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Abstract In this paper, we present a study of the low-latitude field-aligned irregularities formation and
evolution during the 7–8 September 2017 geomagnetic storm by analyzing data of the very high
frequency coherent radar installed at Fuke, Hainan Island of China (19.5°N, 109.1°E; magnetic latitude 9.58°N)
and a colocated Digisonde Portable Sounder. The prompt penetration of eastward interplanetary electric
field associated with sudden southward turning of the interplanetary magnetic field Bz resulted in large
ascent of the F layer, making conducive conditions at the bottomside of the layer for the growth of
Rayleigh-Taylor instability and the development of the plasma irregularities in the postsunset hours. The
irregularities persisted into the postmidnight sector when the southward interplanetary magnetic field Bz
gradually decreased to the quiet time values. In addition, the base height of F layer at Fuke also showed
a large elevation after midnight during two consecutive substorm onsets, suggesting that the
substorm-induced overshielding penetration electric field may take over and modify the ambient zonal
electric field in low-latitude ionosphere and induce the irregularities in the postmidnight sector. Moreover,
different from the quiet time eastward movement of the irregularities observed over Fuke, the storm time
irregularities displayed no zonal drift at the initial period and subsequently began drifting westward. The
reversal of background plasma zonal drift velocity observed by Hainan digisonde characterized the storm
time zonal drift pattern of the irregularities.

1. Introduction

The equatorial/low-latitude F region field-aligned irregularities (FAIs), also known as equatorial/low-latitude
spread F, have been extensively studied for decades by using various instruments, such as VHF radars (e.g.,
Li et al., 2013; Tsunoda, 1980; Woodman & LaHoz, 1976; Yokoyama & Fukao, 2006), ionosondes (Abdu
et al., 2003; W. S. Chen et al., 2006; Lee et al., 2005), optical airglow imager (Hickey et al., 2015; Otsuka et al.,
2004; Sobral et al., 2009), Global Positioning System scintillation measurements (Li et al., 2010; Pi et al.,
1997), and in situ satellites (Basu et al., 2001; Burke et al., 2004; Huang et al., 2012). Plasma irregularities in
the ionosphere may cause rapid variations in phase and amplitude of radio signals and lead to detrimental
effect on navigation and communication system (Woodman, 2009, and references therein). Therefore, it is
important to understand the underlying generation mechanism of these ionospheric irregular structures.

The seasonal, longitudinal, and solar cycle dependence of the equatorial/low-latitude FAIs occurrences have
been intensively investigated (e.g., Burke et al., 2004; Huang et al., 2014; Kil & Heelis, 1998; Rastogi, 1980), but
the day-to-day and storm time variability of the FAIs occurrences is still a challenging problem for the forecast
of equatorial/low-latitude spread F. It has been generally accepted that ionospheric irregularities are mainly
generated via the generalized Rayleigh-Taylor (R-T) instability (Ott, 1978) that may develop at the bottomside
of the F layer and rapidly arise to the topside ionosphere. The equatorial/low-latitude FAIs usually occur dur-
ing postsunset hours due to the evening prereversal enhancement (PRE) of zonal (eastward) electric
field/vertical plasma drift (Woodman, 1970), which provides favorable conditions for the growth of the R-T
instability by lifting the lower F layer to higher altitudes where the ion-neutral collision frequency is lower.
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The PRE of zonal electric field/vertical plasma drift is one of the most important factors for facilitating quiet
time FAIs generation, but during storm time, other factors can also lead to perturbation in zonal electric field
and thus facilitate the generation of FAIs.

The generation or suppression of equatorial/low-latitude FAIs during geomagnetic disturbances, in particu-
lar, geomagnetic storms, are very complicated and have been studied extensively (Abdu, 2012; Martinis
et al., 2005, and references therein). Under geomagnetic disturbance conditions, the equatorial/low-latitude
zonal electric field, which controls the occurrence of FAIs, might bemodified by two important drivers, that is,
prompt penetration of electric field (PPEF) from high-latitude to low-latitude/equatorial regions (Nishida,
1968) and disturbance dynamo electric field (DDEF) driven by disturbed global thermospheric circulation
due to Joule heating (Blanc & Richmond, 1980).

The equatorward penetration of dawn-dusk electric field (PPEF) occurs almost simultaneously with the sud-
den southward excursion of the interplanetary magnetic field (IMF) Bz and produce short-term (tens of min-
utes to 1–2 hr) perturbations in the equatorial/low-latitude zonal electric field. The PPEF is eastward
(westward) on the dayside (nightside), which has the same polarity with the quiet time ambient zonal electric
field at equatorial/low-latitude ionosphere. The eastward PPEF superposed on the normal PRE of zonal elec-
tric field in evening hours will enhance the vertical plasma drift in F region, consequently inducing the
equatorial/low-latitude FAIs generation. Shielding electric field gradually builds up in the inner magneto-
sphere region after the enhanced convection, and the PPEF will be gradually shielded (Kikuchi et al., 2008).
However, the IMF Bz usually fluctuates and, therefore, the equatorial electric field is rarely balanced. If there
is a sudden IMF Bz northward turning or a substorm onset, the PPEF will reduce and the shielding electric
field may dominate, then the total electric field may now become dusk-to-dawn, that is, westward (eastward)
on the dayside (nightside), which is opposite of the dawn-dusk PPEF (Fujita et al., 2010; Hashimoto et al.,
2011; Kikuchi et al., 2003; Wei et al., 2009). On the other hand, the DDEF occurs with a few hours of delay from
the beginning of the storm and usually lasts for longer period than the PPEF. In general, the DDEF has
westward polarity in the evening hours and can diminish or even reverse the normal PRE of zonal electric
field in equatorial/low-latitude ionosphere, which then inhibit the development of the FAIs. Therefore, the
excitation or inhibition of equatorial/low-latitude FAIs during the geomagnetic storm depends on the inter-
play between PPEF and DDEF. For instance, generation of FAIs during the main phase of the geomagnetic
storm due to eastward PPEF in the dusk sector have been reported (i.e., Abdu et al., 2003, Basu et al., 2001,
Patra et al., 2016, Tulasi Ram et al., 2008). Abdu et al. (1997) reported the inhibition of the equatorial PRE
and the postsunset spread F due to the westward DDEF in the evening during the storm recovery.
Recently, Rajesh et al. (2017) discussed the inhibition of the irregularities over Taiwan during the 2015 St.
Patrick’s Day storm, and they suggested that the westward overshielding electric field resulting from transi-
ent northward turning of IMF Bz around the dusk was responsible for the FAIs inhibition.

The suppression or initiation of the equatorial/low-latitude FAIs during the geomagnetic storm largely hinges
on the competitive effects of these perturbation electric fields mentioned above. In this paper, we investigate
the development of the low-latitude ionospheric zonal electric field and irregularities during the 7–8
September 2017 storm. Our observations are primarily based on the VHF coherent radar and the digisonde
installed at Fuke, Hainan Island of China (19.5°N, 109.1°E; magnetic latitude 9.58°N). A brief description of
the instruments is presented in section 2. In section 3, we briefly introduce the characteristics of the 7–8
September 2017 geomagnetic storm and then present the low-latitude ionospheric irregularities as well as
the background plasma condition during the storm. Sections 4 and 5 give the discussion and conclusion,
respectively. The results we present here contribute to improving current understanding of the storm time
low-latitude plasma irregularities generation and evolution.

2. Instruments

Figure 1 shows the location and field of view (FoV) of the Hainan coherent scatter phased array radar
(HCOPAR) located at Fuke, Hainan Island of China (19.5°N, 109.1°E; magnetic latitude 9.58°N). It is one of
the most important radio systems of Chinese Meridian Project (Wang, 2010). It operates at 47 MHz with
54-kW peak power and 2-MHz bandwidth to detect the 3.2-m-scale field-aligned irregularities in the low-
latitude ionosphere (G. Chen et al., 2017). Its antenna array consisted of 18 ×4 five-element linear-polarized
Yagi antennas covering an area of 2,000 m2. As shown in Figure 1, the HCOPAR has an active phased array
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system, which allows the radar beam to steer in seven directions, each
separated by 7.5° in azimuth ranging from 22.5° (Beam 1) to �22.5°
(Beam 7) around the geographic north. The central beam (Beam 4) of
the radar points to the geographic north, which deviates from geomag-
netic north only by 1°. The azimuth and elevation angles of the seven
beams are (�22.5°,59.72°), (�15°,60.70°), (�7.5°,61.24°), (0°,61.36°),
(7.5°,61.06°), (15°,60.35°), and (22.5°,59.15°). The central direction of
the seven radar beams is almost perpendicular to the local geomag-
netic field at altitudes of the ionospheric E and F regions to ensure
the simultaneous observations of E and F region field-aligned irregula-
rities. The range resolution of the radar measurement is 0.711 km. The
arrangement of the seven radar beams provides a view of two-
dimensional structures of the backscatter echoes. The time duration
to complete one azimuth scan from Beam 1 to Beam 7 is approximately
120 s. The fan sector maps can be constructed every 2 min by combin-
ing the signal-to-noise ratio (SNR) from seven beams, revealing the spa-
tial and temporal evolutions of the ionospheric irregularities.

The background ionospheric condition and drifts are recorded by a
colocated Digisonde Portable Sounder (DPS-4D; Reinisch et al., 2009)
at Hainan. The Hainan digisonde routinely operates every 15 min to
obtain an ionogram, and it was operated every 5 min to obtain an iono-

gram during the storm days. The virtual height of the bottomside F layer, h’F, can be manually scaled from an
ionogram. The mean vertical and zonal drift velocities in the F region can be calculated from Doppler skymap
according to the angle of arrival and Doppler velocity of the echoes (Reinisch et al., 1998).

3. Observations
3.1. Characteristics of the 7–8 September 2017 Storm with Double Main Phase

Figures 2a–2f present the 1-min resolution data of solar wind velocity, density, dynamic pressure, IMF Bz,
interplanetary electric field (IEF) Ey, and the symmetric index (SYM/H), respectively, during 7–8 September
2017. The data are obtained from the OMNI Web site, and they have been corrected for the propagation
delay up to the Earth’s bow shock. This geomagnetic storm was caused by multiple interplanetary coronal
mass ejections, including a shocked-interplanetary coronal mass ejection (Shen et al., 2017, 2018). The IEF
Ey component is calculated as Ey = �Vsw ×Bz, where Vsw is the sunward solar wind velocity component.
Sharp enhancements in the solar wind velocity, density and dynamic pressure were observed at around
23:11 UT on 7 September 2017, indicating the arrival of an interplanetary shock. The main phase of
the storm commenced at ~23:31 UT on 7 September 2017 with a steep southward excursion of the IMF
Bz component to �31.2 nT and the IEF Ey component reached ~21 mV/m. The first intensification of
the geomagnetic storm with the minimum SYM/H of �146 nT occurred at ~01:10 UT on 8 September
2017. The IMF Bz remained southward for more than 2 hr, became northward at ~02:30 UT on 8
September and remained northward for ~9 hr except for five transient southward turnings. Another large
and rapid IMF Bz southward turning occurred at 11:55 UT, reaching ~ � 17.4 nT and the IEF Ey component
became eastward rapidly to the peak value of 13.76 mV/m. This second large southward turning of IMF Bz
leads to the second main phase of the storm and another dip with SYM/H index reaching ~ � 115 nT. We
focus on observations obtained during the second main phase when it was nighttime over our
observing locations.

3.2. Ionospheric Irregularities and Background Condition During the Storm

Figure 3 shows the virtual height (h’F) variations of bottomside F layer, vertical drift velocity, and east (posi-
tive)-west (negative) drift velocity in the ionospheric F region obtained from the Hainan digisonde during
10:00–19:00 UT on 7 (blue) and 8 (red) September 2017. Because the storm initiated later than 19 UT on
7 September 2017, the period up to this time can be considered as quiet time for comparison with storm
time conditions. It is clear that the bottomside F layer went up significantly, that is, by 150 km (marked with
arrow a), after ~11:40 UT on 8 September, that is, right after the second IMF Bz southward turning, and

Figure 1. Map projection of the seven beam directions of Hainan coherent scat-
ter phased array radar (HCOPAR). Each beam is separated by 7.5° in azimuth and
Beam 4 points to due geographic north.
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reached a peak height of 387 km at ~12:35 UT in Figure 3a. Two more obvious ascending motions were
observed during 13:50–14:20 UT and 17:00–17:45 UT (marked with arrows b and c, respectively). It is
worth mentioning that the third uplifting of the bottomside F layer occurred after local midnight, which
will be discussed in more detail in the next section in terms of the cause of perturbation electric field in
postmidnight sector. During the three episodes of the F layer uplift due to positive vertical flow, shown in
Figure 3b, the peak vertical drift velocity reached values of 145.8 m/s, 169.7 m/s, and 121.8 m/s,
respectively. As shown in Figure 3c, the zonal drift velocity was steadily negative, that is, westward
varying from about �16 to �200 m/s on 8 September after ~12:45 UT, before which the zonal drift of the
background plasma fluctuated between eastward and westward. In contrast, the nighttime zonal drift of
the background plasma on 7 September was mostly eastward.

The altitude-time variations of SNR and line-of-sight Doppler velocity of the FAIs observed on 8 September
2017 by Beam 4 of the HCOPAR are presented in Figures 4a and 4b, respectively. As shown in Figure 4a, seven
groups of FAIs echoes were observed and are labeled from A to G. A small echo (labeled with A) started to
emerge at ~12:37 UT (LT = UT + 7.3 hr) at altitudes from 330 to 370 km. Then an upwelling plume-like struc-
ture of the FAIs echoes (labeled with B) appeared at ~13:15 UT with durations of about 80 min, covering the
altitudes from 305 to 460 km. At ~13:47 UT, another upwelling plume-like structure of the FAIs echoes

Figure 2. Temporal variations of (a) solar wind velocity (km/s), (b) solar wind density (n/cm3), (c) solar wind dynamic pres-
sure (nPa), (d) Z component of interplanetary magnetic field, interplanetary magnetic field (IMF) Bz (nT), (e) interplanetary
electric field (IEF) Ey component, IEF Ey (mV/m), and (f) the symmetric index, SYM/H index (nT) during 7–8 September 2017.
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(labeled with C) was observed at higher altitudes from 510 to 590 km and the echo intensity was much
weaker than Group B. Plumes in Group D started at ~14:57 UT at altitudes from 360 to 560 km with
durations of about 15 min. Group E of the FAIs echoes followed closely with stronger intensity and lower-
altitude ranges than Group D. Around midnight, Group F of the FAIs echoes appeared at around 400 km
and showed descending pattern over time. During postmidnight hours, the HCOPAR still recorded a strip-
like structure of FAIs echoes (labeled with G). Group G of the FAIs echoes initiated at ~17:15 UT at altitude
of ~540 km and displayed similar descending pattern as Group F. Because Beam 4 of the HCOPAR is
basically measuring within a magnetic meridional plane, the line-of-sight Doppler velocity measured along
Beam 4 purely represents meridional (northward and upward or southward and downward) movement,
rather than a combination of zonal and meridional velocity components of FAIs drift. As displayed in
Figure 4b, the line-of-sight Doppler velocities of the postsunset FAIs echoes were mainly positive (varying
from ~20 to ~100 m/s) except for the narrow descending structures in Group B, indicating that the
majority of the FAIs was moving away (northward and upward) from the radar. The large upward velocities
of the upwelling plume structures suggested that these FAIs were still in growth phase. The Doppler
velocity of postmidnight Group G was mostly negative (�20 to �2 m/s), suggesting the irregularity was
moving toward (southward and downward) the radar.

In order to investigate the spatial distribution and the zonal drift direction of the FAIs, the altitude-time-SNR
plots of the FAIs echoes observed in different beam directions (from Beam 1 to Beam 7) are displayed from
top to bottom in Figures 5a–5g. Considering the different formation location (i.e., inside or outside of the
radar beams) of the FAIs echoes, they can be divided into two types, Type 1 (Groups A, B, and E in Figure 4a)
and Type 2 (Groups C, D, F, and G in Figure 4a). Type 1 echoes were freshly generated within the FoV of the

Figure 3. Time variations of (a) virtual height of bottomside F layer, h’F (km), (b) vertical drift velocity of the F layer (m/s),
and (c) east-west drift velocity of the F layer (m/s) observed by Hainan digisonde on 7 (blue) and 8 (red) September
2017 during 10:00–19:00 UT. The red asterisk indicates the time when interplanetary electric field Ey suddenly turned
eastward. The vertical dashed line indicates the initial time of the field-aligned irregularities observed by the Hainan
coherent scatter phased array radar. Local sunset and midnight are marked with two black triangles. Error bars represent
the velocity spread.
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HCOPAR and were still in their growth phase. Type 2 echoes were generated elsewhere and then drifting into
the FoV of the HCOPAR. Type 2 FAIs echoes in this case were mostly in decaying phase, because the echo
intensity became weaker when moving across the radar beams. The zonal movement of the FAIs in Beams
5–7 during 12:45–13:20 UT was not clear, but the other FAIs echoes exhibited obvious westward drift,
appearing first in the easternmost beams and later in western beams. This westward moving feature is
different from the typical postsunset eastward movement observed by HCOPAR over the past few years (see,
e.g., Figure 11 in G. Chen et al., 2017). This is consistent with the westward drifting of the background
plasma after ~12:45 UT observed in Figure 3c. The zonally motionless FAIs echoes occurred during the
period of eastward wind or nearly zero zonal wind.

To illustrate the spatial distribution of the irregularities, we projected the FAIs echo intensity from different
beams onto the zonal-vertical plane to generate the fan sector maps by using two-dimension interpolation
method. The time sequence of two-dimensional fan sector maps of FAIs echo SNR from 13:09 UT to 14:45 UT
on 8 September displayed in Figure 6 provides us a good view of the freshly generated type of the FAIs, that
is, Type 1 (Group B in Figure 4a). An echo appeared in the central FoV of HCOPAR at 13:21 UT at the altitudes
from 320 to 356 km, and then it expanded to higher altitudes with increasing echo intensity. Meanwhile, the
fan sector maps show a clear westward movement of the FAIs echoes. These maps have been used to help
the classification of the FAIs types.

4. Discussion
4.1. Postsunset FAIs

In previous section, we have presented our observations of the FAIs in the low-latitude ionospheric F region
recorded by HCOPAR during the second main phase of the geomagnetic storm on 7–8 September 2017. As
shown in Figure 2, the IEF Ey turned eastward due to the second large sudden southward turning of IMF Bz at
11:35 UT on 8 September 2017. Right after that, the base height of the F layer at Fuke started ascending
rapidly and reached to a peak altitude of ~387 km, which was remarkably higher compared to its typical quiet
day enhancement during postsunset hours on 7 September. Subsequently, the F region FAIs started to
emerge just a few minutes later than the time of peak uplift of h’F at Fuke as indicated in Figure 3a. The

Figure 4. Altitude-time variations of (a) signal-to-noise ratio (SNR; dB) and (b) line-of-sight Doppler velocity (m/s) of the
field-aligned irregularities (FAIs) observed on 8 September 2017 in Beam 4 of the Hainan coherent scatter phased array
radar. Seven groups of FAIs are labeled with A–G. Positive (negative) velocity represents the FAIs moving away (toward)
the radar.
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substantial upward movement of bottomside F layer generated favorable conditions for the growth of the
R-T instability, which is believed to play an important role in inducing low-latitude plasma irregularities
(Heelis, 2004, and references therein). This sudden uplift of bottomside F layer provides evidence for an
enhancement of eastward electric field at Fuke and the timing of the eastward electric field enhancement
agrees very well with the IEF increase based on the solar wind and IMF measurements. Therefore, we
conclude that the strong eastward IEF penetrated to low-latitude ionosphere, uplifted the bottomside F
layer to higher altitudes and triggered the postsunset FAIs. Aa et al. (2018) studied the widely extended

Figure 5. (a-g) Altitude-time-signal-to-noise ratio (SNR) plot of the field-aligned irregularities echoes from different beam
directions (between Beam 1 and Beam 7 at interval angle of 7.5°) from top to bottom. The Groups A, B, and E were
freshly generated within the field of view of the radar and they are labeled as Type 1 echoes. The Groups C, D, F, and G in
Beam 4 were first recorded by the easternmost beam, that is, Beam 1, and they moved westward with decreasing echo
intensity. These echoes are Type 2 field-aligned irregularities, which were generated further east of Beam 1 and then drifted
into the field of view of the radar. Each subdivision within one hour represents 12 min spacing.
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plasma bubbles over China during the same storm on 7–8 September 2017 by using data from Global
Navigation Satellite System networks. The TEC depletion was observed after 12:45 UT, consistent with the
FAIs observed by the HCOPAR.

During the recovery phase of the geomagnetic storm, the postsunset equatorial plasma bubble is usually
suppressed by overshielding westward electric field (Abdu et al., 2009), which can cause downward plasma
drift and reduce the growth rate of R-T instability. Besides overshielding electric field, disturbance wind dyna-
moelectric field can also suppress the irregularities in the recovery phase. However, the observations
described in the previous section indicate that irregularities can still be triggered even in the recovery phase
of the storm, if an additional storm intensification accompanied IMF southward turning and penetration of
eastward IEF to low-latitude occur in the dusk sector.

4.2. Postmidnight FAIs

Under quiet condition, the ambient zonal electric field is usually westward in the postmidnight period and
can cause downward plasma drift, so it does not support the FAIs generation after local midnight. In this case,
the irregularities persisted into the postmidnight sector when the southward IMF Bz gradually recovered to
its quiet time values. As displayed in Figures 5e–5g, the FAIs emerged above 400 km (highlighted with red
circles) were freshly generated in Beam 5 of HCOPAR after 16:15 UT and then drifted westward to Beams 6
and 7 with increasing echo intensity. These FAIs were Type 1 echoes and were still in growth phase.
Figure 3a shows that the base height of F layer again started to lift at ~17:00 UT and reached a peak height
of ~390 km at ~17:40 UT. During this period of bottomside F layer elevation, the strip-like FAIs (Group G in
Figure 4a) were first recorded by Beam 1 of the radar, continuing to drift westward and being recorded by
the other beams successively. These echoes were Type 2 echoes, which were generated outside of the radar
beams and they remained in the FoV of HCOPAR for about 1 hr from ~17:00 to ~18:00 UT. Both the uplift of F
layer and irregularities occurring after midnight serve as direct evidences for high-latitude electric field

Figure 6. (a–j) Fan sector maps of the backscattered echo signal-to-noise ratio in the zonal-vertical plane between 13:09
and 14:45 UT with a time step of 12 min on 8 September 2017 showing the freshly generated type of the field-aligned
irregularities (Group B in Figure 4a). The initiation can be seen in (b) near 300 km.
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penetrating to low-latitude ionosphere. As we discussed in the introduction section, undershielding PPEF has
eastward (westward) polarity on the dayside (nightside) and overshielding PPEF has westward (eastward)
polarity on the dayside (nightside). Therefore, eastward overshielding PPEF should be responsible for the
uplift of F layer and subsequent irregularities in the postmidnight sector in this case.

Previous studies have demonstrated that overshielding electric field can be triggered not only by IMF Bz
northward turning (Fujita et al., 2010) but also by a substorm onset (e.g., Hashimoto et al., 2011; Kikuchi
et al., 2003; Wei et al., 2009). To investigate the possible cause of the overshielding PPEF after midnight,
we present the zoomed-in IMF Bz, the auroral activity indices, that is, the AU/AL and AE indices, and the H
component measured by two high-latitudemagnetometers at Dikson, Russia (73.53°N, 80.70°E, magnetic lati-
tude 69.04°N) and Tiksi, Russia (71.59°N,128.92°E; magnetic latitude 66.41°N), during 09:00–24:00 UT on 8
September in Figures 7a–7e, respectively. We looked at the magnetometers that are used to construct the

Figure 7. (a) Zoomed in version of the interplanetary magnetic field (IMF) Bz (nT), (b) AU (blue) and AL (red) indices (nT),
(c) AE index (nT), (d) H component (nT) at Dikson, Russia (73.53°N, 80.70°E, magnetic latitude 69.06°N), (e) H component (nT)
at Tiksi, Russia (71.59°N, 128.92°E, magnetic latitude 66.41°N). Blue arrow in (a) indicates the short period of IMF
northward turning. Red arrows in (d) and (e) indicate the two consecutive substorm onsets.
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Time History of Events and Macroscale Interactions during Substorms real-time AE and selected the H com-
ponent data from Dikson and Tiksi stations. The H component measured at these two stations showed the
sharpest decrease, suggesting that they were closest to the substorm onset location and thus can better
determine the accurate timing of substorm onset. As shown in Figure 7a, the IMF Bz exhibited northward
excursion (marked by a blue arrow) during a short time period, whichmay cause eastward overshielding elec-
tric field on the nightside. However, the effect of the IMF Bz northward turning is expected to show up very
quickly (a few minutes after the northward turning) instead of delaying for ~30–40 min. Therefore, it is likely
that the small bump of base height of F layer (labeled with black arrow d) in Figure 3a was the result of over-
shielding electric field due to the IMF Bz sudden but short northward turning. Another factor should be
responsible for the uplift of F layer after 17:00 UT. As displayed in Figures 7b and 7c, the AL and AE indices
indicated that there were several substorm expansions with the AE index exceeding 1,000 nT after 16 UT.
It is obvious in Figures 7d and 7e that there were two sharp decreases of H component (marked by red
arrows) between 16:00 and 18:00 UT, suggesting two consecutive substorm onsets while the IMF Bz was gra-
dually decreasing/recovering toward quiet time values. Therefore, the large uplift of F layer after 17:00 UT is
likely resulted from overshielding PPEF, which was induced by substorm onset at ~17 UT. Wei et al. (2009) and
Hashimoto et al. (2011) demonstrated that the overshielding electric field can be quickly established after a
substorm onset even without the IMF Bz northward turning. Simulation results based on the Rice Convection
Model also demonstrated that the overshielding electric field can be set up right after substorm onset (Zhang
et al., 2009). Comparing with the postsunset echoes, the intensity of the postmidnight echoes was much
weaker. This may be attributed to the much lower vertical density gradient in the postmidnight sector
(Huba & Joyce, 2010), so the growth rate of the R-T instability is much lower in postmidnight period than that
during the postsunset hours. Consequently, the postmidnight FAIs could not grow into strong upwelling
plume structure like the postsunset ones.

In addition, a distinct feature of the storm time irregularities observed on 8 September at Fuke is that their
zonal drift was westward except for the beginning period of the observation, which differs from the quiet
time eastward velocities. Numerous studies (e.g., Yokoyama et al., 2004; Patra et al., 2014) have shown that
the zonal drift of the nighttime plasma irregularities is eastward under quiet conditions. During magnetically
disturbed conditions, the zonal velocities of plasma irregularities may slow down and/or even reverse to
westward (Abdu et al., 2003; Basu et al., 2010; Ma & Maruyama, 2006; Patra et al., 2016). In general, the zonal
motion of the irregularities follows that of the ambient plasma. As seen in Figure 3c, the zonal drift of the
background plasma fluctuated between westward and eastward in the initial hours and it reversed from east-
ward to stable westward at ~12:45 UT. The irregularities observed by the HCOPAR initiated at ~12:45 UT and
represented little or even no zonal drift at the beginning of the observation as shown in Figures 5d–5g.
Subsequently, the irregularities traveled westward, moving together with the ambient plasma. Therefore,
the irregularities zonal motion pattern described above can be attributed to the reversal of the background
plasma zonal drift. Ma and Maruyama (2006) reported that a storm-induced super plasma bubble exhibited a
much slower eastward drift velocity in contrast to the quiet time, and they attributed the slow eastward drift
to the storm time westward zonal wind. Reversal of zonal drift of the storm time irregularities form large east-
ward to westward due to the disturbance dynamo effect was also studied by Patra et al. (2016). The westward
turning of zonal drift velocities of the FAIs in our observation probably resulted from the storm-related ther-
mospheric disturbance winds that have a strong westward component in low-latitude regions. Further
studies are required to be conducted in terms of the storm time thermospheric disturbance winds effects
in future work.

5. Conclusion

In this study, the low-latitude ionospheric irregularities formation and evolution in response to the 7–8
September 2017 geomagnetic storm have been analyzed using data from HCOPAR and Hainan digisonde.
The second sudden southward turning of IMF Bz that caused intensification of the storm (in the recovery
phase) resulted in prompt penetration of eastward IEF to low-latitude that enhanced the ambient zonal east-
ward electric field during postsunset sector resulting in the uplift of the F layer to higher altitudes, creating
favorable conditions for the growth of R-T instability and the generation of the FAIs in the postsunset hours.
Moreover, the elevation of base height of F layer recorded by the Hainan digisonde in the postmidnight sec-
tor and the postmidnight irregularities observed by HCOPAR are likely due to the substorm-related
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overshielding electric field, which has eastward polarity on the night side. The zonal drift of the FAIs that
usually follows the ambient plasma drift (normally eastward at night) was found to be near zero in the begin-
ning and soon turned westward. The reversal of the background plasma zonal drift observed by Hainan digi-
sonde is likely responsible to the unusual zonal drift pattern of storm time irregularities.
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