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Abstract

Pur pose

Machine learninglassificationalgorithms(classifies) for predictionof
treatment responsegebecoming mor@opular in radiotherapy literatur&eneral
machine learning literature provides evidence in favor of soassifierfamilies
(random forest, support vector machine, gradient bogstirtgrms of
classification performanc@he purpose of this study is to compaoeh
classifiers specifically foichemo)radiotherapgtatasetsindto estimate their

average discriminativeerformance foradiation treatmerutcome prediction.

Methods

We"collectedl2 dataset$3496patients)from prior studieon post
(chemo)radiotheapy toxicity,survival or tumor controlwith clinical, dosimetric,
orblooed biomarker featusefrom multiple institutionsind for different tumor
sites i.e. (nor)small cell lung cancehead andheck cancerand meningioma
Sixxeommon classificatio algorithmawith built-in feature selectiofdecision
tree random forest, neural network, support vector magleiastic net logisti
regressionLogitBoos) were applied on each dataset using the popularopen
sourceR packagecaret TheR codeand documentatiofor the analysisire

availableonline'. All classifiers weraunon each datasat a 1M-repeated

nestedb-fold crossvalidationwith hyperpaameter tuningPerformance metrics
(AUC, calibration slope and intercept, accurdcghen’s kappaand Bier score)
were computed. Weanked classifiers bUC to determine which classifiés
likely to also perform welin future studies. Weimulatedthe benefit for
potential investigatarto select aertainclassifierfor a new datasdtased on our
study pre-selectionbased on other datasets estimatingthe best classifiefior a
datase{setspecific selectiobased on information from the new dataset

compared taninformed classifieselection (random selection)

Results
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Random foresfbest in6/12 datasetsandelastic net logistic regressigbest in
4/12datasetsshowedthe overall best diseninationbut there was neinglebest
classifier across dataseBoth classifiers had a median Auankof 2. Pre-
selectionand sefspecific selectiolyielded asignificantaverage AUC
improvement of 0.Dand 0.@ over random selection with an average Atd@k

imprevement of A2 and 066, respectively
Conclusion

Randem forest andaestic net logistic regressigreld higher discriminative
performance in (chemo)radiotherapy outcome and toxicity predictiorothan
studiedclassifiers Thus, one of these two classifiers should be the first choice for
investigators whebuilding classification models or toeenchmarlone’s own
modelling resultagainst Our results also show that nformed preselection 6
classifies based on existingadasetsanimprove discrimination over random

selection

Keywords:radiotherapy; classification; outcome prediction; machine learning

predictive modelling

I ntr oduction

Machine learning algorithm®r predicting(chemo)radiotherapgutcomes (e.g.,
survival, treatment failure, toxicitygre receivingnuch attention in literaturéor
example.in decision support systems for precision meditiGrrently, there is no
consensus oanoptimal classiftation algorithminvestigatos selectlgorithmsfor
varioussreasonshé investigatds experience, usage in literatudata characteristics
and quality;"hypothesized feature dependenaies]ability of simple implementatns,
and model interpretabilityOne objective criterion for selecting a classifier is to
maximize a chosen performance metric, e.g., discriminatigréesed by the area
underithe receiver operating characteristic cuAldC). Here, wediscuss the
performance of binarglassifies in (chemo)radiotherapy outcome prediction, i.e.
algorithms that prediatthether or not a patiehs a certain outcome. We empirically
study the behaviour of existing simple implementations of classifiers on a range of

(chemo)radiotherapgutcome datasete possibly identify a classifiavith overall
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maximaldiscriminativeperformanceThisis a rekvant question for investigatwho
searchfor a rational basis to suppainieir choice ofa classifier orwho would like to
compare their own modellingsults to established algorithms

We employ various opeseurceR packages interfaced with tipackagecaret
(version 6:0=73}hatare readily available fanvestigators and has shown to produce
competitive resulfs With our resultswe alsowish to provide guidance in the current
trend to"delegatemodelling decisionto machine learning algorithms.

Liarge scale studies the general machine learning literat@iteprovide
evidence.in favor of some clasr families (random forestf(), support vector machine
(svm, gradient boosting machingkim)) in terms of classificatioperformance.ln our
study,werinvestigate how thesestdtstranslate tdchemo)radiotherapgatsets for
treatment'outcome predictimmognosis. To the best of our knowledge, this is the first
study to investigate classifier performance on a wide rangeabf dataset3 he studied
features are clinical, dosimetric, and blodmomarkers.

Within the framework of existinglassifier implementations,aattempto

answer thregeesearchguestions:

(1) Is there a superior classifier for predietimodelling in (chemo)radiotherapy?
(2) Howsdatasetlependent is the choice of a classifier?
(3)«1s therea benefit of choosing classifer based on empirical evidenitem

similar dataset§pre-selection?

Parmar et al(2015f compared multiple classifieend feature selection
methodgi.e. filter-based feature selectioah radiomicsdatausing thecaretpackage
We huild.upon, this work and extend the analysis talataset®utside theadiomics
domain We_omitfilter methods because all skfiers in our study compridmiilt-in
featureselection methods (i.embeddedeature selection) and the main advantage of
filter methods, i.elow computational cost per featuis not relevant foour datasets

with only"medest numbers tatures.
Material and.M ethods

Data collection

Twelve dataset$3496patients)with treatment outcomegescribedn previous
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publicationswverecollected from public repositoriesvw.cancerdata.ojgr provided

by collaboratorsTable 1 characterizésesedataset. Given availability,some datasets

120 consist of subsamples of or contain fewer/more patients and/or features than the cohorts
described inte original studies.Wo datasets were excluded after a preliminary
analysis (these datasets algonot mentioned inable 1) wheraone of the studied
classifies resulted in an average AUC above 0.51, which is evidbatéhey contain
no discriminative’ power. Datasets without discriminative power are not suitable for this

125 analysis;as we would be unable to deterndifferences indiscriminativeperformance
across classifierg.hepatientcohorts of Zatasets, Wijsman et a@15 and 2017),
partially’overlapbut each dataset lists a different outcqemophagitis and
pneumonitis)Datasets were anonymizedthe analysibecauseheir identity is not
relevantfor interpreting the resulsnd to encouragavestigatos to sharetheir

130 datasets.

Non-binary outcomesveredichotomized, e.g., overall survivahs translated
into 2year overalkurvival inthe dataset oCarvalho et al. (2016Missing data was
imputedfor.training and test se{the splitting of datasetato training and test seits
describedn sectionExperimental Desigrby medians for continuoudsatures and

135 modes forcategorical featwbased on the training s@asing the imputation on the
training selavoidsinformation leakage from test to training s€ategorical feafres in
training and test setgsere dummycoded, i.e. representing categorical features as a
combination of binary features, based on the combinddrsetassifiersthat cannot
handle categoricdéatures (seetable 2) Dummy coding on the combined set ensures

140 that the/coding represents all values observediatasetFeaturs with zero variance
in training Setsvere deletedh the trainingsetandin the correspondintgst set
Additionally, we removed neaero variace features foglmnetto avoidthe classifier
implementatiorfrom crashing during the fitting procesBeaturs in training setsvere
rescaled-torthe interval [0,4hd the same transformation veasplied to the

145 corresponding testes. Rescaling isieeded for certain classifiers, egymRadial All
theseoperations (imputation, dummy coding, deletingar)zero variance featuse
rescalingwereperformedindependently for each pair of training and test s#&pR in

figure 1).
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Classifiers

Six commonclassifiers wereselected antheir implementations wengsed via their
interfacing withthe opensourceR packagecaret The selection includes classifiers
frequently used in medical data analysimsl advanced classifiers such as random forests

or neural networks.

¢ Elastic net logistic regressias a regularized form of logistic regressiovhich
models additivdinear effectsThe added shrinkagesgularization (i.e. feature
selection)makesit is suitable for datasets with many featusdsle maintaining
the interpretability o standard logistic regression.

e Random forests generate a large number of decision trees based on random
subsamples of the training set while also randomly varying the features used in
the treesRandom forests allow modelling ndinear effectsA random forest
maodel is an ensemble of madgcision treanodels ands thereforedifficult to
interpret.

e Single<hidden-layer neural netwarkre simple versions afulti-layer
perceptron neural network models, which are currently popularized by deep
neural network applications in machine learning. In the hidden layer, auxiliary
features are generated from the input features which are then used for
classification. The weights used to generate auxilieajufes arelerivedfrom
the trainingset The high number of weights require more training data than
other simpler algorithms and reduce interpretability. However, if suffici¢at da
is.available, complex relationships between features can be modelled.

e _Support vector machinesith a radial basis function (RBF) kerrtehnsform the
original feature space to attaifbetterseparation between class€his
transfarmation, howeveis less intuitive than linear SVMs where a separating
hyperplands in the original feature space.

e togitBoost (if used with decision stumps as in this paper) learns a linear
combination of multiple single feature classifiers. Training samples that are
misclassified in early iterations of the algorithm are given a higkeght when

determining further classifiers. The final model is a weighted sum of single
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feature classifiers. Similar to random forests, it builds an ensemble of models
180 which is difficult to interpret.
e A decision treateratively subdivides the training set by selecfe@ture
cutoffs Decision trees can model nbnear effectsaand are easily interpretable
as‘long as the tree depth is low
Classifiér details can be found in general machine learning textSéoKeable 2
185 furthercharacterizes thestassifiers We use the option icaretto return class
probabilities for all classifiers, including ngmobabilistic classifiers likevmRadial
Classifiethypeparametersi.e. modelintrinsic parameters that need to be adjusted to
the studied data prior to modelling, were tuf@mdeach clasifier usinga random
search25 randomly chosen points in the hyperparameter space are evaluated and the
190 point with'the best performance metric (we chose the AUC in this study) is selected.

The boundaries of the hyperparameter space are giaamenh
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Experimental Design

For each classifietgestset(or out-of-samplg performance metric®UC, Brier score,
accuracy, and Cohen’s kappa)revestimatedor each of the 18ataset. The
performance metriestimator washeaverage performance metric computed from the
outer test folds in a nested and stratified 5-fold cuadislation (CV).The experiment
was repeated.100 timeEhe 100 times repeateestedcrossvalidation yields a better
estimate of the true test set performancedmygomlysimulating many scenarios with

varying graining and test set compositions.

The experimental design igpicted infigure 1:Eachdatasetvassplit into 5random
subsamplestratified for outcome classéstepl in figure 1), each of them actiogce

as a test set arfttimes as goart of a training sefThe number of inner and outer folds
was set to Following standard practié&”?*? Data preprocessing is done per pair of
training‘and test sets (step 2; segails insectionDataset$. The models were trained
on the training setstep6) and applied on the test sstegp7) to compute the
perfomance metricéor the test sefstep8), resulting in 5 estimates per performance
metric (i:e-1"per outer fold)During the trainingn eachouterfold, the best tuning
parametersvereselectedrom therandom search (see sectiGlassifierg according to
the maximum AU an inner Sfold CV. In the inner CV, the training seiasagain

split intg. 5 subsamples and models with different tuning parameézessompared
(steps 35). The nested-Hold CV was repeated 100 times with different randomization
seedsvhich are used, e.ggr generating theuterfolds instep 1 Note that the
performance metricsomputed on the outer test folafsany two classifiers can be
analysed by pairwise comparison because the classifiers were trained (step 6) and tested
(step )ron.the same training and test feta specific datasetithin each of the 100
repetitions:

ThemeanAUC, Brier scoreaccuracyand Cohen’s kappa were computed from
the Sestimatef the 5 folds in theuter CV. Calibration intercept and slope were
computedfrom a linear regression of outcomes and predicted outcome probdduilities
each of the 5 outer folds. To attain aggregated calibration metrics over the 5 aister fol
of the CV,the mean absolute differersceom 0 and 1 erecomputed for the
calibration intercept and slop@spectively Classifier rankngs were computed per

dataset andepetition by ordering theslassifiers’CV-meanAUC (i.e. the average AUC
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for 5 test setsin descending ordemndthen assigning the ranks from 1 tdJ&ing CV-
mean AUCs and C¥nean AUCranks we answer research questions 1 8\& chose
AUC for the analysis following Steyerberg et al. (2610Jhey emphasize the
importance of discrimination and calibration metrics when assessing edicidels.
For thessimplicity, we rstricted the extaed analysis tdiscrimination AUC) but also
report results focalibration and other metrics in appendix A.

To address the question of @election (esearch question 3ye assess the
advantage of choosing a classifier based on performance metrics from similar datasets,
which we_callpreselectionbelow.To estimate the benefit olr classifierpre-selection
for anewdatasetind tocompare it to alternative strategid®e results of the
experiment/aboverere used as inpfr asimulation For eah outer fold of the 1200 5-
fold CVs'(12datasets 100 repetitions * 5 folds = 6000 folds),chssifier sele@ns
were madeand tested on the tesetthatbelongs to the specific outiid:

e pre-selecting the classifier according to tneerageAUC rankin all other
datasets (excluding all folds from the current dataset)
e selecting the classifier that performed best initimer CV on the training set,

e _randomly selecting a classifier

Preselecting the classifidor one dataseéhathad the besiverageAUC rankiin
the other datasetsimulates the scenario in whiah investigatobasesheir classifier
choice an empirical evidence as is reported in this manuseapidomly selecting a
classifier represents the case vd®n investigator choosesclassifier without any prior
knowledge about the dattthat (she is about to analyz&electing theunedclassifier
with bestinner C\performance corresponds to evaluating multiple classifieteeon
training.dataset and thus including astspecific information in thelassifier
selectionThe'performance metrics are averaged oveésQfllouter folds (5 folds * 100
repetitions) for each of the Hatasets.

ThedocumentedR code used fothe analysiss availableonline'.
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Results

Running 1nested Hold crossvalidationand computing thenetricson 1dataset
255 for all 6 classifiersallows 1 comparisorof classifiers Thiswasapplied on 12lifferent
datasets, with each run repeated 100 times for a to1&0ff comparisong.he total
computationtime was approximately 6 daysaorintel Core i5200U CPU (or 15
seconds per classifier per dataset per outer fold, on average).
The results arpresendd and discussdthreefold

260 (1) results'ggregated over all datasetsdarepetitions to determine the presence of a
superior classifier
(2) separate resultfor each dataset but aggregated over repetitions to determine
dataset dependency,
(3) a'smulation of classifier selectiomethods in new datasdtsestimate the

265 relativeeffect of classifiepreselection.

The.detailed analysis restrictedo the classifiers’ discriminativeerformance
according tothe AUC. Results for the remaining me{icger score, calibration

intercep/slope, accuracy, and Cohenagpa) are repted in appendix A.

Results aggregated over all datasets

270 Figure 2shows the distribution of classifieankingsbased ontheaverageAUC (12
datasets %100-repetitions Z1200 data poistper classifier)Figure 3depicts pairwise
comparisonsar each classifier pairl@00 comparisons per pair). The numbers in the
plot indicate’how often aksifier A (yaxis) achieved aAUC greaterthan classifier B
(x-axis). Coloringndicateswhethertheincreased®UCs of classifier A are statistically

275 significant {iolet) or not (light violet) Untested pairs are colorgcey. The
significance_cutoff was set the 0.05level (one-sided Wilcoxon signed-ramdést
Holm-Bonferroni correction for 1gests)

rf andglmnetshowedthe bestmedian AUCrank, followed bynnet svmRadial
LogitBeest andrpart (figure 2). At the low end of the rankingpart showed poor

280 discriminative performance. Manual inspection ofribert models shoedthatrpart

frequently returns empty decisitnees for particular setfof 34%, 19%, 68%, 35%,

58% of all outer folds fosetsD, E, G, K, L, respectively. In pairwise comparisons,
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andglmnetsignificantly outperforradall other classifiers (figure 3)f exhibieda
smallbut statistically insignificanbetterAUC rank thanglmnet

285 The resultsn figures 2and3 indicate thexistenceof a significant classifier
rankingfor these datasetslowever, the considerable sprgset classifiein figure 2
and the lowpairwise comparison percentagbstween 3% and 91%n figure 3 also
suggesh yetunobserved dependency fdassifer performancelo this end, the

relationship'between datasets amadyingclassifier performance is investigated.

290 Results separate for each dataset

Figure 4shows the average AUC for each pair of classifier and dqte@@repetitions
= 100 data points per pair). FiguralBpicts the averagank derived from the AUC
(100 data-peints per pair).

rf.andglmnetgenerallyyielded higher AUCvaluesand AUCranksper dataset

295 (figures4'&"5). Howeverthis observation is not consistent over all datagegs;nnet

outperformsfin ses H, J, andK, andsvmRadiabutperfornedglmnetin ses AandC.

The results in the figures 4 andnlicate thatlatasespecificproperties impact
thediscriminative performancef classifiers These resultshallenge our proposition
thatoneean preselect classifiers for prediggé modelling in (chemo)radiotherapgpsed

300 on representative datasets from the same.field

Effects of empirical classifier pre-selection on discriminative performance

Table 3 lists, for each dataset, the name and average AUG@seraged over all00
repetitions, for randorolassifier selectiorclassifierpre-selecton, andsetspecific

305 classifier selegtion.

Thepreselectionprocedure alwaysesults inrf or gimnet The meanbenefit of

empirically preselecting a classifier is small: tA@&JC improvementanges between
0.02 and.0:06 with a mean of 0.02.a pairwisecomparison over all datasets (p < 0.05,
one-sided.Wilcoxon signeidnk test), hte AUC values bypre-selection were

310 significantly larger than the AUC values by random seleciitve AUC rank improves
by 0.42 on average. Including dataset-specific information by inner CV yieldsia
AUC improvement of 0.02 and improves tta@k, on average, by 0.66 a pairwise

comparison of sedpecific and random classifier selection over all datasets (p < 0.05,
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one-sided Wilcoxon gnedrank test), théUC increase was also statistically
significant.

Given this simulation, the expected benefit of pedecting a classifier for a new
dataset based aasultsfrom (chemo)radiotherapgpecific numerical studies is limited

with an-average increase in AUC of 0.02.

Discussion

Ourresultssuggesthat there is indeean overall ranking of classifiers in
(chemo)radiotherapgtatasetswith rf andglmnetleading the rankingHoweverwe also
observehat the performance of a classifiipends on the specific datasae
selecting.¢classifiers based on evidence from relatedetatvould, on averaggrovide
a benefitfor.investigatordecause iincreasesliscriminative performancén increase
in average discriminative performancealesirable in thatrainvestigator would be less
likely tordiscardtheir data because offgerceivedabsencef predictive or prognostic
value.The estimate®.02 mean AUC improvement might appearallbut it comes

‘for free’ with classifier selectiotmased on empirical evidence from multiple
radiotherapy datasetSurthermore, the 0.02 AUC improvement is relative to random
classifier'selection. If an investigator had initially choggart, which is the overall
worst performing classifian our study switching to the preselected classifier would
result in‘an average AUC increase of 0.8%itching from LogitBoost, which is the
second werst performing classifier in our stutlythe preselected classifiould

result in‘an average AUC increase 0f4.0

The results‘in‘table 3 show that classifier-pegection and setpecific classifier
selection;"onraverage, yield the same AUC increasdhifMethat the usefulness of set
specific'classifier selection is dependent on the size of the training sstfietgre
selection is preferable for small datasetssgetific classifier selection is better for
larger dataset€lassifier preselection represents choosing classifiers using evidence
from a large collection o$imilar datasets from thgenerakadiotherapy outcome
doman. Setspecific classifieselectionrepresents choosing classifiers basedhe
training set, which is a consideralsiynallerevidence baskut comes from the patient
groupunder investigationf the training dataset is too smadklecting classifierbased

onresults from other datasets might be deg®r prone. On the contrary,ah
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investigatomhas collected a large dataset, they have the option to condspesdic
classifier selectioifwith all 6 classifiers¥or their training data using our documenkd
codé€.

In table 3,0ne can observe théite preselected classifier is mosttiand
sometimeglmnet To understand this behaviougrsider datasét: gimnetwaspre-
selected fosetA by selecting the classifier with the best average Aatikin all other
sets (excludingetA). Note that, for all 12 datasets togettibe average AUCank for
rf is only slightly better than fagimnet(2.28 forrf and 2.43 fogimnet the average of
the rows._in figure 5)Sinceglmnetperforms badly whilef performs best isetA,
excluding this information leads tobetter average AUfank for gimnetand a worse
averagerAWGQGank for rf in the remaining 11 datasets. As a consequ@hcmet
becomeghe preselected classifier for this datas&tsimilar behaviour is observed for
ses C andE but not inses D, F, I, whereglmnetalso performs worse thahbut the
difference between both classifiers is smadied does not induce a switch in the pre-
selected, classifier

The result that classifier pigelectionis as good asetspecific selection ithe
studieddatasetsloesnot imply that onecannotdetermine a better classifier for a new
datasetOurimplementation of sedpecific classifier selection only evaluates the
performance of various classifiers but does not directly take into account properties of
the datasetitself-or example, if an investigatoollected a datas@t which the
outcome has a quadratic dependency on a feafimeegtwould not be able to capture
this relation(since it models only linear effectsyitrf would. However preselecting a
classifierbased on results from other (chemo)radiothedgigsetsvorks wellon
averaye. Furthermore, includingetspecificclassifier selectiosomplicates the
modelling process arttiereforemight not bedesirable

In_this study we collected 12atasets for diffeent treatment sitege. (non)
small celllungcancer head anasheckcancer meningiomawith different outcomes.e.
survivalgpneumonitis, esophagitis, odynophagia, regional control. However, this
collectionss certainly not a complete representatioimeaitment outcomedatasets
analyzediin,the field of radiotherapy.rthermore, weonly studied one implementation
of classifiers while classifier performance may vary between implementations. Past
studies, however, indicate that classifier implementatiorsmterfaced withcaretare
competitivé. Given the apparent lack of comparative classifier studies in radiotherapy,
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our intention has been pyovide numerical evidence for classifselection to
investigators even though our analysis is not exhaustive.

We intentionallylimited the analysis tolassifier selectiomhile ignoring
factors such athe investigator's experience, usage in literature, hytotthdeature
dependencies, and model interpretabilltiis restrictionmitatesthe currentrendto
delegatgnodelling decisions to machine learning algorithms and/ordoonain
experts Nonetheless, @/ feelthe needo emphasizéhat including theefactors has
merit. Furthermore, expertise on a specific classimuld warrant its selection:
Lavesson and Davidsson (2086)bservedn a study on 8laesetsfrom different
research domairtbat the impact of hyperparameter tuning excélealof classifier
selection: Therefore, he investigatorcould tune a classifier for better performabge
also tuning the hyperparametexgtside the subsef hyperparameteisineable inside
caret Even inithose cases, however, we suggest comparing these results to simple
implementations off andglmnetas these classifiers on average have the best
discriminative performance according to this study

Finallyyfor the clinical implementation of classifiersodel interpretabilitys
arguablya major requiremerit this view isalsoconvincingly motivatedy Caruana et
al**. Fortunately, our study shows thigimnet which isanintuitive classifier, isalso

one of the best performing classifiers.

Conclusion

We have:medelled treatment outcomed2datasetsising 6 diferent classifier
implementationsn the popular opersource softwar® interfacedwith the package
caret Ourresultprovide evidence thahe easily interpretable elastic net logistic
regressionrand thmomplexrandom forestlassifiersgenerally yielchigher
discriminativeperformance in (chemo)radiotherapy outcome and toxicity prediction
than the other classifiershus, one ofhese two classifiershould be thérst choicefor
investigatorgo build classification modelsr to compare one’s own modelling results.
Our results also show that an informed peéection of classifiers based on existing

datasets improves discrimination over random selection.
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Appendix’A

Table Al lists pdormance metricper classifier. These values are averaged over all

repetitionsrand datasets (100 repetitions * 4askets = 120 datgpointseacl).

Accuracysand Cohen’s kpp were computed at the 0.5-cut@tlibration fails in some

outer folds forevery classifieresulting in either large or undefined values for intercept

and/or slope. This failure occurs frequently wititetandrpart. Undefined (NaN)

values are excluded when calculating the median.
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Figure 1. Experimental design: each dataset is split into 5 stratified outer folds (step 1).
555 For each of the folds, the data is pre-processed (imputation, dummy coding, deleting

zero variance features, rescaling) (step 2). The hyperparameters are tuned in the training

set via a Hold inner CV (steps %). Based on the selected hyperparameters, a model is

learned onsthe training set (step 6) and applied on the test set (step 7). Pedormanc

metrics @re calculated on the test set (step 8) and stored for all outer folds. This process
560 is repeated™100times for each classifier. Randomization seeds are stable across

classifiers within a repetition to allow pairwise comparison.

Figure 2. Box- and scatterplot of the AW&hk (lower being better) per outefféld CV
aggregated over all datasets and repetitions (12 datasets * 100 repetitkiiG data

points per/classifier).

565 Figure 3. Paiwwise comparisons of each classifier pair (12 datasets * 100 repetitions =
1200 comparisons per pair). The numbers in the plot indicate how often classifier A (y
axis) achieved an AUC greater than classifier 8xXis). The color indicates whether
the increased AUCs by classifier A are statistically significant (violet), insignificant
(light violet)or have not been tested (grey). The significance cutoff was thee 0.05-

570 level(onesided Wilcoxon signed-rank test, Holm-Bonferroni correction for 15 tests).

Figure 4«Fhesmean AUC for each pair of classifier and dataset (100 repetitions = data

points per pair).

Figure 5..Fhe mearank derived from the AUC (100 repetitions = 100 data points per
pair).
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Table 1. Dataset characteristics. The number of features is determined before pre-processing.

Dataset Disease Outcome Prevalence | Patients | Features | Featuretypes Sour ce
(in %)

Belderbos-et.al. | Non-small cell lung cancer | Grade >2 acute 27 156 22 Clinical, dosimetric, | Private
(2005Y esophaygitis blood

Bots et al. (2017 | Head and neck cancer 2-year overall survival | 42 137 10 Clinical, dosimetric | Private
Carvalhgretal. Non-small cell lung cancer | 2-year overall survival | 40 363 18 Clinical, dosimetric, | Public*?
(2016} blood

Janssens et al. Laryngeal cancer 5-year regional control| 89 179 48 Clinical, dosimetric, | Private
(2012)3 blood

Jochems‘et-al. Non-small cell lung cancer | 2-year overall survival | 36 327 9 Clinical, dosimetric | Private
(2016)

Kwint et-al Non-small cell lung cancer | Grade >2 acute 61 139 83 Clinical, dosimetric, | Private
(2012)° esophagitis blood

Lustberg-et al. Laryngeal cancer 2-year overall survival | 83 922 7 Clinical, dosimetric, | Private

(2016

blood
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Morin et al. Meningioma Local failure 36 257 18 Clinical Private
(forthcoming)

Oberije etal. Non-small cell lung cancer | 2-year overall survival | 17 548 20 Clinical, dosimetric | Public*®
(2015)®

Olling et al. Small and non-small cell lung Odynophagia 67 131 a7 Clinical, dosimetric | Private
(2017Y° cancer prescription medication

Wijsmanset-al. Non-small cell lung cancer | Grade >2 acute 36 149 11 Clinical, dosimetric, | Private
(2015¥* esophagitis blood

Wijsman.et al. Non-small cell lung cancer | Grade >3 radiation 14 188 18 Clinical, dosimetric, | Private
(2017y2 pneumonitis blood

Table 2. Classifier characteristics.
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Classifier caret® label R package Requiresdummy Tuned hyper -
coding parameters

Elastic netlogistic | glmnet glmnet® Yes a, A

regression

Random forest rf randomFore$f No mtry

Single-hidden-layer | nnet nnet’ No size, decay

neural network

SuppoftVector svmRadial kernlalf® Yes o, C

machinezwith radial

basis function (RBF)

kernel

LogitBoast LogitBoost caTool$® Yes nlter

Decision-tree rpart rpart? No cp

Table 3. For each dataset, the AUC rank averaged over all repetitions when (a) randomly selecting a classifier (Random classifier), (b) pre-

selecting the classifier with the average best AUC rank in all other datasets, i.e. without any information about the current dataset (Pre-selected
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classifier), (c) selecting the classifier that yielded the highest AUC in the inner CV (Set-specific classifier). Improvements in average AUC and
average AUC rank compared to (a) are reported. The average AUC improvements by pre-selection and set-specific selection were tested for
statistical significance (p < 0.05, one-sided Wilcoxon signed-rank test) and found to be statistically significant (*). No other statistical tests

besides thedtwo aforementioned tests were conducted.

Random
classifier Pre-selected classifier Set-specific classifier
Rank Rank AUC Rank AUC

Dataset | .Mean Name | Mean | Increase | Increase | Mean | Increase | Increase

Set A 359 |glmnet| 3.64 | -0.05 0.00 3.10 0.49 0.02

SetB 3.48 rf 2.92 0.56 0.02 3.31 0.17 0.01

Set C 3.50 |glmnet| 3.12 0.37 0.03 2.78 0.72 0.03

SetD 3.57 rf 2.60 0.97 0.04 3.31 0.26 0.02

Set E 3.53 |glmnet| 3.35 0.18 0.01 1.75 1.78 0.05

Set F 339 rf 1.89 1.50 0.04 2.58 0.81 0.03
Set G 3.47 rf 2.99 0.47 0.04 3.52 -0.06 0.01
SetH 3144 rf 3.81 -0.37 0.00 1.70 1.74 0.05
Set | 3:45 rf 1.59 1.86 0.06 1.72 1.73 0.05
SetJ 3.52 rf 4.18 -0.66 -0.02 341 0.11 0.00
Set K 3.50 rf 3.33 0.16 0.01 3.20 0.30 0.01
Set L 3.58 rf 3.50 0.08 0.01 3.66 -0.08 0.00
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‘ Mean ‘ 3.50 ‘ ‘3.08‘ 0.42 ‘ 0.02* ‘2.34‘ 0.66 ‘ 0.02* ‘

Table ALl. Median performance metrics per classifier aggregated over repetitions and datasets (1200 data points each). Undefined (NaN) values

are excluded when calculating the median.

Calibration

Brier Cohen's | intercept | Calibration

Classifier | AUC score Accuracy | kappa error slope error
rf 0:72 0.17 0.72 0.10 0.12 0.37
glmnet | |0.72 0.18 0.72 0.14 0.26 0.68
nnet 0.71 0.21 0.69 0.11 0.36 0.96
svmRadial-|.0:69 0.18 0.72 0.06 0.26 0.86
LogitBoost | 0.66 0.23 0.68 0.18 0.22 0.60
rpart 0:63 0.20 0.71 0.16 0.21 0.56
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