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Accommodation refers to a condition in which a transplant (or any tissue) appears to 

resist immune-mediated injury and loss of function.  Accommodation was discovered and 

has been explored most thoroughly in ABO-incompatible kidney transplantation.  In this 

setting, kidney transplants bearing blood group A or B antigens often are found to 

function normal in recipients who lack and hence produce antibodies directed against the 

corresponding antigens.  Whether accommodation is owed to changes in anti-blood group 

antibodies, changes in antigen or a change in the response of the transplant to antibody 

binding are critically reviewed and a new working model that allows for the kinetics of 

development of accommodation is put forth.  Regardless of how accommodation 
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develops, observations on accommodation in ABO-incompatible transplantation offer 

lessons applicable more broadly in transplantation and in other fields. 

 

Those who first engaged in the practice of clinical organ transplantation believed that 

kidney donors and recipients should be compatible for ABO blood groups (1-4), that is 

kidneys from blood group A and/or B donors should not be transplanted into recipients 

lacking the corresponding antigens.  Soon, however, anecdotal experience suggested that 

ABO-incompatible kidney transplants could be safely performed (5-7), until shortly 

thereafter experience suggested otherwise (8-10).  Thus, ~35% of ABO-incompatible 

kidney transplants never functioned compared with 5% of ABO-compatible transplants.  

The immediate failure of ABO-incompatible transplants could be caused by ischemia-

reperfusion injury or anti-blood group antibodies or anti-HLA antibodies, any 

combination of which could generate what later would be called hyperacute rejection 

(Figure 1).  Of the ABO-incompatible transplants that did evidence function, at least one 

half lost function within three months (versus <25% of ABO-compatible transplants).  

These transplants probably suffered early acute, antibody-mediated or accelerated cellular 

rejection of both.  Figure 2 shows the course of an ABO-incompatible transplant that was 

probably destroyed by early acute rejection.  Approximately 25% of ABO-incompatible 

transplants continued to function however and those functioning at 3 months survived 

thereafter as well as did ABO-compatible transplants (10).1

 

  The decades since these 

early reports have brought significant improvement in the preparation (e.g. antibody 

depletion, screening for anti-HLA), care and overall outcome of ABO-incompatible 

kidney transplants; however, results of some surveys still reveal for early acute rejection 

followed by a course approaching that of ABO-compatible transplants thereafter (11-13).  

Why are some ABO-incompatible kidney transplants subject to devastating and lethal 

injury during the early weeks after transplantation and what allows ABO-incompatible 

transplants to avoid ongoing susceptibility to antibody-mediated injury?  Below we offer 

our perspectives on these questions. 

An immunologist's view of ABO-incompatible transplantation 
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As an extension of classic principles of immunology, the outcome of ABO-incompatible 

transplants should be uniformly poor.  The key variables for interaction of anti-blood 

group antibodies with cells bearing the corresponding blood group substances have been 

known over 90 years.  Figure 3 illustrates experiments showing that the concentration of 

anti-blood group antibodies and the concentration of human complement determine the 

extent of lysis of human erythrocytes exposed to these factors in vitro.  If labeled 

erythrocytes with anti-blood group antibodies bound to the corresponding antigens are 

introduced into the circulation, the erythrocytes are rapidly and reliably cleared (Figure 

3).  Even those with the lowest concentrations of IgM in blood specific for foreign blood 

group antigens activate complement to a sufficient extent to induce complement-

mediated clearance of the erythrocytes (14, 15).  If the fate of ABO-incompatible 

transplants was faithfully modeled by experiments testing interaction of antibodies and 

complement with ABO-incompatible erythrocytes then one might expect that ABO-

incompatible kidney transplants in recipients with appreciable levels of anti-blood group 

antibodies would exhibit notable complement-mediated changes, if not "lysis."  

 

The targets of anti-blood group antibodies in ABO-incompatible transplants are 

endothelial cells and endothelial cells are not faithfully modeled by erythrocytes.  One 

limitation of erythrocytes is the small surface area, particularly as investigated in vivo.  

The considerably greater surface area of endothelium of a transplant might absorb much 

or all anti-blood group antibody from blood but, as a result, deposit a lower density of the 

antibody on surface of each endothelial cell.  However, under optimal conditions, a single 

molecule of IgM bound to the surface of an erythrocyte can initiate activation of 

complement to a sufficient extent to lyse the erythrocyte (16) and in ABO-

incompatibility, the impact of IgM predominates.  In this system, 800 IgG molecules 

must be bound to generate lysis (17).  In an homologous in vivo system, attachment of 

one molecule of IgM to an erythrocyte could still effect complement-dependent clearance 

while at least 2000 molecules of IgG had to attach to initiate complement activation (18).  

Thus, the greater surface area of endothelium in a kidney cannot by itself explain why 

ABO-incompatible kidney transplants are not severely injured or rapidly destroyed 

immediately upon reperfusion by the recipient.  
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Another explanation for absence of lysis in ABO-incompatible kidney transplants is 

intrinsic resistance of the transplant and cellular elements of the transplant to 

complement-mediated injury.  Endothelial cells and indeed all nucleated cells are not 

inert targets for attack by antibodies and complement.  Rather, endothelial cells resist 

complement-mediated injury through various properties of cell membrane and cell 

metabolism that are less available or unavailable in erythrocytes.  The surface of 

endothelial cells is decorated by acidic saccharides, such as heparan sulfate, and by 

complement regulatory proteins that slow and potentially block activation of complement 

(19).  Further, nucleated cells actively dispose of the products of complement activation, 

profoundly modifying the kinetics of injury and introducing the potential for repair (20-

23).  Perhaps it is not surprising then that the pathology of hyperacute rejection is not 

characterized by "lysis" of cells but rather by ultra-structural changes in plasma 

membranes (and by "regional" changes such as aggregation of platelets and variable 

attachment of neutrophils) that reflect fewer membrane attack complexes than are needed 

for lysis of endothelial cells (24-27).  Thus, activation of complement in an organ 

transplant sparks a race between the generation and disposal of terminal complexes and 

the development of hyperacute rejection requires either the rapid and quantitative 

generation of membrane attack complexes on endothelial cells or the compromise of 

endothelial cell defenses.  The lower density of IgM bounding in newly reperfused ABO-

incompatible transplants usually cannot overcome endothelial defenses (xenogeneic 

organ grafts in contrast have intrinsically defective control of heterologous complement 

and hence the same levels of anti-endothelial antibodies reliably induce hyperacute 

rejection (28).  Consistent with this concept, most ABO-incompatible transplants 

performed before methods for antibody depletion were used did not undergo hyperacute 

rejection (10, 29).  

 

Most ABO-incompatible transplants performed in the era before antibody removal was 

performed underwent early acute rejection.  Early acute rejection (antibody-mediated 

and/or accelerated cellular rejection) requires far less complement activation (~10% of 

level required for hyperacute rejection) (30-34).  The activation of smaller amounts of 
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complement on endothelial cells triggers endothelial cell "activation," characterized by 

changes in blood vessel physiology from hindering to promoting coagulation, 

inflammation and vasoconstriction (31, 33).   

 

Classical studies on the fate of erythrocytes with bound antibodies might not faithfully 

represent organ transplants but they do provide a further explanation for the scarcity of 

hyperacute rejection of ABO-incompatible transplants compared to the frequency that 

would be expected in recipients with IgG antibodies against donor HLA.  After human 

erythrocytes are exposed to IgM anti-blood group antibodies in vitro and infused in 

human subjects, the erythrocytes are rapidly cleared (Figure 4) and potentially destroyed 

(14).  However, while practically all erythrocytes are removed from the circulation, under 

some condition erythrocytes with bound anti-blood group antibody are not destroyed and 

indeed reenter the circulation, surviving as long as control erythrocytes (to which 

antibody was not bound) (35).  In this setting, activation of complement by IgM actually 

protects the erythrocytes by generating C3d that blocks further covalent attachment of C3 

or C4 to the surface.  Blocking of reactive sites on endothelium with C3d or C4d might 

limit  the number of membrane attack complexes present at a given time and contribute 

the low frequency of hyperacute rejection in ABO-incompatible transplantation.  

However, this mechanism should not prevent development of acute rejection because far 

less activation of complement is needed to generate that condition.    

 

Given these considerations, why does hyperacute rejection of ABO-incompatible 

transplants sometimes occur?  Comparison of outcomes of donated left versus right 

kidneys indicate that kidney donors vary considerably in susceptibility of their kidneys to 

acute injury (36-38).  The nature of this variation is poorly understood but much of the 

variation is manifest early after transplantation, especially in susceptibility to ischemia-

reperfusion injury. Occasionally, preservation or ischemia-reperfusion injury or 

concurrent donor-specific anti-HLA antibodies in combination with anti-donor blood 

group antibodies could increase the activation of complement to an extent to cause 

hyperacute rejection.  Such a concept is consistent with descriptions of the clinical course 

and pathology of transplants performed in the era before antibody depletion was 
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performed.  For instance, in one series of 12 subjects, none of four transplants of kidneys 

from living ABO-incompatible donors exhibited immediate failure and pathology 

consistent with hyperacute rejection whereas 3 of 8 ABO-incompatible transplants from 

deceased donors in recipients not depleted of antibodies exhibited immediate non-

function and inflammation consistent with hyperacute rejection (29).   

 

Since ABO-incompatible transplants are susceptible to early antibody-mediated rejection 

it is not surprising that the level of anti-donor blood group antibodies in the recipient at 

the time of kidney transplantation or before the antibodies are depleted predicts the early 

outcome of transplants (11, 12, 39-43).  Consistent with the concepts regarding 

differential susceptibility to hyperacute and acute antibody-mediated rejection are 

observations on the transplantation of kidneys from donors of blood group A2.  Blood 

group A2 binds less anti-blood group antibody than blood group A1 and kidneys of blood 

group A2 rarely undergo hyperacute rejection (39, 44-46); but do sometimes exhibit early 

acute antibody-mediated rejection and graft loss (11, 47, 48).  

 

Defiance of immunology in ABO-incompatible transplantation 

In striking contrast to the linear relationship between concentration of antibodies against 

foreign blood groups and lysis of target cells in vitro and there can be practically no 

relationship between the levels of antibodies against donor blood groups in the blood of 

the recipient and the function of an ABO-incompatible kidney transplant (Figure 5), 

especially after the period of risk of early acute injury has passed.  Once an ABO-

incompatible transplant is successfully perfused by the blood of the recipient and function 

is established for some period, the antibodies implicated in the immediate demise of 

ABO-incompatible transplants can return to the circulation without harming the 

transplant.  Abrupt increases in the levels of anti-donor blood group antibodies are 

sometimes observed coincident with rejection, for reasons we later discuss, but, high 

levels do not foreclose the fate of a graft.  One of us first observed this paradox in the 

1980s (49).  An individual of blood group O received a kidney from a donor of blood 

group A.  The recipient was depleted of antibodies by plasma exchange before and 

immediately after transplantation.  Over days however antibodies specific for donor 
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blood group returned to the circulation and neither the presence nor the level in the blood 

correlated with the function of the incompatible graft (Figure 5).  Others observed a 

similar phenomenon (50-53), but no explanation had been offered.   

 

Changes in antibody in ABO-incompatible transplantation 

Thinking as immunologists, we (and others) believed the most likely explanation for the 

happy coexistence of the transplant with antibodies directed against donor antigens was 

that either the antibodies or the antigen had changed in ways that precluded the antibody-

antigen interactions observed in vitro or upon reperfusion of the transplant.  At the time 

of transplantation antibodies specific for blood groups of the donor are clearly capable of 

recognizing and binding to antigens expressed in the graft since the levels of donor-

specific anti-blood group antibodies decrease drastically after reperfusion of transplants.  

Figure 2 illustrates this phenomenon in one of the first reports of deliberate ABO-

incompatible transplantation in a recipient from whom antibody was not depleted (we do 

not illustrate our recipient because plasmapheresis was performed immediately after 

transplantation).  During the days that follow, anti-blood group antibodies often return to 

the circulation of recipients regardless of whether antibodies had been depleted at the 

time of transplantation.  The levels in some recipients are below or at the baseline levels 

before transplantation and the levels in some others "rebound" to exceed the baseline (42, 

50, 52-54).  In some series, the rebound to higher levels is associated with early antibody-

mediated rejection.  Investigation of levels of antibodies against donor blood groups and 

B cell responses has suggested that decreased production of donor-specific anti-blood 

group antibodies can be detected in graft recipients and the suggestion has been made that 

perhaps this decrease explains the well-being of ABO-incompatible kidney transplants 

(55, 56).  However, the general experience has been that at least some recipients of ABO-

incompatible kidney transplants produce substantial amounts of antibody against the 

donor antigen and the preponderance of ABO-incompatible transplants contain deposits 

of C4d, in the absence of impaired function and consistent with ongoing binding of anti-

donor antibodies (57-59).  Even more to the point, the extent of antibody rebound after 

the first weeks appears to have little or no impact on the long-term outcome (Figure 5) 

(60, 61).   
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One problem that confounds investigation of the levels of antibodies against donor-blood 

groups in ABO-incompatible transplantation is that at a given point in time the transplant 

can absorb a substantial amount of antibody against donor blood group antigens (Figure 

2).  In experimental models, donor-specific antibodies have been quantitatively depleted 

by perfusion of kidneys expressing antigens of interest (25, 62, 63).  The absorption of 

substantial amounts donor-specific antibodies, whether those directed against xenogeneic 

antigens or blood groups or HLA antigens leaves in the circulation antibodies that have 

lower avidity interactions with donor antigens or antibodies directed antigens of lower 

abundance in the graft and conceivably no appreciable antibodies of pathogenic 

significance.  We shall discuss this problem below. 

 

Changes in antigen in ABO-incompatible transplants 

Could the antigen in the graft change in ways that hinder antibody binding?  Based on 

binding of lectins and monoclonal antibodies specific for human blood groups we 

concluded that antigens in the graft did not change (49, 64).  Using labeled blood group 

antigens as probes, we also found that at least some antibodies deposited in the kidney 

transplants were specific for blood group of the donor (64) (previously, anti-blood group 

antibodies had been eluted from an ABO-incompatible kidney transplant that was 

undergoing rejection) (65).  On the other hand, the group in Göteborg, which had been 

conducting numerous ABO-incompatible transplants, also conducted elegant biochemical 

and immunochemical analysis of neutral glycolipid extracts from transplants (45, 47, 53).  

This work suggested that kidneys from donors of blood group A2, which could be safely 

transplanted into recipients with anti-A antibodies, contained A2 antigen that was less 

reactive with anti-A2 antibodies (45).  More pertinent perhaps, was the observation that 

blood group substances could change qualitatively and quantitatively after transplantation 

and perhaps these changes could explain the better than expected outcomes (47, 66).  We 

know of no work since then that would dispute the possibility that blood group antigen in 

transplants changes or decreases over time and that less antibody binds to graft as a 

result.  Nevertheless, our subsequent work would tend to limit the impact of changes in 

antigen.  First, using a foot printing approach to identify carbohydrate epitopes actually 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

bound by antibodies in a related system (antibody binding to Galα1-3Gal on swine cells) 

we found that even under the most optimal conditions only a small fraction of epitopes 

are likely occupied by antibody (67, 68).  Second, we found that steric hindrance in part 

limited antibody binding.  And, third, and probably most important we found that while 

antibody binding was likely the limiting event in immediate (hyperacute) rejection, the 

pathogenesis of which depends on rapid assembly of complement membrane attack 

complexes, antibody binding does not limit the molecular events the generate acute 

vascular (antibody-mediated) rejection caused by activation of endothelial cells in the 

graft (30, 31, 69).  Antibody and complement induced activation of endothelial cells 

requires less than 10% as much antibody binding as the changes in endothelium believed 

to underlie hyperacute rejection and make the avoidance of rejection by loss of antigen a 

rather daunting challenge (70).  Thus, neither changes in the antibodies directed against 

donor blood groups nor in the blood groups expressed in kidney transplants persuasively 

explained the success of ABO-incompatible transplantation. 

 

Acquired resistance to injury by antibody and complement 

When fundamental principles of immunology failed to explain the success of ABO-

incompatible transplantation, we turned to a new biological paradigm - that success might 

reflect the accommodation of the graft to a hostile environment.  The observations in 

ABO-incompatible transplantation in patients appeared to be recapitulated in 

experimental efforts to prolong the survival of porcine organs transplanted into non-

human primates.  The xenotransplantation model had the advantage that rejection always 

occurred if the recipient was not depleted of xenoreactive antibodies but when those 

antibodies were removed a graft might function for a period of days after antibodies 

returned to the circulation of the recipient (63, 71).  The model allowed us to study the 

antibodies in serum and the antibodies deposited in functioning grafts (28, 63).  This 

work confirmed the idea that a transplant could undergo changes unrelated to antigen 

expression that would enable the transplant to resist otherwise devastating immune-

mediated injury.  We named this change "accommodation" (28). 
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Accommodation has been observed frequently during the past 25 years.  If one applies 

the definition of accommodation we first used - continued function of an organ transplant 

despite the presence in the recipient of antibodies against donor antigens expressed in the 

graft - accommodation is likely to be found in most ABO-incompatible transplants and is 

likely the most common outcome of such transplants, at least for a time.  Accommodation 

also occurs, although less often, in ABO-compatible transplants when recipients are 

found to have antibodies specific for donor-HLA (72-74).  The most pressing questions 

are what generates and what maintains accommodation.   

 

Mechanism(s) of accommodation 

Although antibodies directed against blood group antigens of the donor clearly could 

initiate severe vascular rejection, what changes could make a graft inured to the presence 

of such antibodies in a recipient was unknown when ABO-incompatible transplantation 

was pursued in the 1980s.  Two possibilities considered at the outset were: (i) that 

transplantation inflicts injury that renders a kidney highly susceptible to antibody and 

complement but repair of this injury engenders resistance; and (ii) that sub-lethal injury 

would induce a condition of increased resistance to cytotoxicity (28).  We think both 

concepts are correct at least during the initial hours and days after transplantation, 

cytoprotective factors are essential to overcoming the ischemic injury inevitably suffered 

during transplantation.  Furthermore, the cytoprotective factors, such as HO-1 expression 

(75) and AKT activation (76) are inducible or activated under conditions of stress and in 

this way heighten the protective posture needed for the transplant to survive (Figure 1).  

However, if cytoprotection is essential for accommodation to occur, it is not the 

process(s) that sustains the function of transplants under persistent assault by antibodies 

and complement or other noxious factors.  Nor do heightened expression cytoprotective 

genes and proteins determine the ultimate outcome of transplants (54, 77, 78). 

  

Rather, we have explored and will soon report other processes and changes we think 

sustain the functional integrity of transplants in the face of ongoing attack by complement 

and noxious substances and hence represent accommodation manifest in ABO-

incompatible transplants, as listed in Figure 1.  This new model of accommodation 
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springs from clinical observations of ABO-incompatible transplants suggesting existence 

of a period of vulnerability followed by ongoing loss of vulnerability.  We believe this 

model might have broader application as discussed below.  This model, actually a 

working hypothesis, shown in Figure 1 accounts for molecular and physiologic changes 

that would prevent or reverse: (i) the immediate or hyperacute rejection; (ii) the "early" 

irreversible rejection observed within the first weeks after transplantation; but stresses 

(iii) processes that confer ongoing repair and a new higher threshold for injury lethal 

injury from complement and phagocyte activation.  The delayed onset of increased 

capacity for repair may reflect in part changes in the biosynthesis of antibody engendered 

by earlier interaction of antibodies and complement and phagocytes with antigen targets 

(79).  The increased threshold for injury may reflect in part remodeling of blood vessels 

and supporting structures (80).  

 

Some lessons from accommodation of ABO-incompatible transplants 

The discovery and investigation of accommodation in ABO-incompatible transplantation 

has brought insights and lessons potentially applicable more broadly in transplantation 

and in other fields.  We shall discuss a few of these in closing. 

 

One lesson, mentioned above, concerns the possibility that antibodies, or absence thereof, 

in the blood of transplant recipient might misrepresent the state of immunity to the donor 

and the presence or absence of accommodation.  As shown above in Figure 2 and in 

many experimental settings, ABO-incompatible transplants can absorb much of the 

donor-specific antibody from the circulation of the recipient.  Therefore, the level of 

donor-specific antibodies in the blood does not necessarily reflect the level of antibody 

produced or the amount bound to the graft.  At an extreme, a recipient with no detectable 

donor-specific antibodies in blood might nonetheless produce antibodies that bind to and 

act on the graft.  To test the possibility, we examined donor-specific B cell responses in a 

series of (ABO-compatible) kidney transplant recipients that had no appreciable donor-

specific antibodies in their blood (81).  All of these subjects and nearly all others 

examined since exhibit a donor-specific B cell response characterized by secretion of 

donor specific IgM and sometimes donor-specific IgG during the first several months 
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after transplantation.  Absence of these antibodies in the blood probably reflects 

absorption to the transplant and accommodation to the bound antibody.  Consistent with 

this possibility is low titer of donor-specific blood group antibodies in many recipients of 

ABO-incompatible kidney transplants and the high frequency of C4d deposits observed 

in ABO-incompatible transplants with unimpaired function (57-60), the combination of 

which suggests accommodation.    

 

As another lesson, the studies on C4d in ABO-incompatible transplantation and the 

classical work on the fate of erythrocytes with bound anti-blood group IgM (35) should 

remind us that C4d is not pathogenic.  Every site with covalently bound C4d is 

unavailable for reaction with C3 and C4 and hence protected (82).  If C4d sometimes 

marks the presence underlying disease it also marks accommodation and mechanistically 

the inert property of C4d is more in keeping with accommodation.  

 

Another lesson emerging from investigation of ABO-incompatible transplantation and 

later from investigation of xenotransplantation concerns the how one might view the 

processes involved in rejection and accommodation in the broader context of host 

defense.  The responses of blood vessels to activation of complement (and/or interaction 

with activated phagocytes) characteristic of rejection reflect initial physiologic responses 

to foreign agents and noxious conditions (19, 80, 83).  At sites where an infectious agent 

or toxin is located, the responses contain microorganisms or toxins, preventing systemic 

spread (the problem in transplantation is that the assault and the response is diffuse in the 

grafted organ).  The processes we think reflect accommodation, then, are likewise 

orchestrated to reverse the pathophysiology introduced by the initial defenses once the 

organism or toxin is destroyed.  The "delay" of days or even weeks in the onset of 

accommodation is consistent with that concept.  Viewed in this way, accommodation is 

not merely the resistance to injury we first imagined and is better envisioned as a process 

that repairs injury and regenerate tissue functions.  Understood in this way, one can see 

how accommodation enables cancer cells to not only survive but also to expand and 

progress in hostile microenvironments and in the face of immune surveillance (84-86).  
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As one final "lesson" or hypothesis, we would suggest that if ABO-incompatible 

transplants are accommodated to ongoing production of anti-blood group antibodies, then 

one cause of rejection could be the loss or diminution of accommodation, as might occur 

with intercurrent illness or infection.  How would rejection owed to diminution of 

accommodation be manifest?  We think one manifestation would be loss of ability to 

absorb and metabolize donor-specific antibodies leading to the reappearance or to an 

increase in the level of donor-specific antibodies in blood.  If this concept is correct then 

graft injury or disease would precede rather than follow increases in the level of 

antibodies specific for donor blood groups.  Such an order of events - graft injury 

followed by increases in donor-specific antibodies - has been observed in the clinical 

setting for donor-specific anti-HLA antibodies (87, 88) and in the setting of experimental 

organ xenografts for anti-Gala1-3Gal antibodies (34, 89).  Conversely, restoration of 

accommodation would be marked by a decrease of anti-donor antibody levels in blood.  

From this perspective, donor-specific antibodies in blood could mark existing graft injury 

and represent a late and not an early indication of antibody-mediated injury.  Because 

ABO-incompatible transplantation crosses a barrier comprised by well-defined antigen 

and an antibody response to that antigen in all immune competent recipients, that setting 

should be ideal for testing hypotheses such as this one regarding accommodation.  

Although relatively infrequent, these transplants might thus shed light on avenues, 

besides immunosuppression, for treatment of autoimmunity and transplant rejection and 

new opportunities for targeting cancer and chronic infection. 

 

 

Footnotes: 

1. The outcomes were extrapolated from The Kidney Transplant Registry report of 1967 

(10) for living donor transplants; the results of deceased donor transplants were so poor, 

little sense could be distilled.  
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Figure Legends 

 

Figure 1.  Chronology of rejection and accommodation of ABO-incompatible kidney 

transplants. A. Rejection of ABO-incompatible kidney transplants.  Ischemia-

reperfusion injury and antibodies directed against donor blood group and possibly against 

HLA antigens activate the complement system.  If complement activation from this 

combination of factors is robust and fast, hyperacute rejection may ensue within minutes 

to hours of the time reperfusion.  Today, hyperacute rejection is rare because of cross 

matching and depletion of anti-blood group antibodies.  However, lower levels of these 

antibodies can induce early acute vascular rejection.  After several weeks, however, the 

risk of rejection of an ABO-incompatible graft is no higher than that of an ABO-

compatible graft.  One explanation for the decrease in the risk of rejection may be 

"accommodation" of the graft to ongoing presence of anti-blood group antibodies in the 

recipient. B. Accommodation of ABO-incompatible kidney transplants.  ABO-

incompatible kidney transplants exhibit heightened risk of antibody-mediated rejection 

during the first several weeks up to approximately one month after transplantation.  This 
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risk reflects the ongoing production of antibodies specific for blood group antigens in the 

graft.  Susceptibility to early rejection (and ischemia-reperfusion injury) is mitigated by 

intrinsic resistance of nucleated cells and tissues to complement mediated injury and by 

the immediate response to complement activation on cell surfaces.  Over a period of 

weeks, grafts acquire a higher level of resistance to injury by antibodies and complement.  

This heightened resistance reflects in part the repair of damage already inflicted and in 

part changes at the cellular and tissue level that reduce susceptibility to injury.  The 

condition in which a tissue or organ resists otherwise lethal injury by complement or 

other factors is called "accommodation." 

 

Figure 2. Concentration of anti-blood group antibodies in the blood before and after 

kidney transplantation.  Originally published by Hume et al. (Annals of the NY 

Academy of Sciences 120: 578, 1964) with permission of the publisher (John Wiley & 

Sons).  The figure (modified for clarity) depicts the concentration of anti-blood group B 

antibodies (1/titer determined using 2-fold dilutions, i.e. the reciprocal log2

 

) in a patient 

of blood group A before and after transplantation of a kidney from a donor of blood 

group B (solid line).  Also shown are the concentrations of anti-blood group B antibodies 

in two controls, patients of blood group O who received kidney transplants from donors 

of blood group O (dashed lines).  The figure shows that immediately upon 

transplantation, antibodies against donor blood group B are depleted from the blood 

(arrow; from 1:1024 to ~1:25) and within 12 hours are undetectable.  The figure also 

shows that anti-donor blood group antibodies are detected again 5 days after 

transplantation, likely the time that function deteriorates from rejection.  On day 7, 

urinary output decreased, presumably from rejection.  In two controls (blood type O 

kidneys in blood type O recipients) the levels of anti-blood group B antibodies do not 

change notably after transplantation.  The figure shows that a functioning transplant 

depletes all or nearly all anti-blood group antibody from a recipient. 

Figure 3. Lysis of human erythrocytes by blood group-

-
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.  The illustrations are from the US Army Medical 

Research Laboratory Report #818  and are presented with permission.  A. Lysis of 

-blood group 

  Three dilutions of a reference serum, 

used as a source of anti-blood group A antibodies were used to determine the QH50, the 

dilution of a serum that lyses 50% of a standard red cell suspension (QH50) in the 

presence of excess complement.  The QH50 for the three dilutions (shown at the bottom) 

indicate that lysis is a direct and predictable function of the concentration of anti-A 

antibodies.  B. Assay of various sources of human complement for ability to lyse 

erythrocytes when combined with serial dilutions of serum from an individual of 

blood group O.  A standard volume (0.1 ml) of serum containing anti-A or anti-B 

antibodies is combined with various volumes of absorbed human serum lacking anti-A or 

-B antibodies (i.e. human complement) and added to a standard preparation of washed A- 

or B-type erythrocytes.  The figure shows that lysis is a function of the amount of human 

complement added. 

Figure 4. Intravascular hemolysis of blood group A- and blood group B-

incompatible erythrocytes in human subjects.  This figure depicts classic experiments 

performed to ascertain the mechanism of clearance of blood group A and blood group B 

erythrocytes administered to human subjects with the corresponding anti-blood group 

antibodies.  Depending on the isotype and concentration of anti-A or -B blood group 

antibodies and the antigen density and the number of cells administered, clearance might 

be generated by immediate complement-mediated lysis (intravascular hemolysis) or by 

sequestration by phagocytes in spleen, liver or blood.  In the examples shown, 

erythrocytes are labeled in vitro with 51Cr and then a small volume (<1 ml) is given 

intravenously. A. Intravascular hemolysis of 51Cr-labeled blood group A and blood 

group B erythrocytes within minutes after administration to subjects with anti-A 

and anti-B antibodies.  Hemolysis occurs even in subjects whose antibody titers are too 

low to generate hemolysis in vitro.  The table is from M. Cutbush and P.L. Mollison, Brit 

J Haemat 4: 115, 1965 with permission of the publisher (John Wiley & Sons).  B. 

Intravascular hemolysis 51Cr-labeled erythrocytes of blood group B administered to 
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a subject of blood group (open circles) and 51Cr-labeled blood group A2 

erythrocytes into a subject of blood group O (solid circles).  Erythrocytes of blood 

group A2 have less antigen but intravascular hemolysis still occurs to the same extent 

(>99%), if slightly less quickly.  From Mollison's Blood Transfusion in Clinical Medicine

 

 

eleventh ed., H. G. Klein and D.J. Anstee (2005), Chapter 10, Fig 10.3.  C. Laboratory 

findings after transfusion of 140 ml of blood group A2 erythrocytes into a patient of 

blood group O.  Although the density of blood group A2 antigen is low, sufficient 

antibody is bound to decrease the concentration 32-fold (1:512 to 1:16) and to cause 

activation of complement and intravascular hemolysis, indicated by the presence of 

hemoglobin in plasma and urine.  Some erythrocytes were cleared by phagocytosis 

indicated by the increase in bilirubin.  The table is from C.P. Duvall et al. Transfusion 14: 

382, 1974, with permission of the publisher, John Wiley & Sons.   

Figure 5. Relationship or lack thereof between the concentrations of IgM and IgG 

specific for blood group A in a kidney transplant and function of the transplant.  A 

patient of blood group O received a kidney transplant from a donor of blood group A and 

the levels of IgM and IgG in the recipient specific for blood group A and the serum 

creatinine (an inverse measure of renal function) were measured at various times after 

transplantation.  Repeated biopsies confirmed the continued expression of blood group A 

on donor endothelium (not shown).  The figure depicts these values at times other than 

those immediately following antibody depletion.  The results reveal absolutely no 

relationship between the levels of antibodies directed against donor blood groups and the 

function of the transplant in contrast to the impact of anti-blood group antibodies on 

erythrocytes depicted in Figures 2-4.   
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