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Abstract. This paper addresses the problem of implementing

socially efficient allocations in dynamic environments with inter-

dependent valuations and evolving private information. In the

case where the agents’ information is correlated across time, we

construct efficient and incentive compatible direct dynamic mech-

anisms. Unlike the mechanisms with history-independent trans-

fers in the existing literature, these mechanisms feature history-

dependent transfers. Moreover, they are reminiscent of the classi-

cal VCG mechanism, even though the latter is not incentive com-

patible with interdependent valuations. We further show that the

VCG aspect of the direct mechanisms suggests natural ways for

implementation in some repeated auctions.

Date: First draft: March 15, 2013. Current draft: February 23, 2018.

Acknowledgment : I am grateful to Paulo Barelli and Hari Govindan for their

guidance and encouragement. I thank the Editor, Johannes Hörner, and three refer-

ees for many constructive suggestions that improve the expositions and precision of

the paper. I also thank Guy Arie, Dirk Bergemann, Tilman Börgers, John Duggan,

Albin Erlanson, Ben Golub, Asen Kochov, Claudio Mezzetti, Konrad Mierendorff,

David Miller, Romans Pancs, Alessandro Pavan, David Rahman, Phil Reny, Karol

Szwagrzak, William Thomson, Bob Wilson, and seminar participants at Rochester,

Michigan, University of North Carolina at Chapel Hill, Washington University in

St. Louis, the 2013 Cowles Summer Conference in Economic Theory, the 2013

Osaka-Rochester Theory Conference, the 24th Stony Brook Game Theory Festival,

and the 2014 Canadian Economic Theory Conference for helpful comments. All

remaining errors are my own.

1

TE2234_source [02/23 12:25]    1/46



2 HENG LIU

1. Introduction

This paper studies efficient mechanism design in dynamic allocation

problems with interdependent valuations. A canonical real-world ex-

ample of such problems is the following: Periodically, the U.S. govern-

ment uses auctions to sell licenses for the right to drill for oil in adjacent

offshore areas. Bidders in these auctions are oil firms. Presumably,

these firms conduct geological surveys to estimate the amount of oil

in each area before bidding in each auction, so that the information

obtained by one firm is also valuable for the other firms. The efficient

allocation of licenses depends on the evolving private information of

the firms; so the government should carefully design the auctions to in-

duce truthful revelation by the firms in every period. More abstractly,

in the problems of interest, a sequence of decisions needs to be made

over time: in each period an allocation is to be made among a group

of agents, who have time-varying, payoff-relevant private information.

Efficient mechanism design is the question of how to truthfully im-

plement socially efficient allocations, i.e., how to handle the incentive

compatibility constraints implied by the evolving private information.

Following the literature, we will restrict ourselves to the case of

quasi-linear preferences and private information that follows a general

Markov decision process whose evolution depends on allocations. In

this environment, and under the assumption that valuations are pri-

vate, i.e., not interdependent, Bergemann and Välimäki [10] and Athey

and Segal [3] have successfully addressed this question, by means of

dynamic extensions of the classic VCG (Vickrey [45], Clarke [11], and

Groves [21]) and AGV (d’Aspremont and Gerard-Varet [5] and Arrow

[4]) mechanisms.1 However, with interdependence, it is well known

that the VCG mechanism and its dynamic extensions are not incentive

compatible without additional strong assumptions. The key insight of

the VCG mechanism—making each agent a residual claimant—is not

applicable when an agent’s information affects others’ utilities. In fact,

1Also see Parkes and Singh [38].
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DYNAMIC MECHANISMS 3

in generic environments with multidimensional and statistically inde-

pendent private information, Dasgupta and Maskin [14] and Jehiel and

Moldovanu [23] have shown that no efficient mechanism, VCG or not,

is Bayesian incentive compatible.2 On the other hand, with correlated

private information, the lottery mechanism of Crémer and McLean

[13] is efficient and Bayesian incentive compatible. Yet in dynamic

environments, a period-by-period extension of Crémer and McLean’s

mechanism may not be incentive compatible, because agents have more

opportunities to deviate.3

But notice that long-term interactions offer a richer family of trans-

fer schemes compared to the static case, in particular, transfers can

be made history-dependent. With such transfers, an agent’s current

report affects not only her current payoff but also the entire stream of

future transfers. Therefore, one might be able to restore incentive com-

patibility with a careful choice of intertemporal trade-offs. We show

that this is indeed the case. For the above-mentioned dynamic alloca-

tion problems, we construct efficient and incentive compatible dynamic

mechanisms, provided that information is correlated over time, as we

explain below. In addition, the mechanisms ensure that each agent be-

comes a residual claimant, as in the VCG mechanism. That is, in each

period and regardless of the history, an agent’s expected continuation

payoff equals the continuation social surplus when all agents truthfully

report their private information. In other words, not only do we provide

a solution to the dynamic incentive compatibility issue with interde-

pendence, but also the solution shares some of the main features of

the VCG mechanism.4 Furthermore, as in the private-valuation case,

the constructed dynamic mechanisms satisfy a strong incentive com-

patibility requirement—periodic ex post incentive compatibility, which

2Jehiel et al. [24] further prove that only constant allocation rules are ex post

incentive compatible in generic models with multidimensional signals.
3See the example in Section 3.1.
4From a practical viewpoint, the constructed history-dependent transfers also

point toward a new way of linking information that has been largely ignored in the

design of various economic mechanisms.
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4 HENG LIU

requires truthtelling to be a best response of an agent at every stage,

irrespective of the past messages and allocations and other agents’ cur-

rent private information.5 Constructing a periodic ex post incentive

compatible dynamic mechanism is not only of theoretical interest, it

also suggests natural ways to implement the direct mechanism with dy-

namic auctions. In Section 4, in a class of repeated allocation problems

where no static auction format is efficient, we define a dynamic format

with contingent transfers that has an efficient symmetric equilibrium

in monotone strategies.

The intertemporal correlation that is required for our results resem-

bles the correlation conditions in Crémer and McLean [13] when the

state space of the Markov decision process is finite. That is, we require

convex or linear independence conditions on the associated transition

matrices.6 In Section 5, we extend the results to the infinite-signal case.

Generalizing the convex and linear independence conditions, we con-

struct efficient dynamic mechanisms that are approximately incentive

compatible.7 Moreover, under stronger correlation conditions there are

mechanisms with contingent transfers that are periodic ex post incen-

tive compatible. Therefore, the results in the dynamic mechanisms

contrast sharply with those in the static counterparts, where one can

only achieve approximate incentive compatibility or approximate sur-

plus extraction.8

Finally, in the Online Appendix, we address the issues of budget

balance and surplus extraction. Specifically, by modifying the trans-

fers, we construct (i) an average externality mechanism that balances

5Athey and Miller [2], Bergemann and Välimäki [10], and Athey and Segal [3]

introduce the notion of ex post incentive compatibility in every period in the study

of dynamic mechanisms with private valuation. In this paper, we follow Bergemann

and Välimäki [10] and call it “periodic ex post incentive compatibility.”
6These conditions are related to, but different from those in Crémer and McLean

[13] for static mechanisms with correlated signals. Specifically, we do not impose

any restriction on the information structure within a period.
7The convex independence condition is similar to McAfee and Reny’s extension

(cf. McAfee and Reny [27]) of Crémer and McLean [13].
8See McAfee and Reny [27] and Miller et al. [36].
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DYNAMIC MECHANISMS 5

the budget,9 and (ii) a lottery-augmented mechanism à la Crémer and

McLean [13] and McAfee and Reny [27] that extracts all the surplus of

the agents in the finite case and virtually all the surplus in the infinite

case. While the main results require intertemporal correlation, in the

Online Appendix, we also study the case where each agent’s private

information evolves independently. We focus on settings with one-

dimensional private information and construct transfers that are the

dynamic counterpart of the generalized VCG mechanism (cf. Crémer

and McLean [12], Jehiel and Moldovanu [23], Bergemann and Välimäki

[9]). In the private-valuation special case, these transfers reduce to the

dynamic pivot mechanism constructed by Bergemann and Välimäki

[10]. In the general interdependence case, we identify dynamic single-

crossing conditions that ensure incentive compatibility.

1.1. Related Literature. Efficient mechanisms with interdepen-

dent valuations. In addition to the papers mentioned above, our

dynamic mechanisms are also related to the two-stage VCG mecha-

nism in Mezzetti [32, 33].10 Mezzetti provides one way to bypass the

above impossibility results, under the assumptions that agents can ob-

serve their realized utilities and that transfers can be made based on

the reported utilities. From an applied perspective, these are strong

assumptions. More importantly, in Mezzetti’s mechanism, agents are

indifferent among all messages when they report their utilities. If it

is costly to report utilities, then agents would rather walk away from

the mechanism at this stage. In comparison, we consider direct mech-

anisms that ask agents to report their private signals in each period,

in which truth-telling constitutes a perfect equilibrium. Furthermore,

for each agent and each signal profile, there are messages that yield

different expected payoffs in every period.

9The mechanism is related to the balanced team mechanism constructed in

Athey and Segal [3], which generalizes the AGV mechanism introduced by Arrow [4]

and d’Aspremont and Gerard-Varet [5] to dynamic environments with independent

private valuations.
10See Deb and Mishra [15] for a related recent study.
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6 HENG LIU

Dynamic mechanism design. Most of the recent literature on dy-

namic mechanisms assumes independent private valuations (e.g., Berge-

mann and Välimäki [10], Athey and Segal [3], Said [42], and Pavan,

Segal and Toikka [39]), with an exception of Gershkov and Moldovanu

[17]. Gershkov and Moldovanu consider a problem of sequential allo-

cations of objects to myopic agents who arrive over time.11 In their

model, the time horizon is finite, valuations are private, and signals are

one-dimensional. They show that if the distribution of signals is un-

known, then interdependence arises endogenously as a result of learn-

ing, which may prevent efficient implementation with online mecha-

nisms.12,13 Since agents are impatient in Gershkov and Moldovanu’s

model, the incentive problems are static. They identify single-crossing

conditions on the underlying uncertainty, which ensure the existence of

efficient mechanisms. Related to the history-dependent mechanisms in

this paper, they also point out that efficient mechanisms in their model

exist if all transfers can be delayed to the last period.

Two closely related papers are Hörner, Takahashi and Vieille [22]

and Noda [37]. Independent to this paper, Hörner, Takahashi and

Vieille [22] also study the role of intertemporal correlation in dynamic

Bayesian games with communication. They consider the case in which

signal spaces are finite and the evolution of signals is stationary. And

they study truthful Bayes Nash equilibria of the infinitely repeated

game with private information.14 In the case with correlated signals and

interdependent values, they extend the insight of Crémer and McLean

[13] (and also the static budget-balanced mechanism in Kosenok and

Severinov [26]) to dynamic games and identify an intertemporal full-

rank condition that is sufficient to obtain a folk theorem in truthful

11See also Gershkov and Moldovanu [18, 19] for studies of related questions.
12Segal [43] also emphasizes this feature in a static model.
13The term “online mechanism” is mostly used in the algorithmic game theory

literature to study allocation problems with arrivals and departures; it requires that

allocations and transfers of an agent are made when she is present.
14Truthful Bayes Nash equilibria, defined by Hörner, Takahashi and Vieille [22],

generalize perfect public equilibria in repeated games with imperfect public moni-

toring.
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equilibria. They show that even if in repeated games (where transfers

are not allowed), they use continuation payoffs as effective transfers,

thereby bridging the gap between dynamic games and mechanism de-

sign. By contrast, we consider a dynamic mechanism design setting

with transferable utilities and interdependent valuations, where the

evolution of private information can vary over time; our results cover

both the finite and infinite signal space cases and emphasize the VCG

feature of history-dependent transfers, which is absent from their game-

theoretic analysis. Moreover, since the solution concept adopted in this

paper—periodic ex post incentive compatibility—is stronger than their

truthful equilibria in the case with interdependent values, we identify

stronger intertemporal full-rank conditions. Finally, in the case with

independent signals, Hörner, Takahashi and Vieille [22] restrict atten-

tion to the private-valuation settings, whereas we consider the general

setting with interdependent valuations and extend the existing positive

results in the static environments to dynamic environments.

Noda [37] also studies a similar question as ours assuming signal

spaces are finite. Noda [37] generalizes the convex independence con-

dition in Crémer and McLean [13] to dynamic settings that guarantees

implementability and surplus extraction. Different from Noda’s work,

this paper considers both finite and infinite signal spaces, gives suffi-

cient conditions for the existence of periodic ex post incentive compati-

ble mechanisms, and constructs the corresponding contingent transfers.

For the case where signal spaces are finite, the intertemporal convex

independence condition in Noda [37] is weaker than the one identified

in this paper, although both conditions are generically satisfied in the

finite-horizon case. Moreover, we also generalize the spanning condi-

tions in Crémer and McLean [13] to dynamic environments, whereas

Noda [37] only studies convex independence.

2. Model

2.1. The Environment. We consider a dynamic interdependent val-

uation environment with N (N ≥ 2) agents. Time is discrete, indexed
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8 HENG LIU

by t ∈ {1, 2, . . . , T}, where T ≤ ∞.15 In each period t, each agent

i ∈ {1, 2, . . . , N} privately observes a payoff relevant signal θit ∈ Θi
t,

where Θi
t is a finite set. The extension to the infinite signal space case

is studied in the Online Appendix. The signal space in period t is

Θt =
∏N

i=1 Θ
i
t with a generic element θt = (θ1t , . . . , θ

N
t ). For each i and

t, denote the private information held by agents other than i in period

t by θ−i
t = (θ1t , . . . , θ

i−1
t , θi+1

t , . . . , θNt ) ∈
∏

j �=i Θ
j
t .

In each period t, the flow utility ui of agent i is determined by the

current signal profile θt, the current allocation at ∈ At and the current

monetary transfer pit ∈ R, where At is the finite set of social alter-

natives in period t. The flow utility of each agent is assumed to be

quasilinear in monetary transfers, and agents have a common discount

factor δ ∈ (0, 1). Given sequences of signals {θt}Tt=1, allocations {at}Tt=1

and monetary transfers {p1t , . . . , pNt }Tt=1, the total payoff of each agent

i is

T∑

t=1

δt−1
[
ui(at, θt)− pit

]
.

The agent’s private signals evolve over time following a Markov de-

cision process. Specifically, in the initial period, the signal profile θ1 is

drawn from a prior probability μ1 ∈ Δ(Θ1). In each period t > 1, the

distribution of current signal profile θt is determined by the realized

signal profile θt−1 and the allocation decision at−1 in the previous pe-

riod, represented by a transition probability μt : At−1×Θt−1 → Δ(Θt).

The utility functions ui, the prior μ1 and the transition probabilities

μt are assumed to be common knowledge.

In contrast to previous works that often assume independent prior

and transitions across agents, here we specify a general Markov decision

process for the evolution of signals, which allows correlation of private

information. While in private-valuation environments the existence of

efficient mechanisms does not depend on whether correlation is allowed

or not as shown by Athey and Segal [3], it will be clear in Section 3 how

15We study both the case of finite and infinite horizon.
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DYNAMIC MECHANISMS 9

correlation makes a difference in dynamic settings with interdependent

valuations.

2.2. Efficiency and Mechanisms. A socially efficient allocation rule

is a sequence of functions {a∗t : Θt → At}Tt=1 that solves the following

social program

max
{at}Tt=1

E

[
T∑

t=1

δt−1

N∑

i=1

ui(at, θt)

]

,

where the expectation is taken with respect to the processes {θt} and

{at}. Since the flow utility depends only on the current signal profile,

which is assumed to be Markov, the social program can be written in

the recursive form: for each t ∈ {1, 2, . . . , T}

(1) Wt(θt) = max
at∈A

N∑

i=1

ui(at, θt) + δE [Wt+1(θt+1)|at, θt] ,

where Wt(θt) is the social surplus starting from period t given the

realized signal profile θt, and WT+1 ≡ 0. By the principle of optimality,

a∗t solves the social program if and only if it is a solution to this recursive

problem.

We focus on truthful equilibria of direct public mechanisms that

implement the socially efficient allocations {a∗t}Tt=1. In Section 4, we

study indirect mechanisms that implement the direct mechanisms. In

a direct public mechanism, in each period t, each agent i is asked to

make a public report rit ∈ Θi
t of her current private signal θit. Then a

public allocation decision at and a transfer pit for each agent i are made

as functions of the current report profile rt = (rit)
N
i=1 and the period-t

public history ht. The period-t public history contains all reports and

allocations up to period t− 1, i.e.,

ht = (r1, a1, r2, a2, . . . , rt−1, at−1).
16

Let Ht denote the set of possible period-t public histories. Formally,

an efficient direct revelation mechanism Γ = {Θt, a
∗
t , pt}Tt=1 consists

16We assume that agents do not observe the realized per-period payoffs. Also

note that since the mechanism is public, an agent can also infer the transfers for

all other agents.
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10 HENG LIU

of (i) Θt as the message space in each period t; (ii) a sequence of

allocation rules a∗t : Θt → A, and (iii) a sequence of monetary transfers

pt : Ht ×Θt → R
N .

The period-t private history hi
t of each agent i contains the period-

t public history and the sequence of her realized private signals until

period t, i.e.,

hi
t = (r1, a1, θ

i
1, r2, a2, θ

i
2, . . . , rt−1, at−1, θ

i
t−1, θ

i
t).

Let H i
t denote the set of agent i’s possible period-t private histories.

With a slight abuse of notation, a strategy for agent i is a sequence of

mappings ri = {rit}Tt=1 where rit : H
i
t → Θi

t assigning a report to each

of her period-t private history. A strategy for agent i is truthful if it

always reports agent i’s private signal θit truthfully in each period t,

regardless of her private history.

Given a mechanism Γ = {Θt, a
∗
t , pt}Tt=1 and a strategy profile r =

{ri}Ni=1, agent i’s expected discounted payoff is

E

T∑

t=1

δt−1
[
ui(a∗t (rt), θt)− pit(ht, rt)

]
.17

The equilibrium concept we adopt is periodic ex post equilibrium de-

fined by Bergemann and Välimäki [10] and Athey and Segal [3]. We say

that the mechanism is periodic ex post incentive compatible, or equiv-

alently, the truthful strategy profile is a periodic ex post equilibrium

if for each agent and in each period, truth-telling is always a best re-

sponse regardless of the private history and the current signals of other

agents, given that other agents adopt truthful strategies. Formally, let

V i
t (h

i
t) be agent i’s continuation payoff given period-t private history,

given that other agents report truthfully. That is,

(2)

V i
t (h

i
t) = max

rit∈Θi
t

E
[
ui(a∗t (r

i
t, θ

−i
t ), θt)− pit(ht, r

i
t, θ

−i
t ) + δV i

t+1(h
i
t+1)

]
.18

17In the infinite-horizon (T = ∞) case, we require that all agents’ expected

discounted payoffs are well-defined under the mechanism Γ, that is, the expectation

and the infinite sum in agents’ payoffs are interchangeable.
18In the finite horizon case, we set V i

T+1 ≡ 0.
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The efficient mechanism is periodic ex post incentive compatible if for

each i, t and hi
t,

θit ∈ arg max
rit∈Θi

t

ui(a∗t (r
i
t, θ

−i
t ), θt)−pit(ht, r

i
t, θ

−i
t )+δE

[
V i
t+1(h

i
t+1)|a∗t (rit, θ−i

t ), θt
]
,

for each θt ∈ Θt. Define the period-t ex post continuation payoff to be

V i
t (h

i
t;ht, θ

−i
t ) = ui(a∗t (θ

i
t, θ

−i
t ), θt)−pit(ht, θ

i
t, θ

−i
t )+δE

[
V i
t+1(h

i
t+1)|a∗t (θit, θ−i

t ), θt
]
.

As suggested by Bergemann and Välimäki [10], ex post incentive

compatibility notions need to be qualified within each period in a dy-

namic environment, since an agent may wish to change her report in

some previous round based on the new information she has received

in later periods. Given the fact that interdependent valuations render

dominant strategy incentive compatibility impossible, periodic ex post

incentive compatibility is the best we can hope for in the current setup.

Finally, the Vickrey-Clarke-Groves (VCG) mechanism is an efficient

mechanism Γ = {Θt, a
∗
t , pt}Tt=1 under which each agent i’s continuation

payoff is equal to the continuation social surplus net off a term that

is independent of her current and future reports, i.e., for each i and t,

there is a function W−i
t (·) such that

V i
t (h

i
t;ht, θ

−i
t ) = Wt(θt)−W−i

t (θ−i
1 , . . . , θ−i

t ),

for all hi
t, ht and θ−i

t .

3. Efficient Mechanism Design

3.1. An Example. Before presenting the general results, we present a

two-period repeated auction example to explain the main ideas.19 Two

firms, A and B, compete for licenses to drill for oil on two adjacent

off-shore areas. The two licenses are sold sequentially in two auctions

(t ∈ {1, 2}) and the allocation in auction t is at ∈ {A,B} where at = i

means that firm i ∈ {A,B} obtains the license for the corresponding

area. Each firm’s payoff from obtaining a license depends on its drilling

cost and the amount oil st in that area:

uA(st) = 2st − 1, uB(st) = 3st − 6.

19The example is adapted and extended from Dasgupta and Maskin [14].
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12 HENG LIU

Suppose that there is no discounting and each firm cares about its total

profit from both auctions. Each firm i ∈ {A,B} observes a private

signal θit in auction t. Suppose that prior to the auctions each firm can

perform a test in one of the areas. In particular, firm A’s private signal

θA1 ∈ {4, 6} indicates the amount of oil in area 1: θA1 = s1; and firm B

learns privately from θB2 ∈ {4, 6} the expected amount of oil in area 2:

θB2 = s2. In addition, we assume that the joint distribution of θA1 and

θB2 , denoted by μ(θA1 , θ
B
2 ), is

⎡

⎣
μ(4, 4) μ(4, 6)

μ(6, 4) μ(6, 6)

⎤

⎦ =

⎡

⎣
3/8 1/8

1/8 3/8

⎤

⎦

so that the conditional distribution of θB2 given θA1 , denoted by μ(θB2 |θA1 ),
is ⎡

⎣
μ(4|4) μ(4|6)
μ(6|4) μ(6|6)

⎤

⎦ =

⎡

⎣
3/4 1/4

1/4 3/4

⎤

⎦ .

Finally, we assume that firm B does not learn any relevant information

in the first auction, nor does firm A in the second auction. That is, θA1

and θB1 are independently distributed, so are θA2 and θB2 .

We first notice that efficiency and incentive compatibility are incom-

patible if only the first auction were conducted. To see this, note that

efficiency in the first auction requires firm A to give up the license when

it is more profitable, i.e.,

a∗1 =

⎧
⎨

⎩

A, if θA1 = 4,

B, if θA1 = 6.

This implies that firm A needs to be compensated from reporting rA1 =

6 rather than rA1 = 4. Specifically, we have the following incentive

compatibility conditions:

2× 4− 1− pA1 (4) ≥ 0− pA1 (6)

0− pA1 (6) ≥ 2× 6− 1− pA1 (4).

Summing up the two inequalities gives 7 ≥ 11. Thus, no incentive

compatible transfer exists. On the other hand, when only the second
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license is being auctioned, firm B’s incentive constraint matters and it

is straightforward to verify that the following transfer for firm B,

pB2 =

⎧
⎨

⎩

0, if rB2 = 4,

11, if rB2 = 6,

truthfully implements the efficient allocation a∗2 in the second auction,

where a∗2 is given by

a∗2 =

⎧
⎨

⎩

A, if θB2 = 4,

B, if θB2 = 6.

Now we show that by linking the two auctions, dynamic efficiency is

implementable, despite the impossibility for static efficiency. The idea

is to use the correlation between θA1 and θB2 and construct a history-

dependent transfer for firm A in the second auction so that firm A

is willing to report its true signal in the first auction. For instance,

consider the transfer schedule pA2 (a1, r
B
2 ) given by

pA2 =

⎧
⎪⎪⎨

⎪⎪⎩

−4.5, if a1 = B, rB2 = 4,

−14.5, if a1 = B, rB2 = 6,

0, otherwise.

We claim that the dynamic mechanism Γlink ≡ {(a∗1, a∗2), (pA2 , pB2 )} is ex

post incentive compatible. Recall that truth-telling is optimal for firm

B given pB2 . Since the transfer pA2 has no effect on firm B’s incentive

constraints, under {pA2 , pB2 } firm B is still willing to report its true sig-

nal in the second auction. Now consider firm A’s incentive constraints.

Firm A, when reporting its signal, takes into account the fact that

its future transfer depends on the current allocation a1 and the oppo-

nent’s report rB2 in the next auction. As a consequence, the incentive

compatibility constraints are satisfied given the specified conditional

distribution of signals:

2× 4− 1 + 0 ≥ 0 +

(
3

4
× 4.5 +

1

4
× 14.5

)

0 +

(
1

4
× 4.5 +

3

4
× 14.5

)

≥ 2× 6− 1 + 0.
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14 HENG LIU

The intuition for this mechanism is as follows. Note that by con-

struction the left-hand-side of the above two inequalities are equal to

the social surplus given firm’s A private signal. By exploiting the in-

tertemporal correlation between θA1 and θB2 , the transfer p
A
2 makes firm

A a claimant of the social surplus in the first auction (without affecting

any firm’s incentive constraints in the second auction). Given that firm

B adheres to truthful strategies, it is optimal for firm A to be truthful

so as to maximize the social surplus and hence its own profit.

Now let us modify the example to illustrate the role of intertemporal

correlation and its difference from within-period correlation (Crémer

and McLean [13]) in dynamic mechanisms. We remove the assumption

that θA1 and θB1 are independent and suppose that before firms learn

their payoff relevant signals, firm A has access to some private signal

θA0 ∈ {0, 1} that determines the joint distribution μ(θA1 , θ
B
1 |θA0 ) of θA1

and θB1 :

⎡

⎣
μ(4, 4|0) μ(4, 6|0)
μ(6, 4|0) μ(6, 6|0)

⎤

⎦ =

⎡

⎣
1/8 3/8

3/8 1/8

⎤

⎦ ,

⎡

⎣
μ(4, 4|1) μ(4, 6|1)
μ(6, 4|1) μ(6, 6|1)

⎤

⎦ =

⎡

⎣
3/8 1/8

1/8 3/8

⎤

⎦ .

That is, θA1 and θB1 are negatively correlated if θA0 = 0, and positively

correlated if θA0 = 1. Finally, the joint distribution of θA1 and θB2 remains

the same and is assumed to be independent of θA0 .

Suppose that the auctioneer wants to exploit the correlation between

θA1 and θB1 to incentivize firm A. This amounts to constructing lottery

transfers for firm A based on firm B’s first period report rB1 . However,

for such lotteries to work, the auctioneer needs to know the joint dis-

tribution of θA1 and θB1 , which is firm A’s private information. Given

a lottery scheme in the first auction, firm A may have an incentive to

misreport its signal θA0 . To see this, suppose that the auctioneer be-

lieves that firm A’s initial report rA0 ∈ {0, 1} is truthful, and thus uses
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the following transfers pA1 (r
A
1 , r

B
1 ; r

A
0 ) for firm A:

⎡

⎣
pA1 (4, 4; 0) pA1 (4, 6; 0)

pA1 (6, 4; 0) pA1 (6, 6; 0)

⎤

⎦ =

⎡

⎣
13 5

0 0

⎤

⎦ ,

⎡

⎣
pA1 (4, 4; 1) pA1 (4, 6; 1)

pA1 (6, 4; 1) pA1 (6, 6; 1)

⎤

⎦ =

⎡

⎣
5 13

0 0

⎤

⎦ .

Given the joint distributions, it is straightforward to check that un-

der pA1 (r
A
1 , r

B
1 ; r

A
0 ), if firm B reports its signals truthfully then it is

optimal for firm A to reveal θA1 and obtain zero surplus in the first auc-

tion, had it reported its initial private signal θA0 truthfully. However,

given pA1 (r
A
1 , r

B
1 ; r

A
0 ), firm A could benefit from misreporting θA0 . For

example, when θA0 = 0, the following contingent deviations of firm A

is profitable: it first reports rA0 = 1 so that the transfer in the first

auction is pA1 (r
A
1 , r

B
1 ; 1); then after learning θA1 , it always reports the

opposite rA1 �= θA1 . When θA1 = 4, firm A reports rA1 = 6 and loses the

first auction with no surplus:

0− 1

4
× pA1 (6, 4; 1)−

3

4
× pA1 (6, 6; 1) = 0;

when θA1 = 6, firm A wins by reporting rA1 = 4 and receives a positive

surplus:

2× 6− 1− 3

4
× pA1 (4, 4; 1)−

1

4
× pA1 (4, 6; 1) = 4.

Similar contingent deviations of firm A exist when θA0 = 1.

Finally, we note that since the intertemporal correlation cannot be

manipulated by either firm, the dynamic mechanism Γlink constructed

before remains ex post incentive compatible.20

20In this example, the within-period rank condition of Crémer and McLean [13]

fails, which implies that implementing the efficient allocations with static mech-

anisms is impossible. If we also assume that firm B receives private signal in

period 0 that is correlated with firm A’s period-0 signal, then a period-by-period

Crémer-McLean mechanism would implement the efficient allocations, but it is only

Bayesian incentive compatible.
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16 HENG LIU

3.2. Main Results. In this section, we construct periodic ex post in-

centive compatible efficient dynamic mechanisms under general transi-

tion dynamics. Theorem 3.1 shows that under a generic intertemporal

correlation condition and some restrictions on utility functions and sig-

nal spaces in the last period, such a dynamic mechanism always exists.21

In particular, we show that in each period t the correlation between

θit and θ−i
t+1 can be used to construct history-dependent transfers such

that agent i’s incentive is aligned with the social incentive. Moreover,

the resulting transfers are reminiscent of both the VCG transfers and

the lottery transfers in Crémer and McLean [13]. In Theorem 3.2, we

show that a slightly stronger intertemporal correlation condition en-

sures dynamic efficiency with a sequence of “VCG-type” transfers.

We make the following assumptions on the utility functions and the

evolution of private information.

Assumption 1 (Bounded payoffs) For each agent i,

max
(at,θt)t≥1

T∑

t=1

δt−1
∣
∣ui(at, θt)

∣
∣ < ∞.

Assumption 2 (Convex independence) For each 1 ≤ t ≤ T , i ∈ N ,

at ∈ At, and θ−i
t ∈ Θ−i

t , no column of the matrix

M−i
t+1(at, θ

−i
t ) ≡

[

μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t )

]

|Θ−i
t+1|×|Θi

t|

is a convex combination of other columns, i.e., for each θit,

μ−i
t+1(·|at, θit, θ−i

t ) /∈Conv
{
μ−i
t+1(·|at, θ̃it, θ−i

t )
}

θ̃it∈Θi
t\{θit}

,

where Conv
{
μ−i
t+1(·|at, θ̃it, θ−i

t )
}

θ̃it∈Θi
t\{θit}

is the convex hull generated

by the set of vectors
{
μ−i
t+1(·|at, θ̃it, θ−i

t )
}

θ̃it∈Θi
t\{θit}

. Moreover, the tran-

sition probabilities satisfy

inf
t,i,at,θ

−i
t ,θit

dist2

(

μ−i
t+1(·|at, θit, θ−i

t ), Conv
{
μ−i
t+1(·|at, θ̃it, θ−i

t )
}

θ̃it∈Θi
t\{θit}

)

> 0.22

21For the infinite-horizon case, no such restrictions are imposed.
22dist2(μ,C) is the Euclidean distance between a point μ and a set C. Noda [37]

imposes a similar condition in the investigation of surplus extraction mechanisms

in the infinite-horizon case.
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Assumption 3 (Spanning condition) For each 1 ≤ t ≤ T , i ∈ N ,

at ∈ At, and θ−i
t ∈ Θ−i

t , the column vectors of the matrix

M−i
t+1(at, θ

−i
t ) ≡

[

μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t )

]

|Θ−i
t+1|×|Θi

t|

are linearly independent, i.e., there does not exist a collection of real

numbers {ηi(θit)}θit∈Θi
t
, not all equal to zero, such that

∑

θit∈Θi
t

ηi(θit)μ
−i
t+1(θ

−i
t+1|at, θit, θ−i

t ) = 0,

for all θ−i
t+1 ∈ Θ−i

t+1. Moreover, if T = ∞, then there exist D̄ ∈ R+ and

T̄ ∈ N+ such that for any t ≥ T̄ , any i, at and θ−i
t , the norm of the

pseudoinverse of the matrix M−i
t+1(at, θ

−i
t ) satisfies

∥
∥
∥
(
M−i

t+1(at, θ
−i
t )

)+
∥
∥
∥ ≤ D̄.23

Assumption 1 says that the payoff function of each agent is well-

defined. This assumption is vacuous in the case where allocation and

signal spaces are time-independent. Assumptions 2 and 3 require that

transition probabilities exhibit intertemporal correlation among differ-

ent agents’ signals and the intertemporal correlation does not vanish

in the infinite-horizon case.24,25 In particular, for each agent i and in

each period t, conditional on any at and θ−i
t , agent i’s current pri-

vate signal θit is correlated with other agents’ signals θ−i
t+1 in the next

period. Independent evolution of private information across agents is

ruled out by these assumptions. The assumptions of non-vanishing in-

tertemporal correlation will guarantee that agents’ discounted payoffs

23The pseudoinverse A+ of a full column-rank matrix A is defined as A+ =

(A′A)−1A′, where A′ is the transpose of A. The norm of a matrix A is defined as

‖A‖ = sup{‖Ax‖∞ : ‖x‖∞ = 1}.
24Crémer and McLean [13] consider similar conditions in the study of static

mechanism design with correlated information.
25I thank an anonymous referee for pointing out an error in the previous version

and suggesting strengthening of the assumptions for the infinite-horizon case. The

non-vanishing intertemporal correlation condition in Assumption 2 is based on the

analysis in Noda [37]. The corresponding condition in Assumption 3 is new.
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18 HENG LIU

are well-defined in the infinite-horizon case under our dynamic mech-

anisms.26 One example that the intertemporal correlation does not

vanish is when the transition probabilities are stationary, i.e., for each

t, Θt = Θt+1, At+1 = At, and μt+1(θt+1|at, θt) = μ(θt+1|at, θt).

To motivate the information correlation assumptions, suppose that

there is an underlying state of nature ωt with possible values in a set

Ω in each period t. In addition, ωt follows a hidden Markov process

which evolves over time and is not observed by any agent. In each

period t, the relationship between the state of nature ωt and agents’

private information θt is described by a joint distribution ξt over Ω×Θt.

If each agent’s private signal θit provides useful information about ωt,

i.e., the conditional ξt(ωt|θit) varies with θit, then as long as ωt is not

independently distributed, θit is correlated with θ−i
t+1 even conditional

on θ−i
t and at.

In the finite-horizon case (T < ∞), we also impose the following ex

post incentive compatibility assumption on the allocation rule a∗T .

Assumption 4 (Ex post incentive compatibility in period T )

If T < ∞, then the efficient allocation in period T , a∗T , is ex post

incentive compatible.

In our setup, the allocation problem in period T is essentially a

static one. Thus, we can adopt a set of sufficient conditions from the

existing literature (Bergemann and Välimäki [9] in particular) on static

mechanism design. The sufficient conditions for ex post incentive com-

patibility in static models are restrictive given the impossibility results

in Dasgupta and Maskin [14], Jehiel and Moldovanu [23], and Jehiel

et al. [24]. In particular, period-T signals have to be one-dimensional,

and the utility functions have to satisfy a single-crossing condition. We

also emphasize that no such assumptions are imposed on the private

signals and utility functions from period 1 to T − 1. We can think of

a situation where agents trade a new asset with each other in multiple

26The uniform lower bound ε in Assumption 2 and the uniform upper bound D̄

in Assumption 3 can be further relaxed to allow for time-dependent bounds as long

as agents’ payoffs under the constructed mechanisms are well-defined.
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periods. Initially, each agent’s private information may be multidimen-

sional since there is much uncertainty about many aspects of the asset.

As agents trade over time, they gradually learn more information about

the asset. In the last period, each agent’s signal is simply a real number

that represents her estimation of the asset value.

Now we state the main results that generalize the idea of the example

in Section 3.1. All the proofs of the results in Sections 3 are relegated

to Appendix A.

Theorem 3.1. Under Assumptions 1, 2 and 4, there exists a sequence

of transfers

pit+1 : Θ
−i
t+1 ×Θi

t × At ×Θ−i
t → R, ∀i, t < T,

such that the efficient dynamic mechanism {a∗t , pt} is periodic ex post

incentive compatible.

Here we give a heuristic argument. Recall that in the private-valuation

case, the following history-independent transfers in the VCG mecha-

nism (or team mechanism in Athey and Segal [3])

(3) pit(θt) = −
∑

j �=i

uj(a∗t (θt), θt) = −
∑

j �=i

uj(a∗t (θt), θ
j
t ),

are incentive compatible. However, with interdependent valuations,

transfers in (3) depend directly on agent i’s report, which creates incen-

tive for misreporting. To fix this problem, we consider general history-

dependent transfers pit(ht, θt). It turns out that under Assumptions 1,

2, and 4, it is enough to use transfers that depend on the history in

the previous round. Specifically, we show that if T = ∞, there exist

transfers pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t ) under which truthful strategy profile is a

periodic ex post equilibrium. These history-dependent transfers work

as follows. In each period t, the transfer pit for agent i does not depend

on her current report rit, so agent i’s incentive in period t is unaffected

by pit. Instead, her transfer in the next period pit+1 depends on rit and

at, which means that truth-telling incentive in period t is provided

through pit+1. Under the truth-telling strategy profile, in period t + 1
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agent i receives the sum of period-t flow payoffs of all other agents, so

agent i’s continuation payoff in period t is equal to the social surplus

from period t onward. Furthermore, the transfer for agent i in period

t + 1 is such that there will be no expected gain from lying in period

t. Therefore, agent i has no incentive to deviate from truth-telling in

period t.

The above argument also suggests the necessity of a boundary con-

dition for the incentive problem in the last period (when T is finite).

Since the allocation problem in period T is static and there is no avail-

able information afterward, Assumption 4 is needed.27

The next result shows that under a slightly stronger condition on the

transition probabilities, the dynamic efficient allocations are incentive

compatible with a sequence of “VCG-type” transfers for each agent in

the sense that each agent’s report in each period affects her payoff only

through the determination of allocation.

Theorem 3.2. Under Assumptions 1, 3 and 4, there exists a sequence

of transfers

p̄it+1 : Θ
−i
t+1 × At ×Θ−i

t → R, ∀i, t < T,

such that the efficient dynamic mechanism {a∗t , p̄t} is periodic ex post

incentive compatible.

The efficient mechanism in Theorem 3.2 shares another distinctive

feature of the VCG mechanism: each agent’s report affects her own

transfers only through the impact on allocations. The intuition in this

case is even simpler. The transfer p̄it for agent i does not depend on

θit nor θit−1. Instead, incentive for truth-telling in period t is again

guaranteed through p̄it+1: under p̄it+1, agent i’s continuation payoff in

period t is equal to the social surplus from period t onward.

In the above two theorems, there seems to be a gap between the

infinite and the finite horizon cases, as the positive result in the latter

27Bayesian incentive compatibility of a∗T is not enough for our result to hold,

as agents have the opportunity to manipulate the designer’s period-T belief by

misreporting in period T − 1.
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requires more conditions than that in the former. However, the next

corollary builds a connection between these cases: in the finite hori-

zon case, by replacing the efficient allocation in the last period with a

constant allocation (which is ex post incentive compatible but ineffi-

cient), efficiency can be achieved in all but the last period; moreover,

as the time horizon grows to infinity, the inefficiency in the last period

vanishes in the limit. The proof follows directly from that of Theorem

3.1.

Corollary 3.3. In the finite-horizon case (T < ∞), under Assump-

tions 1 and 2, there exists a sequence of transfers

p̄it+1 : Θ
−i
t+1 × At ×Θ−i

t → R, ∀i, t < T,

such that the (almost efficient) dynamic mechanism {(a∗t , p̄t)t<T , āT},
where for all θT , āT (θT ) ≡ ā for some ā ∈ AT , is periodic ex post

incentive compatible.

Remark If |Θi
t| ≤ |Θ−i

t+1| for each i and t, then Assumptions 2 and 3

are generically satisfied in the finite-horizon case even if in each period

signals are independently distributed conditional on all the available

information.28 Accordingly, efficient dynamic mechanisms exist in a

large class of dynamic environments provided that ex post incentive

compatibility is achievable in the last period (Assumption 4). More-

over, if the time horizon is infinite then Assumption 4 has no bite.

Therefore, instead of creating difficulties for efficient mechanisms as

one would imagine, repeated interactions, in fact, facilitate the con-

struction of incentive compatible transfers.

We also note that both Assumptions 2 and 3 rule out certain infor-

mation environments that are relevant in applications. For instance,

in the drilling example in Section 3.1, both assumptions fail if a firm’s

signal consists of a common value component (about the amount of

oil) that is correlated across auctions and a firm-specific private cost

component that is independently distributed. Nevertheless, if these

28These two assumptions are also generic in the infinite-horizon case if the tran-

sition probabilities are stationary.
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two components are additively separable in a firm’s valuation, then we

can have an efficient mechanism that merges the dynamic mechanisms

constructed above and the dynamic VCG mechanism for the private

valuations.29

Remark We have considered sufficient conditions for the existence

of history-dependent transfers that implement the efficient allocation.

There exist other weaker conditions on the transition probabilities. For

example, each agent i’s period-t signal θit could be correlated with all

future signals θ−i
s (s > t) of other agents. Formally, for each i, t and

θ−i
t , there exists s > t such that for any sequence (at, at+1, . . . , as−1) ∈
∏s−1

τ=t Aτ , there does not exist a θit and a collection of real numbers

{ξi(θ̃it)}θ̃it∈Θi
t\{θit}

such that

(1) ξi(θ̃it) ≥ 0, for all θ̃it ∈ Θi
t \ {θit}, and

(2) μ−i
s (θ−i

s |at, at+1, . . . , as−1, θt) =
∑

θ̃it �=θit
ξi(θ̃it)μ

−i
s (θ−i

s |at, at+1, . . . , as−1, θ̃
i
t, θ

−i
t ),

for all θ−i
s ∈ Θ−i

s ,

where μ−i
s (θ−i

s |at, at+1, . . . , as−1, θt) is the conditional probability distri-

bution of θ−i
s , given θt and at, at+1, . . . , as−1, i.e.,

μ−i
s (θ−i

s |at, at+1, . . . , as−1, θt)

=
∑

θ̃is

∑

θt+1,...,θs−1

μt+1(θt+1|at, θt) · · ·μs−2(θs−1|as−2, θs−2)μs(θ̃
i
s, θ

−i
s |as−1, θs−1).

If so, agent i’s truth-telling incentive in each period could be pro-

vided through all future reports of other agents. An alternative suffi-

cient condition, which shares some similarities of Mezzetti’s two-stage

VCG mechanism and guarantees the construction of our VCG-type dy-

namic mechanism with history-dependent transfers, is that each agent’s

period-t+1 signal generates an unbiased prediction of his realized util-

ity in period t, i.e., for each i and t, there exists a function bit+1 :

Θi
t+1 ×Θi

t × At → R such that

ui(at, θt) =
∑

θit+1

μi
t(θ

i
t+1|at, θt)bit+1(θ

i
t+1, θ

i
t, at).

29I thank an anonymous referee for suggesting this discussion.
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A common feature in the above sufficient conditions is that the tran-

sition probabilities involve conditioning on all agents’ private infor-

mation in period t; this is the critical condition for periodic ex post

incentive compatibility.

Remark By replacing the sequence of efficient allocations with an ar-

bitrary sequence of allocation functions, it can be shown straightfor-

wardly that in the infinite horizon case, under the intertemporal corre-

lation assumption, any dynamic allocation is periodic ex post incentive

compatible. Thus our possibility results for efficient design should be

taken under the same caveat as the Crémer-McLean mechanism: the

results are somewhat unrealistic and may suggest some limitations of

the mechanism design theory. In this regard, our results could also be

interpreted as stronger negative results in dynamic mechanism design:

enough intertemporal correlation of different agents’ information solves

agents’ incentive problems in a robust way.30 Similar to the Crémer-

McLean mechanism, our mechanisms rely on the assumptions that (1)

the transition probabilities are common knowledge; (2) there is no com-

petition on the designer’s side; and (3) agents are risk-neutral, have

unlimited liability, and cannot collude nor default at the ex post stage

in each period. Whether these assumptions are reasonable in dynamic

environments depends on the particular applications. Nonetheless, our

results point toward an important channel, namely intertemporal cor-

relation of private information, through which the designer can fully

exploit the benefits from long-term interactions among agents.

4. Indirect Implementation with Auctions: An Example

In the previous section, we have focused on direct dynamic mech-

anisms to address feasibility issues: the existence of efficient dynamic

mechanisms that are periodic ex post incentive compatible. A natural

question is whether there are indirect mechanisms, such as auctions,

30Note that periodic ex post incentive compatibility is weaker than ex post

incentive compatibility. Thus our results do not contradict the negative result

in Jehiel et al. [24].
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that implement the direct mechanisms. One difficulty of this is that

the history-dependent transfers in our direct mechanisms are complex

in general. Nevertheless, the VCG aspect of the direct mechanisms

suggests a natural way for indirect implementation: static auctions

combined with contingent transfers.

Here we present a repeated allocation problem in which no static auc-

tion format is efficient, but history-dependent transfers facilitate imple-

menting our efficient direct mechanisms with familiar auction formats.

In every period t = 1, 2, . . . ,∞, an indivisible object is to be allocated

to a bidder i ∈ {1, 2, . . . , N}. The allocation at ∈ {1, 2, . . . , N} deter-

mines which bidder gets the object in period t. We assume that bidder

i’s valuation of the object in period t is symmetric and given by

vi(θt) = θit + γ
∑

j �=i

θjt ,

where γ > 0 is a measure of interdependence in valuations. We also as-

sume that the allocation does not affect the evolution of agents’ private

information. This implies that it is efficient to allocate each object to

the agent (with an arbitrary tie-breaking rule) whose valuation of the

object is the highest. Finally, we assume that for each i, t and θt, there

exists a map η−i : Θ−i
t+1 → R such that

(4)
1

N

∑

j

θjt =
∑

θ−i
t+1

η−i(θ−i
t+1)μ

−i
t+1(θ

−i
t+1|θt).

Condition (4), which is stronger than Assumption 3, states that the

average of all bidders’ private signals today is an unbiased estima-

tion of an index that aggregates all but one bidder’s signal tomorrow.

For instance, this condition holds when there is an unobserved state

of the world ωt that is a martingale process, and agents’ signals are

identically distributed with marginal distribution μt(θ
i
t|ωt) such that

∑
θit∈Θi

t
θitμt(θ

i
t|ωt) = ωt and

∑
i θ

i
t/N = ωt. In this case, we have

η−i(θ−i
t+1) =

1

N − 1

∑

j �=i

θjt+1.
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First note that when γ ∈ (0, 1], the standard single-crossing condi-

tion on valuations is satisfied; this ensures that the symmetric equi-

librium of a repeated sealed-bid second-price auction is efficient.31 On

the other hand, when γ > 1, it is well-known that no standard auction

format is efficient.32 Applying the insight from the direct mechanisms

with history-dependent transfers, we consider the following dynamic

winner-pay auction format: (1) Bidder i submits a sealed bid bit ∈ R in

period t. (2) The object is then allocated to the bidder who submitted

the lowest bid (with an arbitrary tie-breaking rule),

at(b
1
t , . . . , b

N
t ) = min

{
i ∈ {1, . . . , N} : bit ≤ bjt , ∀ j �= i

}
.

(3) The winner in period t pays the second lowest bid in this period;

other bidders does not pay. (4) The winner also pays a contingent

transfer in period t + 1 which depends on all other bidders’ bids in

both period t and t+ 1. Formally, if bidder i wins in period t, he pays

bjt = min{bkt : k �= i} in period t and rit+1 in period t + 1, which is

given by

rit+1(b
−i
t+1, b

−i
t ) =

Nγ

δ

[

η−i

(
b−i
t+1

1 + γ(N − 1)

)

− bjt
1 + γ(N − 1)

]

.

It is straightforward to verify that a symmetric and monotone equilib-

rium in the constructed auction is: for all i and t, bit(θ
i
t) = (1 + γ(N −

1))θit. Moreover, this symmetric strategy profile remains an equilib-

rium of the dynamic auction irrespective of the bids or winners that

the auctioneer may choose to disclose to some bidders.

Remark In the above implementation result, we have assumed sym-

metry in bidder’s valuations in order to obtain a symmetric equilibrium.

The logic extends to the asymmetric valuation case, although there is

no symmetric equilibrium. For instance, in the example in Section

3.1, the single-crossing condition is violated in the first auction; conse-

quently, to have an efficient equilibrium, firm A pays an amount that

31The generalized VCG mechanism is also periodic ex post incentive compatible

when γ ∈ (0, 1].
32Similarly, there is no efficient and periodic ex post incentive compatible static

mechanism.
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is independent of its bid in the first auction (in this case it is zero since

only firm A needs to submit a non-trivial bid), and the incentive to fol-

low the equilibrium strategy is provided from the contingent bonuses

based on firm B’s bid in the second period.

5. Infinite Signal Spaces

In this section, we study the case where agents’ signal spaces are

infinite and focus on the infinite horizon setting (T = ∞). We first

identify conditions on the transition probabilities under which there

exist mechanisms that are approximately periodic ex post incentive

compatible, thereby establishing infinite-signal versions of Theorems

3.1 and 3.2 under a weaker solution concept. We then show that under

stronger conditions there are mechanisms that are periodic ex post

incentive compatible.

Suppose for each i and t, Θi
t is the unit interval [0, 1] endowed with

the Borel sigma-algebra, At = A where A is a finite set, and ui(at, ·)
is continuous in θt for each at ∈ A.33 In addition, we assume that the

transition probability μ(θt+1|at, θt) is stationary (independent of t) and

has a continuous density representation f(θt+1|at, θt). The marginal

density on Θ−i
t+1 is denoted by f−i(θ−i

t+1|at, θt).

5.1. Approximate Periodic Ex Post Incentive Compatibility.

First consider a weakening of periodic ex post equilibrium, which re-

quires that after any history, truth-telling is “almost” a best response if

all other agents report truthfully. Formally, for any ε > 0, we say that

the mechanism {a∗t , pt}t≥1 is ε-periodic ex post incentive compatible if

for each t, i, hi
t and θit,

ui(a∗t (θ
i
t, θ

−i
t ), θt)− pit(ht, θ

i
t, θ

−i
t ) + δE

[
V i(hi

t+1)|a∗t (θit, θ−i
t ), θt

]

≥ui(a∗t (r
i
t, θ

−i
t ), θt)− pit(ht, r

i
t, θ

−i
t ) + δE

[
V i(hi

t+1)|a∗t (rit, θ−i
t ), θt

]
− ε

for any rit ∈ Θi
t, where V i(hi

t+1) is the continuation payoff of agent i

if all agent report truthfully from period t + 1 onward. The condition

33The results in the section hold when each Θi
t is a compact and convex subset

of an Euclidean space.
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implies that after any history, any one-shot deviation from truth-telling

would yield an agent at most ε improvement in his continuation payoff.

Note that because of discounting, if a mechanism is ε-periodic ex post

incentive compatible, then truth-telling consists of a (contemporane-

ous) ε(1− δ)−1-perfect ex post equilibrium.

In the following two lemmas, we identify conditions on the transition

densities f−i(θ−i
t+1|at, θt) such that for every ε > 0, there exist transfer

schedules pt that are ε-periodic ex post incentive compatible.

Lemma 5.1. Fix any i, t, at and θ−i
t . If for every θit and every μi ∈

Δ(Θi
t),

(5)

f−i(·|at, θit, θ−i
t ) =

∫

Θi
t

f−i(·|at, θ̃it, θ−i
t )μi(dθ̃it) ⇒ μi

(
{θit}

)
= 1,

then for any ε > 0, there exist transfers pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t ) measurable

in θit and continuous in θ−i
t+1 and θ−i

t such that

(6)

max
θit∈Θi

t

∣
∣
∣
∣
∣
−

∑

j �=i

uj(at, θt)− δ

∫

Θ−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )f−i(θ−i

t+1|at, θt)dθ−i
t+1

∣
∣
∣
∣
∣
≤ ε,

and
∫

Θ−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )f−i(θ−i

t+1|at, θt)dθ−i
t+1

≤
∫

Θ−i
t+1

pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t )f−i(θ−i

t+1|at, θt)dθ−i
t+1,(7)

for any rit ∈ Θi
t.

Lemma 5.2. Fix any i, t, at and θ−i
t . If there does not exist a non-zero

signed measure ηi on the Borel subsets of Θi
t such that

(8)

∫

Θi
t

f−i(·|at, θ̃it, θ−i
t )ηi(dθ̃it) = 0,

then for any ε > 0, there exists continuous transfers pit+1(θ
−i
t+1; at, θ

−i
t )

such that

(9)

max
θit∈Θi

t

∣
∣
∣
∣
∣
−

∑

j �=i

uj(at, θt)− δ

∫

Θ−i
t+1

pit+1(θ
−i
t+1; at, θ

−i
t )f−i(θ−i

t+1|at, θt)dθ−i
t+1

∣
∣
∣
∣
∣
≤ ε.
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The proofs of the results in this section are relegated to Appendix

B. Condition (5) in Lemma 5.1 is a direct extension of McAfee and

Reny [27] to the dynamic case. Following the proof of Theorem 3.1, it

implies that there are ε-periodic ex post incentive compatible transfers

of the form pit+1 : Θ
−i
t+1 ×Θi

t ×At ×Θ−i
t → R. The spanning condition

in Lemma 5.2 is new. It guarantees the existence of ε-periodic ex

post incentive compatible transfers of the form pit+1 : Θ−i
t+1 × At ×

Θ−i
t → R. Similar to the mechanisms presented in Section 3, each

agent is almost a residual claimant and hence never gains by more

than ε from misreporting in any period. Finally, we note that without

further restrictions on the utility functions and transition probabilities,

solutions to either the inequality system (6) and (7) or (9) may not exist

for ε = 0.34 In other words, in general it is unlikely to achieve 0-periodic

ex post incentive compatibility with contingent transfers considered in

Lemmas 5.1 and 5.2. Intuitively, there may not be enough variation

of θ−i
t+1 with respect to θit in the density f−i(θ−i

t+1|at, θt) to account for

the variation of θit in −
∑

j �=i h
j(at, θt). However, our results show that

under either condition (5) or (8), the sets of expected values of all these

contingent transfers are dense in the set of possible utility functions,

which delivers ε-periodic ex post incentive compatibility.

5.2. Periodic Ex Post Incentive Compatibility. The lemmas in

Section 5.1 generalize the main results in Section 3. However, they are

not very satisfactory, especially in the dynamic environments. That

is, agents may well deviate from truthtelling under ε-periodic ex post

incentive compatibility, yet they evaluate their continuation payoffs

assuming others are always truthful. In this section, we strengthen the

results to (full) periodic ex post incentive compatibility under stronger

correlation conditions.

Note that the contingent transfers that deliver ε-periodic ex post

incentive compatibility in Section 5.1 depend on the reports one pe-

riod ahead, whereas in principle they could depend on reports in the

34For instance, when ε = 0, (9) reduces to a Fredholm integral equation of the

first kind, which may not have solutions.
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further future (see Remark 3.2). Therefore, we consider the following

contingent transfers

pit : Θ
i
t ×Θ−i

t × At ×
∏

τ>t

(
Θ−i

τ × Aτ

)
→ R.

Intuitively, if agent i’s current private signal θit is correlated with other

agents’ future signals {θ−i
τ }τ>t, then provided that other agents always

report truthfully, it is possible to use the entire sequence, {θ−i
τ }τ>t, to

provide incentive for agent i to report θit truthfully. To put it differ-

ently, we might fill the gap in ε-incentive compatibility with an infinite

sequence of correlated signals. We formalize this intuition in the next

two propositions. For each i, t and τ > t, let f−i
τ (θ−i

τ |at, . . . , aτ−1, θt)

denote the marginal density on Θ−i
τ given any at, . . . , aτ and θt.

Proposition 5.3. Fix any i, t and θ−i
t . If for every τ > t, (at, . . . , aτ ) ∈

At × · · · × Aτ , θ
i
t ∈ Θi

t, and μi
τ ∈ Δ(Θi

t),

(10)

f−i
τ (·|at, . . . , aτ−1, θ

i
t, θ

−i
t ) =

∫

Θi
t

f−i(·|at, . . . , aτ−1, θ̃
i
t, θ

−i
t )μi(dθ̃it) ⇒ μi

τ

(
{θit}

)
= 1,

then there exists a sequence of transfers (piτ (θ
−i
τ , θit; at, . . . , aτ−1, θ

−i
t ))τ>t

measurable in θit and continuous in θ−i
τ and θ−i

t such that

−
∑

j �=i

uj(at, θt) =
∞∑

τ=t+1

δτ−t

∫

Θ−i
τ

piτ (θ
−i
τ , θit; at, . . . , aτ−1, θ

−i
t )f−i

τ (θ−i
τ |at, . . . , aτ−1, θt)dθ

−i
τ

and
∫

Θ−i
τ

piτ (θ
−i
τ , θit; at, . . . , aτ−1, θ

−i
t )f−i

τ (θ−i
τ |at, . . . , aτ−1, θt)dθ

−i
τ

≤
∫

Θ−i
τ

piτ (θ
−i
τ , rit; at, . . . , aτ−1, θ

−i
t )f−i

τ (θ−i
τ |at, . . . , aτ−1, θt)dθ

−i
τ ,

for any rit ∈ Θi
t and τ > t.

Proposition 5.4. Fix any i, t and θ−i
t . If for every τ > t, (at, . . . , aτ ) ∈

At×· · ·×Aτ , there does not exist a non-zero signed measure ηiτ on the

Borel subsets of Θi
t such that

(11)

∫

Θi
t

f−i
τ (·|at, . . . , aτ−1, θ̃

i
t, θ

−i
t )ηiτ (dθ̃

i
t) = 0,
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then there exists a sequence of transfers (piτ (θ
−i
τ , θit; at, . . . , aτ−1, θ

−i
t ))τ>t

measurable in θit and continuous in θ−i
τ and θ−i

t such that

−
∑

j �=i

uj(at, θt) =
∞∑

τ=t+1

δτ−t

∫

Θ−i
τ

piτ (θ
−i
τ , θit; at, . . . , aτ−1, θ

−i
t )f−i

τ (θ−i
τ |at, . . . , aτ−1, θt)dθ

−i
τ .

Propositions 5.3 and 5.4 imply that there are contingent transfers

under which an agent becomes a residual claimant as in the VCG mech-

anism when her current signal is correlated with others’ signals in the

entire future. To provide an intuition of the results, first note that the

convex independence condition in Lemma 5.1 implies that the closure

of the set of functions generated by all one-period ahead contingent

transfers equals the set of all continuous functions on the unit interval.

Therefore, for any g ∈ C[0, 1] and ε > 0, there is an infinite sequence

of continuous functions, {hn}∞n=1 such that for each n, there exists a

measurable function pn(s, t) with hn(s) =
∫
T
pn(s, t)f(t|s)dt, and

sup
s∈[0,1]

∣
∣
∣
∣
∣
g(s)−

n∑

m=1

hn(s)

∣
∣
∣
∣
∣
≤ ε

2n
.

Since g is bounded, the infinite sum
∑∞

n=1 hn is well-defined and equals

g. Hence, for any fixed sequence of allocations and in any period, we

can find a sequence of contingent transfers, which are used to provide

incentives for agents to report truthfully in that period. One subtle

difference between our construction and Crémer and McLean’s mecha-

nism is that we use the assumption that for any given allocation at, the

utility functions are continuous in agents’ signals, whereas in Crémer

and McLean’s mechanism, agents get zero payoff if being truthful and

negative payoff if lying.

6. Concluding Remarks

Dynamic mechanism design features a richer family of history-dependent

transfers compared with the static counterpart. This paper has taken

a first step toward understanding the implications of such richness on

efficient implementations in general environments with interdependent

valuations. In particular, we have shown how intertemporal correlation

TE2234_source [02/23 12:25]    30/46



DYNAMIC MECHANISMS 31

of private information leads to contingent transfers that resemble dy-

namic VCG mechanisms. We also emphasize that while the theoretical

possibility results in this paper serve as a benchmark for the design of

efficient mechanisms, the practicality of contingent transfers may vary

with specific economic problems.

We conclude by noting that the model can be extended to accom-

modate the possibility of arrival and departure of potential agents. In

particular, the intertemporal correlation condition can be generalized

straightforwardly to this case. Several new issues need to be addressed.

First, with interdependent valuations, agents’ arrival and departure

would change both the information structure and utility functions,

since each active agent holds information that directly affects other

agents’ payoffs. Second, agents are required to make contingent trans-

fers in the dynamic mechanisms. Thus, transfers to an agent may

occur even if she is no longer active. This may be problematic in some

situations where monetary transfers have to be made along with the

physical allocations. Third, the arrival (or departure) times may also

be agents’ private information.35 Moreover, there may be uncertainty

in arrival (or departure) rates, which further complicates the incentive

compatibility constraints.

Appendix A. Proofs of the Results in Sections 3

Theorems 3.1 and 3.2 consider both the infinite-horizon and the

finite-horizon cases. In Section A.1, we prove Theorem 3.1 for the

infinite-horizon case, using the one-shot deviation principle; In Section

A.2, we prove Theorem 3.2 for the finite horizon case, using backward

induction. The proofs of the other two cases (the finite-horizon case

in Theorem 3.1 and the infinite-horizon case in Theorem 3.2) follow

similar lines and therefore are relegated to the Online Appendix.

A.1. Proof of Theorem 3.1. Here we prove the infinite-horizon case;

the proof for finite horizon case is in Section 5.1 of the Online Appendix.

The proof consists of three lemmas.

35See Gershkov, Moldovanu and Strack [20] and Mierendorff [34] for examples.
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Lemma A.1. Suppose that Assumptions 1 and 2 hold. For each i and

t, there exists a transfer function pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t ) such that, for

each at and θ−i
t , the following two conditions are satisfied:

(1) for each θit,

−
∑

j �=i

uj(at, θ
i
t, θ

−i
t ) = δ

∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t ),

(2) for each θit and rit,

∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t )

≤
∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t ),

where μ−i
t+1(·|at, θt) is the marginal of μt+1(·|at, θt) on Θ−i

t+1.

Proof. First note that the first part of Assumption 2 is equivalent to

the following condition: for each i, t, at, and θ−i
t , and for each πi :

Θi
t → Δ(Θi

t),

(12)
∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(θ
−i
t+1|at, θ̃it, θ−i

t ) = μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t ), ∀θit ⇒
∑

θ̃it∈Θi
t

πi(θ
i
t|θ̃it) = 1, ∀θit.

To see this, suppose Assumption 2 holds. If π : Θi
t → Δ(Θi

t) satisfies

∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(θ
−i
t+1|at, θ̃it, θ−i

t ) = μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t ),

then πi(θ
i
t|θit) = 1 and πi(θ̃

i
t|θit) = 0, for all θit and θ̃it �= θit. Therefore,

∑
θ̃it∈Θi

t
πi(θ

i
t|θ̃it) = 1. Conversely, suppose condition (9) holds but the

first part of Assumption 2 is violated. That is, there exists a θit and a

collection of non-negative numbers {ξi(θ̃it)}θ̃it �=θit
such that

μ−i
t+1(θ

−i
t+1|at, θt) =

∑

θ̃it �=θit

ξi(θ̃it)μ
−i
t+1(θ

−i
t+1|at, θ̃it, θ−i

t ),

for all θ−i
t+1 ∈ Θ−i

t+1. Let πi(θ
i
t|θit) = 1/2 and πi(θ̃

i
t|θit) = ξi(θ̃it)/2 for all

θ̃it �= θit. Moreover, for all θ̃it �= θit, let πi(θ̃
i
t|θ̃it) = 1 and πi(θ

i
t|θ̃it) = 0.

Then π : Θi
t → Δ(Θi

t) satisfies

∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(θ
−i
t+1|at, θ̃it, θ−i

t ) = μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t ),
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and
∑

θ̃it
π(θit|θ̃it) = 1/2, a contradiction.

Then we show that under Assumption 1, the above condition is

equivalent to the existence of a transfer pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t ) satisfying

the two requirements in the lemma.36

We first show that the two requirements in the lemma is equivalent

to the following relaxed condition:

Condition 1: there exists a transfer pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t ) such that

(a) for each θit,

−
∑

j �=i

uj(at, θ
i
t, θ

−i
t ) ≥ δ

∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t ),

(b) for each θit and rit;

∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t )

≤
∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t ).

To see this, suppose Condition 1 holds with pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t ). Let

k(at, θ
i
t, θ

−i
t ) = −

∑

j �=i

uj(at, θ
i
t, θ

−i
t )−δ

∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θit, θ−i

t ) ≥ 0.

Then p̂it+1(θ
−i
t+1, θ

i
t; at, θ

−i
t ), defined by

p̂it+1(θ
−i
t+1, θ

i
t; at, θ

−i
t ) ≡ pit+1(θ

−i
t+1, θ

i
t; at, θ

−i
t ) +

1

δ
k(at, θ

i
t, θ

−i
t ),

satisfies the two requirements in the lemma.

For each i, t, at, and θ−i
t , and for each ui(at, θ

i
t) satisfying Assumption

1, by the Theorem of Alternatives (See Rockafellar [41], Section 22,

Theorem 22.1), either Condition 1 holds or the following condition

(Condition 2) holds but not both:

36The technique of constructing transfers from the Theorem of Alternatives first

appears in Kandori and Matsushima [25]. The proof here follows closely the argu-

ment in Rahman [40].
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Condition 2: there exists η : Θi
t → R and λ : Θi

t × Θi
t → R+, such

that for each θit, θ
−i
t and θ−i

t+1,

(13)

η(θit)μ
−i
t+1(θ

−i
t+1|at, θit, θ−i

t ) =
∑

θ̃it∈Θi
t

[
λ(θ̃it, θ

i
t)μ

−i
t+1(θ

−i
t+1|at, θ̃it, θ−i

t )− λ(θit, θ̃
i
t)μ

−i
t+1(θ

−i
t+1|at, θit, θ−i

t )
]
,

and −η(θit)
∑

j �=i u
j(at, θ

i
t, θ

−i
t ) > 0.

Therefore, Condition 1 holds if and only if for each η : Θi
t → R and

λ : Θi
t ×Θi

t → R+ that satisfy

(14)

η(θit)μ
−i
t+1(θ

−i
t+1|at, θit, θ−i

t ) =
∑

θ̃it∈Θi
t

[
λ(θ̃it, θ

i
t)μ

−i
t+1(θ

−i
t+1|at, θ̃it, θ−i

t )− λ(θit, θ̃
i
t)μ

−i
t+1(θ

−i
t+1|at, θit, θ−i

t )
]
,

for all θit and θ−i
t+1, we must have η(θit) ≡ 0.

Now we show that condition (14) is equivalent to condition (12).

Suppose first that for each pair (η, λ) with λ ≥ 0, if for each θit,

(15)

η(θit)μ
−i
t+1(·|at, θit, θ−i

t ) =
∑

θ̃it∈Θi
t

[
λ(θ̃it, θ

i
t)μ

−i
t+1(·|at, θ̃it, θ−i

t )− λ(θit, θ̃
i
t)μ

−i
t+1(·|at, θit, θ−i

t )
]
,

then η(θit) ≡ 0. Fix any πi : Θ
i
t → Δ(Θi

t) satisfying for each θit,

(16)
∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(·|at, θ̃it, θ−i
t ) = μ−i

t+1(·|at, θit, θ−i
t ),

we want to show that πi(θ
i
t|θit) = 1 for each θit. Note that equation (16)

implies

(17) μ−i
t+1(·|at, θit, θ−i

t )−
∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(·|at, θ̃it, θ−i
t ) = 0.

Define η(θit) = 1−
∑

θ̃it
πi(θ

i
t|θ̃it). Then condition (17) is equivalent to

(18)⎡

⎣η(θit) +
∑

θ̃it

πi(θ
i
t|θ̃it)

⎤

⎦μ−i
t+1(·|at, θit, θ−i

t )−
∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(·|at, θ̃it, θ−i
t ) = 0.

Since πi is non-negative by definition, it follows from condition (15)

that for each θit, η(θ
i
t) = 0, or equivalently,

∑
θ̃it
πi(θ

i
t|θ̃it) = 1, which

establishes condition (12).
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Conversely, suppose that for each πi : Θ
i
t → Δ(Θi

t), if

(19)
∑

θ̃it∈Θi
t

πi(θ̃
i
t|θit)μ−i

t+1(θ
−i
t+1|at, θ̃it, θ−i

t ) = μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t ),

then for each θit,
∑

θ̃it∈Θi
t
πi(θ

i
t|θ̃it) = 1. Fix any pair (η, λ) satisfying

λ ≥ 0 and for each θit,

(20)

η(θit)μ
−i
t+1(·|at, θit, θ−i

t ) =
∑

θ̃it∈Θi
t

[
λ(θ̃it, θ

i
t)μ

−i
t+1(·|at, θ̃it, θ−i

t )− λ(θit, θ̃
i
t)μ

−i
t+1(·|at, θit, θ−i

t )
]
.

We want to show that η(θit) ≡ 0. Condition (20) implies

(21)⎡

⎣η(θit) +
∑

θ̃it∈Θi
t

λ(θit, θ̃
i
t)

⎤

⎦μ−i
t+1(·|at, θit, θ−i

t ) =
∑

θ̃it∈Θi
t

λ(θ̃it, θ
i
t)μ

−i
t+1(·|at, θ̃it, θ−i

t )

and

(22) η(θit) =
∑

θ̃it∈Θi
t

[
λ(θ̃it, θ

i
t)− λ(θit, θ̃

i
t)
]
,

where condition (22) follows from integration over θ−i
t+1 of condition

(21). Therefore, we have

(23) η(θit) +
∑

θ̃it∈Θi
t

λ(θit, θ̃
i
t) =

∑

θ̃it∈Θi
t

λ(θ̃it, θ
i
t).

Note that λ(θit, θ
i
t) > 0 can be chosen arbitrarily without affecting

condition (20). Therefore, conditions (21) and (23) imply that

(24) μ−i
t+1(·|at, θit, θ−i

t ) =

∑
θ̃it∈Θi

t
λ(θ̃it, θ

i
t)μ

−i
t+1(·|at, θ̃it, θ−i

t )
∑

θ̃it∈Θi
t
λ(θ̃it, θ

i
t)

.

Moreover, we can set λ(θit, θ
i
t) > 0 such that for each θit,

∑
θ̃it∈Θi

t
λ(θ̃it, θ

i
t) =

C, where C is a positive constant. For each pair θit and θ̃it, define

πi(θ̃
i
t|θit) = λ(θ̃it, θ

i
t)/C. Then πi is a mapping from Θi

t to Δ(Θi
t). It

then follows from condition (19) that
∑

θ̃it
πi(θ

i
t|θ̃it) = 1 for each θit.

Therefore, we have

∑

θ̃it∈Θi
t

λ(θit, θ̃
i
t) =

∑

θ̃it∈Θi
t

λ(θ̃it, θ
i
t)

and hence by condition (22), η(θit) ≡ 0. This proves condition (14). �
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Note that Assumption 2 implies that if T = ∞, then there exist

ε ∈ R+ and T̃ ∈ N+ such that for any t ≥ T̃ , any i, at, θ
−i
t and θit,

dist2

(

μ−i
t+1(·|at, θit, θ−i

t )− Conv
{
μ−i
t+1(·|at, θ̃it, θ−i

t )
}

θ̃it∈Θi
t\{θit}

)

≥ ε,

where ‖ · ‖2 is the Euclidean norm. The next lemma shows that since

the intertemporal correlation does not vanish as t goes to infinity, there

exists an upper bound on the size of the transfers.

Lemma A.2. Under Assumptions 1 and 2, for each t ≥ T̃ , the transfer

pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t ) constructed in Lemma A.1 satisfies

max
∣
∣pit+1(θ

−i
t+1, r

i
t; at, θ

−i
t )

∣
∣ ≤ 1

δ

(

1 +
4

ε

)

·max
at,θt

∣
∣
∣
∣
∣

∑

j �=i

uj(at, θt)

∣
∣
∣
∣
∣
.

Proof. See Section 5.1 in the Online Appendix. �

Lemma A.3. If for each i and t, there exists a transfer function

pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t ) that satisfies the following three conditions:

(1) for each at, θ
−i
t and θit,

−
∑

j �=i

uj(at, θ
i
t, θ

−i
t ) = δ

∑

θt+1∈Θt+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ(θt+1|at, θit, θ−i

t ),

(2) for each at, θ
−i
t , θit and rit,

∑

θt+1∈Θt+1

pit+1(θ
−i
t+1, θ

i
t; at, θ

−i
t )μ(θt+1|at, θit, θ−i

t )

≤
∑

θt+1∈Θt+1

pit+1(θ
−i
t+1, r

i
t; at, θ

−i
t )μ(θt+1|at, θit, θ−i

t ),

(3) there exists D ∈ R+ such that for any t ≥ T̃ ,

max
∣
∣pit+1(θ

−i
t+1, r

i
t; at, θ

−i
t )

∣
∣ ≤ 1

δ

(

1 +
4

ε

)

·max
at,θt

∣
∣
∣
∣
∣

∑

j �=i

uj(at, θt)

∣
∣
∣
∣
∣
,

then the dynamic efficient allocation {a∗t} can be implemented in a

periodic ex post equilibrium.
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Proof. First note that under condition (3) of this lemma, agent i’s dis-

counted payoffs are always well-defined under the mechanism {a∗t , {pit}Ni=1}t≥1.

To see this, for any sequence (at, θt)t≥1, we have

∞∑

t=1

δt−1
∣
∣ui(at, θt)− pit(θ

−i
t ; at−1, θ

−i
t−1)

∣
∣

=
T̃∑

t=1

δt−1
∣
∣ui(at, θt)− pit(θ

−i
t ; at−1, θ

−i
t−1)

∣
∣+

∞∑

t=T̃

δt
∣
∣ui(at+1, θt+1)− pit+1(θ

−i
t+1; at, θ

−i
t )

∣
∣

≤Li +
∞∑

t=T̃

δt

[
∣
∣ui(at+1, θt+1)

∣
∣+

1

δ

(

1 +
4

ε

)

·max
at,θt

∣
∣
∣
∣
∣

∑

j �=i

uj(at, θt)

∣
∣
∣
∣
∣

]

≤Li +
1

δ

(

1 +
4

ε

)

·
(

N∑

j=1

max
(at,θt)t≥1

∞∑

t=1

δt−1|uj(at, θt)|
)

where Li = max(at,θt)T̄t=1

∑T̄
t=1 δ

t−1
∣
∣ui(at, θt)− pit(θ

−i
t ; at−1, θ

−i
t−1)

∣
∣ < ∞.

That is, there is a uniform upper bound on agent i’s realized discounted

payoff under transfers {pit}t≥1.

Assume all agents other than i report their signals truthfully and

focus on agent i’s incentive problem. Fix a socially efficient allocation

rule a∗t . By the one-shot deviation principle, we only need to show that

after any public history up to period t, agent i does not benefit from

deviating to rit �= θit and ris = θis for s > t.37

If agent i reports truthfully in period t, i.e., rit = θit, her continuation

payoff is

ui(a∗t (θt), θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, θ

i
t; a

∗
t (θt), θ

−i
t )

]
μ(θt+1|a∗t (θt), θt)

= ui(a∗t (θt), θt) +
∑

j �=i

uj(a∗t (θt), θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

W (θt+1)μ(θt+1|a∗t (θt), θt)

= W (θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1).

37Under the constructed mechanism, each agent’s payoff function is well-defined

and hence is continuous at infinity, which justifies the application of the one-shot

deviation principle.
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Suppose agent i deviates to a message rit such that a∗t (r
i
t, θ

−i
t ) =

a∗t (θt), then her continuation payoff satisfies

ui(a∗t (r
i
t, θ

−i
t ), θt)− pit(θ

−i
t , rit−1; at−1, θ

i
t−1)+

δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, r

i
t; a

∗
t (r

i
t, θ

−i
t ), θ−i

t )
]
μ(θt+1|a∗t (rit, θ−i

t ), θt)

= ui(a∗t (θt), θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, r

i
t; a

∗
t (θt), θ

−i
t )

]
μ(θt+1|a∗t (θt), θt)

≤ ui(a∗t (θt), θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, θ

i
t; a

∗
t (θt), θ

−i
t )

]
μ(θt+1|a∗t (θt), θt)

= W (θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1),

where the inequality follows from condition (2) in this lemma. Thus,

deviating to a message rit without changing the allocation is not prof-

itable.

Finally, if agent i deviates to a message rit such that a∗t (r
i
t, θ

−i
t ) =

a′ �= a∗t (θt), then her continuation payoff satisfies

ui(a∗t (r
i
t, θ

−i
t ), θt)− pit(θ

−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, r

i
t; a

∗
t (r

i
t, θ

−i
t ), θ−i

t )
]
μ(θt+1|a∗t (rit, θ−i

t ), θt)

= ui(a′, θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, r

i
t; a

′, θ−i
t )

]
μ(θt+1|a′, θt)

≤ ui(a′, θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ

−i
t+1, θ

i
t; a

′, θ−i
t )

]
μ(θt+1|a′, θt)

= ui(a′, θt) +
∑

j �=i

uj(a′, θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1)

+ δ
∑

θt+1∈Θt+1

W (θt+1)μ(θt+1|a′, θt)

≤ W (θt)− pit(θ
−i
t , rit−1; at−1, θ

i
t−1),
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where the first inequality is by condition (2) in this lemma, the second

inequality is by condition (1) in this lemma, and the second inequality is

by the definition of a∗t . Thus, deviating to a message rit which changes

the allocation is not profitable either. Therefore, we conclude that

truth-telling consists of a periodic ex post equilibrium.

�

A.2. Proof of Theorem 3.2. Here we prove the finite-horizon case;

the proof of the infinite-horizon case is in Section 5.2 of the Online

Appendix. The proof consists of two lemmas.

Lemma A.4. Under Assumptions 1 and 3, for each i and t < T , there

exists a transfer function pit+1 : Θ
−i
t+1 × At ×Θ−i

t → R+ such that

(25)

−
∑

j �=i

uj(at, θ
i
t, θ

−i
t ) = δ

∑

θ−i
t+1∈Θ

−i
t+1

pit+1(θ
−i
t+1; at, θ

−i
t )μ−i

t+1(θ
−i
t+1|at, θt),

for every at, θ
−i
t and θit ∈ Θi

t.

Proof. Fix any at and θ−i
t , (25) is a system of linear equations. Since

the transition matrix μ−i
t+1(θ

−i
t+1|at, θit, θ−i

t ) from θit to θ−i
t+1 has full rank

under Assumption 3, the system of equations has a solution given by

−→p i
t+1(·; at, θ−i

t ) =
1

δ

(
M−i

t+1(at, θ
−i
t )

)+ −→u −i(·; at, θ−i
t ),

where −→p i
t+1(·; at, θ−i

t ) =
(
pit+1(θ

−i
t+1; at, θ

−i
t )

)
θ−i
t+1

and −→u −i(·; at, θ−i
t ) =

(
−

∑
j �=i u

j(at, θ
i
t, θ

−i
t )

)

θit

are column vectors. �

Lemma A.5. Under Assumptions 1, 3, and 4, there exists a sequence

of transfers p̄t : Ht ×Θt → R
N such that the efficient dynamic mecha-

nism {a∗t , p̄t}Tt=1 is periodic ex post incentive compatible.

Proof. Let Wt(θt) denote the expected period-t continuation social sur-

plus given signal profile θt, i.e.,

Wt(θt) = E

[
T∑

s=t

δs−t

N∑

i=1

ui(a∗t (θt), θt)
∣
∣
∣θt

]

.

First consider the problem in period T . By Assumption 4, there

exists an ex post incentive compatible transfer pT : ΘT → R
N that
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implements the efficient allocation a∗T . Given (a∗T , pT ), the payoff V i
T

for each agent i in the truth-telling equilibrium is given by

V i
T (θT ) = ui(a∗T (θT ), θT )− piT (θT ),

for each θT .

Next consider agent i’s incentive problem in period T−1 with an arbi-

trary public history hT−1 = (r1, a1, r2, a2, . . . , rt−1, at−1). Suppose that

agents other than i always report truthfully. For each pair (aT−1, θT−1),

define

πi
T−1(aT−1, θT−1) =

∑

j �=i

uj(aT−1, θT−1)+δE
[
W (θT )− V i

T (θT )|aT−1, θT−1

]
.

By Lemma A.4 there exists a function p̃iT (θ
−i
T ; aT−1, θ

−i
T−1) such that for

every aT−1, θ
−i
T−1 and θiT−1,

πi
T−1(aT−1, θT−1) = δ

∑

θT∈ΘT

p̃iT (θ
−i
T ; aT−1, θ

−i
T−1)μT (θT |aT−1, θT−1).

Define a new period-T transfer p̄iT : Θ−i
T−1 × AT−1 ×ΘT → R for agent

i as

p̄iT (θ
−i
T−1; aT−1, θT ) = piT (θT )− p̃iT (θ

−i
T ; aT−1, θ

−i
T−1).

Note that p̃iT is independent of θiT , so agent i still finds it optimal to

report truthfully in period T under this new transfer p̄iT . Suppose agent

i reports riT−1 in period T − 1, then for any realized signal profile θT−1,

her expected continuation payoff from T − 1 on is equal to

ui(a∗T−1(r
i
T−1, θ

−i
T−1), θT−1) + δE [V i(θT )|a∗T−1(r

i
T−1, θ

−i
T−1), θT−1]

+ πi
T−1(a

∗
T−1(r

i
T−1, θ

−i
T−1), θT−1)

=
N∑

i=1

ui(a∗T−1(r
i
T−1, θ

−i
T−1), θT−1) + δE

[
WT (θT )|a∗T−1(r

i
T−1, θ

−i
T−1), θT−1

]
.

By definition, the allocation rule a∗T−1 : ΘT−1 → AT−1 maximizes

the social surplus from period T − 1 onward. Given that other agents

always report truthfully, it follows that for every realized signal θiT−1,

it is optimal for agent i to report riT−1 = θiT−1. Also note that for every
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signal profile θT−1, agent i’s continuation payoff V i
T−1 in the truth-

telling equilibrium is

V i
T−1(θT−1) = WT−1(θT−1).

Now for any t < T , suppose that there exist transfer schedules

{p̄is+1}T−1
s=t for each agent i such that truth-telling consists of a periodic

ex post equilibrium from any period s = t, . . . , T and each agent i’s

continuation payoff in the truth-telling equilibrium is V i
t (θt) = Wt(θt)

for all θt.

We would like to construct a transfer p̄it : Θ
−i
t−1 ×At−1 ×Θt → R for

each agent i such that

−
∑

j �=i

uj(at−1, θt−1) = δ
∑

θt∈Θt

p̄it(θ
−i
t ; at−1, θ

−i
t−1)μt(θt|at−1, θt−1),

for all at−1, θ
−i
t−1 and θit−1. The existence of p̄

i
t again follows from Lemma

A.4. Since p̄it is independent of θ
i
t, incentive constraints for truth-telling

in periods s = t, . . . , T still hold.

For each realized signal profile θt−1, suppose agent i reports rit−1,

then her expected continuation payoff from t− 1 on is

N∑

i=1

ui(a∗t−1(r
i
t−1, θ

−i
t−1), θt−1) + δE

[
Wt(θt)|a∗t−1(r

i
t−1, θ

−i
t−1), θt−1

]
.

By the definition of a∗t−1, for each agent i, any report rit−1 ∈ Θi
t−1

in period t − 1 other than θit−1 is suboptimal under p̂t−1 and {p̄s}Ts=t.

Finally, note that in period t − 1, agent i’s continuation payoff in the

truth-telling equilibrium is

V i
t−1(θt−1) = Wt−1(θt−1),

for all signal profiles θt−1.

Inducting on t backwards, we have a sequence of transfers {p̄t}Tt=1,

where p̄i1 ≡ 0 for each i. Therefore, truth-telling consists of a periodic

ex post equilibrium under the efficient dynamic mechanism {a∗t , p̄t}Tt=1.

�
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Appendix B. Proofs of the Results in Section 5

In this section, we first state and prove two lemmas, which are the

infinite-signal versions of the convex independence (Lemma B.1) and

spanning (Lemma B.2) conditions, respectively. Applying the measur-

able “measurable choice” theorem in Mertens [31] to establish mea-

surability of the transfers, Lemma 5.1 and Proposition 5.3 follow from

Lemma B.1, and Lemma 5.2 and Proposition 5.3 follow from Lemma

B.2.38

Let C[0, 1] denote the set of continuous functions on [0, 1]. Let f(s|t)
be a continuous conditional density function of s ∈ [0, 1], given t ∈
[0, 1]. Define the following sets

C(f) =

⎧
⎨

⎩
π : ∃p : [0, 1]2 → R s.t.

1) ∀t, p(·, t) ∈ C[0, 1], ∀s, p(s, ·) is Borel measurable,

2) ∀t, t′, π(t) =
∫ 1

0
p(s, t)f(s|t)ds ≤

∫ 1

0
p(s, t′)f(s|t)ds

⎫
⎬

⎭
,

and

S(f) =

{

π : ∃p(s) ∈ C[0, 1] s.t. ∀t ∈ [0, 1], π(t) =

∫ 1

0

p(s)f(s|t)ds
}

.

Note that S(f) is a linear subspace of C[0, 1] and we have S(f) ⊂ C(f).

We consider the supnorm ‖π‖ = maxt∈[0,1] |π(t)|, and denote the closure

of C(f) under this norm by C̄(f). Similarly, S̄(f) is the closure of S(f)

under the same norm. In the next two lemmas, we identify conditions

on the conditional density f(s|t) such that either C̄(f) = C[0, 1] or

S̄(f) = C[0, 1].

Lemma B.1. C̄(f) = C[0, 1] if and only if the following condition

holds: for each t ∈ [0, 1] and each η ∈ Δ([0, 1]),

(26) f(·|t) =
∫ 1

0

f(·|t̃)η(dt̃) ⇒ η(t) = 1.

Proof. This follows directly from Theorem 2 in McAfee and Reny [27]

(pages 404–406). �

38See Barelli and Duggan [6] for an application of Mertens’s theorem in stochastic

games.
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Lemma B.2. S̄(f) = C[0, 1] if and only if the following condition

holds: there does not exist a regular, non-zero signed measure ξ on the

Borel sets of [0, 1] such that

(27)

∫ 1

0

f(·|t)ξ(dt) = 0.

Proof. For the only if part, suppose by contradiction that there is a

regular, non-zero signed measure ξ on the Borel sets of [0, 1] such that
∫ 1

0
f(·|t)ξ(dt) = 0. Since S̄(f) = C[0, 1], for any ε > 0 and any π ∈

C[0, 1], there exists a π̃ ∈ S(f) such that ‖π − π̃‖ < ε. Then we
∫ 1

0

π̃(t)ξ(dt) =

∫ 1

0

[∫ 1

0

p(s)f(s|t)ds
]

ξ(dt),

for some p(s) ∈ C[0, 1] by the definition of S(f). By Fubini’s theorem,
∫ 1

0

[∫ 1

0

p(s)f(s|t)ds
]

ξ(dt) =

∫ 1

0

p(s)

[∫ 1

0

f(s|t)ξ(dt)
]

ds = 0.

That is,
∫ 1

0
π̃(t)ξ(dt) = 0. Hence, ξ = 0, which is a contradiction.

For the if part, suppose by contradiction that S̄(f) �= C[0, 1]. Then

there exists π̄ ∈ C[0, 1] such that π̄ /∈ S̄(f). Since S̄(f) is closed

and convex, by the separating hyperplane theorem (see Aliprantis and

Border [1], Theorem 5.79, page 207), there is a nonzero continuous

linear functional on C[0, 1] separating S̄(f) and π̄. Since S̄(f) is a linear

subspace of C[0, 1], it follows from the Riesz representation theorem

(see Aliprantis and Border [1], Corollary 14.15, page 498) that there

exist a regular, nonzero signed measure ξ on the Borel sets of [0, 1] such

that for each π ∈ S̄(f),
∫ 1

0

π(t)ξ(dt) = 0.

By the definition of S(f), we then have
∫ 1

0

[∫ 1

0

p(s)f(s|t)ds
]

ξ(dt) = 0,

for each p(s) ∈ C[0, 1]. It then follows from Fubini’s theorem that
∫ 1

0

p(s)

[∫ 1

0

f(s|t)ξ(dt)
]

ds = 0,

for each p(s) ∈ C[0, 1]. Therefore,
∫ 1

0
f(·|t)ξ(dt) = 0, which is a con-

tradiction. �
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