distribution or can be approximated using MCMC. Note that the draws

of Ymiss from this Gibbs sampler are not the same as the prior predictive draws of Ymiss

discussed in the previous section. In this section, when we refer to drawing Ymiss, we are

referring to Gibbs sample draws for data augmentation.

After performing MCMC to obtain samples from π(θ|Yobs), we still need a method to

compute the KL divergence. By definition we have

π(θ|Yobs) =
f(Yobs|θ)π(θ)

f(Yobs)
,

and if we substitute this value into (4.2), we get

1

g

g∑
j=1

{
logπ(θ(j)|Y )− logf(Yobs|θ(j))π(θ(j))

f(Yobs)

}
, (4.3)

where both the likelihood, f(Yobs|θ), and prior, π(θ), should have known distributions. We

only need to estimate the distribution of the marginal likelihood, f(Yobs), to obtain an

approximation for the KL divergence. Chib (1995) and Chib & Jeliazkov (2001) proposed

methods to approximate the marginal likelihood when the posterior distribution is obtained

through Gibbs sampling output and the Metropolis–Hastings algorithm, respectively. If we

used data augmentation to approximate π(θ|Yobs), it should be fairly simple to estimate

f(Yobs).

In general, the observed data marginal likelihood can be estimated from

logf̂(Yobs) = logf(Yobs|θ∗) + logπ(θ∗)− logπ̂(θ∗|Yobs), (4.4)

where the ordinate θ∗ is a value of θ that corresponds to high density point in the posterior

distribution π(θ|Yobs). It is easy to compute both f(Yobs|θ∗) and π(θ∗), as those distributions

are known. We do need to approximate π(θ∗|Yobs), which can be done from the MCMC. The

exact steps to estimate π(θ∗|Yobs) can differ. When π(θ∗|Yobs, Ymiss) has a closed distribution

68



then we can use

π̂(θ∗|Yobs) =
1

g

g∑
j=1

π(θ∗|Yobs, Y (j)
miss) (4.5)

to approximate π(θ∗|Yobs), where Y
(j)
miss are the draws of Ymiss from the data augmentation

Gibbs sampler. Here we are treating the missing data as a latent variable and we integrate

out Ymiss by averaging across the imputed values to get the marginal distribution π(θ|Yobs).

Example: KL Divergence of Multivariate Normal Y with Unknown Mean and

Covariance

We will now examine estimating the KL divergence when data are multivariate normal with

both the mean and covariance unknown. We take Yi|µ,Σ ∼ Np(µ,Σ) and use conjugate priors

for µ and Σ. Take π(µ|Σ) = Np(µ0,
1
m

Σ) and π(Σ) = W−1(ν0,Φ0), where W−1 is an inverse–

Wishart distribution, ν0 is the prior degrees of freedom, and Φ0 is a positive definite matrix.

Then, we have π(µ|Y,Σ) = Np(µn,
1

n+m
Σ), where µn = nY+mµ0

n+m
and π(Σ|Y ) = W−1(νn,Φn),

with νn = ν0 + n and Φn = Φ0 + S + nm
n+m

(Y − µ0)T (Y − µ0) (Murphy, 2007). S denotes the

sum of squares for Y, S = (Y −Y )T (Y −Y ). The posterior distribution under complete data

is equal to π(µ|Y,Σ)π(Σ|Y ) and we can sample directly from the posterior by first drawing

Σ|Y and then drawing µ|Y,Σ.

With the presence of missing data and both µ and Σ unknown, we will not be able to

find an analytical solution to π(µ,Σ|Yobs) and will instead need to approximate the posterior

through Gibbs sampling using data augmentation. Let us partition each Yi into Yobsi and

Ymissi and for each subject partition µ into[
µ1

µ2

]
and Σ into

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2,

]
, where µ1 corresponds to the missing variables, µ2 cor-

responds to the observed variables on subject i, and the partitions of Σ correspond to the

variance–covariance components of the partitioned µ.

Now, for a given draw of µ(j) and Σ(j) from a Gibbs sampler, the distribution of Ymissi |Yobsi , µ(j)Σ(j) ∼
Npmissi

(µmissi ,Σmissi), where pmissi is the number of missing variables on subject i.

µmissi = µ
(j)
1 + Σ

(j)
1,2Σ

(j)−1
2,2 (Yobsi − µ

(j)
2 )

and Σmissi = Σ
(j)
1,1 − Σ

(j)
1,2Σ

(j)−1
2,2 Σ

(j)
2,1.

Using this conditional distribution for every subject, we draw Ymiss|Yobs, µ(j)Σ(j) in the Gibbs
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sampler. The distribution of µ and Σ given Ymissi and Yobsi is the same as the posterior

distribution with no missing data.

After running the Gibbs sampler to obtain draws from π(µ,Σ|Yobs), we can approximate

the marginal likelihood, f(Yobs), using the method described by Chib (1995). We first take a

fixed value for µ∗ and Σ∗ that corresponds to a high density point in the posterior distribution

(we used the posterior means). We take

π̂(µ∗,Σ∗|Yobs) =
1

g

g∑
j=1

π(µ∗|Yobs, Y (j)
miss,Σ

∗)π(Σ∗|Yobs, Y (j)
miss)

to approximate the observed data posterior density, where Y
(j)
miss are draws of Ymiss from the

Gibbs sampler. We then estimate the marginal likelihood using

logf̂(Yobs) = logf(Yobs|µ∗,Σ∗) + logπ(µ∗|Σ∗) + logπ(Σ∗)− logπ̂(µ∗,Σ∗|Yobs),

and we can use equation (4.3) to approximate the KL divergence for any split questionnaire

given Y .

Example: KL Divergence when Y is a Collection of Binary or Categorical Vari-

ables using the Saturated Model

We now move onto to estimating the KL divergence when the complete data are a collection

of p binary and/or categorical variables, y1...yp. In this instance, there are a finite number

of combinations of y1...yp that we can observe. In the case where the variables are all binary,

there are 2p unique covariate profiles. We can classify and group individuals by which of the

unique covariate profiles they belong to and model the joint likelihood of the binary variables

using the multinomial distribution,

f(Y |θ) =
n!∏m
j=1 nj!

m∏
j=1

θ
nj
j ,

where n is the total sample size, m is the total number of unique covariate profiles, nj is the

number of individuals that belong to group j, and θj represents the probability of belonging

to group or cell count j. Alternatively, we can treat each cell count as an independent
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Poisson distribution and take

f(Y |µ) = exp(−
m∑
j=1

µj)

∏m
j=1 µ

nj
j∏m

j=1 nj!
,

where µj represents the expected count in cell j. It has been demonstrated that inference

is identical for both likelihood formulations when using conjugate priors for θ and µ in the

saturated model (Forster, 2010). In this example, we illustrate computing the KL divergence

using the saturated model with the multinomial likelihood and a conjugate prior for θ.

If we take π(θ) ∼ Dir(γ), a Dirichlet distribution with hyperparameter γ = (γ1, ..γm),

then we have π(θ|Y ) ∼ Dir(γn), where γn = (γ1 + n1, ..γm + nm). Thus, computing the

posterior distribution is very straight forward when we have no missing data.

For Yobs, we first note that we can group observations based on their missing data pattern,

and there should only be a handful of unique missing data patterns resulting from the

split questionnaire design. For each missing data pattern, we only have a finite number of

covariate profiles which we can use to group observations. Thus, we can model the likelihood

in each unique missing data pattern using a multinomial distribution with the probability

obtained by marginalizing over the missing values. The observed data likelihood is obtained

by multiplying the likelihoods from each missing data pattern.

For a simple example demonstrating how to construct the likelihoods, suppose we have

two binary variables y1 and y2 and a total sample size of n. With no missing data, there are

four unique covariate profiles from the observed values (y1, y2) to classify subjects, groups

(0,0), (1,0), (0,1), and (1,1). We will let n00, n10, n01, and n11 denote the total number of

subjects and θ00, θ10, θ01, and θ11 denote the probabilities corresponding to groups (0,0),

(1,0), (0,1), and (1,1). The data likelihood is given by the multinomial distribution

f(Y |θ) =
n!

n00!n10!n01!n11!
θn00

00 θ
n10
10 θ

n01
01 θ

n11
11 .

Suppose all n subjects are missing the variable y2. Instead of groups (0,0), (1,0), (0,1), and

(1,1), we now only observe a total of two groups: a group of size n0∗, where y1 = 0, and a

group of size n1∗, where y1 = 1. We have sample sizes n0∗ = n00 + n01 and n1∗ = n10 + n11.

The probability y1 = 0 (θ0∗ = θ00 + θ01) and the probability y1 = 1 (θ1∗ = θ10 + θ11) are

obtained by marginalizing over y2. The observed likelihood in this case is given by a binomial

distribution
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f(Yobs|θ) =
n!

n0∗!n1∗
θn0∗

0∗ θ
n1∗
1∗ .

After obtaining the observed data likelihood, we need to approximate the observed data

posterior distribution using Gibbs sampling. As we are using conjugate priors, sampling

from the posterior conditional on the imputed data is straight forward, π(θ|Yobs, Y (g)
miss) ∼

Dir(γ
(g)
n ), where γ

(g)
n = (γ1 + n

(g)
1 , ..γm + n

(g)
m ) and n

(g)
j is the sample size for cell j given the

imputed data at iteration g. So, we just need to impute Ymiss|Yobs, θ to complete the Gibbs

sampler.

To obtain the observed data likelihood, we had to determine the multinomial probabilities

within each missing data pattern by marginalizing over the missing values. These probabili-

ties are obtained by summing the probabilities from the cells in the full data likelihood that

are collapsed to create the observed data cells. We can reverse these steps to find the prob-

abilities for mapping the collapsed cells back to the full data cells. If we have draw θ(g) from

the posterior, then, for each missing data pattern, we can impute the observed data into the

full data cells by sampling from multinomial distributions. The multinomial distributions

have a sample size equal to the sample size in the observed data cell and probability given

by the cell probabilities needed to map the collapsed cell back to the full data.

We return to our earlier example where we have variables y1 and y2 but only y1 is observed.

Say we draw θ(g) from the Gibbs sampler. Now, we want to map n0∗ and n1∗ back to n00, n10,

n01, and n11, but we do not observe those sample sizes. We know that n0∗ has to belong to

either n00 or n01. Given θ(g), we know that the probability of a single individual with y1 = 0

belonging to (0,0) is given by θ
(g)
00 /θ

(g)
0∗ . Thus, we have n00|n0∗, θ

(g) ∼ Bin(n0∗, θ
(g)
00 /θ

(g)
0∗ ), and

we can impute n00 by sampling from a binomial distribution of size n0∗ and impute n01 as

n0∗ − n00. Similarly, we can impute n10 and n11 from n1∗.

Thus, we can impute our full data cells from our observed data using the cell probabilities

obtained from θ(g) for any missing data pattern. We then sum the imputed cell counts across

all missing data patterns to obtain imputed data for the joint distribution and sample θ

conditional on the imputed data. From this Gibbs sampler, we approximate the marginal

likelihood, f(Yobs), using equations (4.5) and (4.4). We then use (4.3) to estimate the KL

divergence.
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4.3.3 Complete Data Posterior has no Known Distribution

Extra work is required to obtain the estimate π̂(θ∗|Yobs) when π(θ|Y ) does not have a

known distribution. Based on the methods discussed in Chib (1995), we can develop an

approach for approximating the distribution of π(θ∗|Yobs) when samples from the distribu-

tion π(θ|Yobs, Ymiss) are obtained using Gibbs sampling. Let us first consider the case where

we can partition θ into (θ1, θ2) and the conditional distributions π(θ1|θ2, Yobs, Ymiss) and

π(θ2|θ1, Yobs, Ymiss) have closed forms. We then have

π(θ∗|Yobs) = π(θ∗2|Yobs, θ∗1)π(θ∗1|Yobs)

and we can estimate π(θ∗1|Yobs) with

π̂(θ∗1|Yobs) =
1

g

g∑
j=1

π(θ∗1|θ
(j)
2 , Yobs, Y

(j)
miss),

where θ
(j)
2 and Y

(j)
miss are draws of θ2 and Ymiss from the Gibbs sampler used to approximate

the distribution of π(θ|Yobs, Ymiss). This marginalizes over θ2 and Ymiss to estimate π(θ1|Yobs).
To estimate π(θ∗2|Yobs, θ∗1), we first fix θ1 at the ordinate θ∗1 and run a new Gibbs sampler using

the conditional distributions π(θ2|θ∗1, Yobs, Ymiss) and p(Ymiss|Yobs, θ∗1, θ2). We then estimate

π(θ∗2|Yobs, θ∗1) using

π̂(θ∗2|Yobs, θ∗1) =
1

m

m∑
k=1

π(θ∗2|θ∗1, Yobs, Y
(k)
miss),

where Y
(k)
miss are draws of Ymiss from the new Gibbs sampler. We can then take

π̂(θ∗|Yobs) = π̂(θ∗2|Yobs, θ∗1)π̂(θ∗1|Yobs)

to estimate π(θ∗|Yobs) and plug that value into (4.4) to obtain an estimate for f(Yobs). In

general, if there are B full conditional distributions that we use in our Gibbs sampler and θ

can be broken into B blocks with θ = (θ1, θ2, ..., θB), then we have

π(θ∗|Yobs) = π(θ∗B|Yobs, θ∗B−1, ...θ
∗
1)...π(θ∗2|Yobs, θ∗1)π(θ∗1|Yobs).

Once again, we can obtain an estimate for each density evaluated at our posterior ordinate

through B Gibbs sampling chains. For each chain, we fix the values of the θ blocks that
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we condition on at the posterior ordinate. We then average the density over the Gibbs

sampler draws for all parameters that are not explicitly conditioned on to estimate that

density. After estimating the B densities in our decomposition of π(θ∗|Yobs), we multiply the

estimated densities. Using this method we can approximate the marginal likelihood, f(Yobs),

in any instance where π(θ|Yobs, Ymiss) is estimated through Gibbs sampling.

We must rely on another method in instances where we cannot use Gibbs sampling to

approximate π(θ|Yobs, Ymiss). Chib & Jeliazkov (2001) provided a method for approximat-

ing the marginal likelihood when the posterior distribution is estimated using Metropolis–

Hastings. We can adapt this method in order to estimate f(Yobs) when the distribution of

π(θ|Yobs, Ymiss) is simulated using the Metropolis–Hastings algorithm.

The Metropolis–Hastings algorithm is used to sample from a distribution when the exact

distribution is unknown, but a function proportional to that distribution is known (Hastings,

1970). Here, for a fixed value of Ymiss, we have π(θ|Yobs, Ymiss) ∝ f(Yobs, Ymiss|θ)π(θ). We

will assume the sampling of π(θ|Yobs, Ymiss) is done in a single block. The algorithm works

by starting at some initial value θ0. From θ0, we sample a value, θ′, from density q(θ′|θ0).

The function q(θ′|θ0) represents the proposal density or jumping distribution for proposing

a movie to θ′ given we are at θ0. We then accept a move to θ′ with probability

α(θ′|θ0, Yobs, Ymiss) = min

{
1,
f(Yobs, Ymiss|θ′)π(θ′)

f(Yobs, Ymiss|θ0)π(θ0)

q(θ0|θ′)
q(θ′|θ0)

}
,

where α(θ′|θ0, Yobs, Ymiss) denotes the probability of moving from θ0 to θ′. If we do not accept

the proposed moved then we remain at θ0.

We repeat this over many iterations to generate samples from π(θ|Yobs, Ymiss) when Ymiss

is known, but, with Ymiss unknown, we instead simulate π(θ|Yobs) using data augmenta-

tion. We use a Gibbs sampler and generate an instance of Ymiss from p(Ymiss|θ, Yobs) and

then use a single step from the Metropolis–Hastings algorithm to sample a value of θ from

π(θ|Yobs, Ymiss). We repeat this process to simulate the distribution of π(θ|Yobs).
We still need to estimate f(Yobs) after generating the samples. Using the methods de-

scribed in Chib & Jeliazkov (2001), for a fixed value of Ymiss we can estimate

π̂(θ∗|Yobs, Ymiss) =
1
z

∑z
g=1 α(θ∗|θ(g), Yobs, Ymiss)q(θ

∗|θ(g))
1
w

∑w
h=1 α(θ(h)|θ∗, Yobs, Ymiss)

, (4.6)

where θ(g) are draws from π(θ|Yobs, Ymiss) using the Metropolis–Hastings algorithm for a

fixed value of Ymiss, and θ(h) are draws from q(θ′|θ∗), where θ∗ is fixed at a high density
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point. We can then estimate π(θ∗|Yobs, Ymiss) for each value of Ymiss generated from the data

augmentation Gibbs sample and take the average of those values using (4.5) to obtain an

estimate for π(θ∗|Yobs), which we can use to approximate f(Yobs).

A computationally more efficient method when using data augmentation is to instead

fix θ at θ∗ and take new samples of Ymiss from p(Ymiss|Yobs, θ∗). Then we sample the same

number of θ from the proposal distribution q(θ′|θ∗). From that, we can take

π̂(θ∗|Yobs) =
1
z

∑z
g=1 α(θ∗|θ(g), Yobs, Y

(g)
miss)q(θ

∗|θ(g))

1
w

∑w
h=1 α(θ(h)|θ∗, Yobs, Y (h)

miss)
, (4.7)

where both θ(g) and Y
(g)
miss are draws from the data augmentation Gibbs sample with a nested

Metropolis–Hastings algorithm, θ(h) are the draws from q(θ′|θ∗), and Y
(h)
miss are draws from

p(Ymiss|Yobs, θ∗). From this, we can approximate f(Yobs).

In these instances, since π(θ|Y ) does not have a known distribution, we also have to

approximate π(θ|Y ) through MCMC. In which case we would use

π(θ|Y ) =
f(Y |θ)π(θ)

f(Y )

and substitute into equation (4.3) to obtain

1

g

g∑
j=1

{
log

f(Y |θ(j))π(θ(j))

f(Y )
− logf(Yobs|θ(j))π(θ(j))

f(Yobs)

}
. (4.8)

Since f(Y |θ) has a know distribution, we only need to estimate the marginal likelihood,

f(Y ). This can be done using the same methods described for approximating f(Yobs). We

would then use our MCMC draws as samples from our full data posterior distribution and

use equation (4.8) to approximate the KL divergence. This gives us a fairly straightforward

method to approximate the KL divergence for a given split questionnaire design when Y is

known, provided π(θ|Y ) can be approximated using MCMC.

Example: KL Divergence when Y is a Collection of Binary or Categorical Vari-

ables using a Generalized Linear Model

Previously, we demonstrated how to compute the KL divergence when our data were a

collection of binary and categorical variables. We opted to use the saturated model to avoid

imposing any assumptions on the joint distribution of the data; however, the number of

75



parameters will increase exponentially as we add more y variables. It then becomes more

difficult to use the saturated model and to place an informative prior on our parameters

based on a pilot study or previous publications, as many cells will be empty. Placing certain

restrictions on the cell probabilities to reduce the number of parameters is preferable in these

instances. A natural way of restricting the cell probabilities would be to use the Poisson

likelihood and take µj = xTj β, where xj is the covariate profile for individuals in group j. The

covariate profile is the collection of values for relevant variables, y1...yp, their interactions,

and the constant 1, corresponding to the intercept parameter. We can substantially reduce

the number of parameters by eliminating higher order interactions of the y variables. This

approach is the same as using Poisson regression or a log–linear model.

We can place a multivariate normal prior on β and compute the complete data posterior

distribution using the Metropolis–Hastings (MH) algorithm. We can then modify equation

(4.6) to estimate π̂(β∗|Y ) and approximate f(Y ) by modifying equation (4.4).

We can simulate the observed data posterior distribution by adding a Gibbs sampling

step to our Metropolis–Hastings to impute Y
(g+1)
miss |Yobs, β(g) at each iteration and then draw

β(g+1)|Yobs, Y (g+1)
miss from the MH. After selecting β∗, we can approximate π(β∗|Yobs) using

equation (4.7) and obtain our estimate of f(Yobs). We would then use equation (4.8) to

estimate the KL divergence.

4.4 Search Algorithm

Our method gives us a criterion to measure the performance of specific split questionnaire

designs. Even so, there are often many potential designs to consider, making it no easy task

to identify the best possible. With an equal number of blocks per split, a total of b blocks

of variables, s splits, q blocks per split, and when each questionnaire form is administered

in approximately equal numbers, there are(
b
q

)(
b−q
q

)
...
(

2q
q

)(
q
q

)
s!

unique split questionnaire designs. We consider there to be only one unique design in a split

questionnaire with 3 blocks and 3 splits, even though we have several permutations we could

assign blocks 1, 2, and 3 to splits A, B, and C. This is because there is no effective difference

in the assignment (A,B,C) versus (C,B,A) when each form is administered in equal numbers.
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If the forms are not given in equal numbers, we would have(
b

q

)(
b− q
q

)
...

(
2q

q

)(
q

q

)
possible designs. For our purposes, we will assume that the forms will be administered in

approximately equal numbers.

If the number of splits is not a divisor of the total number of variable blocks, we have

b = qs + r, where r an integer in the interval [1, s). If we only consider designs where we

allocate blocks so that each split has as close to the same number of blocks as the other splits

as possible, then r splits will have q+ 1 blocks and s− r splits will have q blocks. There will

be (
s
r

)(
b

q+1

)(
b−q−1
q+1

)
...
(
b−(r−1)(q+1)

q+1

)(
b−r(q+1)

q

)
...
(

2q
q

)(
q
q

)
s!

unique designs to consider.

So, with 3 splits and 9 variable blocks, there are a total of 280 allocations, and the

number of possible allocations increases to 2,858,856 with only 18 blocks and 3 splits. As

the number of blocks increases, it becomes computationally difficult, if not impossible, to

enumerate all possible allocations. As a result, a search algorithm is necessary for finding a

very good variable allocation, if not the optimal allocation, in many instances.

Adigüzel & Wedel (2008) used a Modified Federov Algorithm to search for good designs.

For our purposes, we consider using simulated annealing, a probabilistic search algorithm

that works similarly to Metropolis-Hastings. Any jump that improves the criterion we are

trying to optimize is accepted and a move to a less optimal allocation is accepted with a

probability related to how much worse it performs and how long the algorithm has been

running (Kirkpatrick et al., 1983). This method differs from Metropolis-Hastings as it is

used for optimization, not for the approximation of a distribution, and the probability of

accepting a worse allocation should decrease as a function of how long the algorithm has

been running. Potentially accepting worse designs allows this algorithm to escape from local

maxima. It was proven that this algorithm will converge to the global optimum if run for

long enough (Granville et al., 1994).

The ease of implementing simulated annealing makes it an appealing search algorithm

to use in our case. All we really need to specify is a method for moving to neighboring

designs given our current design and the probability of accepting a worse design. In our

case, we start from a random split questionnaire design and jump to a neighboring design by
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exchanging two variable blocks with each other. We accept a move from our current design,

d, to neighbor, d∗, with probability

exp

(
KLd −KLd∗

t

)
when the average of the prior predictive distribution means for the KL divergence of d∗ is

larger than for d and a probability of 1 when it is less. Here KLd represents the average of

the prior predictive distribution means for the KL divergence of d, and the temperature, t,

decreases as a function of the number of iterations the algorithm has run. As the algorithm

runs longer and t decreases, the probability of accepting a worse design will decrease. When

applying this algorithm, t is usually decreased by multiplying it by a constant between 0 and

1 after each iteration. We are essentially choosing two designs to compare and computing

the prior predictive distribution of the KL divergence across multiple simulated datasets and

determining which design to choose based on the average of the expected value for each KL

divergence distribution across datasets and then repeating the same process over and over

again. Each time, we are essentially selecting two rows from figure 4.1 and using them to

choose which design to pick based on the overall average. We could instead look at how

many datasets that one design performed better than the other. We evaluate our search

algorithm in the simulation section.

4.5 Simulation Results

The simulations are broken into three parts corresponding to three examples for calculating

the KL divergence from section 4.3. We use the instance of multivariate normal data with

a known covariance to compare two methods for computing the average KL divergence over

our prior distributions and for examining the effectiveness of our search algorithm. For the

KL divergence of multivariate normal data with an unknown mean and covariance and with

multinomial data, we perform simulations to determine how well the best designs, as selected

using the KL divergence criterion, perform. For the purpose of the simulations, each variable

block contains only a single variable.

4.5.1 Multivariate Normal with Known Covariance

Instances where a multivariate normal distribution has a known covariance matrix but un-

known mean are rare; however, it is one of the few instances where the complete data and
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observed data posterior distributions have closed forms. This makes it much easier compu-

tationally to estimate the average KL divergence across datasets and allows us to compare

how the proposed method for taking the average of the prior predictive distribution means

for the KL divergence across different simulated datasets (method 1) compares to generating

complete data from the prior distribution and computing the average KL divergence across

the simulated data (method 2).

We examined a case where we have 9 variables and 3 splits, for a total of 280 possible

split questionnaire designs. We computed the average KL divergence for each of the 280

designs using both methods. Figure 4.2 displays a scatter plot comparing the average KL

divergence from these methods. The plot suggests an extremely strong linear relationship

between the two methods. Furthermore, the Pearson correlation is 0.99. This indicates using

either method for determining which designs performed best will lead to a similar conclusion.

In addition, method 1 produced a smaller standard error for the average KL divergence with

the same number of simulated datasets. This makes method 1 more efficient when there is

no closed form for the observed data posterior distribution but the complete data posterior

has a known distribution.

We then evaluated our search algorithm with our 9 variables and 3 splits scenario, as well

as a scenario with 15 variables and 3 splits. With 15 variables, there are 126,126 possible

designs to consider. After computing the average KL divergence for each possible design,

we apply our search algorithm to both scenarios. We should note that the search algorithm

is intended to be used when there are far too many designs to enumerate all possibilities.

In these instances, we would typically run the algorithm until it meets some convergence

criterion, but we will never know how well that chosen design performs compared to all

possible designs. We aim to demonstrate that the algorithm can perform very well by

just searching over a small fraction of all possible designs. For this reason, we specified a

maximum number of iterations to run the algorithm and return whatever the current design

is at that iteration, instead of waiting for convergence. We used a maximum of 90 and

500 iterations for our search algorithm when the number of possible designs were 280 and

126,126, respectively.

We applied the search algorithm multiple times and recorded which split questionnaire

design was selected each time and how that design compared to other possible designs, the

results of which can be found in Figure 4.3. The percentile rankings of split questionnaire

designs and the KL divergence at that ranking are on the X axis, while the cumulative

percentage is on the Y axis. The height of the curve indicates the percentage of times that
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Figure 4.2: Scatter plot of the average KL divergence computed by two different methods
for all 280 possible designs.
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the design chosen by the search algorithm was better than a certain percent of total designs.

The proposed search algorithm chose a split design with a KL divergence in the top five

percentile over 80% of the time when there were only 280 possible designs. The best design

was chosen 10% of the time, and one of the top 10 designs was selected 60% of the time. For

the case with 280 possible designs, we used the same simulation scenario displayed in figure

4.2. There is a very small difference in average KL divergence among the top 10 designs.

In our simulation with 126,126 possible variable allocations, the difference in KL diver-

gence between the best and worst design was nowhere near as pronounced as in the instance

with 280 designs. Additionally, the algorithm was run for a much smaller number of itera-

tions compared to the total amount of possible designs, so we would not expect the search

algorithm to do as well in this instance. Even so, the search algorithm does very well. The

selected design ranked in the top 1 percentile 16% of the time, in the top 10 percentile 44%

of the time, and in the top 20 percentile 64% of the time. The top design chosen by the

algorithm ranked 31 out of all 126,126 designs in KL divergence and the search algorithm

selected one of the top 500 designs 10% of the time. The algorithm likely would have worked

even better had it been allowed to run longer or run until convergence; however, even with

a small number of iterations this algorithm generally selected good designs according to our

KL divergence criterion.

Figure 4.3: Plot of the cumulative percentage of times that the design chosen by the search
algorithm was better than a certain percentage of total possible designs for instances with
280 possible designs (left) and 126,126 possible designs (right).
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4.5.2 Multivariate Normal with Unknown Covariance

We will now focus on how well our method of using KL divergence to select split questionnaire

designs performs in cases where the joint distribution of our data follows a multivariate

normal distribution with an unknown mean and covariance. We looked at three different

correlation structures when there were a total of 8 variables, 4 splits, and 105 possible split

questionnaire designs. Structure 1

1.0 0.8 0.4 0.4 0.4 0.4 0.4 0.4

0.8 1.0 0.4 0.4 0.4 0.4 0.4 0.4

0.4 0.4 1.0 0.8 0.4 0.4 0.4 0.4

0.4 0.4 0.8 1.0 0.4 0.4 0.4 0.4

0.4 0.4 0.4 0.4 1.0 0.8 0.4 0.4

0.4 0.4 0.4 0.4 0.8 1.0 0.4 0.4

0.4 0.4 0.4 0.4 0.4 0.4 1.0 0.8

0.4 0.4 0.4 0.4 0.4 0.4 0.8 1.0


,

structure 2 

1.0 0.3 0.6 0.6 0.6 0.6 0.6 0.6

0.3 1.0 0.6 0.6 0.6 0.6 0.6 0.6

0.6 0.6 1.0 0.3 0.6 0.6 0.6 0.6

0.6 0.6 0.3 1.0 0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6 1.0 0.3 0.6 0.6

0.6 0.6 0.6 0.6 0.3 1.0 0.6 0.6

0.6 0.6 0.6 0.6 0.6 0.6 1.0 0.3

0.6 0.6 0.6 0.6 0.6 0.6 0.3 1.0


,
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and structure 3

1.00 0.78 0.72 0.38 0.31 0.46 0.47 0.58

0.78 1.00 0.45 0.15 0.38 0.68 0.56 0.46

0.72 0.45 1.00 0.74 0.33 0.22 0.45 0.63

0.38 0.15 0.74 1.00 0.57 0.09 0.35 0.26

0.31 0.38 0.33 0.57 1.00 0.79 0.32 0.38

0.46 0.68 0.22 0.09 0.79 1.00 0.42 0.58

0.47 0.56 0.45 0.35 0.32 0.42 1.00 0.75

0.58 0.46 0.63 0.26 0.38 0.58 0.75 1.00


represent the underlying correlations for the population. We used the same mean in each

correlation structure. The average KL divergence of the prior predictive distribution for each

scenario was computed using the method described in section 4.2.2.

How well each design performs in the multivariate normal case is determined by the

correlation structure, since the Kullback-Leibler divergence is invariant to transformations

and we can always change the variables means by re-centering. As a result, there are only four

unique designs for correlation structures 1 and 2, since most of the covariance parameters are

identical. We ran the MCMC and stored the observed data posterior parameter means and

variances, in addition to computing the KL divergence. The average posterior variance based

on the KL divergence ranking for each correlation structure can be seen in table 4.1. The

table displays the variance for each unique allocation for structures 1 and 2, while we created

four groups based on the computed KL divergence and calculated the average variance for

each design within the groups for structure 3. We can see from the table that the designs with

a smaller KL divergence produced a smaller average variance. The differences are especially

noticeable for structure 1, where a handful of correlations are much greater than the others.

In this instance, the larger correlation can make a huge difference in imputation uncertainty.

Structure 2 is the opposite, where most correlations are fairly large and only a handful are

smaller than the others. In this instance, there is very little difference in variance from each

design. For structure 3, there is also a fairly small difference in variance between the groups

with the best KL divergence and the groups with the worst KL divergence. Most correlations

were fairly moderate, which led to only a slight difference in KL divergences and MCMC

variance for most designs.
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Table 4.1: Average observed data posterior variance for split questionnaire designs grouped
by KL divergence for multivariate normal data.
KL Divergence Rank Structure 1 Structure 2 Structure 3*

1 0.0212 0.0199 0.00552
2 0.0224 0.0200 0.00553
3 0.0240 0.0200 0.00554
4 0.0269 0.0207 0.00563

* Indicates that MCMC variance is averaged across multiple designs
grouped by KL divergence.

4.5.3 Data are a Collection of Binary Variables

Finally, we examined the performance of using the KL divergence to determine variable

allocation in a split questionnaire design when our data are a collection of binary variables.

In our simulations, we took a total of 6 variables and 3 splits, giving us 15 unique designs and

a total of 64 parameters for the saturated model. We used the method described in section

4.2.2 to compute the average KL divergence of the prior predictive distribution. Afterwards,

we placed the 15 scenarios into 5 groups based on their KL divergence and examined the

average MCMC variance within those groups. The results are displayed in table 4.2. The

designs with a lower average KL divergence produced smaller parameter variances, similar

to the multivariate normal case. In this particular instance, there was not a huge difference

in the variance between the 15 designs.

Table 4.2: Average observed data posterior variance for split questionnaire designs grouped
by KL divergence for a collection of binary variables.
KL Divergence Group Average MCMC Variance*

1 2.902
2 2.925
3 2.928
4 2.938
5 2.971

* Indicates that MCMC variance is multiplied by 106

4.6 Health and Retirement Study

We will now revisit the Health and Retirement Study (HRS) and longitudinal split question-

naire design that we explored earlier. In chapter 3, we used HRS to determine which of our

proposed longitudinal split questionnaire designs would work best on survey data based on
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estimating the variable means and regression parameters. Now, we would like to revisit the

longitudinal split questionnaire using the KL divergence to compare our proposed designs.

To do this, we used the same components as before: diabetes (D), hypertension and blood

pressure (B), heart disease and stroke (H), cancer (C), weight (W), and income and wealth

(I). However, this time, we took only a single variable from each component and ignored

the demographic variables. For simplicity, we will assume that the variables are jointly dis-

tributed as multivariate normal, in which case we only need the variable correlations for

determining the best split.

We first took the complete case data from 2004, which we treated as a pilot study, and

used it to estimate our population parameters. Using this information, we then created a

cross-sectional form with 6 variables and 3 splits based the KL divergence criterion. Table

4.3 displays the chosen cross-sectional form from our method. The correlations between the

selected variables were fairly weak, with values ranging from -0.24 to 0.29. As a result, there

was not a huge difference in the KL divergence between the possible variable allocations

for the cross-sectional forms. The correlations between variables within the same splits as

chosen by our method were especially weak, with the strongest within split correlation having

a magnitude of 0.09.

Table 4.3: Optimal cross-sectional split questionnaire variable assignments based on KL
divergence.
HRS Component Assigned Split Questionnaire Component
D B
B A
H C
C A
W C
I B

After choosing our cross-sectional form, we determined how to administer that form to

the 2006, 2008, and 2010 years of the study, using the five proposed longitudinal designs from

table 3.1 in chapter 3. We used the data from those years to generate our priors for the pop-

ulation parameters needed to compute the KL divergence. In practice, this data would not

be available beforehand; however, if the complete data from 2004 and the split questionnaire

data for 2006 were available, we could use that information to approximate the correlations

of the variables over time. Longitudinal correlations between variables across waves did not

change very much throughout the study, indicating this is a reasonable approximation.

We applied our method for determining the KL divergence, based the prior information
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for the correlation parameters, on the proposed longitudinal designs. Figure 4.4 displays the

distributions of the average KL divergence for each generated complete dataset under the

five proposed longitudinal designs. We can see from the figure that Option 2 produced the

smallest KL divergence across our prior distribution, followed by Option 3. The remaining

options all performed similarly in terms of KL divergence. In chapter 3, we found Option

3 to perform the best overall, followed closely by Option 2. These conclusions were based

on estimating the means, quantiles, and several regression model parameters. Since we have

shortened the number of variables collected and number of years, altered the questionnaire

forms, assumed a normal distribution for each variable, and are not looking at the exact

same parameter estimates, our results here are not directly comparable to those in chapter

3. Still, the higher ranking of the options where all individuals receive a different split

questionnaire form at each year (Option 2 and Option 3) compared to the other options is

consistent with what we had seen previously. Interestingly, using simulations to generate

multivariate normal data with the correlation structure from the HRS data and analyzing

that data using our posterior distributions showed the average MCMC variance to be roughly

the same for Option 2 and Option 3, with an average variance of 7×10−4 for Option 2 versus

6.97× 10−4 for Option 3. However, the Mahalanobis distance between the posterior means

of the complete data and observed data posterior distributions was smaller for Option 2

(14.3 vs 14.6). This seems to indicate that while the marginal estimates are quite similar,

Option 2 better preserves the joint distribution of the parameter space. For the most part,

the KL divergence criterion agrees with our conclusions from Chapter 3 and rotating the

split questionnaire forms for every individual is preferable.

4.7 Discussion

In this chapter, we presented a new method for ranking and selecting variable allocations

in a split questionnaire design. We suggested averaging the means of the prior predictive

distributions of the KL divergence between the complete data and observed data posterior

distributions. All previously proposed methods for allocating variables in split questionnaire

designs require some prior estimates of parameters for the joint distribution of the variables,

usually obtained from a pilot study, but often did not incorporate the uncertainty of those

estimates in the design. We felt the best way to incorporate the information and uncertainty

of our prior knowledge in our design and estimation was to perform Bayesian analysis and

use a proper prior distribution.
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Figure 4.4: Box plots of the distributions of the average prior predictive KL divergence for
multiple complete datasets under the five proposed longitudinal designs.
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We provided methods for computing the KL divergence, which can be used in almost any

type of Bayesian analysis, provided we can approximate our posterior distribution through

MCMC methods. We also presented several examples for how to calculate the KL divergences

when the joint distribution can be expressed as either a multivariate normal or multinomial

distribution. We also proposed a potential search algorithm, using simulated annealing,

for locating a good variable allocation in split questionnaire designs when there are a large

number of potential variable allocations.

The results from our simulations demonstrated that the search algorithm generally pro-

duced good results, even with a small number of iterations. We also demonstrated in our

simulations that, overall, the variable designs with better KL divergences produced smaller

MCMC variances in instances where the data were distributed as either multivariate normal

with unknown mean and variance or multinomial. Furthermore, we showed that using the

KL divergence as a criterion to determine which longitudinal split questionnaire design to

select leads to a similar conclusion as in chapter 3, with regards to the HRS data. This pro-

vides evidence that our KL divergence method could be useful in determining optimal split

questionnaire designs. One drawback to using our method is the amount of computational

time it takes to estimate the KL divergence in the Bayesian setting.

Naturally, one may wonder why should we use the KL divergence criteria when we could

instead calculate which design has the smallest average MCMC variance for each parame-

ter. We used the average MCMC variance as an easy and clear way for demonstrating the

usefulness of our method in designing split questionnaire designs, but there is more to char-

acterizing the joint distribution than just looking at the marginal variance of each parameter.

There could be instances where the average marginal MCMC variance of two designs are

similar, but the observed joint distribution of parameters is much closer to the complete data

joint distribution for one of the designs. We saw an example of this in our simulations with

the HRS data where Option 2 and Option 3 had similar marginal variances, but Option 2

better preserved the joint distribution of the parameter space. This would indicate that the

KL divergence is more complex than simply examining the marginal variances of parame-

ters. Note that the KL divergence between the complete data and observed data posterior

distributions for the multivariate normal distribution with a known covariance has a closed

form solution for a fixed value of Y. This quantity directly relates to both the Mahalanobis

distance of the observed data parameter means compared to complete data means and the

variance-covariance matrices for those posterior distributions. Our method may not always

produce the smallest marginal variance of each parameter, though it did in many instances,
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but should in theory produce the observed data posterior distribution which is closest to the

posterior distribution that would have been obtained without any missing data.

Most of the proposed methods for allocating variables in a split questionnaire design

require using a pilot study beforehand to obtain information on the population parameters

of interest. Presumably, the pilot study uses the full questionnaire, yet one of the major

reason for using a split questionnaire design was to reduce respondent fatigue and improve

data quality in surveys with long questionnaires. In these instances, it may not be the best

idea to use the full questionnaire in a pilot study. It might be a better idea to use a split

questionnaire for the pilot study, and, based on those results, alter the split questionnaire as

the study progresses. We might even want to consider an adaptive design, where the split

questionnaire forms are altered throughout the study based on which design is projected to

perform best according to our current data. We could even eliminate the split questionnaire

forms and choose a subset of questions to ask the next few individuals entering the study

based on our KL divergence criteria and frequently update which subset of questions will be

answered, yielding a completely adaptive design. These adaptive designs are worth exploring

in the future and should be easier to apply under our Bayesian framework through the use

of prior and posterior distributions.
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Chapter 5

Limitations and Future Directions

In this paper, we discussed implementing planned missing data designs as a way to either

improve efficiency or data quality. We focused on two particular planned missing data

designs: two-phase sampling and split questionnaire designs. Our overarching goal was to

determine ways of implementing these designs in order to improve their overall efficiency.

In chapter 2, we proposed several methods for selecting a subsample in two-phase sam-

pling to improve the variance of our estimate of interest. The preferred method for sample

selection depended on the quantity of interest and the distribution of our variables. For

instances where our Phase II variable was continuous, we could directly use the distribution

of our Phase I variables to select our subsample. For most other instances, we required infor-

mation regarding the conditional distribution of Y given X in order to determine the optimal

sample size allocation for our subsample. As a result, we proposed conducting the second

phase sample in batches in order to obtain information on the conditional distribution.

As mentioned earlier, this paper only examined instances where we had a single outcome

variable in Phase II and that outcome was continuous or binary. One natural extension of

this work would be to explore cases where we have multiple variables collected in Phase

II and our primary interest lies in the estimation of this collection of variables. Another

natural extension would be to explore instances where our outcome variable followed another

distribution not considered in this paper. We could also examine instances where we do not

assume a parametric distribution for our outcome variable beforehand.

Additionally, in chapter 2, we assumed that Phase I of our study had completed prior

to starting Phase II. Several of our methods required having Phase I variables available to

use in selecting our Phase II sample, which may not always be the case. There are several

instances where it is feasible that all Phase I variables would be available to investigators

before Phase II, such as when our Phase II sample is subsample of a larger study that

has already completed, when our Phase II sample is an expensive biomarker and can be

90



obtained from a blood sample which is already available for all participants from measuring

other biomarkers, or when individuals are sampled from a preexisting database. For some

studies, it may be difficult to wait until Phase I completes before beginning the subsample.

This could be due to Phase I requiring a long time to complete or because it is cheaper to

obtain Phase I and Phase II variables at the same visit.

If sub-sampling begins before the completion of Phase I, several of our proposed methods

would have to be modified. When we have a single binary X variable, we can still apply our

method for adaptive sampling, though we would have to make a few minor modifications.

This time, we would have to estimate and update the parameter values for X as well as Y

given X. For instances where Y is continuous, we would need to use another method for

selecting or Phase II sample, though we still could use the values of our Phase I variables for

selecting our sample. We would also have to modify our method when we are constructing

a Phase I categorical variable using propensity scores.

Furthermore, for each of the methods in chapter 2, sub-sampling was available on the

individual level. When using cluster sampling to select our initial sample (such as sampling

hospitals, schools, etc.), it might be difficult or expensive to select individual participants

for our Phase II sample. In these instances, we might prefer selecting specific clusters for

our subsample, where each cluster could have a different number of participants and cost

for being included in Phase II. In addition to the distribution of our Phase I and Phase II

variables and estimand of interest, determining which clusters to select would depend on

available sample size and costs.

For chapter 3, we explored several methods for assigning split questionnaire forms in a

longitudinal or panel study. We proposed a total of six designs and compared their perfor-

mances in estimating means, variances, and changes over time under several data structures.

The best design depended on the correlation structure and quantity of interest, though we

were able to establish some useful guidelines for which design to apply based on the situation.

For each design, the split questionnaire forms were unchanged at each visit, but were rotated

in a different manor throughout the study. It might be worthwhile to consider changing the

variable assignment in the split questionnaire forms throughout the study, instead of rotat-

ing the forms. Our method from chapter 4 allows us to determine variable assignments and

compare the performance of different designs. We can determine the variable allocation at

each wave based on what we have previously assigned and compare it to using the optimal

rotation of the fixed forms.

In chapter 3, we evaluated the proposed design options using simulations and HRS data.
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Although the HRS data contained both binary and normal variables, we did not examine

any joint distributions of variables other than multivariate normal for our simulations. It

would be useful to examine whether the conclusions from our simulations are affected by

different variable distributions. We might want to consider instances where we have binary,

categorical, or count variables in addition to the continuous multivariate normal distribution.

Although, in principal, we would not expect a huge difference from the multivariate normal

case, the distribution of our variables affects the imputation models and could result in

different conclusions.

Finally, in chapter 4, we developed a method for determining optimal split questionnaire

designs based on minimizing the impact of missing data on our inference. We proposed

using the KL divergence to determine which split questionnaire design performed best and a

search algorithm for locating good split questionnaire designs. This was done in a Bayesian

framework to better incorporate the initial uncertainty for our population parameters into

our design. One drawback is the amount of computation time require to compute the KL

divergence using MCMC. The long computation time is worsened by the amount of possible

split questionnaire designs needed to consider in many instances. The prior distribution can

account for differing levels of uncertainty in each parameter, such as when some parameters

were measured on more subjects than other parameters prior to the study. However, in our

examples, we only considered instances where the prior sample size is the same for each

parameter. This was done in order to use conjugate priors. It might be worth examining the

impact using more flexible prior distributions, in terms of variance structure, might have on

selecting optimal designs.

This method also requires using an informative prior, which means we need prior informa-

tion on our population parameters in order to select the optimal split questionnaire design.

This specific drawback is present in other approaches for determining variable allocations in

split questionnaire designs. Typically, a pilot study which uses the full questionnaire needs

to be conducted beforehand. In the future, we might want to determine the impact that

using a split questionnaire design for the pilot study might have.

As mentioned earlier, we should also consider an adaptive design for updating the variable

assignments to split questionnaire forms throughout the study and see how that compares to

fixing the split questionnaire forms after the pilot study. We could even make the design fully

adaptive by eliminating split questionnaire forms and simply selecting a subset of variables

to be measured on each subject entering the study. The fully adaptive design would be

difficult to implement for pen and paper questionnaires, but could prove useful for online or
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computer based surveys.

For our chapters on split questionnaire design, we did not explicitly discuss how context

effects impact survey design. The ordering of questions within a questionnaire and where a

question appears in relation to other questions could have an impact on responses (Schuman

& Presser, 1981; Sudman et al., 1996). Context effects must be considered when designing a

split questionnaire survey. We can intentionally design variable blocks to account for context

effects, but we should also consider what impact the order of blocks and splits within a split

questionnaire might have on responses.

Finally, the designs explored in this paper did not consider the effect that complex survey

designs might have on our proposed methods. Most of our proposed methods implicitly

assumed simple random sampling; however, most large-scale studies use more complex survey

designs such as stratified multistage sampling (Zhou et al., 2016). In chapter 2, we discussed

estimation in the presence of a categorical Z variable obtained in Phase I. Although we did

not explicitly relate this to complex survey designs, we could use this variable to account

for strata, clusters, and other design features in the initial sampling and can incorporate

weighting into our estimates. For the instances where we have a continuous outcome variable,

we could on apply our proposed methods for selecting a Phase II sample within each strata

and/or cluster from the original sample.

It is more difficult to directly incorporate complex survey designs into our methods for

split questionnaire designs in chapters 3 and 4. Chapter 3 focuses on methods for rotating

split questionnaire forms in longitudinal studies and provides guidelines on which method

works best for certain estimands under different correlation structures. This focuses specif-

ically on the data obtained in the study and not how it generalizes to the population of

interest. As a result, the features of complex survey designs should not have much of an

impact on the conclusions for which longitudinal design to use. For chapter 4, where we

attempt to determine the optimal split questionnaire design to use based on pilot data and

previous studies, the survey design features of the studies conducted beforehand could im-

pact our conclusions for which design to use. One possible way of dealing with survey design

features is to create a synthetic population from the prior data. Dong et al. (2014) provided

a nonparametric method to create synthetic populations that account for stratified, clus-

tered, and unequal probability sampling by using the Bayesian bootstrap. We can ignore

the complex sampling design and treat the generated synthetic population as a simple ran-

dom sample from the population of interest. We could then use the synthetic data as our

pilot data and apply our method for determining the optimal split questionnaire design.
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The two types of planned missing data designs explored in this paper can be used to

improve certain studies. In this paper, we provided methods for selecting a subsample in

two-phase studies, guidance for implementing a split questionnaire design in a longitudinal

study, and ways to assign variables to different splits within a split questionnaire design.

These methods can be used to further improve the usefulness of planned missing data designs

in practice; however, there is still a good deal more to explore within each of these topics.
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