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I. INTRODUCTION

The nature of this twenty-four month interim report to the Head Injury Model
Committee is quite different from the previous reports. In the past, the emphasis
has been on experimental technique, test development and raw data display. This
report deals mainly with the first steps towards finalizing the various mechanical
properties of the tissues of the head in the form of statistically summarized
stress-strain curves and physical constants. From these summary curves it has
been possible in some cases to indicate promising classes of candidate synthetic
materials. In other cases more work is necessary to reach this level.

It is evident from the results to date that statistic analysis alone is not
sufficient to determine the mechanical properties of the tissues of the head in
a meaningful manner that will provide a rational course for synthetic head model
design. Statistics must be guided by the findings of functional histology,
materials science and theoretical analysis in order to achieve the goals of the
project in the most effective manner. Such studies have been a continuing part
of our program throughout the past two years. A typical example of this combined
approach is found in the in vivo primate brain property studies. In order to
fully understand the mechanics of the dynamic probe and monkey brain as a total
system, a completely theoretical analysis of the system was performed (see
Appendix A of this report). In a parallel manner continued work on the experi-
mental data has led to special techniques for reduction of the data. These two
separate approaches are now being combined in order to facilitate our understanding
of this very important phase of the project.

Another example of the combined approach to the understanding of material

properties is in our work with skull bone. There is an increasing amount of
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data being accumulated to substantiate Dr. McElhaney's hypothesis that the large
variations in the skull bone tests are due to structural differences rather than
material differences. A porous block model for skull bone which consists of a
bone matrix with uniform properties and varying void content has been developed.
The behavior of this model characterizes our observations on skull bone both as
to the observed anisotropy and the strong density dependence of mechanical
properties. We are currently developing this model to show that the mechanical
behavior of skull bone can be duplicated by a single component material with a
suitably dispersed void content.

Additional substantiation of the strong dependance of the mechanical
properties of bone on its macrostructure is contained in our continuing
histological studies of the fracture sites of tension specimens. Low strength
tests generally show the fracture initiated at a source of stress concentration
while high strength tests generally involve a fracture surface with Tittle or
no macro-discontinuities.

Consideration of the envelope of the tensile stress-strain curves of skull
bone (Figure 10) shows that other types of bone also fit in this range. (See
for example "Stress and Strain in Bones" by F. Gaynor Evans, C. C. Thomas, 1957).

The tensile modulus of compact bone for the human femur averages 2 x 106

psi
while cancellous bone from the human vertebrae averages 2.5 x 103 psi. The
density of the femur bone is only slightly higher than the most dense skull
bone.

The goal of phase one of the Head Injury Model Construction Program is the
specification and characterization of those physical properties of the tissues
of the head relevant to head injury and necessary to select suitable substitute

materials. Under the guidance of the H.I.M.C. Committee we have concentrated

our efforts on the properties of the skull, scalp, dura and brain.
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The experimental program on skull bone properties is nearing completion.
The important physical properties have been measured on a large number of
specimens and statistical analysis of the data is practically complete. A
variety of regression analysis is being developed as well as a summary charac-
teristic model. A limited number of tests on promising substitute candidate
materials is planned.

The experimental program on scalp still requires a significant effort for
completion. An adequate source of human material has been established. Some
compression testing at various rates has been done and a sufficient number of
these will be performed in the current contract year to allow a meaningful
statistical analysis. Tensile testing is still under development and requires
special gripping methods because of the subcutaneous fatty layer prominent in the
human. Hopefully, this problem will be overcome and significant tensile testing
accomplished.

The dura tensile test program is well under way and should be completed by
the end of this contract year. A coupling of the histological study with the
tensile test data shows promise of isolating observed anisotropies.

The test program on the mechanical properties of brain tissue has been
developed to the point that some correlation of in vivo and in vitro bulk
properties can be made. The techniques and information developed during the
past two years will be applied in the present contract year to studying regional
variations in human brain. High strain rate compression tests of human brain
will also be performed as an additional study in the characterization of brain
properties. Preliminary testing of promising substitute candidate materials will

also be incorporated into the test program.
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IT. EXPERIMENTAL PROGRAM

A. Hard Tissue Tests

1. Skull Bone Radial Compression Tests. (J. W. Melvin and I. Barodawala)

A11 of the compression testing of skull bone in the Biomaterials Laboratory
has been performed on human skull bone tested in the radial direction. The
majority of the tests have been on specimens consisting of the diploé layer of
unembalmed human skull obtained at autopsy and stored at -10°C until used. Some
tests have been performed on specimens which included inner and outer table
material as well as diploe. Specimens of this type were also used in the
special whole calvarium compression tests of embalmed bone which were reported
in Special Report No. 1, 23 May 1969.

The specimens consisting of diplo& only are the most useful type of specimen
for characterizing the mechanical properties of the diploé layer as a material.

The other types of specimens are actually two phase structures and must be analyzed
as such. A1l basic compression testing at strain rates up to in excess of 500 sec']
has been completed in the past six months.

The techniques and procedures used in this work have been reported in previous
interim reports. The specimens were all diploé only. A summary of the data at
each of the nine strain rates used is given in Table I. An alternate, graphical
form of representing the same data is shown in Figures 1-9. Here the mean
compressive stress-strain curve is constructed from Table I information. Also,
the bounds of one standard deviation on either side of the mean curve is shown.
Since the majority of the test data exhibited the zero slope collapse type of
compressive failure the curves were drawn accordingly. Taken at face value, the

data exhibits the wide variation typical of diploé layer data. The key to
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understanding this variation was shown in the eighteen-month report to be the
relationship between compressive strength Ocs compressive modulus EC and
specimen specific weight y. Statistical analysis of this data with the goal

of determining o = f](EC), o= fz(y) and E, = fz(y) relationships is presently

c
being carried out. Preliminary results indicate multiple correlation coefficients
for some trail relations in the range from 0.85 to 0.97. Once these relations
have been developed and verified at each strain rate we will have an effective
means of determining strain rate effects which are now masked by specific weight
variations. These relationships between properties and specific weight are also
going to be used in conjunction with models of two phase structures to analyze

the composite type compression test specimens. The analytical results will then

be compared with the composite specimen test data for confirmation of the analysis.
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2. Mechanical Response of Human Cranial Compact Bone in Tension. (J. L. Wood)
The collection of tensile data has been completed and the immediately available
results are included in the following paragraphs. Some data require statistical
analyses which is currently under way. This report contains an outline of the
entire program and details both the experiments that were performed as well as
data analysis that will be completed by the end of August and will be forwarded
to NIH in a special report.

a. Description of problem and significance of investigation.

Although the literature on mechanical properties of bone is extensive,
it contains only two papers dealing with properties of cranial bone. Since
cranial bones consist of outer and inner tables of compact bone, the properties
of compact bone from other parts of the body might be used as an approximation.
Most of the available data, however, is for long bones which are known to be
anisotropic. Dempster's split 1ine studies of the skull indicate that cranial
bone might be isotropic in directions tangent to the surface of the skull, thus,
there is a need to know something about the directional properties of cranial
bone.

Penetration studies of the skull performed at The University of Michigan
for the Ford Motor Company have shown strain rates as high as 30 in/in/sec
resulting from impacts at 30 miles per hour. Hence, there is a need to investi-
gate the effect of strain rate on the properties of cranial bone. McElhaney has
investigated the properties of specimens from beef and embalmed human femur in
compression at high strain rates, but there is no tensile data on strain rate
properties of human bone.

b. Objectives of investigation.

The investigation was carried out to determine the mechanical charac-

teristics of the compact layers of human cranial bones in sufficient detail to
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select a material with similar behavior for a physical head model and to enable

analytical analysis of head models to proceed.

C.

(1) Experimentally determine tensile stress-strain curves for cranial
bones with respect to:

(a) Type of bone (parietal, temporal, frontal).

(b) Variation within an individual.

(c) Directional variation.

(d) Population variation.

(e) Strain rate.

(2) Statistically analyze the data.

(3) Attempt to deduce a functional relationship between stress, strain
and strain rate.

Experiments performed.

(1) Selection of specimens - specimen size.

a) Parietal bone - outer table.

b) Frontal bone - outer table.

(
(
(
(d

)
)
c) Temporal bone - outer table.
) Inner table.
(2) Specimen preparation.
(a) Machining.
(b) Strain gaging.
(3) Static tests.
(a) Crosshead rates of 0.02 to 20 in/min - corresponding to strain
rates of 0.0003 to 0.3 sec”'.

(b) Grips.




e.

d.
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(4) Dynamic tests.
(a) Crosshead rates of 200 to 10,000 in/min - corresponding to
strain rates of 3.0 to 150 sec™.
(b) Grips.
(c) Load measuring system.
(d) Strain measuring system.
(e) Triggering system.
(5) Calibration and dynamic response of load and strain measuring
systems.
(6) Data recording.
Data analysis.
(1) Comparison of properties within a bone plug from a single individual.
(a) A1l specimens from a given direction.
(b) Specimens from perpendicular directions.
(c) Specimens at different strain rates.
(2) Comparison of properties from several individuals.
(a) A11 specimens at a given strain rate - average curve.
(b) Average curves at different strain rates.
(c) Average curves for different bones (parietal, frontal, etc.).
(3) Effects of strain rate.
(a) Ultimate strength.
(b) Ultimate strain.
(c) Young's modulus.
(d) Energy absorbed.
(4) Curve fitting to arrive at a constitutive equation.
Equipment list.

(1) Specimen manufacture and preparation.

(a) Unimat lathe - milling machine.

(b) Strain gages and supplies.
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(2) Specimen testing.
(a) Grips and adaptors.
(b) Test machines.
(b.T) Instron.
(b.2) Plas-tech high speed machine.
(c) Load cells.
(c.1) Instron 50 pound strain gaged load cell.
(c.2) Kistler 1,000 pound crystal load cell.
(d) Strain gage bridge and DC amplifier.
(e) Data recording.
(e.1) Tektronix model 547 oscilloscope.
(e.2) Polaroid camera and film.
Over 300 specimens were machined in the course of this investigation.
Many were rejected as unfit for testing because they included part of the diploe
in their thickness. Others of these small, delicate specimens broke before they
could be tested or were broken in the development of gripping and recording
techniques. One hundred and thirty good stress-strain curves were obtained,
representing data from 30 people, aged 25 to 95 years. Table II summarizes
the number of bone plugs used from each area of the skull and in parenthesis
the total number of good tests obtained from each area. Eight specimens of
diploe in tension from 3 different plugs and 6 specimens having a suture running

through the test section also were tested.
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The following observations can be made about the compact bone of the
inner and outer tables of the skull.
(1) Specimens from perpendicular directions within a single bone
plug do not have distinquishably different stress-strain curves.
That is, in the tangential phase skull bone is approximately
isotropic.
(2) There is more variation between people than within a single
person.
(3) The modulus of this bone in tension is rate sensitive. An analysis
is currently being done on strength, deformation and energy as a
function of rate.
(4) Freezer storage at -10°C does not seem to affect the properties
of cranial bones.
(5) Sutures tested in tension have very little strength. Future
experiments investigating the bending strength of a beam cut
from the braincase, with and without a suture, are planned.
Figure 10 gives a summary of the data from all tests performed, including
all ages, types of bone and strain rates. The two lines originating from (0,0)
give the 1imits of modulus encountered: 1.5 x 106 to 3.2 x 106 1b/in2. The
polygon encloses all of the failure points. This type of representation will be
helpful in selecting candidate materials for the synthetic skull model. Obviously,
the stress-strain curve of any candidate material should fall within this region.
As an example, Figure II shows the envelope of Figure 10 with an overlay of the
data envelope of a typical polyester plastic with glass fiber reinforcement.
This material can certainly be classified as a preliminary candidate material.

On the other hand, the stress-strain curve for Lexan, which was tested in May
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for the HIM committee, is shown in Figure II for comparison. Even though the
ultimate strength of Lexan would seem to qualify it as a candidate material, it
does not match the envelope of skull bone very well at all. Once synthetic
materials have been culled by the envelope technique, the next step will be the
adjustment and refinement of the most promising synthetic materials in order to

match the results of the statistical analysis of this tension test data.




22

TABLE IT SUMMARY OF TENSION TESTS

The locations of specimens and numbers of tests performed on each type of

bone.

PL PR
oT 12(53) 9(35)
4 SRS (-} p—

PL = parietal left
PR = parietal right
FL = frontal left

FR = frontal right

FL FR L TR
3(9)  2(8)  We)  1(2)

3(9) 1(2) 1(1) -—--

TL

temporal left
TR

temporal right
0T = outer table

IT = inner table
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3. Shear Tests.

Large numbers of direct shear tests on the diploé layer of embalmed calvaria
have been reported in all three of the previous interim reports. The main finding
from these tests has been the highly variable nature of the shear strength of the
diploé layer. This variation can be attributed mainly to person to person
variation and position variation on the surface of the skull (twelve-month report).
In view of the success of correlating the compressive properties of the diploé
layer with diploe specific weight it was felt that the same may be done for the
shear tests. In other words, the large variations in the shear tests may also
be a direct consequence of diploe layer specific weight variations. Furthermore,
examination of the mode of failure exhibited by the compression specimen shown in
Figure 12, where the loading was in the vertical direction of the picture, suggests
the possibility that the same mode of failure (splitting of the trabeculae) might
occur if the specimen were loaded in transverse shear. Thus, the failure mechanism
in shear may be quite similar to that in compression. The rough averages of
typical diploé shear strengths are about one half the average diploé compressive
strengths which would follow if the failure processes were similar.

In order to investigate the above hypothesis a series of combined experiments
is now under way. Using both fresh and embalmed material, shear specimens will be
taken in such a manner that compression specimens can be made from the material
remaining between the circular holes left in the bone by the shear plug cutter.
These compression specimens, of diploé layer only, will be used to obtain true
diploé specific weight values for use in the correlation of shear strength with
specific weight. Because both the shear and compression specimens came from
virtually the same region in the skull, it will also be possible to check the

correlation between shear strength and compressive strength.
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4. Composite Structural Testing of Skull Bone. (R. P. Hubbardj

The mechanical response of layered skull bone is being studied as an
essential step in the development of a head injury model. Analytic mathema-
tical models incorporating skull geometry and constituent material properties
are being developed for determination of the mechanical response of skull bone.
Development of mathematical models is based on available layered beam, plate,
and shell theory and solutions. Because of relative simplicity, layered beams
are more generally treated by models involving properties of the individual
layers. Adequate solutions exist for layered plates using a less specific
approach in which a layered plate is represented as a one layer plate with
effective coefficients which account for the presence of a low stiffness core
between stiffer facing layers. The effective stiffness coefficients must be
determined either with layered beam theory or testing. Layered shell theory
exists but no appropriate solutions have been found.

Because of relative simplicity, more complete analytical treatment, and
relevance to plate and shell theory, skull bone beams are being tested in the
bending fixture shown in Figure 13. Preliminary beam samples have been machined
from embalmed calvaria and stored in an airtight plastic bag. Beam deflection
is determined using a strain gaged cantilever beam. From the results of variable
span three point bend tests using the same beam sample, the bending and shear
stiffnesses of the skull beam can be determined. Preliminary beam test results
indicate reasonable agreement with analytical values.

Beam test techniques can be used to study the bending stiffness and strength
of skull sutures. Testing of layered skull plates and shells will follow beam

testing.
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From analytical layered structure models should come the link between
constituent materials properties, geometry, and structural response of layered
skull bone. Results from mechanical testing of skull samples will be compared
with analytical results where possible and will yield understanding of phenomena

which may not be adequately described by mathematical modeling.
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B. Brain Tissue Tests. (Garnett T. Fallenstein and Verne D. Hulce, Dow Corning
Corporation)

1. Introduction.

Dow Corning effort in the past six months consisted primarily of analysis
of raw data obtained in previous tests of Rhesus monkey brain. The tests were
performed utilizing the Dynamic Probe Apparatus (DPA), described in the eighteen-
month report]. Two additional tests were conducted in the period with the same
basic assembly. Modifications to the system were limited to an improved operating
table/test platform unit.

A method for reduction of non-Tinear data from the tests was devised which
allows quantitative results to be extracted from the DPA results for the first
time. A considerable amount of raw data was thus reduced and analyzed.

A preliminary test of the dynamic mechanical properties of in vitro human
scalp was performed on the Dynamic Mechanical Apparatus (DMA).

Preliminary tests were also conducted on promising candidate substitute

materials.
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2. Equipment and Procedures.

a. DPA equipment.

A combination operating table/test platform unit was constructed for
tests on Tive Rhesus monkeys. This unit replaces the previously used primate
chair. The animal is placed in a prone position for testing, as contrasted with
the sitting position dictated by the primate chair. This modification improves
the test in that (1) less handling of the animal is required, (2) pre-test
preparation time is reduced, and (3) the system provides for better manipulation
of the DPA probe unit. Surgical procedures remained unchanged from those previously
reported. A1l tests were conducted near the precentral gyrus as in previous tests.
The basic DPA unit itself remained unchanged.

b. Data reduction.

The large majority of individual tests conducted on Rhesus monkey brain
were at dynamic amplitudes of approximately 10-25 x 10'3 cm. For this amplitude
range, the force outputs obtained continued to be non-sinusoidal (non-linear) in
nature, as has been previously observed. These data were reduced graphically.

The portion of the sinusoidal input displacement between the least total brain
deformation and the zero dynamic amplitude of the probe (i.e., the second quadrant
of the sine input) was utilized. This portion of the corresponding force output
appeared to approximate rather closely a sine wave and thus defined a linear
component of the response to the displacement function. This total Tinear
component of the force was resolved into sine and cosine components, yielding
spring (k) and viscous loss (n) constants, respectively. The spring constant

was converted into the dynamic elastic shear modulus (G') by utilizing the
approximation

G = %F' where r = radius of the probe.
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For the DPA, this equation reduces to

G = .727 k

This approximation has been utilized by von Gierke2

by Tangorra3, who derived the approximation in a different manner from von Gierke.

in similar experiments and

Note that tan § is defined as the ratio of the maxima of viscous loss force to
spring force (nX/kx), whereas tan & for previous in vitro tests on the DMA was

defined as G"/G'. It will be assumed that the two methods are equally valid.
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3. Results.

a. DPA tests on silicone gels.

The DPA was used to test silicone gels at both 10 and 100 Hz. The 10 Hz.
tests were conducted using the driving mechanism of the DMA in order to obtain a
sinusoidal input. (The shaker of the DPA does not provide a sinusoidal signal in
this low frequency range.) Standard DMA tests at near 10 Hz. were conducted on
the same silicone sample (see Reference 1). The results indicated a rather close
correlation in the dynamic elastic shear modulus, G', but tan & was approximately

30% higher with the DPA probe/sample configuration when compared with the DMA tests.

GI GII
Test gdxnes/cmzt gdxnes/cmzz Tan &
DMA 3.8 x 104 1.1 x 104 .29
DPA 4.2 1.6 .39

Another silicone gel, originally utilized to test the DPA during early
development, was tested some six months later under the same conditions. The
test frequency was 100 Hz. The results were within 10% of each other, a very
good correlation, as the tests were entirely separate and were conducted on
adjacent, but not identical, test sites from the same sample (see Figure 14).

b. DPA tests on dog brain (in vitro).

Tests similar to the low frequency (10 Hz.) tests of gels were conducted
on an in vitro dog brain hemisphere. The surface of the hemisphere was kept moist
with isotonic saline solution. The dynamic amplitudes and static deformations
were within the ranges utilized on in vivo tests of Rhesus brain at 80-100 Hz.

The results indicated linear responses whereas analogous tests on Rhesus
brain at higher frequency yield markedly non-Tinear responses. Also, the increase
of G' with increasing static deformation is not so pronounced. A best fit of G'

versus static deformation was obtained using a Tinear plot (see Figure 15).
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c. DPA tests on Rhesus monkey brain.

Raw data from some 42 individual DPA tests on six Rhesus monkey brains
were reduced by the graphic process described in Section 2b. Both in vivo and
post-mortem tests were analyzed. Blood pressure was varied in a controlled
manner in a small number of tests. The resulting G' for each test was plotted
against static deformation, a common variable. Figure 16 shows the total results.
Figure 17 shows the results from two individual test series (i.e., all tests from
each of two separate Rhesus brains). These tests, deemed to be the most reliable,
yield good fits when G is plotted versus static deformation on a semi-log graph.

A correlation coefficient matrix was run in order to obtain the signifi-
cance of supposed variables (see Table III). Forty-two sets of high-amplitude
data were used. Note that correlation was obtained for k versus static deformation
with a probability of 99%. The viscous component, n, versus static deformation
yielded a similar coefficient. On a trial basis, judging from Figure 17 and

4, it was assumed that the indicated relation between k or G'

evidence of Franke
and static deformation was exponential:

G = AeBX where x = static deformation.
Least square regression curves were calculated fitting G' values for the linear
portions of the force curves to this relation. A first approximation was obtained
using all of the above data. Then all data that could reasonably be assumed
erroneous due to either (1) lack of control of variables or (2) lack of definition
of variables were excluded. Finally, regression fits were obtained for the two
test series of Figure 17 where good relationships were evident visually. The

regression curves are shown in Figures 18 and 19 along with their correlation

coefficients r, and the number of data sets utilized for the computation.
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The regression equations have y-intercepts between 2.1 and 5.1 x 104 dynes/

2 4

cm®. This yields G' at zero deformation in the range of (3.6 * 1.5) x 10 dynes/cmz.
d. DMA tests on human scalp.

A sample of human scalp was tested in vitro utilizing the DMA. The sample

geometry was that routinely used for testing elastomeric samples. (A rectangular
bar specimen is mechanically grounded at both ends, with its major axis normal to -
and its major plane parallel to, the DMA driver shaft. The center is clamped to
the DMA driver shaft. This, in effect, creates two shear specimens.) The test
frequencies were near 10 Hz., similar to those employed in testing brain tissue.
Testing procedures were similar also. In this preliminary test G' measured 14 x

4

104 dynes/cmz, and G 4 x 10 dynes/cmz, yielding a tan § of .29.
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4. Summary and Conclusions.

Though a large degree of variability is evident in the overall DPA test data,
and in some cases within tests on a single brain, there does appear to be a rela-
tionship between the apparent G' and the probe static deformation. In cases where
both in vivo and post-mortem tests were conducted, the variability between the two
types of tests was less than the general data scatter.

The overall variability in later tests was less than that encountered in
earlier, more exploratory tests. A possible cause of some of the data scatter
is long-term motion of the brain within the skull after positioning of the probe.
If such a motion is present, however, it is apparently random, as tests conducted
immediately after a static deformation determination do not correlate better than
the data taken as a whole.

The fact that G' increases with static deformation is not contrary to previous

4 2 both noted similar

work in the field of biomechanics. Franke® and von Gierke
increases in studies of the impedance of the human body surface. von Gierke noted
that one must be aware of variations in the modulus due to static deformation and
Franke plotted stiffness versus static deformation, obtaining a relation similar
to that obtained in the 80-100 Hz. tests of Rhesus brain.

The G' obtained in the DPA tests results from the apparent spring constant
(k) over a small dynamic amplitude superimposed on a relatively large static
deformation. The spring constant thus obtained is a tangent value. That the
tangent spring constant varies with static deformation defines a non-linear
force-deformation relationship for the DPA probe on brain tissue. Also, using
the observed magnitudes of change in the spring and viscous loss constants with

static deformation, it can be shown that non-linear force outputs of the type

observed experimentally will result from sinusoidal displacement inputs.
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Note that in similar tests of brain material at 10 Hz., the force response
was linear. However, the G' versus static deformation plot was linear, compared
to the exponential plot for 80 Hz. tests.

Tests conducted on silicone gels have not yielded an exponential relationship
for k versus static deformation. Rather, k increases linearly but with a smaller
slope than any encountered with tests of brain tissue. Non-linearity has been
obtained in a subjective test of a gel-filled balloon, diameter about 3 cm.,
slightly pressurized. Possible causes include pre-stressing the membrane covering
(which had a small radius of curvature) and pressurizing the gel. Similar balloons
filled with either water or air exhibited linear responses.

The data thus far obtained tends to indicate that the dynamic shear spring
modulus G' Ties in the Tower 104 dynes/cm2 range for tests conducted in the 80-100
Hz. frequency range. There is a large variability in the data and any changes
from in vivo to post-mortem are less than the test variability encountered.

It is felt that more testing of a similar nature is necessary before a
modulus value can be quoted with reasonable certainty and with a reasonable
tolerance. Such testing should also lead to a more precise determination of

change in properties at death.
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Figure 14 G' versus Static Deformation.
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Figure 15 G' versus Static Deformation of Dog Brain.
10 Hz. DPA Test.
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Figure 16 G' versus Static Deformation of Rhesus Monkey Brain.
A1l High-Amplitude Tests Reduced by Graphic Method.
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Figure 17 G' versus Static Deformation of Rhesus Monkey Brain.
Two Best Individual Brains.
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Figure 18 Least Squares Fits of DPA Data.
Deformation of Rhesus Monkey Brain.
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Figure 19 Least Squares Fits of DPA Data. G' versus Static
Deformation of Rhesus Monkey Brain. Fits for Each
of Two Best Tests.
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C. Other Soft Tissue Tests

1. Dura Mater Tests (J. W. Melvin and I. Barodawala)
In the past six months 100 tension tests of fresh human dura

mater have been performed. Eighty of the tests were performed at

a nominal strain rate of 0.061 sec']

a nominal strain rate of 0.61 sec'].

and twenty were performed at
The tests were performed in
the Instron universal testing machine. The test specimen shape is
a specially made dumbbell specimen which is 2.25 inches long with

a reduced gage length section 0.25 inch wide and 0.75 inch long.
This specimen size allows up to eleven specimens to be cut out of

a typical sample of dura mater. The dura mater is obtained at autopsy
and placed in a jar of saline solution. If the specimen cannot be
tested immediately, it is stored in the saline solution in the re-
frigerator. An Instron load cell of 1000 1bs. capacity is used to
indicate the load on the specimen and the strain in the specimen is
measured by the phototransistorized optical extensometer shown in
Figure 20 and described in the eighteen month report. The load cell
is displayed versus the strain on an oscilloscope and the resulting
cdrve is photographed for later analysis.

The macrostructure of dur& mater, in the regions relatively
free from large blood vessels, appears to be a membrane with notable
directions of fiber reinforcement. Further examination indicates
that the direction of apparent fiber orientation when viewed on the
outside surface of the material is different from that when viewed

on the inside. Rough measurement of the angle between these two
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directions shows it to be about 70°. Some X-ray diffraction analyses
run on samples of dura mater also indicate two directions of orien-
tation about 70° apart. The inner layer of dura mater may be peeled
off and it is much thinner than the remaining dura mater. Because of
the highly structured nature of dura mater two procedures have been
incorporated into the test program. One is close histological exam-
ination of the material both before and after testing. The samples
representing before test conditions are taken near the site of the
specimen and parallel to the test section. The test section of the
specimen itself is used as the after test sample. The samples are
stained, embedded in paraffin, sectioned into 10 micron thicknesses
and mounted. Figure 21 shows a typical before test sample. Note the
short range alignment of fibers and the longer range random orienta-
tion. A tested sample is shown inFigure 22. The orientation in the
test section is quite pronounced. The second procedure for study of
orientation effects is to take specimens in three different directions
in the dura mater. These directions are the longitudinal direction,
(parallel to the sagittal plane), the transverse direction (perpen-
dicular to the sagittal plane), and the diagonal direction (roughly
45° to either of the other two directions). These directions are
noted in the test data.

Analysis of the data obtained to date is shown in Table IV, and
inFigures 23 and 24. The central curve in each band is the mean and

the bounds of the bands are the standard deviations. The strain at

failure is quite similar in both of the test directions shown but in
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Figure 16, there are noticeable modulus and strength differences.
Dura mater seems to exhibit an initial Timit strain such as skin
does, but it is only about one-tenth the magnitude of the values
associated with human skin. The data shown in Figure 24 can only

be considered tentative because of the small sample number.
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2. Scalp Tests

A limited number of fresh human scalp tests have been performed
in the last six months. With the exception of some cyclic shear tests
on scalp, which are reported under the Dow-Corning brain testing sec-
tion of this report, all the tests on scalp were radial compression
tests on composite samples. The scalp samples were taken at autopsy
in the form of a strip about 3 inches long and 0.25 to 0.50 inch wide.
The sample was placed in saline solution and then tested immediately
or stored in a refrigerator until it could be tested. The specimens
were roughly rectangular and their dimensions depended directly on the
width of the sample and the thickness of the scalp. The fatty sub-
cutaneous layer was left intact on the specimens. The nominal strain
rate in the tests was about 0.2 sec™'.

An aggregate compressive stress strain curve for nine tests is
shown in Figure 25. The appreciable strain accumulation with zero
or near zero load corresponds to compressing of the fatty subcut-
taneous layer. Also shown in Figure 25 is an experimental synthetic

material developed by the automotive industry to simulate scalp for

comparison.
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TABLE IV SUMMARY OF DURA MATER TENSION TESTING

Specimen v5 |8

Strain Orientation Mean Mean | s+ | s+ | Total Total

Rate Relative To o E ccg| szg| No. of No. of

sec Sagittal Plane psi psi | Po 580 Specimens | Persons

0.061 Longitudinal 736.8 | 5,046 | 282.6 | 2242 12 5
0.061 Transverse 928.1 6,094 | 308.6 | 2187 7 4
0.061 Diagonal 1,219 7,565 | 459.7 | 4089 24 8
0.61 Longitudinal 1,318 12,008 | 429.1 | 5492 7 3
0.61 Diagonal 1,092 8,856 | 453.9 | 3902 5 2
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Figure 20 Phototransistorized Optical Extensometer with a
Rubber Test Specimen in Place
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IIT. ANALYTICAL PROGRAM
ATi E. Engin

In the eighteen-month report the basic course of theoretical
research was outlined. As previously stated, the analytical program
was divided into two very closely related parts. These parts are:

1) Development of meaningful constitutive equations describing
the physical properties of the various tissues of head.

2) Analysis of progressively more sophisticated theoretical
head injury models.

In order to construct theoretical head injury models realistically,
the knowledge of part 1 should preceed that of part 2. Since the last
report most of the analytical effort has been directed to part 1. Among
the various approaches considered for the development of the constitu-
tive equations are (a) emperical methods, (b) theoretical methods, and
(c) combination of empirical and theoretical methods. To see the pre-
vious work done in this area using these methods, an extensive survey
of the literature has been made. A summary of some of the representa-
tive papers on the experimental work done for various soft tissue was
prepared and it will be presented in a later report.

The leading empirical method is to find an approximating formula
for the experimental data. For this there are two approaches possible.
One is to have the approximating function pass through the experi-
mentally observed points. The other approach is to have the approximat-
ing function retain some properties of tke data, such as the shape of

the curve, and to have it pass as close as possible but not necessarily
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through the original data. This is usually acceptable when dealing
with experimental data which are subject to a certain amount of error.
Method of Least Squares of Linear Regression equations are approxi-
mating formulas belonging to the Tatter approach. At the present time,
a computer program using regression analysis is available to supply
an empirical uniaxial constitutive equation for a given experimental
data. This equation represents a curve in two-dimensional space.
When the data for biaxial tests become available, the ideas used for
the uniaxial constitutive equations can be projected to obtain biaxial
constitutive equations with the help of a technique which already exists
at the Computing Center of The University of Michigan. A biaxial con-
stitutive equation geometrically represents a surface in three-dimen-
sional space. A very essential advantage of the empirical equations is
that previously specified material behavior such as elastic, visco-
elastic, elastic-plastic, etc., is not required.

Most of the theoretical papers on the constitutive equations are
on the philosophy of these equations and they have been written with the
language of general tensors or functionals. From the application point
of view they can be considered useless because of the gap between the
theoreticians and the experimentalist, and experimental difficulties
especially dealing with biological materials. Rivlin and his associates
in the field of rubber elasticity and Y. C. Fung in biomechanics made
some contributions to close the gap. The concept we are following is
to develop a theory which results in experimentally possible analysis

to determine the constitutive equations. Essentially, a modification



59

for Green's approach to constitutive equations is being considered.
According to this approach a constitutive equation can be derived
from an internal energy function which is assumed to be a function
of the strain only. Modification being considered is the inclusion
of strain-rate as well as strain for the argument of internal energy
function. When one considers that most of the biological materials
exhibit nonhomogenous, anisotropic and nonlinear viscoelastic char-
acteristics, the great complexity of the problem of mechanical pro-
perty determination is obvious.

An example of the combination of empirical and theoretical methods
is given in the Appendix A "A Mathematical Model to Determine Visco-
elastic Behavior of In Vivo Primate Brain." This paper illustrates
how one can obtain complex dynamic shear modulus of in vivo brain
from the combined relationships of theoretical analysis and experi-
mental data. From the theoretical mechanics point of view, the pro-
blem being considered is that of the steady state response character-
istics of a solid sphere of Tinear viscoelastic material whose mating
surface with the rigid container is free from shear stresses. The ex-
ternal load is taken to be a Tocal radial harmonic excitation. This
is a theoretical model for an experimental setup consisting of an
electromechanical device with a small driving point impedance probe
which is placed in direct contact with the pia-arachnoid through a
hole in the skull of a Rhesus monkey. In the theoretical analysis,
the response of the elastic material is determined first; later elas-
tic response solution is converted to viscoelastic response solution

through the use of the elastic-viscoelastic correspondence principle
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applicable to steady state oscillations. The paper is concluded
with a discussion of a method to determine the complex dynamic
shear modulus, G*, of in vivo primate brain.

When the knowledge of G* as a function of frequency is obtained
it can be used for a mechanical property of brain in the more com-
plex head injury models. At the present time various head injury
models are being evaluated for feasibility. One of them is concerned
with the impulsive response of a viscoelastic material filled in a
rigid spherical shell. This model can be viewed as a further exten-
sion of the work done by Anzelius and Glttinger who treated the im-
pulsive response of inviscid, irrotational fluid filled in a rigid
spherical shell. The other model under consideration takes into
account the effect of the cranial-cervical junction on the stress
distribution within the skull and the pressure gradients in the brain
when the head is subjected to impact or impulsive loads. It is felt
that analysis of each new model with improved constitutive equations
will be useful for the formulation of a much more complex head injury
model such as an irregularly shaped shell structure filled with visco-

elastic material.
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A MATHEMATICAL MODEL TO DETERMINE VISCOELASTIC
BEHAVIOR OF IN VIVO PRIMATE BRAIN

by
ATi E. Engin
Han-chou Wang

Highway Safety Research Institute
The University of Michigan
Ann Arbor, Michigan 48105, U.S.A.

ABSTRACT

Determination of mechanical properties of the constituents of the head
is very essential for the construction of various theoretical and experimental
head injury models. This paper represents a mathematical model for the evalu-
ation of viscoelastic behavior of in vivo primate brain. From theoretical
mechanics point of view, the problem being considered is that of the steady
state response characteristics of a solid sphere of linear viscoelastic material
whose mating surface with the rigid container is free from shear stresses. The
external load is taken to be a Tocal radial harmonic excitation. First, the
response of the elastic material is determined; later elastic response solution
is converted to viscoelastic response solution through the use of the correspon-
dence principle applicable to steady state oscillations. The paper is concluded
with a discussion of a method which enables one to determine the complex dynamic

shear modulus of in vivo primate brain.
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INTRODUCTION

Vulnerability of human head and the resulting fatalities from various
injuries to the head is a well-established fact. The gravity of the situ-
ation attracted many investigators from both experimental and theoretical
fields of physical sciences. Previous research to give a proper description
of the head injury has been either on determination of mechanical properties
of the constituents of the head or on analyses of various theoretical head
injury models. The investigations on these two categories are numerous.

Only a few representative ones will be mentioned here.

Among the numerous theories proposed for the brain damage, the theory
mainly advocated by Holbourn (1943) and theory supported by the mathematical
analyses of Anzelius (1943) and GlUttinger (1950) received the most attention.
According to Holbourn the main cause of brain damage is the shearing effect
produced by the severe deformation or fracture of the skull at the vicinity
of the impact to the head or rotations of the brain within the skull. Anzelius
and Guttinger considered the effect of a sudden impulsive Toad on a mass of
inviscid fluid contained in a rigid closed spherical shell (or container).
Their formulations are essentially identical and involve an axisymmetric
solution of the wave equation in spherical coordinates. They concluded that
an initial compression wave arises from the point of impact (coup), and due to
the rigidity of the shell, instantaneously a tension (rarefaction) wave is
emitted from the counterpole, both travelling towards the geometric center of
the system. The collision (superposition) of the two waves at the center
produces large pressure gradients, which was considered to be the cause of
brain damage. Hayashi (1968) treated a one-dimensional version of the Anzelius-
Guttinger model. His model consists of a rigid vessel (skull) containing

inviscid fluid (brain). The vessel is attached to a linear spring, which
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represents the composite elastic properties of the skull, scalp, etc. Approximate
solutions were obtained for the Timiting cases of very soft and very hard impacts.
Although this simple model has the advantage of being easy to interpret, it has
the similar shortcomings of the Anzelius-Guttinger model. Some of these short-
comings are: (a) due to rigidity and geometrical assumption, there is no way
one can determine the possible locations of skull fracture and (b) the effects
of skull deformation on the intracranial pressure distribution can not be
determined. Recently, Engin (1969) by obtaining analytical and numerical
solutions for the dynamic response of a fluid-filled elastic spherical shell
removed the major restrictions of previous models. His model consists of elastic
spherical shell filled with inviscid compressible fluid. The shell material and
fluid are considered to be homogenous and isotropic. The loading pattern is
taken local, radial, impulsive and axisymmetric. Since the load is applied
lTocally the combined linear shell theory which includes membrane and bending
effects of the shell has been used for the proper description of the wave
propagation. The conclusions of his paper include the possible locations of
brain damage and skull injury on the basis of the numerical computations.

Further extensions of Engin's model is possible if one knows the viscoelastic
properties of brain; with this knowledge one can replace the inviscid fluid
occupying the interior space of the shell with a viscoelastic material. In
Titerature, there are only four papers on the mechanical properties of brain.
Franke (1954) determined the coefficient of shear viscosity from impedance
measurements of a glass sphere vibrating within fresh pig brain. Creep
experiments were performed by Dodgson (1962) and Koeneman (1966) who also
studied dynamic cyclic properties from rabbits, rats, and pigs. Recently,

Fallenstein, et. al (1969) developed an electromechanical device with a small
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driving point impedance probe which was placed in direct contact with the
pia-arachnoid through a hole (diameter is approximately 1/8 inches) in the

skull. By means of this apparatus in vivo as well as in vitro tests on

Rhesus monkeys were performed. In this paper, we will give the theoretical
analyses of such a test conducted on the brain. The theoretical model for

the mathematical analyses is shown in Fig. 1. From mechanics point of view,

the problem being considered is that of the steady state response characteristics
of a solid sphere of linear viscoelastic material whose mating surface with the
rigid container is free from the tangential shear stresses. In particular, we
will be interested in the response of the viscoelastic material to a Tocal

radial harmonic excitation. First, the response of the elastic material will

be determined; later elastic response solutions will be converted to viscoelastic
response solutions through the use of the elastic-viscoelastic correspondence
principle applicable to steady state oscillations. We will conclude this paper
with a discussion of a method which enables one to determine the linear visco-

elastic parameters of the brain.
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THEORETICAL ANALYSES
As mentioned in the Introduction, the theoretical analyses of the

model in consideration will be given in two parts, namely; a) Elastic

Response, and b) Viscoelastic Response. We shall use the same model,

Fig. 1, for both parts; the only difference will be in the type of
material which occupies the rigid spherical shell.

a) Elastic Response The linear equations of motion of an elastic

medium, in vector form, are given by Fung (1965)
2.

(x + 26)9(7.0) - 267 x & = oy
ot

where u and o represent the displacement and rotation vectors respectively,

p is the mass density of medium, X and G are the elastic material constants.

These equations can be expressed in spherical coordinates, Fig. 2, and

introduction of axisymmetry and precluding torsional displacements mean

A=}
%0

where v is the displacement component in the & direction. The remaining

Q>

components of the displacement vector are along ¢ and along the radial
coordinate, r, and they are u and w respectively. In view of conditions

(2) the Eq. (1) yields the following two equations in spherical coordinates

3A 2G Dy s _ .2
O+ ZG)EF'_ rsing 55(“651n¢) B pﬁ_%¥ ’
ot
(» + 2G) aa + 263 (rwe) _ 32u
Mt 2b) 3h L b o = oY
r 3¢ r or at2

where A is the cubical dilatation defined by

A = v.l]:@.‘_"’_+g_w_+l_§_ll+§.@u

or r r 3¢ r i
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and wg is a component of %{v X u) and its value is

b ra(ru) o gyl .

wg = 77 Loy Y

The equations of motion (3) and (4) can be uncoupled by assuming the
displacement vector in the form of the gradient of a scalar function,
¢, plus the curl of a vector potential, ¥, i.e.,

U=1ve+Vx¥.

In spherical coordinates for axisymmetric motion the components of u
from Eq. (7) are found to be

_ rod | 3 4 s )
=5t vSTh 55-\¢s1n¢)] }where y is the component of v

along e-direction

Since the excitation is harmonic and applied locally on the spherical

surface, the following expansions are considered for ¢ and y:

9 = g 2, (r) P (coso) elut

- ' it
y = ngl v (r) P, (cos¢) e

where Pn(cos¢) are Legendre polynomials of the first order, first kind.
In view of the fact that the second solutions of the Legendre equations
are singular at the poles they are not included in the expansions (10)
and (11). 1In Egs. (10) and (11) w and t are the frequency of harmonic
excitation and time respectively. Next, let us substitute Egs. (10) and

(11) into Eqs. (8) and (9) and defining dP /dé = ﬁn’ etc. and with the

relation Pn'(cos¢) = ﬁn(cos¢) we obtain the following
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W= d‘I>o + z [ P + ——(C0t¢ P + p )}} 'u)t (]2)
dy_ . .
_ | n iwt
U= Z (q)n " ¥y ” r‘Tw)Pn € (13)
n=1I

For brevity the arguments of the Legendre polynomials in Egqs. (12), (13) and
in the subsequent equations are not shown. The equations of motion (3) and
(4) contain terms 1like A, cubical dilatation, and W We evaluate these by
substituting the expressions of displacement components, Eqs. (12) and (13),

into Egs. (5) and (6). The resulting equations are

2 2
d-e do d-e do o .
- 0,2 0 n,2"n ni\ et
S v SR T z,[(_—_dr2+r dr)Pn+(°°t¢P+P)2] e (14)
n=|I

| y [( \bn dwn 2 dzwn)' ( 5 o ) jwt ( )

w, = —% E -2r —m—~-r- —=)P_ -y (cote P+ P J e 15
9 2r2 sin2¢ dr dr2 n n n n

Here we make a note that the Legendre polynomials satisfy the following

differential equation

P, tP,cotg+ AP =0 (16)

where 2 = n(n + 1).
Substitution of Eqs. (12) - (15) into the first of the equations of

motion, namely, Eq. (3) and repeated use of Eq. (16) in various places,

after rather lengthy manipulation, yields the following expression
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d-¢ do A d™y
d n,2 _n_'n G " 'n
(n + 26)ge :E: [ dr2 trar s 2 %Pnp v [ dr ¥
n=o r n=|
dy A de. v
2 "n n _ 2 ~h_'n
r dr” ;Z'¢n]An Ppp = o0 [ar - 7 *alP (17)
n=o0

oo ©

2 2
d-e do A . d™y
! n,2-n n G n
(+2) g Y [—+igr-5e P -+ [—3+
r er r dr r2 n"n r dr2
n=o n=|
2 dlJ’n An ] d [dzwn 2 d“’n n ]
—— -5V [P+ r— + = — ¢, 1P =
rodr 2 "n"n dr drz rz dr r "ni'n
n=I
¢ ) dy
2 n n n
-pw E [+ - -+ - HF—JPn (18)
n=I

One can easily see that Eq. (17) is satisfied if the solutions of the

following differential equations are found

d <I>r'l 2 dd)n )‘n pw
1) d 2 + F_d_r:-- —q)n = ->\+ZG q)n n = 0’ ], 2 ------ (]9)
r r
dzwn 9 dwn An _pwg
11) drz * F dr - :-lpn - _—G——-wn n= ]9 2’ 3’ ..... (20)

The solutions of these two equations also satisfy Eq. (18). Thus, we can
state that equations (19) and (20) are the two sets of differential equations

that have to be solved.
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Eqs. (19) and (20) can also be rewritten as

2
d-e do
2 n n 2 2 _ _
r p 5+ 2r i’ (k"= r® - An)¢n =0 n=
r
2
d=y dy
2 n n 2 2 _ _
r p 5+ 2r r * (k2 rc - xn)wn =0 n =
Yc
where

2 _ pw 2 _ ow
k™ =5mpg ad k=T

The finite solutions of the above differential

Bessel function of the first kind

(=]
|

%ﬁﬂkﬂ) n=0,1, 2, ....

1,2, 3, ....

S
[}

¥y = bpdp(lor)

equations are the spherical

where jn(k,r) and jn(kzr) are the spherical Bessel functions with arguments

kr and kot respectively; a, and bn are the constants to be determined later.

Substitution of the solutions ° and ¥y into Eqs. (10) - (13) yields

5 = Z aan e'iwt

V= ZZ b ngP e

W= {ao ,Jo (kr) + Z[ak q (k)

u = {F Z_ [a nd (k|r - bnjn(kzr) - rb kyJ

where (}) denotes differentiation with respect

. (23)
b Jn(kzr)]Pn} elut

n! ( kzr)]lsn } e'iwt

to argument.
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The coefficients a, and bn are determined by utilizing the following
appropriate boundary conditions
i) Vanishing of the shear stress at the interface of elastic (or

(a,6) = 0

viscoelastic) material and the rigid boundary, i.e. Trg
i1) Local application of the radial displacement, i.e.
Wo  0s¢5¢o
w(a,e) = W(¢)eiwt, in particular, W(¢) =
0 ¢ <hST

where W, is the maximum amplitude of excitation.

From the first boundary condition we obtain

ow u, du
(-2 4, 2y

roe r . or =0- (24)

r=a

Substitution of displacement components from Eq. (23) into Eq. (24) yields
@ O .
1 iplkia) iflked) 5y :
Z { 2a [k, (ka) - L 1 - b[(x, - 2) Nz, k" ad, (kpa)l } P, =0

a

n=1I

jn(k Ia)]

a
2[k‘jn (kla)' a
- 25
N (h-2)3,(Kpa) 9 ®n ()
n + k" a (kza)

for each n2)

The second boundary condition in the view of Eq. (23) give the follewing

relation

“ A
2ok ,Jo Z a ki, (k) - b d (ka) TP, = W(s) (26)

Before proceeding further we expand the function W(¢) in a series of Legendre

polynomials of the form

W(e) = Z C Py (coso) (27)
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where the coefficients c, are found, by the usual methods, to be

= 3 HolPyy(c0s00) - Py (cosped] n= 0,1, 2,

it being realized, of course, that P_|(COS¢0)E|. (28)

Substituting Eqs. (25) and (27) into Eq. (26) yields

(oY)

2 [kaj '(kia) - § (ka)] 3 (k
ack;Jo'(kja) + Z a { k|jnl(k|a) - :" 2y ( 12) - & ;a;:.l ;]‘n( 22) } P, (cos¢)
n=| (r,-2)3, (kya) + ky"a"j "(k,a)

Comparison of coefficients in the previous equation give the following
c

= ——— and for nz1 (29)
kijo (kia)

forn=o0 ao

al(r-2)j (kpa) + k,%a% "(kpa)]c,

an—

iag, ' (kja)[(2-2)5 (ka) + k,%a% "(k,a)] - 22 [Kyad Lkja) - G (k,a)13, (kp2)
(30)
also from Egs. (25) and (30) for nzl

_ 2a[k|ajn'(k,a) - J'n(k|a)]cn
kiady ' (k1)L (-2)3, (kpa) + k%% "(kya)] = 2 Dkjad (ki) = 3 (ki2)13 (kpa)

(31)

b
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Here we note that second derivative of spherical Bessel function appearing
in Eqs. (30) and (31) can be eliminated by utilization of the differential
equation whose solutions are the spherical Bessel functions.

Having determined the coefficients a_ and bn we can now obtain displace-

n
ment components w and u from Eq. (23). For an isotropic elastic material, the

stress, 945 and strain, €45 tensors are related in a following manner

=1 for i =
+ ZGeij s 515{

Os: = A
g =0 fori#]

i J
where A = 635:56 ,» E and G are modulus of elasticity and shear modulus
respectively. Substituting Eq. (23) into Eq. (5) yields the cubical

dilatation, A, for the axisymmetric motion of the material

o]

A= -k,z :ZE: anjn(klr)Pn(cos¢)e1wt

n==~o

Since we are interested in the normal stress in the radial direction €pp is

obtained from

oo

W 2ky | A .
EY‘Y‘ = '5‘;: = Z an[-—r‘;‘ Jnl(kﬂ') = klz(]'k 2 2)Jn(k|r)]Pn(Cos¢) +
n=o T

Jnlkor)  kod t(kyr) .
:EE: APl nr2 .2 . 2 1P, (cos¢) » elut

n=1

Thus, from Eqs. (32) and (34) the final form of the normal stress, 0 et is

(33)
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2. 2ky 2 oL iut
Oy = an < -3k, 53, (k) - 26— (kir) - k,“(1 - —5=5)3, (k,r)] } P (cose)e
n=2o klr
i(kor) ki ' (kor) -
+ 26 ;E bl rg |2 0 2 ]Pn(cos¢)e‘“’t (35)
n=1

This completes the elastic solution.

b) Viscoelastic Response The elastic solutions obtained in the part (a)

can be converted to viscoelastic response solutions through the use of the
elastic-viscoelastic correspondence principle applicable to steady state
oscillations as discussed by Bland (1960). According to this principle the
two independent elastic constants such as the elastic shear modulus, G, and
the modulus of elasticity, E, are replaced by the complex shear modulus
6* = 6' + iG" and complex modulus of elasticity, E* = E' + iE respectively.
Both real and imaginary parts of G* and E* are, in general, functions of
frequency.

Since G and E are replaced by G* and E*, k,, k2 and x should be replaced

by k *, k,* and A*. They are defined to be

(% = GH(E* - 26%)

© O 3G* - E*
w2 1/2
ky* = (535 og%) (36)
W2 1/2
kp* = (°g)

The coefficients a, and bn which were defined in the preceding sections now

become complex functions, a_* and bn*, of k *, k2* and spherical Bessel functions

n
of complex arguments. In view of this the normal stress, O s will take the

following form
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ZE: w) ow %85 (¥ * 7 '(k %)+ %2 (1 n )3 (k *r)]P (cos-)eimt
Urr= an =X k, Jn(k‘ r)'ZG [ r Jn o 1 -k *2T2 Jn 1 n ¢
n=0 !
jo(k,*r)  ko*j ! (k,*r) .
+ 2G* :ZE; Apbp*L n rg .2 nr 2 ]Pn(cosq>)e1‘”t (37)

=0

The procedure of separating the complex stress, O pps into the real and imaginary
parts are shown, in some detail, in the appendix. Having performed this we
obtain the following expression for the radial normal stress

oy

:E: [Zn.(r) + ian(r)]Pn(cos¢)eiwt

n=2o0

Grr(r’ b t)

[Z,(r, ) + 1Z,(r, ¢)Je™

e'l(wt + §)

where  Z,(r, ¢) = :E: an(r)Pn(cos¢)

Zy(r, ¢) = Z Z,5(r)P,(cosg)
hn=2~0

= [2.2(r, 9) + ,2(r, 4172

GPP

5 t -k ZZ(Y‘, ¢)
= tan
ler, $)

The definitions of Lot and 7 , are given in the appendix. In Eq. (38) & is the

phase angle between the variation of stress and the variation of strain.
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The radial normal force under the probe is given by

o

-
n

P crr(a, b, t)dA

where dA = 2ma® sing do. In view of Eq. (38) above integral can be written as

Fr = 2na? [Z,(a, ¢) + iZz(a, ¢)]sing d¢ ei"“t {39)
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DISCUSSION

As shown schematically in Fig. 1 the apparatus has an acceleration
transducer 1 and force transducer 2 which measures a composite signal
consisting of the force caused by the acceleration of the probe mass and
the force transferred to the test object. By a proper calibration of these
two transducers one can obtain the shape and magnitudes of force and displace-
ment quantities. A typical test supplies two sets of information; namely,
phase relations between the force and displacement and the magnitude of force.
Since the brain is essentially incompressible we can assume that the visco-
elastic material contained in the rigid spherical shell is incompressible.
For an incompressible viscoelastic material 3G* = E*, thus the knowledge of
the two material constants (or functions if one seeks frequency dependent
relations) is sufficient. Let us consider to choose G' and G" to be determined
from a combined relationship of theoretical analysis and experimental data. For
this task we carry on the following steps:

a) From Eq. 39 obtain the numerical value of the complex force that the
material exerts on the probe. For a viscoelastic material, mathe-
matical analysis will give a complex force, real part of which is
in phase with displacement and the imaginary part 90° out of phase.
Hence, the ratio of the imaginary part of the force to the real part
will be the tangent of the phase angle between displacement and force.

b) Plot the theoretically obtained phase angles versus GI for various values
of G'. Here, we make the remark that the values of G' and G" can be
initially chosen arbitarily. This plot is in the form of family of

curves. On this plot draw a line passing through the experimental
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value of the phase angle and parallel to G' axis. This line will be
intersecting the family of curves at various points which define pairs
of values for G' and G'.

c) Using these pairs of G and G" obtain the numerical values of theoretical
force and plot these force values versus G'. This plot will be only
a single curve. The value of the experimental force determines a
point on this curve. G' and G defined by this point are the proper
material constants for the corresponding frequency.

Utilizing the method outlined above one can obtain the real and imaginary

parts of G* for various frequencies. The knowledge of G* are a function of

frequency is very essential for the construction of transient response of the

viscoelastic material.
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APPENDIX

For the viscoelastic material the complex moduli are defined to be

6* = 6' + iG"
| " (1)
E* = E + iE
Also Lame's constant, A, in viscoelastic case takes the form of
_ G*(E* - 2G*

A (11)

Substitution of (I) into (II) and rationalizing the resulting equation
gives

A% = Re(a*) + ilIm(a*) (I1I)
where

Re(ys) = L6 (E'-26") - G"(E"-26")](36'-E') + [6"(E'-26") + G'(E'-26")](36"-E")

(3G|_E|)2 + (3G"-E")2

ey = L6 (E'-26") + 6'(E"-26")](36"£") - [6'(E"-26") - 6"(E"-26")](36"-E")
(36'-E')% + (36"-E")?
Note that Re( ) and Im( ) denote the real and the imaginary parts of the
complex function inside of the paranthesis respectively.

The arguments of the spherical Bessel functions contain k, and k, which

involve A* and G*; hence k, and k2 become complex and they are

2 2
} 1/2
= g " = (%) /°
and
= Re(k *) + i Im(k *) = Re(k,*) + iIm(k,*) (Iv)

wher
e wp]/z { [(Re (%) + ZGI)Z + (Im(a*) + 26")2]1/2 + Re(2*) + 2G'} 1/2
Re(k,*) =

[2(Re(3*) + 26")2 + 2(In(a*) + 26")2]1/2
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V2 { Lire(®) + 262 + (tni) + 2612072 - relon) - 28} 12
Im(kl*) = I 2 n 2 ]/2
[2(Re(a*) + 26 )° + 2(Im(x*) + 2G )]
_ wp]/Z[(G'Z + G"Z)]/z + Gl]1/2
Re(ky) = T, 2172 W
[26 © + 26 “]
(e = s 2L+ 672 - g1l
2 [2G'2 + 2G"2]1/2
To obtain (V) the following relation has been used
(x + 1y)1/2 = (L3124 (L5117
where
= (<24 y2)1/2
For the viscoelastic material the relationship between a, and bn becomes
complex in the following manner
23, (k,*a)
2k|*jn(kl*a) -—
* =
b, (An-2) 2 a,* (vI)
3 jn(kz*a) + ko*"al (kz*a)
let . i,k *a)
= * 4 * - —
Xn 2[k, Ip (ki*a) 3 ]
= Re(X ) + i Im(Xn)
An-Z 2
= — * i
Y, =3 Jn(k2 a) + ko*"aj (kz*a)

Re(Yn) + 9 Im(Yn)
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where

Re (X,) = 2Re (k, )Rl (k,*2)] - 2In(k *)Inl3, ' (k *a)] - 2Re[j (k,*a)l/a
In(Xq) = 2Im(k *)Re[3, " (k,*a)] + 2Re (k,*)m[j, "(k,*a)] - 2In[j (k *a)/a

2(x.n-1)
a

Re(Y ) = [

. - aRe (ky**)Re L3, (k,*)] + aln(k,?)InLj (k,*a)]

- 2Re(k, JRe§ ' (ky*a)] - 2Im(k,*)In[j, ' (k,"a)]

2(>‘n_]) *2 * *2 (L *
Im(¥y) = [—5— - aRe(k,™)1InLi,(k,"a)] - alm(k,*“)Re[5, (k,*a)]

- 2Im(ky"WRe (3" (k,"a)] + 2Re (k,") I3, ' (k,"a)]

Now (VI) can be written as

RE(Xn) + iDﬂ(Xn) Xn . Xn
o RV T AmY,) O = LR ) il ) Ta (viD)
where

Koo ROKIRE(Y,) + In(X )In(Y )
Rely) = 2 2

n [Re (Y,)1° + [Im(Y )]
iy TR Y) - Rt (Y,

T [R(r)1% + [in(y )12

From Eq. (26) w
3 1 >\
ot k* 3, k) + ) Lo, k) - D 4 (k)T < D e p
n=1

n nn
n=o
c, c,
a,* = K% (K ¥a) and a * = X n=1,2,3,
[k, "3, (ki*a) - SH3 5, (ky*a)]
n
or
“n
an* = n=1,2,3, ... (VIII)

Xn. . Xn.
[A. - E(Tn—qn)] +i[A; - Im('y;:]n)]

where Ar = Re(k.*)Re[jn'(k|*a)] - Im(k,*)Im[jn'(kl*a)]
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A; =1In(k *Re [jn' (k,*a)] +Re (k *)Im [jnl(kl*a)]

><
>

X A
Re(yp) = 3 { Rel(y ReLj (k, )] - Im(ﬁ)xmtjn(kz*a)]}

>

Xn >‘n n * Xn : *
In(y=,) = Im(y;-)Re[J'n(kz a)l + Re(y;]-)Im[Jn(kz a)l

Eq. (VIII) now becomes

an* = Re(an*) + iIm(a *) n=1, 2,3, ...
X
where c [A, - Re(y;ﬂn)]
Re(a *) =
n
A - R )12 + [A, - T )12
p - Rely ) i~ Y In
n n
Xn.
Im(an*) = “ColA; - Im(V;ﬂn)]
X X
[A, - Re(y% )12 + [A, - In(% )1
n n

Substituting Eq. (IX) into Eq. (VII) we get
b.n* = Re(bn*) + i Im(bn*)

where

Re(b *) = R (X“)R (a.*) - I (——X")I (a_*)
elb *) = Rels—)Rela - Im mia_*
n Yn N Yn n

><
><

In(b,*) = Re()In(a *) + In(zT)Re(a *)
n n

Putting all the above Eqs. (I) - (IX) into the Eq. (37) we get the following

expressions for the complex normal stress
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Opp = an* -[Re(a*) + iIm(A*)][Re(kl*z) + 1'Im(k|*2)] {Re[jn(k,*r)]

n=o
+ iIn[, (k *r)] } - f:{—(G' + i6")[Re(k, *) + iIm(k,*)] { Re[jn'(k,*r)]

FAInLS, (200 | - 26" + 16" Re(k,*2) + 11n(k,%2)] { Reld, (K *r)]

. . * . >‘n int
+ 1Im[Jn(k, r)]} { 1 - [Re(ki*z) - iIm(k'*z)]rz }> Pn(cos¢)e

¥ :E: 2, (6" + i6")-[Re(b,*) + iIm(b *)] 5
n=~o0 r
[Re(k,*) + iIm(k,*)] | , .
- 2 - 2 {Re[jn (kz*r)] +iIm[j, (kz*r)]}> Pn(cos¢)1“’t

c <Re[jn<k2*r)1 + 1003, (ky*r)]

Next, let us define the following expressions:

4 = Re(w)Re(k,*2) - In(x*)In(k,**)
a, = Re(x*)In(k,*?) + In(x*)Re(k,*)
q; = GRe(k,*) - G'In(k,*)

= G'Im(k,*) + G Re(k,*)

a5 = 6 Re(k,*%) - 6"In(k,*")

g = G'In(k,*) + G"Re(k,*?)

a7 = {Relk AT + Lim(k )7 } v2

4g = G'Re(bn*) - G"Im(bn*)

(X)
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ag = 6 Im(b *) + G Re(b *)
4y = Re(k* el (ky*r)T - In(k,*)In[j ‘" (k,"r)]
a3y = Relky*)Tnld, (k)] + In(k,*)Rels ' (k,*r)]

Eq. (X) in view of expressions defined by Eq. (XI) can be written as
Opp = ZE: [Re(a,") + ilm(a *)] <i- { qiRel3, (k,*r)] - apIn(j, (k,*r)] +
n=o

iagTnlin(k, "r)] + faReliy (k") } - & {q3Re[J‘n'(k,*r)] - qqInLj, " (k,*r)]

, , | Tag - A Re(k, *2)IReLj, (k,*r)]
viaglnls, " (k *r) g Reld, ' (k r)]p-2(ag + iag) o
A Ik *2) I (k *r)] Loy - A Relk,“%)IInLj, (k *r)]
) 97 " 9
A Im(ki*z)Re[j (k,*r)] ot i
+ i-N 5 n .} :> - Pn(cos¢)e1w + n:Z:B 22,
Re[3, (ky™r)] - rayg  ImCd, (k)] - rayy
9 2 9 2
(i (k,*r)] - Re[j (k,*r)] - .
. {qB m[Jn( 2 :;] Y‘qn . qg e[Jn 2 :2 Y'q]o }> Pn(cosq))e]mt (XI1)

After separating the real and imaginary parts of Eq. (XII) in < >, it

can be written as
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where

Q] = 'q]Re[jn(k,*Y')] + q21m[jn(k,*r)] - 2(q5-q]2 - qe'q]3)
- é-{ agieli, (0] - g nl3, (k,"r)]}
0, = ayImld, (k,*r)] - q,Reld (k *r)] - 2(qza;, + 95073
- § {aglali, (0] + agReld, (K *r)1}
*2 . * . * *2
4y = { [a; - A Re(k, ") IRe[d, (k,*r)] - & In[3, (k,*r)IIm(k, )}'//G7

arg = {0y = AgRelk, B lnLi (K *r)] + 3 Reld (k, ") Jink, ") }I/G7

0 = g { Reli,(k,"1)] - rayg b ag { 1ol "r00 - oy}

Q = g { InC3,(ky"r)] - rayg } *t qq { Re[3, (k,™r)] - rq1o}

Finally, the normal stress can be expressed as
ol 60 8) = D [2 (1) + 17 ,() TP (cose)e'™t
n=o

where
Z,, = Rela,")-Qy - In(a *)Q, + 21 Qy/r?

Znp = Re(a,*)-Q, + In(a,*)0; + 24 Qy/r°

Eq. (XIV) is the desired expression to be shown.

(XIII)

(XIV)
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NOMENCLATURE

Modulus of elasticity

Complex modulus of elasticity, E' + 4E"

Real and imaginary parts of E* respectively

Radial force

Complex shear modulus, G' + iG"

Real and imaginary parts of G* respectively

Legendre polynomials of the first kind

Associated Legendre polynomials of the first kind and first order
Coefficients of the Legendre polynomial expansion of ¢
Coefficients of the Legendre polynomial expansion of ¥
Radius of sphere

Coefficients of 2 and Y respectively

Coefficients of the Legendre polynomial expansion of locally applied
radial displacement

Spherical Bessel functions, (n/22)1/2Jn+]/2(z)

Wave numbers for the dilatational and shear waves respectively

Complex wave numbers for the dilatational and shear waves respectively
Spherical coordinates

Time

Displacement vector

Components of the displacement vector in spherical coordinates

Strain and stress tensors respectively

Lame first constant, G(E-2G)/(3G-E)

= n(n+1), where n are integers

Mass density
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© Circular frequency

2l dilatation. 2 + 20 4 13U , coto
A Cubical dilatation, TPty 2 =
v Gradient operator
VX Curl operator

Note that every quantity which has superscript star is a complex number or function.
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