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Abstract 

Opioid receptors are 7-transmembrane domain receptors that couple to heterotrimeric G proteins.  

The endogenous ligands for opioid receptors are peptides which bind to the orthosteric site on 

the receptors. The µ-opioid receptor is the target for opioid analgesics while the δ-opioid 

receptor has been suggested as a target for pain management, migraine, and depression. 

Similarly, κ-opioid receptors are involved in pain and depression and nociceptin receptors in 

pain and mood behaviors.  However, exogenous orthosteric ligands for the opioid receptors 

cause a myriad of on-target side effects. Recently selective allosteric ligands for µ- and δ-opioid 

receptors have been described. These compounds bind to a site on the receptor distinct from the 

orthosteric site. Occupation of this allosteric site leads to modulation of orthosteric ligand 

binding affinity and/or efficacy. Allosteric modulators may be positive, negative, or silent 

(neutral) (PAMs, NAMs or SAMs respectively).  PAMs may have in vivo activity by enhancing 

the activity of exogenous drugs or endogenous opioid peptides. Enhancing endogenous opioid 

peptide activity maintains the temporal and spatial distribution of these molecules but improves 

and potentially qualitatively changes activity at their cognate receptors which could limit side-

effects compared to traditional opioid drugs. In this review we describe the rationale and promise 

for the development of allosteric modulators for opioid receptors, the discovery of selective 

allosteric modulators, the identification of potential allosteric sites on opioid receptors, and the 

mode of action of the modulators.  
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Introduction 

The role of the mu-opioid receptor (µ-OR) (Alexander et al., 2015), in the modulation of pain 

makes this receptor one of the most pharmacologically targeted G protein-coupled receptors 

(GPCRs) in modern medicine and µ-OR agonists such as morphine and oxycodone are 

invaluable in the clinic. As a result the number of prescriptions written for opioid analgesics is 

rising rapidly. However, while activation of µ-OR provides pain-relief it also results in a wide 

range of unwanted effects including constipation and life-threatening respiratory depression, as 

well as rewarding effects that lead to addiction liability (Matthes et al., 1996). This in turn has 

led to the current opioid abuse epidemic in the UK, USA, and other countries. In the USA 

specifically, there has been a 4-fold increase in the number of deaths from licit and illicit opioids 

since 1999 (Heron, 2016; Volkow, 2014). In addition, the effectiveness of traditional opioid 

drugs such as morphine in the management of neuropathic pain is controversial (Smith et al., 

2012; McNicol et al., 2013). Consequently, there remains an unmet need for safer efficacious 

analgesics that circumvent the issues associated with activation of µ-OR by opioid drugs.  

Alternative approaches have included the development of compounds acting at other members of 

the opioid receptor (OR) family (Alexander et al., 2015), particularly delta (δ-OR) and kappa (κ-

OR) agonists, as well as compounds with activity at more than one opioid receptor. While δ-OR 
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agonists suffer from a lack of efficacious analgesia and proconvulsive effects, they may be 

effective as antidepressants (Jutkiewicz, 2006) and in migraine treatment (Charles and Pradhan, 

2016). Additionally, κ-OR agonists possess analgesic properties (Chavkin, 2011) but are linked 

with dysphoria (Pfeiffer et al., 1986) and are pro-depressant to the extent that κ-OR antagonists 

may find use in the management of depression (Shippenberg, 2009; Chavkin, 2011; Lalanne et 

al., 2014). Finally, agonists for the nociception receptor (NOPR; Alexander et al., 2015) may be 

analgesic or pronociceptive depending on the circumstances (Lambert, 2008). Selective δ-OR, κ-

OR, and NOPR compounds have not successfully found their way into the clinic, although mixed 

µ-OR/δ-OR (Harland et al., 2015) and mixed µ-OR/NOPR compounds (Toll, 2013) show 

promise. 

Despite best efforts, the µ-OR system remains the most efficacious target for the treatment of 

pain. In this review we discuss allosteric modulators as a novel way to harness the analgesic 

efficacy of the µ-OR and the potentially beneficial therapeutic actions of other opioid receptors. 

This article focusses on small molecule exogenous ligands as allosteric modulators of the µ-OR. 

In addition, allosteric modulation of the µ-OR (and other GPCRs) via receptor heteromers has 

also been proposed. For information on this aspect the reader is referred to reviews by Fujita et al 

(2015) and Ferre et al (2014).  

 

Allosteric ligands of opioid receptors as potential therapeutics  

Morphine and other traditional opioid drugs act at the orthosteric site on the opioid receptors, 

defined as the site for the endogenous opioid peptides, including Leu- and Met-enkephalin, β-

endorphin and the dynorphins. Opioid receptors, like all 7-transmembrane domain (7-TM), 

GPCRs, are allosteric proteins. The simplest idea of 7-TM domain receptor action can be 

explained by the Monod-Wyman-Changeux two-state allostery model (Monod et al., 1965) 

where receptors are divided into inactive (R) and active (R*) conformations that exist in 
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equilibrium. These do not represent individual conformations but rather ensembles of R and R* 

states (Kenakin, 2013).  R* states are distinguished from R states by an ability to bind agonists 

with high affinity and activate heterotrimeric G proteins, triggering downstream intracellular 

signaling pathways.  The conformational state of a GPCR, including ORs, is controlled not only 

by agonist occupying the orthosteric site but also by endogenous substances acting at other sites 

on the receptor. These include sodium ions (Pert and Snyder, 1974; Simon and Groth, 1975; 

Yabaluri and Medzihradsky, 1997; Fenalti et al., 2014; Shang et al., 2014), and interacting 

proteins, especially heterotrimeric G proteins that stabilize the R* state (DeVree et al., 2016). 

Furthermore, there is evidence that the lipid environment regulates GPCR function. In particular, 

cholesterol modulates the function of both µ- and δ-ORs (Levitt et al., 2009; Xu et al., 2008; 

Zheng et al., 2012) as well as other GPCRs, probably by a combination of direct actions at a 

conserved motif on the receptors and membrane effects (for review, see Oates and Watts, 2011).  

A burgeoning field in drug discovery at GPCRs is the development of small molecule allosteric 

modulators that bind to druggable pockets on receptors separate from the orthosteric sites. These 

spatially distinct allosteric sites are defined by the ability of molecules binding at these sites to 

regulate the activity of molecules binding at the orthosteric site (Figure1).  Allosteric modulators 

can alter affinity, potency, and efficacy of orthosteric ligands. Positive allosteric modulators 

(PAMs) improve the activity of orthosteric ligands. Negative allosteric modulators (NAMs) do 

the opposite and SAMs or silent allosteric modulators occupy the site without activity and as 

such act as antagonists to PAMs and NAMs. Ideally, PAMs and NAMs would enhance or inhibit 

respectively the affinity and/or efficacy of an orthosteric ligand while failing to directly activate 

or inhibit the receptor on its own. However, some compounds may have direct agonist activity; 

such compounds are known as “ago-PAMs” (Figure 1). Allosteric activity is dependent on the 

binding affinity (KB) of the modulator and the allosteric cooperativity (αβ) which describes the 

ability of the modulator to change the affinity and/or efficacy of an orthosteric ligand (Figure 1; 

Christopoulos and Kenakin, 2002; Melancon et al., 2012; Christopoulos, 2014). Allosteric 

modulators also have differing effects depending on the orthosteric ligand, a phenomenon called 
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‘probe dependence”.  It is thought that allosteric modulators provide better selectivity and could 

provide better therapeutic indexes with fewer side effects. For more on this topic see 

(Christopoulos and Kenakin, 2002; Christopoulos, 2014; Christopoulos et al., 2014; Burford et 

al., 2015a). 

A prime example of the potential power of allosteric modulators is PAM activity at the µ-OR (µ-

PAM).  Such a compound could serve to increase the potency and/or efficacy of opioid drugs 

like morphine, and lower the dose requirement.  Perhaps more importantly, a µ-PAM can be 

predicted to enhance the activity of endogenous opioid peptides which are elevated during stress 

and in pain states (Hughes, 1983). This activity would be confined to µ-ORs that have access to 

released endogenous opioids at specific times, and so maintain their spatial as well as temporal 

selectivity pattern. This is in sharp contrast to traditional opioid agonists which activate µ-OR 

across many tissues with limitations set only by pharmacokinetic parameters. There is evidence 

that such an approach would be feasible since non-selectively increasing opioid peptide levels by 

blocking enzymes responsible for their degradation with “enkephalinase inhibitors” provides 

preclinical analgesia (Roques et al., 2012), but not constipation (Noble et al., 2008), respiratory 

depression (Boudinot et al., 2001), antinociceptive tolerance (Noble et al., 1992b) or abuse 

liability (Noble et al., 1992a; Valverde et al., 1996). 

An additional potential advantage of using small molecule allosteric modulators for the ORs is to 

introduce a signaling bias downstream of the receptors. Biased agonism is the preferential 

activation of one signaling pathway over another and has been demonstrated at the µ-OR 

between β-arrestin recruitment and G protein activation (McPherson et al., 2010, Thompson et 

al., 2015). The goal of bias signaling is to activate pathways downstream of ORs responsible for 

the beneficial effects (e.g. pain-relieving in the case of the µ-OR) without activating pathways 

producing undesirable effects. For example, the β-arrestin pathway has been implicated in the 

constipation and respiratory depressive actions of opioids (Raehal and Bohn, 2011), and newly 

developed biased ligands including Oliceridine (TRV130; Dewire et al., 2013) and PZM21 
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(Manglik et al., 2016) avoid activation of this pathway. It is tempting to speculate that the µ-OR 

occupied by a PAM might behave as a novel receptor compared to an unoccupied µ-OR and so 

be envisaged to signal differently. Similarly introducing bias at δ-ORs could promote 

antidepressant actions over proconvulsant actions and at κ-ORs could enhance analgesia at the 

expense of dysphoria. For a more comprehensive discussion of the potential benefits of opioid 

PAMs as therapeutic agents see (Burford et al., 2015a). 

 

Discovery of small molecule allosteric modulators of opioid receptors 

The BMS series of compounds 

The first selective positive allosteric modulators of µ-OR, BMS-986121 and BMS-986122, were 

identified in 2013 (Table 1; Figure 2; Burford et al., 2013) using a high-throughput screen (HTS) 

monitoring for ability to enhance a low concentration of the putative endogenous µ-OR agonist, 

endomorphin-1, to recruit β-arrestin to µ-OR. The HTS methodology has been described in 

detail (Burford et al., 2014; Bertekap et al., 2015). Further studies with BMS-986122 showed 

that it can enhance the affinity and/or efficacy of various opioid agonists, including opioid 

peptides Leu- and Met-enkephalin, β-endorphin as well as endomorphin-1. Along with BMS-

986122, a number of structurally similar µ-PAMs were identified, plus SAMs such as BMS-

986124 (Figure 2). BMS-986122 exhibits dramatic probe dependence in that its effects are 

reliant on the ligand occupying the orthosteric site.  For agonists such as methadone, DAMGO, 

and the endogenous opioid peptides, BMS-986122 enhances the potency and affinity while for 

morphine and nalbuphine it enhances agonist efficacy with no alteration in the affinity. There is 

no effect on the binding of antagonists (Livingston and Traynor, 2014). This is discussed in more 

detail later under “mechanism of allostery at opioid receptors” in the subsection “role of 

orthosteric ligand and Na+ ions” as it points to a potential explanation for the action of the 
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modulators. BMS-986122 does not have PAM activity at the δ-OR, a fact which has been taken 

into account in structure-activity studies. 

The structure-activity relationships of the BMS series of µ-OR allosteric modulators published 

so far is unclear. Subtle changes have profound effects on defining a compound as a PAM or a 

SAM (compare BMS-986122 and BMS-986124 in Figure 2). No NAMs have been described in 

this series. With this is mind Bisignano et al (Bisignano et al., 2015) searched the emolecules 

(emolecules) and ZINC (Irwin et al., 2012) databases for structural analogues. Of the compounds 

identified 28 were evaluated in the β-arrestin recruitment assay; 14 were found to be PAMs and 

12 were identified as SAMs. None of the compounds had higher affinity than the original 

molecules, although one compound, MS1 (Table 1; Figure 2), was chosen for a more extensive 

study. MS1 did not bind to the µ-OR orthosteric site but improved the affinity of methadone and 

the potency of methadone to activate heterotrimeric G proteins. Surprisingly, neither the affinity 

nor potency to activate G proteins was enhanced for endorphin-1 or DAMGO, in spite of the fact 

that MS1 was discovered using endomorphin-1 as the orthosteric probe.  This anomaly could be 

due to the fact that endomorphins may be β-arrestin-biased molecules (McPherson et al., 2010). 

On the other hand, the conflicting probe dependence may be explained by the relatively weak 

allosteric cooperativity of MS1, even against methadone which thus far is the most sensitive 

orthosteric ligand to allosteric modulation (Livingston and Traynor, 2014).   

Using the β-arrestin recruitment HTS assay (Burford et al., 2014; Bertekap et al., 2015) allosteric 

modulators of the closely related δ-OR have been discovered (Burford et al., 2015b). These 

compounds are structurally dissimilar to BMS-986122 being tetramethyl substituted hexahydro-

xanthine-1,8-diones. The lead compound BMS-986187 (Table 1; Figure 2) is effective as a δ-

PAM in the <100 nM range, while showing 100-fold weaker PAM activity at the µ-OR. The 

high potency of BMS-986187 is somewhat surprising given its affinity for the unoccupied 

receptor (KB) of approximately 1µM. On the other hand, this demonstrates that allostery is 

bidirectional and so the orthosteric agonist enhances PAM affinity, and also highlights the 
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importance of efficacy interactions (β) as well as affinity interactions (α). Indeed, BMS-986187 

is able to stimulate signaling downstream of δ-OR even in the absence of orthosteric agonist. 

However, the compound does not bind to the orthosteric site, as determined by its inability to 

displace 3H-diprenorphine and so it is activating the receptor through its allosteric site. 

Consequently, it is designated as an “ago-PAM” (Figure 1).  Like the µ-PAMs, BMS-986187 

also exhibited probe dependence when tested on a limited number of compounds with a greatest 

effect on the affinity of the peptide Leu-enkephalin (32-fold shift) and smaller shifts for SNC80 

(14-fold shift) and Tan-67 (3-fold shift).  BMS-986187 acted as a δ-PAM for several 

downstream measures including the [35S]GTPγS binding assay, inhibition of adenylate cyclase, 

recruitment of β-arrestin and phosphorylation of ERK1/2 for all three of the aforementioned 

ligands (Burford et al., 2015b). Moreover, BMS-986187 has been demonstrated to potentiate 

endogenous opioid signaling at δ-OR in intercalated cells that modulate output from the 

amygdala (Winters et al., 2016).  

 

Other putative allosteric modulators  

In addition to the small molecules described above, other putative, structurally unrelated 

modulators of ORs have been described (Table 1; Figure 2). 

 

The cannabinoids Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) (Figure 2) were 

suggested many years ago (Vaysse et al., 1987) to be NAMs of both µ-OR and δ-OR. This 

assertion was based on the ability of the cannabinoids to fully inhibit 3H-orthosteric agonist 

binding to the µ-OR and δ-OR in rat brain membranes, in a non-competitive manner, by 

reducing the Bmax but not altering ligand affinity. To avoid the caveat that the compounds might 

be working via cannabinoid (CB) receptors in the rat brain membranes and so acting indirectly 

through receptor–receptor interactions the authors showed THC to be just as effective at 

solubilized, partially purified µ-OR. This also suggests the effect was on the receptor itself or a 
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closely associated lipid, but not due to a non-specific effect on the lipid bilayer. In support of this 

CB receptor-independent effect on µ-OR, several other cannabinoids displayed a wide variety of 

activities that were not correlated with their activity at CB receptors. For instance, levonantradol 

and dextronatradol, were equiactive at inhibiting binding of the µ-OR orthosteric agonist 3H-

DHM (dihydromorphine) to rat brain membranes but showed 100-fold difference in behavioral 

potencies as cannabinoids (Johnson et al., 1981). Also, 11-hydroxy-THC displayed comparable 

cannabinoid potency to THC, but had less than 20 % of the activity of THC at displacing 3H-

DHM.  Later kinetic experiments comparing the effect of THC and CDB at µ-OR and δ-OR in 

rat cortical membranes (Kathmann et al., 2006) were claimed to support the idea of the 

cannabinoids as allosteric modulators by demonstrating that CDB and THC at high 

concentrations (30-100µM) increased the dissociation rate for the µ-OR agonist 3H-DAMGO in 

the presence of a high concentration of naloxone.  Similar, but much smaller shifts in the 

dissociation rate of the antagonist 3H-NTI (naltrindole) from the δ-OR were seen. On the other 

hand both THC and CBD alone enhanced 3H-DAMGO and 3H-NTI dissociation and also 

displaced DAMGO binding in competition assays, giving affinities in the 10µM range, albeit 

with a reported Hill slope ~ 1.5, though only CBD inhibited 3H-NTI binding. Moreover, no 

functional studies of allosterism have been reported. Thus it cannot be ruled out that the 

cannabinoids at these very high concentrations are acting non-specifically or even binding to the 

orthosteric site rather than acting as true allosteric modulators.  The CB1antagonist rimonabant 

shows a similar profile (Kathmann et al., 2006) and this compound has been reported to have an 

affinity at µ-OR of 650nM and to be a µ-OR antagonist in vivo and in vitro (Seeley et al., 2012). 

The concentrations of the cannabinoids acting at opioid receptors are much higher than their 

affinity for the CB1 cannabinoid receptor, suggesting that activity at ORs likely does not play a 

role in the in vivo activities of the cannabinoids. 

 

The neoclerodanediterpene Salvinorin A (Sal A; Figure 2) is a selective κ-OR agonist which 

lacks a positively charged nitrogen atom for interaction with the conserved Asp in TM-III of the 
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κ-OR (Roth et al., 2002).  Based on the observation that Sal A has a weak ability to compete 

with orthosteric ligands at µ-OR, Rothman and colleagues examined the compound as a possible 

allosteric modulator of this receptor (Rothman et al., 2007). Their data suggested that Sal A 

might be a negative allosteric modulator of µ-OR based on its ability to only partially inhibit 

binding of the agonists 3H-DAMGO or 125I-[IOXY] or the antagonist 3H-diprenorphine to the 

orthosteric site of the receptor in both µ-OR expressing CHO cells and rat brain membranes.  

Binding experiments showed that Sal A decreased the affinity of the orthosteric ligands by 2 to 

3- fold, reduced Bmax values and had complex effects on ligand dissociation.  In the [35S]GTPγS 

assay, which measures µ-OR activation of heterotrimeric G proteins, Sal A decreased both the 

potency (EC50) and Bmax for DAMGO.    The concentrations of Sal A used in these experiments 

were in the high µM range, much higher than the affinity of Sal A for the κ-OR (~4 nM; Roth et 

al., 2002). This will make in vivo studies challenging, although a study in κ-OR knockout 

animals might be informative.   

 

Ignavine (Figure 2) is a diterpene alkaloid isolated from the plant aconitum Japonica (Saito et al., 

1982; Ohbuchi et al., 2016). There is evidence that “processed aconite tuber” has analgesic 

activity mediated by the κ-OR, although the specific κ-OR agonist has not been isolated 

(Ohbuchi et al., 2016).  Ignavine itself gives a biphasic antinociceptive dose-response curve in 

the mouse tail-flick and tail pressure tests. The title of a recent publication (Ohbuchi et al., 2016) 

states ignavine as a “novel allosteric modulator of the µ-OR”. This claim is based on the finding 

that the compound both enhances and inhibits the activity of the µ-OR orthosteric agonist 

DAMGO to inhibit cAMP accumulation and to cause internalization of µ-OR in HEK cells 

depending on the ignavine concentration (1 or 10 µM respectively). However, binding studies 

reported in the same publication indicate that the compound fully displaces 3H-diprenorphine 

from the orthosteric site of the µ-OR in an apparently competitive manner and docking studies 

suggest that the compound binds at the orthosteric site. Thus, this compound would seem to be 
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incorrectly identified as an allosteric modulator, but may have other actions at µ-OR, for 

example as a µ-OR partial agonist. 

 

Finally a thiazolidine compound, SCH-202676 (Figure 2), has been claimed to be a non-specific 

allosteric modulator of many GPCRs including the µ-, δ- and κ-ORs (Fawzi et al., 2001). 

However, this compound covalently binds to GPCRs by sulfhydryl bond formation and so is not 

a true allosteric modulator (Göblyös et al., 2005; Lewandowicz et al., 2006).  

 

The above evidence suggests certain cannabinoids and Sal A as NAMs of µ-OR.  A negative 

modulator, unless it can be specially targeted at reducing the side-effects of orthosteric µ-OR 

agonists, e.g. by introducing a bias into downstream signaling as discussed above, may not make 

a useful clinical compound. Nonetheless, it will be important to re-evaluate these putative 

modulators (as well as ignavine) of ORs using more rigorous analysis methods for the 

determination of allostery (Melancon et al., 2012; Christopoulos, 2014), since these natural 

products could provide scaffolds for the future design of modulators.  

 

Mechanism of allostery at opioid receptors 

Allosteric binding site(s) on opioid receptors 

There is no definitive structural work that accurately defines the nature and location of allosteric 

sites on the ORs. However, there have been several attempts to identify site(s) on µ- and δ-ORs 

by computational methods using docking and molecular dynamics (MD) simulations.  

 

Using molecular docking Bartuzi and colleagues (Bartuzi et al., 2016) obtained several poses for 

BMS-986122 within the µ-OR although two had very similar orientations and interaction 

energies.  These data indicated an allosteric site involving amino-acids above the orthosteric 
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binding pocket and towards the extracellular surface in TM domains II and VII (Figure 3).  At 

the δ-OR Shang and colleagues (Shang et al., 2016) using metadynamic calculations (Schneider 

et al., 2015) of the δ-OR bound to the orthosteric ligand SNC80 and in a water-lipid environment 

found two metastable binding poses for BMS-986187 occupying the same site that was in close 

proximity to the orthosteric site but, as in the µ-OR, towards the extracellular surface (Figure 3).  

Both metastable states formed direct polar, water-mediated polar, hydrophobic, and/or aromatic 

interactions with amino-acids residues in TM domains I, II and VII, with several residues 

specific to a particular pose. Mutational studies of several amino-acid residues in the putative site 

affected either the binding of the modulator and/or the degree of cooperativity between the 

modulator and the othosteric ligand, therefore giving some credence to this as an allosteric site 

(Shang et al., 2016), although with the caveat that mutagenesis can alter orthosteric ligand 

affinity and basal activity of the receptor, thus providing confounds.   

 

MD simulations of an active µ-OR homology model in complex with Gαs protein in a raft-like 

membrane suggested a common binding pocket for lipophilic modulators CDB and THC at the 

top of TM domains I, II and VI (Bartuzi et al., 2016). Cannabinoids occupying this site appear to 

oppose the action of agonists by moving the TM domains closer together towards an inactive 

receptor state.   In addition, a second site for Sal A at µ-OR that overlapped with the binding site 

for DAMGO was suggested, possibly explaining its NAM activity. 

 

Overall, computational evidence suggests the µ-OR and δ-OR are predicted to have similarly 

positioned allosteric sites (Figure 3). It is worth noting that this putative site is correspondingly 

situated to the allosteric site on the muscarinic receptors including M1(Abdul-Ridhaet al., 2014), 

M2 (Jäger et al., 2007; Haga et al., 2012; Dror et al., 2013), and M4 receptors (Thal et al., 2016) 

and the site for the modulator maraviroc on the CCR5 receptor (Tan et al., 2013), suggesting this 

region of class A GPCRs could be a common site for allosterism. 
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Role of orthosteric ligand and Na+ ions 

Na+ ions play a major role in stabilizing inactive R states of 7-TM domain receptors. This was 

first shown by the ability of NaCl to inhibit the binding of orthosteric agonists to µ-OR while 

having no effect on orthosteric antagonist binding (Pert et al., 1973), due to a shift in equilibrium 

to inactive R conformational states. Thus Na+ can be considered an endogenous NAM of 7-TM 

receptors. Current understanding of the mechanisms by which Na+ stabilizes R is better 

appreciated due to recent high-resolution crystallographic work performed first with the 

adenosine A2A receptor (Liu et al., 2012) and later with other receptors including the δ-OR 

(Fenalti et al., 2014). The binding site of Na+ is conserved across many GPCRs, including all the 

ORs. This site is located in the middle of the 7-TM bundle and involves coordination with an 

aspartate residue in TM II (Asp 2.50) and a Ser residue in TM II (Ser 3.39) plus a number of 

highly organized water molecules across TM domains II, III, VI and VII (Katrich et al., 2014). 

Importantly, the Na+ ion is absent in the structures of active GPCRs including µ-OR (Huang et 

al., 2015) because movement of the TM domains upon receptor activation provides insufficient 

space for the Na+ ion and its associated water molecules.  

The Monod-Wyman-Changeux two state model has been applied to describe the action of small 

molecule allosteric modulators of muscarinic receptors (Canals et al., 2012) and of the µ-OR 

(Livingston and Traynor, 2014) where they act to promote formation of R*. There is evidence 

that the allosteric activity of BMS-986122 at the µ-OR is related to the negative modulatory 

activity of Na+ ions (Livingston and Traynor, 2014). The degree of allosteric activity of BMS-

986122 is dependent on the orthosteric probe, such that antagonists are insensitive and agonists 

are generally highly sensitive in line with their efficacy.  There is a strong inverse correlation 

between the sensitivity of a µ-OR agonist to Na+ ions and the sensitivity of the same ligand to 

positive allosteric modulation by BMS-986122, with methadone being the orthosteric ligand 

most sensitive to µ-PAM activity (Figure 4).  Moreover, the action of BMS-986122 antagonizes 
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the ability of Na+ ions to inhibit agonist binding such that BMS-986122 and Na+ ions oppose 

each other’s action. As BMS-986122 is selective for µ-OR over δ-OR while the Na+ binding site 

is conserved, we have proposed a model in which the µ-PAM binds at a distinct site from Na+ to 

allosterically disrupt the binding of Na+ (Figure 5).  In support of this, ligands that target the Na+ 

binding site on GPCRs, such as amiloride, are not selective amongst GPCRs that are sensitive to 

Na+ ions (Gao and Ijzerman, 2000; Hoare et al., 2000; Schetz and Sibley, 2001; Heitman et al., 

2008). It is notable that “superagonists” at µ-OR such as BU72 and etorphine do not fit this 

pattern. These compounds are insensitive to the actions of the modulators (Livingston and 

Traynor, 2014) and much less affected by Na+ ions (Lee et al., 1999). 

Following publication of the experimental data discussed above, Bartuzi and colleagues (Bartuzi 

et al., 2016) performed principal component analysis of µ-OR in a native membrane 

environment. Their calculations showed that BMS-986122 bound to a putative allosteric site (see 

above) and interacted with a Trp at the top of TM VII (Trp7.35) to alter the conformation of this 

TM domain resulting in stabilization of the binding of the orthosteric ligand methadone as 

determined by its interaction with Asp3.32 in the orthosteric pocket and destabilization of Na+ 

ion binding as measured by the distance of this ion from Asp 2.50. Similarly, recent molecular 

dynamics simulations of the Galanin receptor identified a potential allosteric site involving TM 

domains 2 and 3 and extracellular loops 1 and 2 that the authors propose could disrupt Na+ 

binding (Hui et al., 2016).  

It should be understood that the putative binding sites used for these calculations are defined by 

docking procedures and may not represent the true allosteric sites. Nonetheless, there are 

multiple binding sites on µ-OR that allosterically communicate, including: the orthosteric site, 

allosteric site for BMS-986122, the Na+ binding site, and the G protein-binding site (Figure 5). 

The interplay between the sites differs depending on the orthosteric ligand.  As Na+ regulates a 

number of GPCRs, and the Na+ site is highly conserved and MD simulations suggest that 
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allosteric sites are similarly situated close to the orthosteric binding pocket this may be common 

mechanism of action for small molecule allosteric modulation across GPCRs. 

 

Conclusions  

Selective allosteric modulators of the µ- and δ-OR have been described, but there are no specific 

modulators published to date for the κ-OR or the NOPR. Knowledge of allosteric modulation of 

opioid receptors is still in its infancy. However, we know the µ- and δ-OR PAMs show a marked 

probe dependence that appears to relate to the efficacy of the probe (the ligand occupying the 

orthosteric site) and to the sensitivity of the probe to Na+ ions that stabilize inactive R states of 

the receptors.  At least for the µ- and δ-ORs proof of principal for in vivo efficacy of allosteric 

modulators is needed. This will require the development of more potent and drug-like molecules. 

Although some ideas about structural requirements and identity of the allosteric site on ORs have 

been developed using computational methods the field will benefit immensely from confirmation 

of the location and nature of allosteric binding site(s) and the conduit by which occupation of this 

site leads to dissociation of the bound Na+ ion and formation of R*. This will come from 

biophysical methods such as hydrogen-deuterium exchange mass spectrometry, NMR and X-ray 

crystallography. Given the recent success in crystallizing GPCRs, including crystal structures of 

muscarinic receptors bound to allosteric modulators this information should soon be available, 

allowing for the rational design of a new generation of allosteric modulators acting at ORs. 

 

 

 

Nomenclature of Targets and Ligands 
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 Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide 

to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise 

Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015). 
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Table 1 

Confirmed or putative small molecule allosteric modulators of opioid receptors* 

 

µ-OR δ-OR κ−OR References 

Salvinorin A x 

  

Rothman et al., 2007 

Cannabidiol x x 

 

Vaysse et al., 1987; Kathmann et al., 2006 

THC x x 

 

Vaysse et al., 1987; Kathmann et al., 2006 

BMS-986122 x 

  

Burford et al., 2013; Livingston and Traynor, 2014 

BMS-986121 x   Burford et al., 2013 

BMS-986124    Burford et al., 2013 

BMS-986187 x x 

 

Burford et al., 2015b 

MS1 x 

  

Bisignano et al., 2015 

Ignavine x 

  

Ohbuchi et al., 2016 

SCH-202676 x x x Fazwi et al., 2001 (but see Gogyov et al., 2005; 

Leanadowicz et al., 2006) 

* To date no modulators have been identified for NOPR 
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Legends to Figures 

Figure 1 

Small molecule allosteric modulation at GPCRs.  Allosteric ligands bind to a site distinct from 

the orthosteric site to modulate orthosteric agonist affinity and/or efficacy. α is the co-operativity 

factor between the two sites and represents the degree of an enhancement by a PAM (if a 

positive value) or reduction by a NAM (if a negative value) of the affinity of the orthosteric 

ligand. β is the modulation factor and describes allosteric modulation of orthosteric ligand 

efficacy. β will have positive value for a PAM or a negative value for a NAM. Allosteric 

modulators may activate intracellular messengers directly as ago-PAMs. Modified from Conn et 

al., 2009. 

 

Figure 2 

Structures of known or putative allosteric modulators of opioid receptors discussed in the text. 

Shown are compounds discovered by high throughput screening that exhibit PAM (BMS-

986122, and BMS 986121) or SAM (BMS9861224) activity at µ-OR plus the similarly 

structured MS1 which was identified by chemoinformatic analysis. BMS-986187 is a δ-PAM 

discovered by high throughput screening. Other compounds that have been suggested as 

modulators include the natural products cannabidiol, tetrahydrocannabinol (THC), Ignavine and 

Salvinorin A as well as the small molecule SCH-202676.  

 

Figure 3 

Theoretical binding site for BMS-986122 on both µ-OR and δ-OR.  Inactive state µ-OR (pdb 

4DKL; Huang et al., 2015) and inactive state δ-OR (pdb 4N6H; Fenalti et al., 2014) were 
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aligned. The residues proposed (Bartuzi et al., 2016; Shang et al., 2016) to be involved in 

allosteric ligand binding are highlighted in green for the µ-OR and orange for the δ-OR. (a) view 

of aligned receptors from the extracellular side, (b) side view. The orthosteric site is shown 

occupied by the irreversible µ-OR antagonist β-funaltrexamine (purple). Extracellular loop 2 and 

TM6 have been removed from image b for clarity. 

 

Figure 4 

Relationship between the effect of the µ-PAM, BMS-986122, and the effect of Na+ ions plus 

guanine nucleotide on the binding affinity of opioid ligands to the orthosteric site on µ-OR. The 

abscissa represents a reduction in affinity values (as a shift ratio) for each opioid ligand in the 

presence of Na+ ions and guanine nucleotide. The ordinate represents the increase in affinity (as 

a shift ratio) in the presence of Na+ ions and guanine nucleotide in the presence of BMS-986122. 

Adapted from Livingston and Traynor, 2014. 

 

 

Figure 5 

Allosteric interactions within the µ-OR. Inactive receptor (R) contains a Na+ ion. Orthosteric 

agonist captures an active state (R*) that does not contain Na+ ion (dotted circle) and allows for 

receptor interaction with intracellular signaling proteins (e.g. heterotrimeric G protein or β-

arrestin). It is proposed that the µ-PAM improves the affinity and potency of the orthosteric 

agonist by its incompatibility with Na+ binding, thereby promoting a state that more readily 

binds and responds to agonist. 
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