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Abstract Past observations and numerical modeling find magnetic reconnection to initiate at
a localized region and then spread along a current sheet. The rate of spreading has been proposed to
be controlled by a number of mechanisms based on the properties within the boundary. At the Earth’s
magnetopause the spreading speed is also limited by the speed at which a shocked solar wind front
can move along the magnetopause boundary. The speed at which a purely north to south rotational
discontinuity propagates through the magnetosheath and contacts the magnetopause is measured here
using the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme global magnetohydrodynamics
model. The propagation speed along the magnetopause is fastest near the nose of the magnetopause
and decreases with distance from the subsolar point. The average propagation speed along the dayside
magnetopause is 847 km/s. This is significantly larger than observed rates of reconnection spreading at the
magnetopause of 30–40 km/s indicating that, for the observed conditions, the speed of front propagation
along the magnetopause does not limit or control the spreading rate of reconnection.

Plain Language Summary Energy can transfer from the Sun to the Earth’s space environment
at varying rates. The results found here dismiss one model that could control the rate of energy change or
magnetic reconnection at the edge of the Earth’s magnetic field.

1. Introduction

At the start of magnetic reconnection’s life cycle is birth and then growth. Birth or initiation is generally
thought to occur in a current sheet at a small, localized position and then expand out of the reconnecting
plane (Milan et al., 2000; Shay et al., 2003). With application to the Earth’s magnetopause, this growth or
spreading in the out-of-plane direction occurs across the boundary in local time. Figure 1 presents a diagram
of this growth and geometry.

The rate of spreading has significant implications in a number of systems. At a planetary magnetosphere
this spreading rate, and subsequently the length of the magnetopause x line, controls how much energy is
coupled from the solar wind (Milan et al., 2012). The speed of spreading is relevant for component (Crooker,
1979; Luhmann et al., 1984) and antiparallel (Gonzalez & Mozer, 1974) magnetopause reconnection as well
as other local physics-based models predicting the location of reconnection (Hesse et al., 2013; Swisdak &
Drake, 2007). This spreading process is also monitored in the solar environment through the elongation of flare
ribbons (Li & Zhang, 2009; Qiu et al., 2017; Tripathi et al., 2006), as well as in lab plasmas (Dorfman et al., 2014;
Katz et al., 2010).

Several models have been proposed to describe reconnection spreading. At the core of the problem, informa-
tion needs to be transported away from where reconnection is initiated. One model suggests the expansion
is driven by a current out of the reconnecting plane (Huba & Rudakov, 2002; Lapenta et al., 2006; Neeraj et al.,
2013; Shay et al., 2003). A second model proposes that reconnection spreading results from Alfvèn waves and
would occur at a velocity equal to the out of plane Alfvèn speed (Katz et al., 2010). A third possibility is a com-
bination of the previous two. Here both mechanisms are capable of driving expansion, and the actual speed
is the maximum of the two (Shepherd & Cassak, 2012).

These theories and supporting numerical simulations have been based on models with flat current sheets
and static boundary conditions. By contrast, a planetary magnetopause is a curved surface and the boundary
conditions are temporally variable. A front or discontinuity in the solar wind will pass through the bow shock,
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Figure 1. Schematic diagram of reconnection spreading. Initiation occurs in a spatially localized region (left) and
spreads into an extended line (right). The region of reconnection is shown in red.

contact the nose of the magnetopause, and then be swept downtail where it contacts the tail magnetopause
at later times. If this solar wind discontinuity were a rotation of the magnetic field from purely northward to
purely southward, it would strike the subsolar magnetopause first, likely initiating reconnection near local
noon, and then contact other places as the front convects tailward in the magnetosheath. The speed of this
front’s motion through the magnetosheath provides an additional constraint to the spreading speed of mag-
netopause reconnection. No matter how fast the current carriers or Alfvèn waves may want to propagate,
reconnection cannot spread beyond the extent of the high shear angle magnetopause current sheet. The
speed of the front along the boundary is therefore the maximum speed of expansion. This paper measures the
propagation speed of a rotational discontinuity along the magnetopause in a global magnetohydrodynamic
(MHD) model and compares this value with experimentally measured spreading speeds from previous work.

2. Numerical Experiment

The Block-Adaptive-Tree Solar Wind Roe-type Upwind Scheme model (Powell et al., 1999; Tóth et al., 2005,
2012) was run to monitor the propagation of a solar wind front. Grid setup follows that of Welling and
Liemohn (2014) with the resolution improved to 1/8 RE within a block spanning± 16 RE in the geocentric solar

Figure 2. Slices of the Bz component of the magnetic field with 1-min time cadence in the XZ GSM plane. The yellow dots indicate that a value of −Bz is
contacting the magnetopause at that local time.
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Figure 3. Front spreading along the magnetopause boundary. The top panel
presents the GSM Y position of the extension of the front in the dawn (blue)
and dusk (green) direction. Each point corresponds to a single 5-s MHD step.
The middle panel is the length integrated along the magnetopause from
the dawn extent to the dusk extent. The blue trace is a running average. The
bottom panel is the rate of expansion of the front along the magnetopause.
MHD = magnetohydrodynamic.

magnetospheric (GSM) Y direction, ± 8 RE in the GSM Z direction, and
−4 to +12RE in the GSM X direction. A total of 10.65 million computa-
tional cells were used. Solar wind flow conditions were held constant with
an earthward flow speed of 400 km/s, a hydrogen number density of 5
cm−3, and a temperature of 1.2 × 105 K. To properly initialize the magne-
tosphere, the IMF was first southward oriented for 2 hr of simulation time
(IMF BZ = −2 nT) and then rotated northward for another 6 hr (BZ = +2
nT), allowing the system to achieve pseudo steady state.

To provide a direct comparison with spreading observations from Zou
et al. (2018), the IMF was rotated southward (IMF BZ = −5 nT) at 8 hr into
the simulation. As time progressed, the rotational front moved earthward
through the magnetosheath and draped along the magnetopause. BZ con-
tours in the GSM equatorial plane as a function of time are presented in
Figure 2. Red contours correspond to regions of northward magnetic field,
blue contours show regions of southward magnetic field.

To quantify when and where the front contacted the magnetopause,
profiles of Bz were drawn radially outward from the Earth. If a BZ < 0 value
was measured within 1/4 RE of the open/closed magnetic field bound-
ary along the radial profile, the front was defined to be “contacting” the
magnetopause at that location. Since the resolution of the MHD simula-
tion was 1/8 RE at the magnetopause, the range spanned two grid points.
The boundary between open and closed magnetic field topology was
identified through magnetic field line tracing.

The front first contacted the magnetopause near local noon at 8:10:40 in
the simulation time. As time continued, the local time of the contacted
region along the magnetopause grew. Measurements of the spreading
are presented in Figure 3. The top frame shows the limits of the contact
region in the GSM Y direction; the middle frame shows the integrated
length of the contact region along the magnetopause. Although the local
time extent of the front’s contact region expanded in local time, the rate
of expansion was not constant. The bottom panel of Figure 3 presents the

expansion rate as a function of time. The largest expansion rate of 2,503 km/s occurred during the 1-min
period just as the front contacted the subsolar magnetopause. Although the flow speed in the magnetosheath
is low near the subsolar region (Dimmock & Nykyri, 2013; Walsh et al., 2012), there is a relatively large angle
between the boundary plane and the Sun-Earth line. This means a small motion of the front in the GSM X
direction will translate to a large expansion in GSM Y and thus local time.

After the brief period (∼1 min) with rapid expansion along the boundary, the expansion rate was fairly steady
for ∼7 min at 825 km/s. During this period the −Bz front spread along the boundary to contact a region
extending close to 60 RE in local time. At this point (∼8:17 in the simulation) the measured length became
variable around a length of 60 RE and did not expand further. At local times near the terminator the mag-
netopause boundary became turbulent, and inspection of the bulk flow and magnetic topology presents
evidence for boundary waves and flux transfer events. Additionally, the magnetopause boundary increased in
thickness with distance from local noon. As the boundary becomes thicker it will not be detected as a “con-
tacted” boundary with the used metric. These conditions may limit the ability to measure expansion beyond
the terminator; however, since the primary objective in the study is to measure expansion speeds along the
dayside magnetopause, they are not problematic.

3. Discussion

As the front moved through the bow shock and into the magnetosheath it bent around the obstacle of
the magnetosphere. Similar results have been found experimentally through studies monitoring how an
interplanetary shock passed through the magnetosheath (Keika et al., 2009). Although many fronts that
contact the magnetopause are close to perpendicular to the Earth-Sun line, they can also be inclined or have
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Table 1
Spreading Speeds at the Magnetopause

Type Value

Theory-Alfvèn speed vAlfven
a 71.6 km/s

Theory-Current speed vJ
a 89.8 km/s

Experimental ionosphere vObserved
a 39.9 km/s

Numerical front speed vMHD Front 847 km/s

aValues from Zou et al. (2018).

different orientations. Studies modeling the dynamics of inclined shocks
striking the magnetopause have shown as a structure becomes more
inclined, the position at which it first strikes the magnetopause moves
away from the subsolar point (Oliveira & Raeder, 2014; Samsonov, 2011;
Samsonov et al., 2015). The geometry where a front first strikes the magne-
topause will in turn impact the spreading speed. Since the ionospheric sig-
natures of reconnection in the event being simulated here commence near
local noon, it is reasonable to assume the front was close to perpendicular
to the Earth-Sun line.

3.1. Front Propagation Speeds and Reconnection Spreading
At a planetary magnetosphere embedded within a flowing solar wind, IMF
structures will strike the nose of the magnetopause and then propagate tail-

ward along the boundary. This speed of propagation will limit the maximum spreading speed of magnetic
reconnection in the system. In the case of a discontinuity in the solar wind with a rotation from positive to
negative Bz, reconnection is anticipated to be initialized at the subsolar point of the magnetopause when the
discontinuity contacts the boundary. No matter how quickly reconnection may want to spread, the process
is limited by the propagation speed of the magnetosheath magnetic field discontinuity along the magne-
topause. For some boundary conditions, this process may not limit reconnection spreading. In a current sheet
with very little guide field and a small current, one may not anticipate reconnection to spread quickly based
on current theory. By contrast, for a boundary with a large guide field (large out of plane Alfvèn speed) or a
large current velocity, reconnection may be limited by the magnetosheath front speed.

3.2. Comparison With Past Measurements
Using projected measurements of ionospheric flows, Zou et al. (2018) were able to create estimates for mag-
netopause reconnection spreading rates. In the two events analyzed, the measured spreading rates were less
than those predicted by theory. Table 1 presents the spreading speeds obtained by Zou et al. (2018) from 23
May 2014 as well as the front velocity from the current study. As noted previously, theory predicts that the
spreading speed will be the maximum velocity of either the out of plane Alfvèn speed (vA) or the current car-
rier speed (vJ ; Shepherd & Cassak, 2012). The out of plane Alfvèn speed is described as vA = Bm√

𝜇0𝜌
where Bm

is the out of plane magnetic field or guide field, 𝜇0 is the permeability of free space, and 𝜌 is the mass den-
sity. The current velocity is vJ =

J
ne

where J is the current density, n is the number density, and e is the charge
of an electron. The upstream solar wind conditions in the current study were chosen to match those from
the 23 May 2014 event. The expansion speed of the front along the boundary found through MHD is more
than an order of magnitude larger than the measured and theoretical values of the reconnection spreading
speed. This indicates that the front expansion speed does not play a significant role in controlling or limiting
the spreading speed.

3.3. Reconnection Rotation
A possible alternative model to spreading reconnection is that reconnection is always active somewhere at
the magnetopause. In this model, rather than starting as a small patch and growing, an extended x line is
omnipresent and will just shift its position in response to IMF rotations or changes in the solar wind. Although
the community has long studied the steady state location of dayside magnetopause reconnection (Pu et
al., 2007; Trenchi et al., 2008), very little observational work has been conducted monitoring the dynamic
motion (or death) of an x line. One requirement of the “rotating reconnection line” model is that structures
or regions of active reconnection along the magnetopause boundary can be relatively steady and will some-
times move sunward during rotations. Hybrid and kinetic numerical modeling results are not consistent with
this picture. These models present a dynamic system where reconnection commonly turns on, off, and moves
tailward, even for steady solar wind conditions (Hoilijoki et al., 2017; Sibeck & Omidi, 2012). In these models it
is uncommon for reconnecting structures to move in the sunward direction.

Observations have also reported magnetopause reconnection to be both limited (Milan et al., 2016; Oksavik
et al., 2004; Walsh et al., 2017) as well as extended in local time (Dunlop et al., 2011; Phan et al., 2000).
Varying spatial extents along the boundary is consistent with a model where reconnection can be transient
and growing with time. It is not strictly consistent with an omnipresent reconnection line. Similar results
are found in the ionosphere. Rather than an omnipresent aurora or region of convection that may result
from omnipresent magnetopause reconnection, ionospheric measurements find signatures that fade/die
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and reform corresponding to different regions of reconnection turning off and on at the magnetopause
(Sandholt & Farrugia, 2002; Zou et al., 2018).

3.4. Observational Signatures
If the rotational front indeed passes by the magnetosphere faster than reconnection can spread in local time
from the point of first contact, there are several features that should be observable with spacecraft measure-
ments. Depending on how reconnection manifests, an observer should either find discontinuous patches of
reconnection or time periods where reconnection is observed near local noon but not at other local times.
The patchy reconnection scenario would occur once a front of −Bz in the magnetosheath has draped itself
over a range of local times at the magnetopause, but the initial patch of reconnection near local noon has not
had time to spread. This would leave large spatial areas with significant magnetic shear at the magnetopause
that could reconnect locally and start spreading themselves. This is similar to the scenario found in simula-
tions of the magnetotail plasma sheet where many spatially localized patches form initially and coalesce into
a larger continuous x line (Shay et al., 2003).

Alternatively, a scenario may exist where reconnection can only be initiated at the nose of the magnetopause
or the place of first contact. This may be due to the thickness of the boundary layer or the presence of stabi-
lizing flows in the magnetosheath off local noon. In this scenario, once again, one should be able to observe
active reconnection at or near local noon but regions away from noon with large magnetic sheath and no
active reconnection.

4. Conclusions

A global Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD simulation was used to monitor the
rate at which a +Bz to −Bz discontinuity passed through the magnetosheath and draped along the magne-
topause. The expansion speed of a front along the magnetopause boundary is important as it serves as a limit
for the maximum spreading speed of magnetopause reconnection. The −Bz front contacted the nose of the
magnetopause and expanded past the terminator in 7 min, corresponding to an average expansion speed in
local time along the boundary of 847 km/s. The simulation was designed with similar solar wind conditions
to a previous observational experiment that found magnetopause reconnection to expand at 30–40 km/s.
Since the front expansion is much larger than the observed spreading rates it is concluded that the expansion
rate of a solar wind front along the magnetopause does not limit the spreading rate for the current event and
others with similar solar wind conditions.
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