Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Advanced Optical Materials, DOI: 10.1002/adom.201701316

Processing-Dependent Microstructure of AgCl–CsAgCl₂ Eutectic Photonic Crystals

Jaewon Choi, Ashish A. Kulkarni, Erik Hanson, Daniel Bacon-Brown, Katsuyo Thornton, and Paul V. Braun*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Processing-Dependent Microstructure of AgCI-CsAgCl₂ Eutectic Photonic Crystals

Jaewon Choi[±], Ashish A. Kulkarni[±], Erik Hanson, Daniel Bacon-Brown, Katsuyo Thornton and Paul V. Braun^{*}

[±] contributed equally to this work

Figure S1: Schematic of the experimental setup for directional solidification of (a) bulk and (b) capillary samples. See the Experimental Section for details.

Figure S2: Plan view SEM images of bulk samples directionally solidified at different draw rates. Arrow indicates the draw direction.

Figure S3: Low magnification plan view SEM images of bulk samples showing the (a) rod and (b) lamellar structure of the eutectic.

Figure S4: (a) Heat flow curves (taken with DSC) for samples with lamellar and rod structures, depicting the same melting points of 258 °C. (b) EDS analysis showing the at.% Ag, Cs and Cl as expected for the AgCl-CsAgCl₂ eutectic (Cs:Ag:Cl=1:2:3). Elemental mapping of Ag and Cs in the (c) rod and (d) lamellar microstructures of the eutectic.

Figure S5: Schematic of the fabrication of a eutectic-infilled capillary.

Table S1: Parameters used in the phase field modeling, where α = CsAgCl₂ and β = AgCl phase.

Parameter	Symbol	Units	Value	Reference
Eutectic Temperature	Τε	К	531	(i)
Eutectic Composition	Ce	mol %	72	(i)
α Phase Composition at T _E	Cα	mol %	50	(i)
β Phase Composition at T _E	Cβ	mol %	100	(i)
β Volume Fraction	Vf	%	36	Calculated from (i)
α Liquidus Slope (at T _E)	mα	K/mol%	-3.33	Calculated from (i)
β Liquidus Slope (at T _E)	mβ	K/mol%	14.25	Calculated from (i)
α Partition Coefficient (at T _E)	kα	-	0.694	Calculated from (i)
β Partition Coefficient (at T _E)	kβ	-	1.389	Calculated from (i)
α -Liquid Surface Tension (at T _E)	$\sigma_{lpha L}$	mJ/m ²	135	Assumed $\sigma_{\alpha L} = \sigma_{\alpha \beta}$
β-Liquid Surface Tension (at T _E)	σβι	mJ/m ²	135	Assumed $\sigma_{\beta L} = \sigma_{\alpha \beta}$
α - β Surface Tension (at T _E)	$\sigma_{lphaeta}$	mJ/m ²	135	Extrapolated from (ii)
Eutectic Latent Heat of Fusion	Le	J/kg	4.69 x 10 ⁴	Experiment (DSC)
α Latent Heat of Fusion	Lα	J/m ³	3.43 x 10 ⁸	Experiment (DSC)
β Latent Heat of Fusion	Lβ	J/m ³	5.13 x 10 ⁸	(iii)
Diffusion Coefficient (at TE)	D	m ² /s	2.53x10 ⁻¹⁰	(iv)
α Contact Angle	θα	0	30	(v)
β Contact Angle	θβ	0	30	(v)

Figure S6: Cross-sections in the y-z plane (perpendicular to the solidification direction) of the initial conditions (i.e. solid seed) for the eutectic structure as assumed during the phase-field simulations. Light gray and dark gray represent AgCl and CsAgCl₂, respectively. (a) Rod initial condition. (b) Lamellar initial condition. (c) Mixed rod and lamellar initial condition.

Figure S7: FDTD simulations showing the range of reflectance peaks for the experimentally observed size distribution in (a) lamellae and (b) rods.

References

- (i) C. Sandonnini, G. Scarpa, Rendiconti Accademia Lincei 1912, 21, 77.
- (ii) S. Sternberg, M. Terzi, Journal of Chemical Thermodynamics 1971, 3, 259.
- (iii) W.T. Thompson, S.N. Flengas, *Canadian Journal of Chemistry* 1971, 49, 1550.
- (iv) S. Sternberg, C. Herdlicka, *Revue Roumaine de Chimie* **1972**, 17, 343.
- (v) R. Folch, M. Plapp, *Physical Review E* 2005, 72, 011602.