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Abstract 

 

PROBLEM: 

To study the mechanisms of placenta function and the role of extracellular 

vesicles (EVs) in pregnancy, it is necessary to develop an ex vivo system that 

retains placental cytoarchitecture and the main metabolic aspects, in particular 

the release of EVs and soluble factors. Here, we developed such a system and 

investigated the pattern of secretion of cytokines, growth factors and extracellular 

vesicles by placental villous and amnion tissues ex vivo. 

METHODS OF STUDY: 

Placental villous and amnion explants were cultured for two weeks at the 

air/liquid interface and their morphology and the released cytokines and EVs 

were analyzed. Cytokines were analyzed with multiplexed bead assays and 

individual EVs were analyzed with recently developed techniques that involved 

EV capture with magnetic nanoparticles coupled to anti-EV antibodies and flow 

cytometry.  
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RESULTS: 

Ex vivo tissues (i) remained viable and preserved their cytoarchitecture; (ii) 

maintained secretion of cytokines and growth factors; (iii) released EVs of 

syncytiotrophoblast and amnion epithelial cell origins that contain cytokines and 

growth factors. 

CONCLUSION: 

A system of ex vivo placental villous and amnion tissues can be used as an 

adequate model to study placenta metabolic activity in normal and complicated 

pregnancies, in particular to characterize EVs by their surface markers and by 

encapsulated proteins. Establishment and bench-marking the placenta ex vivo 

system may provide new insight in the functional status of this organ in various 

placental disorders, particularly regarding the release of EVs and cytokines. Such 

EVs may have a prognostic value for pregnancy complications.   

 

KEYWORDS: 

Cytokine, pregnancy, 3D cultures, growth factors, syncytiotrophoblast, amnion, 

alarmins 

 

 

Introduction 

 

The placenta plays a critical role in fetal growth and development and 

orchestrates major maternal adaptations of pregnancy such as carbohydrate 

intolerance1-5 and immune adaptations6-30. Placental dysfunction has been 

implicated in major complications of pregnancy such as preeclampsia31-56, fetal 

growth restriction57-72, fetal death73-80, and preterm labor81-90. The placenta has 

also been considered at the center of the chronic disease universe91, 92

The study of human placenta in vivo is challenging and has significant 

restrictions. Animal models have been useful, although there are fundamental 
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differences in placentation among mammals93-97. Many studies of human 

placenta utilize isolated primary cells or placenta-derived cell lines98-101. While 

major discoveries have emerged from such studies102-104, isolated cells do not 

adequately recapitulate important aspects of tissue function related to cell-cell 

communications in vivo. This is the rationale to develop three-dimensional 

models which maintain the cellular relationships ex vivo. Such three-dimensional 

models have proven to be of major value in investigating cancer development105-

109, viral pathogenesis110-113, and testing anti-cancer114 and antiviral 

compounds115

It is now increasingly apparent that the maternal-fetal dialogue is more complex 

than previously recognized

 under controlled laboratory conditions.  

116-119. In addition to many soluble factors, such as 

hormones and cytokines implicated in this communication, it is now recognized 

that extracellular vesicles (EVs) can also mediate crosstalk between the feto-

placental unit and the mother120-131. EVs carry lipids, proteins and miRNA that 

can convey information about the status of the fetus and placenta132-134. 

Moreover, EVs carry immune mediators (e.g. cytokines) that facilitate cell-to-cell 

communication, which are present on both the surface and inside the 

microvesicles135-145

To study the mechanisms of placenta function and the role of EVs in pregnancy, 

it is necessary to develop an ex vivo system that retains placental 

cytoarchitecture and continues to release EVs and soluble factors under 

controlled laboratory conditions. Here, we report on such a system. Using 

nanotechnology, we analyzed individual EVs released by placental tissues ex 

vivo and assessed EV-bound and EV-encapsulated cytokines. Establishment 

and bench-marking this placenta ex vivo system provides a basis to study the 

nature of various placental disorders, and in particular the release of EVs and 

cytokines. Their release by the syncytiotrophoblast into the maternal circulation 

has been proposed as a placental liquid biopsy, which can provide insight into 

the functional status of the organ and may be a source of biomarkers to predict 

pregnancy complications

. 

146. Herein, we report a system of ex vivo placental 

villous and amnion tissues that can be used as an adequate model to study 
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physiological and pathological processes during normal and complicated 

pregnancies. 

 

 

Methods 

Placental tissues (the placenta and fetal membranes) from women who 

delivered at term without labor (n=10) were obtained at the Detroit Medical 

Center, Wayne State University, and the Perinatology Research Branch, an 

intramural program of the Eunice Kennedy Shriver National Institute of Child 

Health and Human Development, National Institutes of Health, US Department of 

Health and Human Services (NICHD/NIH/DHHS) (Detroit, MI, USA). The 

collection and utilization of biological materials for research purposes were 

approved by the Institutional Review Boards of these institutions. All participating 

women provided written informed consent. Immediately after delivery, three 

random samples from the placental villi were collected using a metal grid and the 

Random Position Generator DICE software (Perinatology Research Branch, 

Detroit, MI, USA). Amnion was gently separated from the chorion of the fetal 

membranes. Samples from the placental villi and amnion were placed in 50mL 

tubes containing DMEM and shipped overnight to NIH on cold packs. Upon 

receipt, villi were sectioned into 2 mm x 6 mm strips, washed thoroughly in 1X 

phosphate-buffered saline (PBS) and cultured on Gelfoam absorbable collagen 

sponges (Pfizer, New York, NY) at the air-liquid interface, as has been described 

for other tissues

Sample preparation and storage 

147 in 0.1 μm filtered phenol red free DMEM supplemented with 

5% characterized, charcoal stripped FBS, 50 μg/ml gentamicin and 2.5 μg/ml 

Amphotericin B at 37°C, 5% CO2.  Amniotic membrane was sectioned into 3 x 3 

mm pieces, washed thoroughly with PBS, and cultured in same medium. 

Equivalent masses were cultured in triplicate for each donor.  Tissues were 

collected at day 1, 7 and 14 and fixed in 10% formalin, sent for paraffin 

embedding, sectioning, and H&E staining.  H&E sections were evaluated by 

perinatal and obstetric pathologists at Wayne State University School of 
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Medicine.  Medium was collected and changed at days 1, 4, 7, 10 and 14 after 

initiation.  Medium samples were centrifuged at 400 x g for 5 minutes to remove 

cells and frozen at -80°C.  

Medium samples were split into multiple fractions. One aliquot was kept 

untreated, another portion was treated with Exoquick TC (System Biosciences, 

Palo Alto, CA), according to manufacturer’s protocols.  Briefly, ExoQuick TC was 

added to supernatants at a ratio of 100 μl of ExoQuick TC to 500 μl of sample 

and refrigerated overnight at 4°C.  ExoQuick/sample mixtures were centrifuged at 

1500 x g for 30 minutes to pellet EVs.  Supernatant was collected and saved for 

cytokine measurement of EV-free supernatant. The pellet was centrifuged again 

at 1500 x g for 5 minutes and all traces of fluid were removed resulting in an EV 

enriched preparation.  The pellet was resuspended in 1X PBS in the original 

volume and cytokines were measured on intact and lysed EVs.  

Preparation of EV fractions 

We previously developed an in-house multiplexed bead-based assay for 

measurement of the following cytokines/growth factors: IL-1α, IL-1β, IL-2, IL-4, 

IL-6, IL-8, IL-10, IL-13, IL-15, IL-16, IL-18, IL-33, Calgranulin A (S100A8), 

Calgranulin C (S100A12), C-reactive protein (CRP), CXCL6 (granulocyte 

chemotactic protein 2), CXCL13 (B lymphocyte chemoattractant), Eotaxin 

(CCL11), granulocyte-macrophage colony-stimulating factor (GM-CSF), growth-

regulated alpha (GRO-α or CXCL1), HMGB1 (high mobility group box 1), 

interferon-β (IFN-β), interferon-γ (IFN-γ), interferon-γ-induced protein (IP-10 or 

CXCL10), interferon-inducible T-cell alpha chemoattractant (ITAC or CXCL11), 

lactoferrin, macrophage colony-stimulating factor (M-CSF), monocyte 

chemoattractant protein-1 (MCP-1 or CCL2), macrophage migration inhibitory 

factor (MIF), monokine induced by IFN-γ (MIG or CXCL9), macrophage 

inflammatory protein-1α (MIP-1α or CCL3), MIP-1β (CCL4), MIP-3α (CCL20), 

regulated on activation normally T-cell expressed and secreted (RANTES or 

CCL5), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), 

and TNF related apoptosis inducing ligand (TRAIL), as previously described with 

Cytokine measurement 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

minor modifications148-150

Magnetic beads (Luminex, Austin, TX) with distinct spectral signatures 

(regions) were coupled to cytokine specific capture antibodies according to 

manufacturer’s recommendations and stored at 4°C. All antibody pairs were 

verified to be free of cross reactivity. Standards and samples were combined with 

bead mixtures and incubated overnight at 4°C. Intact EV samples and lysed EV 

samples, to which Triton X was added at final concentration of 1%, were run in 

separate wells. Plates were washed two times and incubated with mixtures of 

polyclonal biotinylated anti-cytokine antibodies for one hour at room temperature.  

Plates were washed two times and incubated for 25 minutes with 16 μg/ml 

streptavidin-phycoerythrin in PBS.  Plates were washed two times and beads 

were resuspended in PBS and read on a Luminex 200 analyzer with acquisition 

. All antibody pairs and protein standards were 

purchased from R&D Systems except those for IFN-β and lactoferrin (Abcam, 

Cambridge, MA).  Additional in-house assays were designed for the following 

growth, angiogenic and anti-angiogenic factors and hormones: activin A, A 

disintegrin and metalloproteinase domain 12 (ADAM-12), adiponectin, 

angiogenin, CD40L, epidermal growth factor (EGF), endoglin, fasL, fibronectin, 

galectin-1, human chorionic gonadotropin (hCG), intercellular adhesion molecule 

1 (ICAM-1), insulin-like growth factor-binding protein 1 (IGFBP1), interleukin-1 

receptor antagonist (IL-1Ra), IL-27, leptin, matrix metalloproteinase-7 (MMP-7), 

MMP-9, pregnancy-associated plasma protein-A (PAPP-A), prostaglandin E2 

(PGE2), placental growth factor (PIGF), resistin, serpin E1, tissue factor pathway 

inhibitor (TFPI), transforming growth factor beta 3 (TGFβ3), tyrosine-protein 

kinase receptor Tie-2, tissue inhibitor of matrix metalloproteinases 1 (TIMP-1), 

tissue factor, toll-like receptor 2 (TLR2), triggering receptor expressed on myeloid 

cells 1 (TREM-1), urokinase-type plasminogen activator (uPA), urokinase 

plasminogen activator receptor (uPAR), vascular endothelial growth factor 

(VEGF), vascular endothelial growth factor receptor 1 (VEGFR1 or Flt-1), and 

vascular endothelial growth factor receptor 2 (VEGFR2 or Flk-1).  Antibody pairs 

and proteins were purchased from R&D Systems except those for hCG and 

PGE2 (Abcam). 
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of 100 beads for each region and analyzed using Bioplex Manager software 

(BioRad, Hercules, CA).  Cytokine concentrations were determined using 5P 

regression algorithms.  

EVs were captured from culture supernatants via magnetic nanoparticles 

(MNPs) (Ocean NanoTech, San Diego, CA). MNPs were coupled to anti-PLAP 

(clone 8B6,Thermo Fisher, Waltham, MA and clone H17E2, BioRad), anti-CD90 

(clone 5E10, Biolegend, San Diego, CA), anti-CD9 (clone H19a, Biolegend), anti-

CD63 (H5C6 Biolegend), anti-HLA-ABC (W6/32 Biolegend) or mouse IgG 

(SouthernBiotech, Birmingham, AL) antibodies, per manufacturers’ protocol and 

as previously described

EV labeling and capture  

151.  Briefly, 200 µl of 15nm MNPs are activated and then 

coupled with 1mg antibody overnight. Coupled MNPs are washed twice on a 

magnet then resuspended in 2 ml of wash/storage buffer and stored at 40C. EVs 

in 100 µl of culture supernatant were labeled with 1 µM Bodipy FL Maleimide 

[BODIPY™ FL N-(2-Aminoethyl) Maleimide, Thermo Fisher] for 15 minutes at 

RT, then captured with 20 µl of MNPs.  MNPs are added in huge excess to EVs, 

and the ratio of MNPs to EVs was optimized to allow good capture efficiency and 

single particle detection, as previously described151. Fluorescent detection 

antibodies were added for 30 minutes at room temperature. Detection antibodies 

for placental villous cultures included mouse anti-human antibodies to CD51-PE 

(Sony Biotechnology, Champaign, IL), CD63-BV711 (BD Biosciences, San Jose, 

CA), CD105-PECy7 (Biolegend), CD200 BV650 (BD Biosciences), CD274 

BV605 (Biolegend), syncytin-1 (Abnova, Walnut, CA) in-house labeled with 

AlexaFluor 647, and HLA-ABC APC/Cy7 (Biolegend). Detection antibodies for 

amnion explants included mouse anti-human antibodies to CD29 APC (Thermo 

Fisher), CD44 PE (Thermo Fisher), CD105 PECy7 (Biolegend), CD140b BV421 

(BD Biosciences), CD324 PerCP/Cy5.5 (Biolegend), CD326 BV650 (Biolegend) 

and HLA-DR APC/Cy7 (Biolegend). Control staining was also performed with 

mouse anti-human CD31, CD41, and CD45 APC/Cy7 (Biolegend). The captured 

and stained complexes were separated from unbound EVs and antibodies using 

MS magnetic columns (Miltenyi Biotec) in a magnetic field using OctoMACS 
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magnet (Miltenyi Biotec), washed four times with 500 µl of PBS and eluted from 

the column outside the magnet with 200 µl PBS and fixed with 1.5% 

paraformaldehyde. 123count ebeads (Thermo Fisher) were added to tubes for 

EV quantification. All antibodies were tested on EV/MNP complexes singly and in 

combination to verify that antibodies bound with the same efficiency and spectral 

overlap could be compensated.   

Purified complexes were acquired on low speed on an LSRII (BD 

Biosciences) flow cytometer equipped with 355-, 407-, 488-, 532- and 638-nm 

lasers by triggering on Bopidy FL fluorescence to acquire only labeled EVs. 

Fluorescence minus one stainings and isotype controls were used were used for 

setting gates, compensations, and determining background staining. Megamix 

SSC beads (BioCytex, Parsippany, NJ) were used to set parameters for 

estimated EV size; in general EV size is overestimated due to the binding of 

MNPs to the EVs.  Data were acquired with Diva 6.3 and analyzed with FlowJo 

software v10.4.1 (Treestar Software, Ashland, OR).   

EV flow cytometry analysis  

EVs were captured as above using MNPs coupled to mouse anti-human 

antibodies to PLAP (8B6, Thermo Fisher), CD31 (WM59, Biolegend), CD90 

(5E10, Biolegend) or HLA-G (87G, Biolegend) antibodies.  20 µl of MNPs were 

incubated with 100 µl of culture supernatants overnight at 4°C and purified using 

MS magnetic columns as above.  EV/MNP complexes were eluted off columns, 

resuspended in their original volume, split in two and analyzed by multiplexed 

bead assays on intact fractions and lysed (1% Triton X) fractions.  Total EVs from 

culture supernatants were collected using ExoQuick TC as above and analyzed 

the same way. 

Measurement of EV-associated cytokines 

We conducted statistical analysis using JMP10 (SAS Institute, Cary, NC).  

Results are represented as means ± standard error of the mean (SEM).  The 

statistical differences were evaluated with paired Student’s t test.  All hypothesis 

tests were two-tailed and a p value of ≤0.05 defined statistical significance.  
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Results 

Ex vivo tissue viability and function  

Histology.

 

 Samples of the villus tree and amnion were dissected and cultured as 

described in the methods section. Tissue samples were collected at day 1, 7 and 

14 of culture, fixed, paraffin embedded, sectioned, and H&E stained (Fig. 1). At 

the start of culture, chorionic villi were viable and maintained normal morphology 

with well-preserved synctiotrophoblasts, intact blood vessels, and a lack of 

karyorrhexis; amnion tissue was well preserved as well. At day 7, much of the 

syncytiotrophoblast appeared viable and well preserved, with focal areas of early 

degenerative changes in the form of karyorrhectic debris in blood vessels and 

villous stromal-vascular karyorrhexis. Most of the amnion appeared well-

preserved and viable at day 7. By day 14, placental villous tissue showed slightly 

more pronounced karyorrhexis and degeneration of syncytiotrophoblast than at 

day 7. Amnion tissue at day 14 also showed mild degenerative changes in the 

form of pyknosis. 

Cytokine production. The release of cytokines by villi and amnion cultures over 

the entire culture period was determined using in-house designed multiplexed 

bead-based assays150

Amnion explants, similar to villi explants, produced cytokines constantly over the 

duration of the culture period (Fig. 2c). Amnion and villus explants also produced 

large amounts of the pro-inflammatory cytokines IL-6, IL-8, GRO-α, IP-10 and 

. These assays revealed that cytokines are steadily 

produced in both placental villous and amnion cultures (Fig. 2a, c). Villous tissue 

produced large amounts of the pro-inflammatory cytokines IL-6, IL-8, GRO-α, IP-

10 and MCP-1, as well as CRP and TRAIL (Fig. 2a).  Cultures also released 

considerable amounts of the alarmins calgranulin A, calgranulin C, and HMGB1, 

and the antibacterial protein lactoferrin.  IL-13, IL-16, and IL-33 were also 

released, as well as the chemokines ITAC, MIF, MIG, MIP-1α, MIP-1β, MIP-3α, 

and RANTES.  Other cytokines were produced in smaller quantities (see Table 
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MCP-1 as well as CRP and TRAIL. Such explants also produced the 

antimicrobial proteins calgranulin C and lactoferrin as well as smaller amounts of 

calgranulin A. Moreover, the explants produced the prototypic alarmin HMGB1 as 

well as IL-10, IL-13, IL-16, IL-33, MIP-1α, MIP-1β, MIP-3α, MIF, CXCL6 and 

smaller amounts of ITAC, RANTES, and CXCL9 (see Table S1).  

 

Production of growth factors, angiogenic and anti-angiogenic factors.

Amnion explants produced large amounts of many of the same growth and 

angiogenic factors as villi explants including adiponectin, angiogenin, fibronectin, 

galectin-1, IGFBP1, IL-1Ra, IL-27, Serpin E1, TFPI, TIMP-1, VEGFR1, uPA and 

uPAR, and the hormones hCG and PGE2 (Fig. 2d) (See Table S2 for complete 

list). 

 The release 

of other growth factors, angiogenic factors, anti-angiogenic factors and hormones 

was determined by multiplexed bead assays. Both villi and amnion explants also 

continuously produced these factors over the duration of the culture period (Fig. 

2b, d).  Villi explants produced large amounts of ADAM-12, adiponectin, 

angiogenin, fibronectin, galectin-1, ICAM-1, IGFBP1, IL-1Ra, IL-27, PAPP-A, 

Serpin E1, TFPI, TIMP-1, uPA, uPAR, VEGFR1 and VEGFR2, as well as hCG 

and PGE2 (Fig. 2b).  A complete list of factors produced is available in Table S2. 

 

Analysis of Placental Villous EVs  

To analyze EVs specifically from syncytiotrophoblasts (STB) of the explants, 

magnetic nanoparticles (MNPs) coupled to anti-PLAP antibody, an antigen 

specific to STB123, 152-155, were used. EVs were labeled with Bodipy FL as 

described in Methods. Among several commercially available anti-PLAP 

antibodies, we selected one (clone 8B6) that after coupling to MNPs was specific 

in capture of STB-generated EVs and captured EVs most efficiently. We 

analyzed the STB-generated EVs for other antigens that have been described on 

STBs or STB EVs. 
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Selection of PLAP antibodies for capture of syncytiotrophoblast EVs. We coupled 

two clones of PLAP antibodies to MNPs and captured EVs from placental villous 

culture supernatants. MNPs coupled to two PLAP clones captured similar 

amounts of EVs: With MNPs coupled to clone H17E2 we captured 108.8 ± 11.6% 

of EVs captured with MNPs coupled to clone 8B6. However, MNPs coupled to 

clone H17E2 captured 3.3 ± 0.3 (n=3) times more of non-specific EVs, 

expressing HLA-ABC. Therefore, we selected clone 8B6 for future experiments 

since MNPs coupled to the antibodies of this clone seemed to be more specific to 

capture PLAP-positive EVs. 

Specificity of EV capture. We further verified the specificity of our anti-PLAP 

MNPs by incubation with amnion explant supernatants which should not contain 

PLAP+ EVs156

 

 and found they captured on average 4.7 ± 0.5% of total EVs 

(n=3). That was not different from the amount captured with control mouse IgG 

isotype MNPs: With these MNPs we captured from the placental villous tissue 

supernatants 4.8 ± 1.1% of EVs that were captured by specific anti-PLAP MNPs 

(n=3).  

 

To further confirm specificity of the PLAP-captured EVs, we captured EVs from 

villous samples pooled from multiple donors and stained for CD31, CD41, CD45, 

and HLA-ABC, all of which should be absent on STB EVs

The lack of non-STB antigens on anti-PLAP captured STB-generated EVs 

157, 158. All antibodies 

were labeled with the same fluorophore, and collected into a single “dump” gate. 

We found that they were present on only 1.6 ± 0.5% of captured EVs (n=3).  For 

the remaining experiments, we included only HLA-ABC, and used the lack of this 

marker as an additional criterion for STB EVs. Single staining for HLA-ABC on 

EVs captured by anti-PLAP MNPs revealed 0.7 ± 0.3% of total EVs (n=3). 

Syncytiotrophoblast markers on PLAP-positive EVs. Next, we evaluated the 

distribution of several “phenotypic” markers on the EVs captured by MNPs 

through PLAP. We chose markers which have been previously described in the 
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literature as being surface markers either of STB themselves, or of the STB-

generated EVs154, 159-162

Flow-cytometry analysis revealed that CD200 had the highest expression on 

PLAP-MNPs captured EVs, being present on 67.3 ± 3.1% of vesicles at day 1, 

and Syncytin-1 was the lowest at 1.7 ± 0.2%.  The other markers were expressed 

on 24 to 34% of vesicles (Fig. 3a).  EV size was estimated using Megamix SSC 

beads. The vesicles formed a continuum rather than discreet populations, but 

small vesicles of the size 200nm or less were the most plentiful and over 500nm 

the least common (Fig. 3b). 

 namely, CD51, CD63, CD105, CD200, CD274, and 

Syncytin-1. Culture supernatants were stained with BoDipy-FL to label EVs, and 

then captured with anti-PLAP MNPs, stained with antibodies to the above-listed 

markers (as well as with antibodies to HLA-ABC). The MNP/labeled EV 

complexes were washed on magnetic columns, eluted and acquired on a flow 

cytometer set to threshold on the BoDipy-FL EV label. HLA-ABC+ EVs were 

excluded from the analysis and the rest quantified by expression of the markers 

and approximate size. (See Figure S1 for gating strategy). 

The distribution of the markers varied with vesicles of different sizes (Fig. 3 c-h). 

Only CD200 was highly expressed (58.8 ± 4.4%) at day 1 on small vesicles (of 

the size of 200nm or less), while all other markers were present at lower levels 

on these small vesicles (0.5 – 18.4%).  Levels of CD51, CD63, CD105, and 

CD274 were highest on vesicles of the size of 250-500nm, and syncytin-1 was 

highest on vesicles of the size above 500nm.  

We analyzed co-expression of markers on individual vesicles and found CD51, 

CD63, CD105, and CD274 were most often co-expressed with CD200, the most 

highly expressed marker on the placental villous EVs (Fig. S2). Syncytin-1 was 

the least co-expressed molecule, but was most often co-expressed with CD105. 

Assessment of PLAP-captured vesicles over time showed that the total number 

of vesicles decreased throughout the culture period. Total EVs at day 1 were 

1.91 ± 3.3 x 106 EVs/ml and declined to 9.4 ± 1.7 x 104 EVs/ml by day 14 (see 

Table S3 for EV counts). The distribution of EVs in different size ranges shifted 

slightly over time (Fig. 3b). The amount of small vesicles (≤200nm) decreased 
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over time, starting at 52.1 ± 3.0% at day 1 and dropping to 25.5 ± 3.6% at day 

14, whereas vesicles of all other size ranges increased slightly in percentage with 

length of culture. 

The amount of PLAP-captured vesicles expressing each marker were similar at 

day 1 and 4, but decreased slightly by day 7 and further by day 14, except for 

syncytin-1 expressing EVs, which increased in over time (Fig. 3c-h). Except for 

syncytin-1, all markers maintained over time a similar distribution between EVs of 

different size. The percentage of EVs double positive for markers was stable up 

to day 14, except EVs double positive for syncytin-1 and all other markers which 

increased slightly over time (Fig. S2a). 

These results demonstrate that placental villous explants produce EVs carrying 

typical STB markers throughout the culture period. EVs expressing each marker 

maintained a similar size distribution over time, but the overall percent of vesicles 

carrying most of these markers decreased at later days of culture. 

 

Analysis of Amnion EVs 

In parallel to the analysis of the STB-released EVs, we analyzed the EVs 

released by amnion explants by identification of specific cellular antigens on 

these EVs. EVs were labeled with Bodipy FL as described in Methods. The main 

cells of interest in amnion explants were amnion epithelial cells (AECs) (since 

they are in contact with amniotic fluid, thus likely to be involved in fetal 

communication), as well as the underlying amnion mesenchymal stem cells 

(AMSCs). We used MNPs coupled to antibodies specific to antigens that these 

cells carry.  Since CD90 is a marker expressed by both AECs and AMSCs163, we 

investigated this protein as a target for capture with MNPs using anti-CD90 

antibodies. 

Optimizing capture of amnion EVs. We incubated amnion explant culture 

supernatants with anti-CD90 MNPs to capture EVs and compared them to 

capture with anti-CD63, anti-CD9 and anti-HLA-ABC coupled MNPs. MNPs 

coupled to CD9, HLA-ABC and to CD63 captured 113 ± 5.3%, 75.8 ± 16.7%, and 
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93.7 ± 11.8% of that of coupled to CD90, respectively (n=3). Since CD90 is the 

most exclusive marker for our cells of interest, we used anti-CD90 MNPs for our 

further experiments. 

Specificity of EV capture. Next, we verified whether anti-CD90 MNPs specifically 

capture only EVs carrying CD90. As a negative control, we used these MNPs to 

capture EVs from placental villous culture supernatants (which should release 

very few EVs carrying CD90, potentially from placental MSCs164). We found that 

these MNPs captured on average only 2.5 ± 0.8% of total EVs (n=3). We also 

confirmed MNP specificity by incubating amnion tissue supernatants with mouse 

IgG isotype MNPs, which captured 6.3 ± 1.4% of EVs compared to anti-CD90 

MNPs (n=3).  

Lack of irrelevant antigens on AEC-generated EVs. We captured EVs from 

amnion samples from multiple donors with anti-CD90 MNPs and stained 

captured EVs for CD31, CD41, CD45, and HLA-DR, which should not be present 

on EVs of this origin165.  All antibodies were labeled with the same fluorophore, 

APC-Cy7, and collected into a single “dump” gate. Our staining revealed that 

these markers were present on only 4.8 ± 0.5% of captured EVs.  Further 

analysis of amnion EVs included only antibodies against HLA-DR, which 

contributed 2.8 ± 0.3% of total EVs (n=3), and this population was excluded from 

flow cytometry analysis. 

AEC and AMSC markers are revealed on amnion explant EVs.  The distribution 

on EVs of several “phenotypic” markers expressed by AECs or AMSCs166, 167, 

namely CD29, CD44, CD105, CD140b, CD324, and CD326, were determined.  

EVs were labeled with BoDipy-FL, captured with anti-CD90 MNPs and stained 

with antibodies to the above markers (in addition to HLA-DR). The labeled EV-

MNP complexes were washed on magnetic columns, eluted and then acquired 

on a flow cytometer set to threshold on the BoDipy-FL label.  Any vesicles 

positive for HLA-DR were excluded and the remainder quantified by size, 

estimated by Megamix SSC beads, and expression of the markers of interest 

(see Fig. S1 for gating strategy). 
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First, we evaluated EVs from amnion culture supernatants at day 1 of culture 

(Fig. 4a). We found that CD105 was the most highly expressed marker being 

present on 18.5 ± 0.7% of all captured EVs, and CD140b was the least 

expressed on 4.0 ±0.6% of EVs (n=10).  CD44, CD326, CD324, and CD29 were 

on approximately on 15, 12, 10, and 9% of EVs respectively. EVs were equally 

distributed among most size ranges, except EVs of 200nm or less which were 

only 4.6 ± 0.6% of all EVs (Fig. 4b). Most markers were more likely to be on 

larger vesicles (Fig 4c-h). CD105 was highest on vesicles of the size of 500nm 

and over, CD140b was much higher on vesicles with the size over 500nm, and 

CD44, CD324, CD326 and CD29 were distributed more evenly between all size 

ranges except the smallest. 

Evaluation of marker co-expression demonstrated that CD29 and CD44 were the 

most commonly found together (4.2 ± 0.7% of EVs at day 1), followed by 

CD140b and CD326 (3.1 ± 0.7% EVs at day 1) (Fig. S2b).   

Next, we investigated how the number of CD90-captured vesicles changed over 

time. Unlike PLAP captured EVs from placental villous explants, the amount of 

amnion-generated vesicles captured with CD90-MNPs did not decrease over 

time. The total concentration of vesicles at day 1 was 9.5 ± 1.4 x 104/mL and at 

day 14 was 9.9 ± 1.8 x 104

These results confirm that amnion explants continually produce EVs 

representative of AECs and AMSCs over 14 days of culture. 

/mL (see Table S3 for all EV counts). The amount of 

amnion EVs remained constant over the entire culture period in all aspects: in 

size ranges of vesicles (Fig. 4b), in the fractions of total EVs for each (Fig. 4c-h), 

and for the fractions of double positive EVs (Fig. S2b). 

 

Analysis of EV-associated cytokines 

EVs from different cells carry different cytokines.  We captured EVs from culture 

supernatants at day 4 with MNPs coupled with specific capture antibodies to 

investigate whether EVs with different surface markers (i.e. generated by 

different cells) carry different cytokines.   
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Placental villous EVs. Total EVs were isolated from placental villous culture 

supernatants using Exoquick TCTM

Most cytokines were found associated with EVs, and those in the greatest 

amounts were IL-4, IL-8, IL-10, IL-13, IL-33, Calgranulin C, CRP, IFNγ, IP-10, 

MIF, MIG, MIP-3α, and TRAIL.  (See Table S4 for cytokine concentrations).  

Overall, cytokines tended to be EV-encapsulated rather than on their surface 

(Fig. 5).  HLA-G captured EV had slightly more cytokines on their surface 

compared to anti-PLAP or anti-CD31 captured EVs. PLAP captured EVs carried 

significantly more IL-4, IL-16, MIG, and TGF-β compared to both other types of 

capture (p<0.05, n=5), and were located predominantly inside EVs (Fig. 5b).  

CD31 captured EVs were significantly higher in MIP3α and CXCL6 compared to 

HLA-G captured EVs only (p<0.05, n=5), and these were encapsulated (Fig. 5c).  

HLA-G captured EVs were higher than both other captures in GM-CSF, IP-10 

and MIF (p<0.05, n=5) and these were both on the surface and encapsulated 

(Fig. 5d).  

.  From this isolate we captured several types 

of EVs using anti-PLAP coupled MNPs to capture STB-generated EVs, anti-

CD31 MNPs to capture EVs generated by endothelial cells, and HLA-G to 

capture EVs released by cytotrophoblasts and placental MSCs.  Following MNP 

capture, EVs were magnetically isolated as described in Methods, and the EV-

associated cytokines and growth factors were evaluated. Surface associated 

proteins were measured directly with multiplexed bead assays, and total EV 

proteins were measured after EVs were lysed. We then subtracted the surface 

quantity from the total to determine the internal protein concentrations. 

Amnion EVs. Total EVs were isolated from amnionic culture supernatants using 

Exoquick TCTM. Amnion EVs were captured with anti-CD90 MNPs, to capture 

presumably EVs from both AECs and AMSCs, and HLA-G antibodies to capture 

EVs from selected cells, as HLA-G has been reported in various levels on AECs 

and only weakly on AMSCs. Also, many cytokines were associated with EV (see 

Table S5) especially IL-4, IL-8, IL-10, IL-13, IL-33, Calgranulin C, GRO-α, IFNγ, 
MIF, MIG, MIP-3α, and TRAIL. Similar to EVs from placental villous explants, for 

amnion explant EVs, most cytokines were predominantly inside EVs (Fig. 6).  
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HLA-G captured EVs expressed slightly more cytokines on their surface 

compared to CD90 captured EVs (Fig. 6b-c). CD90 MNP-captured EVs had 

significantly higher amounts of IL-4, IL-10, IL-13, IL-33, CXCL6, Eotaxin, ITAC, 

MIG, MIP3α, and TGF-β than HLA-G captured EVs (p<0.05, n=5) and most were 

predominantly inside (Fig. 6b).  HLA-G captured the highest levels of Calgranulin 

C, GM-CSF, MIF and MIP-1β compared to CD90 captured EVs (p<0.05, n=5), 

and most were internal to the EVs (Fig. 6c).   

EVs from different cells carry different growth factors.

Growth and angiogenic factors were also found associated with amnion EVs (see 

Table S7), with activin A, adiponectin, fibronectin, galectin-1, ICAM-1, IL-1Ra, 

PAPP-A, serpin E1, TFPI, TIMP-1, TREM-1, uPA, uPAR, and VEGFR1, as well 

as hCG and PGE2, secreted in the highest amounts. Amnion EVs also carried 

most growth factors predominantly inside EVs, and HLA-G captured EVs had 

slightly more surface growth factors than CD90 captured (Fig. 8). CD90 MNPs 

captured EVs had significantly higher amounts of PAPP-A, and TREM-1 (p<0.05, 

  EVs from placental villous 

tissue also contained several growth factors and angiogenic related factors (see 

Table S6). Activin A, adiponectin, endoglin, fibronectin, galectin-1, ICAM-1, IL-

1RA, IL-27, MMP-9, PAPP-A, serpin E1, TFPI, TIMP-1, TREM-1, uPA, uPAR, 

and VEGFR2 were found in the greatest quantities, as well as hCG and PGE2. 

Similar to cytokines, these growth factors were predominantly encapsulated 

within EVs rather than on their surface (Fig. 7), although HLA-G captured EVs 

had more surface-associated than the other two captures. PLAP captured EVs 

had significantly higher amounts of EV-associated ADAM12, endoglin, and PIGF 

than either CD31 or HLA-G captured EVs (p<0.05, n=5). PIGF was mostly on the 

surface of EVs, whereas ADAM12 and endoglin were predominantly 

encapsulated (Fig. 7b-d). CD31 captured EVs carried significantly higher 

amounts of internal IL-27 and TREM-1 than HLA-G EVs (p<0.05, n=5). HLA-G 

captured EVs contained significantly more adiponectin, CD40L, EGF, FasL, 

fibronectin, galectin-1, PGE2, Resistin, TFPI, TGF-β3, Tie-2, tissue factor, 

TREM-1, uPA, uPAR, VEGFR1, and VEGFR2 than both PLAP and CD31 

captured EVs (p<0.05, n=5).   
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n=5), with PAPP-A being predominantly inside and TREM-1 being both on the 

surface and inside (Fig. 8b).  HLA-G captured significantly higher levels of 

adiponectin, CD40L, EGF, endoglin, FasL, galectin-1, ICAM-1, IGFBP1, IL-1Ra, 

PGE2, resistin, TFPI, TGF-β3, Tie-2, tissue factor, uPA, uPAR, VEGFR1 and 

VEGFR2 (p<0.05, n=5), much the same as HLA-G captured villi EVs (Fig. 8c). 

 

Discussion 

Previous studies of placental explants 

Several techniques for maintaining placental explants have been described168-171, 

with different models being useful for different purposes. Typically, placental 

tissues are immersed in the culture medium either free floating or supported by 

MatrigelTM or Millicell inserts. In these experiments, tissues remain viable up to 9 

days and produce human chorionic gonadotropin (hCG) and placental 

lactogen 172. Most of these models report that STB are lost in the first 1-2 days of 

culture but some regeneration was observed by 5-7 days173, 174

Following the pioneer works of Hoffman et al

. 

175, 176, we developed cultures of ex 

vivo tissues maintained on collagen sponges at the medium/air interface to study 

HIV pathogenesis in human lymphoid177-181, cervico-vaginal182-184 and recto-

sigmoid tissues185, and to investigate the physiology of atherosclerotic 

plaques 186, 187 ex vivo. A comparable culture method was used to study 

cytomegalovirus infection188

 

. Here, we apply a similar technique to study 

placental tissue secretion of EVs, cytokines and growth factors ex vivo.   

The establishment of a three-dimensional culture to study extracellular 

vesicles and cytokines  

The purpose of the present study was to develop a laboratory model to study 

soluble factors and EVs generated by placental villous tissue. This is important 

since both EVs and soluble factors, in particular placental cytokines189, 190, are 

implicated in maternal-fetal communication. This especially concerns STB that 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

are in direct contact with the maternal blood, and amnion epithelial cells that are 

surrounding the amniotic cavity containing the fetus. We found that under our 

protocol, explants of both placental villous tissue and amnion are viable for at 

least 14 days as evidenced by histological analysis. Both types of explants 

continue to secrete cytokines and growth factors over 14 days of culture 

providing further evidence of tissue viability and functionality.   

Evaluating these secreted factors in tissue models allows the determination of 

tissue origin of these factors, which is not easily accomplished in vivo. Yet, we 

cannot rule out a minor contribution of factors derived from entrapped maternal 

or fetal cells in placental vessels. 

A number of publications have addressed placental EVs and their potential role 

in pregnancy and its complications130, 132, 133, 146, 191-225. Several ex vivo (e.g. 

placental perfusion)214, 226-232 and in vivo233-236 systems have been used as a 

source of EVs. Placental perfusion is a useful method for obtaining large 

numbers of EVs directly from the placenta; however, this technique is suitable 

only for a short period of time (2-6 hours) after delivery237. In vivo studies on EVs 

obtained from maternal blood are difficult to interpret because of multiple 

potential cellular sources of these EVs. Focusing on the analysis of EVs 

generated by placental cells requires the ability to trace particular EVs to their 

cells of origin. Towards this goal, rather than “bulk” analysis of EVs, we employed 

a newly developed nanotechnology platform238

 

, which allows capture of EVs with 

magnetic nanoparticles (MNPs) coupled to specific antibodies against EV surface 

antigens and analyzing these EVs individually. The captured EVs can then be 

stained with additional antibodies to reveal specific antigens of interest. Here, we 

applied this analysis to EVs generated by placental explants.   

Analysis of placental villous extracellular vesicles 

We found that STB-specific EVs can be captured from placental villous culture 

supernatants using anti-PLAP MNPs. PLAP is a sialoglycoprotein enzyme that is 

present almost exclusively on STB and has been used as a marker of STB-

derived EVs123, 153, 155. We first demonstrated specificity of capture by 
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demonstrating that anti-PLAP MNPs capture significant amounts of EVs from 

placental villous explants but very few EVs from culture supernatants of amnion 

explants. PLAP captured EVs also do not express non-STB markers including 

CD31, CD41, CD45, and HLA-ABC above the background level (EVs captured 

by isotype control MNPs).  EVs were expressed throughout the entire 14 days of 

culture, though their quantities declined at day 14. 

We assessed the PLAP-captured EVs for other surface proteins that have 

previously been described to be expressed on STB or on their EVs, CD51, 

CD63, CD105, CD200, CD274, and syncytin-1. All these proteins were found 

albeit in various quantities on PLAP-MNP-captured EVs239. CD51, or vitronectin 

receptor alpha chain, is an adhesion molecule239. CD63 is a tetraspanin known to 

associate with membranes of intracellular vesicles239. CD105, also known as 

endoglin, has a crucial role in the regulation of angiogenesis240. CD200, also 

named OX-2 membrane glycoprotein, may have a role in macrophage 

differentiation241. CD274 or programmed death-ligand 1(PD-L1) is an immune 

checkpoint molecule that may have a role in immune suppression during 

pregnancy242-244. Syncytin-1 mediates trophoblast fusion and may have a role in 

tolerance to fetal antigens245, 246

 

. Herein, CD200 was the most widely expressed 

marker and syncytin-1 the least expressed. These markers demonstrated some 

differences in their expression on EVs of different size ranges, for instance most 

markers were expressed on only a small percentage of small EVs, except for 

CD200. These differences may reflect differential function of these EVs. 

Whatever are these functions, the overall the pattern of these antigens 

expression on the different sizes of EVs remained constant again demonstrating 

viability of the ex vivo tissues. Also, co-expression of the various markers 

remains fairly constant over time.  

Analysis of extracellular vesicles produced by amnion 

EVs were also produced by amnion and were captured with anti-CD90 MNPs.  

CD90 is a cell surface glycoprotein involved in cell adhesion that is expressed on 

both AECs and AMSCs, as well at varying levels on fibroblasts, neurons and 
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activated endothelial cells163, 247-250. We confirmed specificity of capture by 

showing anti-CD90 MNPs captured very few EVs generated by placental villous 

tissue. Also, CD90 MNP-captured EVs lacked expression of markers that should 

not be present on amnion-generated EVs, including CD31, CD41, CD45, and 

HLA-DR.  EVs were generated at constant levels throughout all the 14 days of 

culture, and maintained the same size distributions. These EVs carried other 

proteins on their surface that have previously been described on AECs and 

AMSCs. These included CD29, CD44, CD105, CD140b, CD324, and CD326, 

which are involved in cell-cell and cell-matrix interactions, cell adhesion, and 

migration251. CD29 (integrin beta-1) acts as a fibronectin receptor252. CD44 is a 

receptor for hyaluronic acid253. CD140b is a tyrosine kinase receptor for 

members of the platelet derived growth factor family and a marker for naive 

AMSCs254. CD324 or E-cadherin is a regulator of epithelial junction formation255. 

CD326, also known as Ep-CAM, is an epithelial cell surface antigen256

 

. Herein, 

CD105 was the most widely expressed marker and CD140b was the least 

expressed on amnion-derived EVs. These markers demonstrated some 

differences in their expression on EVs of different size ranges, but all were least 

prevalent on the smallest vesicles. Overall the pattern of expression on the 

different sizes of EVs remained constant over time. Moreover, co-expression of 

the various markers remains fairly constant over time.  

Cytokines and other factors in EVs of different phenotype  

We previously reported that various cytokines are associated with EVs257. Here, 

we demonstrate that not only cytokines, but many other growth factors, 

angiogenic and anti-angiogenic factors are associated with EVs from placental 

villous and amnion tissues. These factors can be on the EV-surface or 

encapsulated within the vesicles. In this study, we took this analysis one step 

further from the analysis of association of these factors with general EVs to their 

association with EVs that carry particular membrane proteins. Specifically, we 

captured EVs using MNPs coupled to antibodies that select for certain EV 
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populations, and analyzing the cytokine and growth factor content of these EV 

fractions.  

We found that placental villous EVs captured via PLAP, CD31, and HLA-G not 

only carry different levels of these factors, but their distributions between the EV 

surface and internal space were different. Some cytokines segregated 

completely between different EVs. For example, Eotaxin and HMGB1 were 

present only in HLA-G MNP-captured EVs, and ITAC was observed exclusively 

in CD31 MNP-captured EVs. IL-13, RANTES, and PGE2 were not present in 

CD31 EVs but were found in both PLAP and HLA-G captured EVs, whereas hCG 

was absent in HLA-G EVs. Some cytokines were carried exclusively on the EV 

surface, for example IL-4, IL-13, and Eotaxin in HLA-G MNP-captured EVs, 

whereas IL-16, IL-33 and RANTES were exclusively inside HLA-G MNP-captured 

EVs. Other cytokines were found on the surface in EVs captured through one 

membrane protein, but internally in EVs captured through another protein. For 

example, IL-4 and MIG were found internally in EVs captured with PLAP MNP 

and CD31 MNP, but on the surface in HLA-G MNP-captured.  

In amnion tissue, we specifically captured EVs using anti-CD90 and anti-HLA-G 

MNPs, analyzed their cytokine and growth factor content, and found differences 

in amounts and distributions of these EV-associated proteins. For example, only 

EVs captured via CD90 but not via HLA-G carried IL-4, Eotaxin and ITAC.  

CD40L, PGE2, and uPAR were encapsulated in CD90 MNP-captured EVs but 

were present both inside and on the surface HLA-G MNP captured EVs.  

This complex differential distribution of cytokines between EVs of different origin 

and phenotype suggests a fine regulation of their biogenesis and indicates 

different biological functions of these EVs. To identify these functions EVs should 

be characterized individually rather than in bulk. The ability to characterize and 

distinguish individual EVs generated by different cell types and carrying various 

cytokines and growth factors is the major advantage of our methods. Also, we 

can identify EVs that co-express different membrane proteins. For instance, 

CD90 and HLA-G in amnion may be co-expressed on some EVs, and CD31 and 
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HLA-G may be co-expressed in placental villous tissue. This distinction may be 

the reflection of their differential biological role.  

The use of the placental tissue culture described herein coupled with the newly 

described nanotechnology provides a novel and powerful tool for probing 

maternal-fetal communication through EVs that can be now traced to their 

cellular/tissue origin, characterized by their surface-associated and encapsulated 

proteins. This multifactorial characterization of EVs in an ex vivo tissue system 

will enable us to narrow the search for possible placental biomarkers in maternal 

blood and amniotic fluid and identify their changes in various pathologies.  
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Figure Legends 

 

Figure 1. Placental villous and amnion tissue explants maintain their 

cytoarchitecture 

H&E sections of placental villous explants at (a) day 1, (b) 7, and (c) 14 of culture 

(one representative tissue out of 10). Villi maintained normal morphology with 

well-preserved syncytiotrophoblasts and blood vessels with some focal 

degenerative changes. H&E sections of amnion explants at (d) day 1, (e) 7, and 

(f) 14 of culture also show well-preserved tissue with focal degenerative changes 

at day 14.  

 

Figure 2. Placental villous and amnion tissue explants maintain cytokine 

and growth factor production throughout culture period 

Soluble cytokines, growth factors, angiogenic and anti-angiogenic factors are 

produced by explants over the entire 14-day culture period (presented are 

average productions, mean ± SEM) as measured by multiplexed bead assays.  

Culture medium is replaced at each sampling time point.   

(a) Placental villous explants: amounts of cytokines released at day 1, 4, 7, 10, 

and 14, n=10; (b) Placental villous explants: amounts of growth factors released 
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at day 1, 4, 7, 10, and 14, n=10; (c) Amnion explants: amounts of cytokines 

released at day 1, 4, 7, 10, and 14, n=10; (d) Amnion explants: amounts of 

growth factors released at day 1, 4, 7, 10, and 14, n=10.  

 

Figure 3. Placental villous tissues release a variety of EVs carrying different 

surface markers  

Placental villous explants release EVs that (a) carry surface markers that are 

representative of syncytiotrophoblast cells throughout culture and (b) are of a 

variety of sizes (average % of total EVs for each time point ± SEM, n=10).  EVs 

carrying (c) CD51, (d) CD63, (e) CD105, (f) CD200, (g) CD274, and (h) syncytin-

1 maintain similar patterns of expression over time and some are preferentially 

on EVs of certain sizes (Average % of total EVs for each size range. Mean ± 

SEM, n=10).  

 

Figure 4. Amnion tissues release a variety of EVs carrying different surface 

markers  

Amnion explants release EVs that (a) carry numerous surface markers that are 

representative of amnion epithelial and mesenchymal cells throughout culture 

and (b) are of a variety of sizes (average % of total EVs for each time point ± 

SEM, n=10).  EVs carrying (c) CD29, (d) CD44, (e) CD105, (f) CD140b, (g) 

CD324, and (h) CD326 maintain similar patterns of expression over time and 

some are preferentially on EVs of certain sizes (average % of total EVs for each 

size range. Mean ± SEM, n=10).   

 

 

Figure 5. Distribution of cytokines between the surface and inner volume of 

EVs from placental villous tissues 

Distribution between encapsulated and surface cytokines is shown for placental 

villous cultures. (a) Total EVs isolated by ExoquickTM (b) anti-PLAP MNP-

captured EVs; (c) anti-CD31 MNP-captured EVs; (d) anti-HLA-G MNP-captured 

EVs. Free and EV-associated cytokines are expressed as percent of total (Mean 
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± SEM, n=5).  Blue bars: surface-associated cytokines, red: EV-encapsulated. 

Multiplexed bead assay measurements on samples collected at day 4 

(cumulative amount for days 1-4 of culture). 

 

Figure 6. Distribution of cytokines between the surface and inner volume of 

EVs from amnion tissues 

Distribution between encapsulated and surface cytokines is shown for amnion 

cultures (a) Total EVs isolated by ExoquickTM

 

; (b) anti-CD90 MNP-captured EVs; 

(c) anti-HLA-G MNP-captured EVs.  Free and EV-associated cytokines are 

expressed as percent of total (Mean ± SEM, n=5).  Blue bars: surface-associated 

cytokines, red: EV-encapsulated. Multiplexed bead assay measurements on 

samples collected at day 4 (cumulative amount for days 1-4 of culture). 

Figure 7. Distribution of growth factors between the surface and inner 

volume of EVs from placental villous tissues 

Distribution between encapsulated and surface growth factors is shown for 

placental villous cultures. (a) Total EVs isolated by ExoquickTM

 

; (b) anti-PLAP 

MNP-captured EVs; (c) anti-CD31 MNP-captured EVs; (d) anti-HLA-G MNP- 

captured EVs. Free and EV-associated growth factors are expressed as percent 

of total (Mean ± SEM, n=5).  Blue bars: surface-associated growth factors, red: 

EV-encapsulated. Multiplexed bead assay measurements on samples collected 

at day 4 (cumulative amount for days 1-4 of culture). 

Figure 8. Distribution of growth factors between the surface and inner 

volume of EVs from amnion tissues 

Distribution between encapsulated and surface growth factors is shown for 

amnion cultures. (a) Total EVs isolated by ExoquickTM; (b) anti-CD90 MNP-

captured EVs (c) anti-HLA-G MNP-captured EVs.  Free and EV-associated 

growth factors are expressed as percent of total (Mean ± SEM, n=5).  Blue bars: 

surface-associated growth factors, red: EV-encapsulated. Multiplexed bead 
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assay measurements on samples collected at day 4 (cumulative amount for days 

1-4 of culture).  
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