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Summary

Background: Follow-up data on patients with 46,XY partial gonadal dysgenesis
(PGD) until adulthood are scarce, making information on prognosis difficult.
Objective: To analyse the long-term outcomes of patients with 46,XY PGD regarding
testosterone production, germ cell tumour risk, genotype and psychosexual adaptation.
Methods: A retrospective longitudinal study of 33 patients (20 assigned male and
13 patients assigned female at birth). Molecular diagnosis was performed by Sanger
sequencing or by targeted massively parallel sequencing of 63 genes related to dis-
orders of sex development (DSDs).

Results: Age at first and last visit ranged from 0.1 to 43 and from 17 to 53 years,
respectively. Spontaneous puberty was observed in 57% of the patients. During
follow-up, six of them had a gonadectomy (four due to female gender, and two because
of a gonadal tumour). At last evaluation, five of six patients had adult male testosterone
levels (median 16.7 nmol/L, range 15.3-21.7 nmol/L) and elevated LH and FSH levels.
Germ cell tumours were found in two postpubertal patients (one with an abdominal
gonad and one patient with Frasier syndrome). Molecular diagnosis was possible in 11
patients (33%). NR5A1 variants were the most prevalent molecular defects (n = 6), and
four of five patients harbouring them developed spontaneous puberty. Gender change
was observed in four patients, two from each sex assighnment group; all patients reported
satisfaction with their gender at final evaluation. Sexual intercourse was reported by
81% of both gender and 82% of them reported satisfaction with their sexual lives.
Conclusion: Spontaneous puberty was observed in 57% of the patients with 46,XY
PGD, being NR5A1 defects the most prevalent ones among all the patients and in
those with spontaneous puberty. Gender change due to gender dysphoria was
reported by 12% of the patients. All the patients reported satisfaction with their final
gender, and most of them with their sexual life.
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1 | INTRODUCTION

The 46,XY disorder of sex development (DSD) due to gonadal dys-
genesis is a congenital disorder caused by alterations in the complex
process of gonadal determination.! There is a wide phenotype spec-
trum ranging from a partial form, characterised by variable degrees
of external genitalia undervirilisation, development of Mullerian
derivatives and testosterone production, to a complete form with
female external and internal genitalia.

There are scarce data on long-term follow-up of 46,XY partial
gonadal dysgenesis (PGD) patients, regarding spontaneous puberty,?
risk of a gonadal tumour development® and gender adjustment, mak-
ing it difficult to provide comprehensive information to parents.

Our aim was to describe the phenotype, genotype and long-term
outcomes of a large cohort of patients with 46,XY PGD followed
until adulthood.

2 | SUBJECTS AND METHODS

Thirty-three patients with 46,XY PGD were included in this retro-
spective longitudinal study conducted at Hospital das Clinicas of
Sdo Paulo (HCFMUSP). Twenty-six patients were initially evaluated
at our service, and 7 had already had a previous genitoplasty and/
or gonadectomy elsewhere. Written informed consent was obtained
from all the patients. The clinical and molecular data from 8 patients
were previously reported.“'7

Inclusion criteria were as follows: 217 years of age at last eval-
uation, a 46,XY karyotype in a G-banded karyotyping analysis of at
least 30 peripheral blood lymphocytes, atypical genitalia associated
with the presence of Mullerian derivatives and/or at least one gonad
with histopathological features compatible with testicular dysgene-
sis. Data regarding sex assignment, age at first and last evaluation,
external genitalia appearance, the hormonal profile throughout the
follow-up and at last visit, pubertal development and gonadal tu-
mour incidence were collected from medical records. Patients were
assumed to be at prepubertal age if they were younger than 9 years,
at pubertal age if they were 9.1-16 years old, and at adult age if they
were older than 17 years. Micropenis is defined as a normally struc-
tured penis which in its fully stretched length is 2.5 standard devia-
tions (SDs) below the mean for age8 and microphallus is defined as a
micropenis associated with hypospadias.

The external masculinisation score (EMS) was calculated as pre-
viously described.” To determine the hormonal profile, luteinising
hormone (LH), follicle-stimulating hormone (FSH) and testosterone
were measured by immunoradiometric orimmunofluorimetric assays
at the first and at each semi-annual follow-up visit. Spontaneous pu-
berty was assumed if virilisation was observed in pubertal patients
or was reported by the patients that came in adulthood in conjunc-
tion with the presence of pubertal signs (the presence of secondary
sex characteristics, such as increased penile length and testis diame-
ter > 2.5 cm, when they were palpable) and with male serum testos-
terone levels without the use of exogenous testosterone.
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For prepubertal patients, a human chorionic gonadotropin (hCG)
test was performed by means of 4 intramuscular injections at 50-
100 IU/kg each, with a 4-day interval between the injections. A
single dose of 5000 IU of hCG was administered to adult patients.
Serum levels of testosterone were measured before and 72 hours
after the last hCG injection.

Data on a gonadal histology were collected from medical
records.

Physical evaluation of the palpable scrotal testes of male patients
was performed at every medical visit (each semester or annually),
and testicular ultrasonography was performed once every 2 years.
If a suspicious nodule was identified, tumour markers (B-HCG, a-
fetoprotein and carcinoma embryonic antigen) were tested, and a
gonadectomy was indicated if needed.

Continuous variables were described as median and range.
Differences in the categorical variables among the groups were ana-
lysed by the Chi-square test or Fisher’s exact test, when appropriate.
The Mann-Whitney U test served as a nonparametric test, and data
with P <.05 were considered statistically significant. All analyses
were performed in SPSS Statistics 24.0 software (Chicago, IL).

Evaluation of psychosexual characteristics was performed on 21
patients by a psychologist specializing in DSDs. Self-reported gen-
der identity, the self-reported gender role in childhood, the desire to
change gender and satisfaction with gender and with their sexual life
were analysed via a questionnaire (see Appendix 1).

For molecular diagnosis, genomic DNA was obtained from pe-
ripheral blood leucocytes by the proteinase K-SDS salting-out
method.!® Six genes involved in testicular dysgenesis (SRY, NR5A1,
CBX2, MAPK3, FGF9 and FGFR2) were previously sequenced by the
Sanger method in patients 1, 3, 10, 14, 26 and 30. Patients 15 and
31 had only WT1 variants screened, considering their phenotypic
features, as previously reported in great detail.>® The entire coding
region and the exon-intron boundary areas of each gene were PCR-
amplified with specific primers. The PCR products were sequenced
according to the protocol of the ABI Prism BigDye Terminator Cycle
Sequencing Ready Reaction Kit (Life Technologies Corporation, CA,
USA) on an ABI Prism Genetic Analyzer 3130XL (Life Technologies
Corporation, CA, USA).

Twenty-seven patients were analysed during the 2010s by tar-
geted massively parallel sequencing. An amplicon-based capture
panel was designed against exonic regions of 63 genes, including
43 genes already associated with human DSDs and 20 candidate
genes involved in gonadal determination pathways or with a DSD
phenotype in rats¥'*8 (see Appendix 2). Capture of the target
sequences was performed using a custom Sure Select Target
Enrichment System Kit (Agilent). Sequencing was performed on
the lllumina MiSeq platform. Paired-end reads (2 x 300) were
aligned to the hgl9 assembly of the human genome with BWA-
MEM.Y The aligned reads were sorted and converted to the
BAM format using the bamsort tool from the biobambam2 suite
(https://launchpad.net/biobambam2). Mean coverage was over
95x for all the samples, and more than 96% of the RefSeq gene
coding regions was covered at 20x or greater. Single-nucleotide


https://launchpad.net/biobambam2

GOMES ET AL.

“ | wiLEy

variants and small insertions or deletions (indels) were simulta-
neously called in all samples in the Freebayes software (https://
github.com/ekg/freebayes). Annotation of the variants was per-
formed in ANNOVAR.%® For prioritizing the most likely patho-
genic variants, we filtered out those with a minor allele frequency
>0.5% in available population databases Genome Aggregation
Database (gnomAD),21 1000 Genomes,?? and in the Brazilian
population database ABraOM.?® To assess the possible impact of
the novel nonsynonymous variants on protein structure and func-
tion, we employed in silico algorithms (SIFT, PolyPhen2, Mutation
Assessor, and CADD) and conservation scores (GERP++, PhyloP).
These variants were considered deleterious when predicted as
pathogenic by at least three algorithms. The variants were classi-
fied according to the American College of Medical Genetics and
Genomics guidelines (ACMG).?*

3 | RESULTS

The patients’ age at first visit ranged from 10 days to 43 years (median
13 years), and at last visit, from 17 to 53 years (median 26.5 years).
Follow-up ranged from 3 to 26 years (median 13.2 years). Nineteen
patients had Mullerian derivatives (57%). Histological analysis iden-
tified testicular dysgenesis in 18 patients (67%) and the absence of
gonadal tissue in 9 (33%).

3.1 | Sex assignment and the EMS

Thirteen patients were assigned female and 20 were assigned male
at birth. Twenty-six patients were assigned before the year 1990
(16 patients to male and 10 patients to female), and seven patients
were assigned between 1990 and 1999 (4 patients to male and 3
patients to female). The median EMS at first evaluation in patients
without a previous genitoplasty was 3.5 (1.0-5.5) for the patients
assigned female and 6.0 (3.0-7.5) for the patients assigned male at
birth (P =.002). This difference in the EMS between the two sexes
was observed in the patients assigned before and after the year
1990.

Four patients changed their gender in adulthood, two from male
to female and two from female to male. These four patients visited
our hospital at an adult age.

The patients were grouped on the basis of their gender and not

on their sex assignment.

3.2 | Female gender group (n = 13)

Two patients came at prepubertal age (patients 1 and 2), four at
pubertal (patients 3-6) and seven after pubertal age (patients
7-13). Three patients had already had a gonadectomy and geni-
toplasty (patients 6, 7 and 9). Amongst the 10 patients without
previous genital surgery, external genitalia ranged from normal
female (patient 12), female with clitoromegaly (patients 1-5, 8
and 11) to micropenis (patient 11). Six patients had two perineal

openings (patients 1, 3, 4, 5, 6 and 13), and five patients had a
single perineal opening (patients 2, 8, 10, 11 and 12). All the
patients had bilateral cryptorchidism. These patients had el-
evated serum gonadotropin levels with predominance of FSH
levels (range from 38 to 77 IU/L) over LH levels (range from 5 to
32 1U/L) Table 1.

All female patients had undergone feminizing genitoplasty and
bilateral gonadectomy. Oestrogen replacement was started at a me-

dian age of 14 (10-31 years) with normal breast development.

3.3 | Male gender group (n = 20)

Twelve patients were evaluated at prepubertal age (patients 14-18,
24-30), three at pubertal age (patients 19, 20 and 31) and five after
puberty (patients 21-23, 32 and 33). At first evaluation, three pa-
tients had a previous genitoplasty (patients 20, 21 and 29), two had
undergone bilateral gonadectomy (patients 20, 21) and one unilat-
eral gonadectomy (patient 29) Tables 2,3.

Regarding the 17 remaining patients, 12 had microphallus and
proximal hypospadias (71%), 14 had bilateral cryptorchidism (82%),
had unilateral cryptorchidism and one patient had both testes lying
inside the scrotum.

The patients with low basal and/or hCG-stimulated testosterone
levels had undergone bilateral gonadectomy. All of them received
testosterone replacement at a median age of 15 (11.7-48 years).
Their median phallus size at first visit was -3.4 SD (6.1 to -1.7 SD),
and in adulthood, after testosterone replacement, the phallus size
reached a median of 9 cm (range 6.7-12 cm), corresponding to
-2.7 SD (range -4.1 to -0.9 SD).

Patients with preserved testosterone secretion with one atro-
phic cryptorchid testis had had unilateral gonadectomy. The median
phallus size of these patients at first visit was -3.3 SD (range -4.3 to
-0.3 SD). In adulthood, phallus size reached a median of 8 cm (6.5-
9.2 cm), corresponding to -3.3 SD (-4.3 to -2.6 SD).

There was no statistically significant difference in phallus size
SDs between the patients with preserved testosterone secretion
and those who received testosterone replacement and also at their

first and last evaluation.

3.4 | Testosterone production in patients with
46,XY PGD

At first evaluation, 28 patients who did not undergo bilateral go-
nadectomy in childhood were evaluated regarding testosterone
production (Figure 1). Fourteen of them were at prepubertal age
(patients 1, 2, 14-18, and 24-30). Eight of them had normal hCG-
stimulated testosterone levels (patients 1, 2, and 25-30), median of
13.8 nmol/L (6.2-22.1 nmol/L) and one patient at minipuberty had
normal basal testosterone levels (patient 24). The other five individ-
uals (patients 14-18) showed very low hCG-stimulated testosterone
levels (undetectable to 2.9 nmol/L). All the male patients with im-
paired testosterone secretion and two female patients (patients 1
and 2) had had bilateral gonadectomy.
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Among the 21 patients without bilateral gonadectomy, 12
went through spontaneous puberty (patients 3, 4, 5, 13, 25-29,
and 31-33), including four female patients (patients 3, 4, 5, and 13;
Figure 1). These female patients and the two male patients who de-
veloped a gonadal tumour (patients 31 and 32) underwent bilateral
gonadectomy. Patient 29 progressively lost testosterone secretion
and started testosterone replacement at the age of 34 (Figure 1).

At last evaluation, five male patients maintained normal male
adult testosterone levels (median 16.7 nmol/L). Four patients had
high LH (median 11 IU/L) and FSH levels (median 24 |U/L), and one
subject had normal gonadotropin levels (patient 25) at 17 years of
age Table 4.

Altogether, twelve patients (57%) had gone through sponta-
neous puberty. At last evaluation, five of eight patients with male
social sex who had gone through spontaneous puberty still had nor-

mal testosterone production.

3.5 | Psychosexual follow-up according to gender

Ten patients assigned female and 11 patients assigned male at birth
were evaluated. Gender dysphoria and gender change were ob-
served in four patients, two from each gender group. None of the
patients reported nonbinary or gender-fluid feelings.

Patients 8 and 11 were assigned male at birth. The former had
atypical genitalia, and the latter had severe micropenis and bilateral
cryptorchidism. They clearly displayed female behaviour, preferring
female activities and clothes since childhood. They received proper
medical and psychological assistance at the ages of 19 and 30, re-
spectively. At the time, their hormonal profile showed hypergonad-
otropic hypogonadism without pubertal signs. Their psychological
analysis revealed female gender identity and gender dysphoria. They
changed their gender to female, had feminizing genital surgery and
were treated with conjugated oestrogens.

Patients 21 and 33 had atypical genitalia and were first assigned
female at birth. They had manifested male behaviour since child-
hood, preferring boys’ hobbies and clothes.

Patient 21 had a feminizing genitoplasty and gonadectomy at
1.6 years of age elsewhere and had no psychological evaluation and
follow-up. At age 19, he changed his gender to male, and testoster-
one replacement was started. At 27 years of age, he came to our
institution looking for neophallus surgery.

Patient 33 never had medical assistance. He had had male gen-
der identity since he was 9 years old. Virilisation due to spontaneous
puberty was noticed when he was 15 years of age. At the time, he
changed his gender to male. He was first seen at our service at age
26, when masculinizing genitoplasty was performed.

At final evaluation, all the 21 patients had gender identity con-
cordant with their self-reported gender role in childhood and were
satisfied with their gender. Four females (40%) and eight males (73%)
had a steady partner. Penetrative sexual intercourse was reported
by eight females (80%) and by nine males (81%), among whom six fe-
males (75%) and eight males (81%) reported satisfaction with sexual
life and orgasm.

WILEY-¢

None of the patients from both genders have offspring or ad-

opted children.

3.6 | Testosterone production and gender

There was no relation between postnatal testosterone levels and
gender considering the highest serum testosterone level at baseline
condition or after the hCG stimulation test observed at the follow-
up (P=.9).

3.7 | Incidence of gonadal tumours

During follow-up, patients underwent bilateral gonadectomy
due to female gender, for impaired testosterone secretion, for
an atrophic cryptorchid testis, or because of a gonadal tumour.
Thirteen patients had bilateral or unilateral gonadectomy at prepu-
bertal age at a median age of 4 years (1.2-8.8), and no evidence of
germ cell neoplasia was found. Fifteen patients had a gonadectomy
at pubertal age or in adulthood at a median age of 21 (9.9-47.9), and
a testicular tumour was found in two subjects (patients 31 and 32).

Patient 31 had bilateral gonadoblastoma at ages 18 and 20 and
an in situ germ cell neoplasia in the right testis, despite the scrotal
position of both testes, due to a WT1 (Wilms’ tumour 1) mutation, as
previously reported.® Patient 32 had a mixed germ cell tumour (80%
embryonal carcinoma, 15% yolk sac tumour, 5% choriocarcinoma)
with a gonadoblastoma in the left abdominal gonad at 23 years of
age associated with very high levels of hCG (536 IU/L; reference
level <3 IU/L). He underwent bilateral gonadectomy and chemother-
apy with a good response.

3.8 | Molecular diagnosis

Pathogenic or likely pathogenic variants were found in nine sporadic
cases and in two familial cases, eight identified by Sanger sequencing
and three by targeted massively parallel sequencing (Table 5). All the
identified variants are heterozygous and located in genes previously
associated with gonadal dysgenesis phenotypes (NR5A1, SRY, WT1,
MAP3K1 and FGFR2). Nine variants had already been described,*”%
and two variants are novel (in MAP3K1 and FGFR2, the familial cases).
None of the variants was found in population databases, including
the Brazilian ABraOM.?® NR5A1 defects were the most common,
being responsible for 18% of the cases, and in silico and in vivo stud-
ies corroborated the deleteriousness of NR5A1 variants, as previ-
ously reported by our group.*’” None of these patients had adrenal
failure. Segregation analysis by Sanger sequencing was possible in
eight of ten families and confirmed segregation with the phenotype
in five families and de novo status of the two WT1 variants.

4 | DISCUSSION

The DSD due to 46,XY PGD is a rare disorder. It represents 19.6%
in our cohort of 250 patients with a 46,XY DSD. The current study
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46,XY PGD Patients who did not undergo gonadectomy at
(n=33) * firstevaluation (n = 28)
I
Prepubertal age Pubertal age and
(n=14) adulthood (n = 14)
I )
Testosterone| Compromised Preserved
secretion (n=5) (n=9)
|
Bilateral Female gender Male
gonadectomy (n=2) gender
(n=15) Gonadectomy (n=7)
Patients who did not undergo bilateral
gonadectomy until pubertal age (n=21)
1
Spontaneous Absent Present
puberty (n=9) (n=12)
Bilateral Testiculartumour Female gender
gonadectomy (n=2) (n=4)

(h=09) Gonadectomy Gonadectomy

e Compromised Preserved

FIGURE 1 Flow chart of patients’ secretion at (Fr: = 1) (n = 5)

follow-up regarding testosterone

final evaluation

secretion and gonadal tumour incidence

is the largest 46,XY PGD cohort showing clinical outcomes and mo-
lecular analysis.

Sex assignment is the most controversial issue of DSD manage-
ment. In our cohort, most patients were assigned before the 1990s, and
male sex assignment was significantly more frequent in patients with
a higher EMS, in a ratio of 1.5 males to 1.0 female. The International
Disorder of Sex Development (I-DSD) Registry reported an increase in
the male-to-female sex assignment ratio in 46,XY dysgenetic DSD ba-
bies with time, starting from a ratio of 0.4 before the 1990s to a ratio
of 1.5 in children born after 1999, regardless of the EMS.26

Despite this increasing trend on male sex assignment, there are

scarce data on pubertal development of those patients. In our cohort,

spontaneous puberty was observed in 57% of the patients who did
not undergo bilateral gonadectomy in childhood. In adulthood, all
the male patients maintained testosterone secretion, except for the
oldest, who showed a decrease in testosterone secretion at the age
of 34. They all had high LH levels (>10 IU/L), with the exception of
the youngest, indicating partial Leydig cell dysfunction. Regarding
reproductive function, high FSH levels (>20 IU/L) were found in most
patients manifesting compromised spermatogenesis although the
sperm count was not performed.

In one retrospective study on pubertal development of 46,XY
PGD patients, 9 of 10 patients had gone through spontaneous pu-
berty with high FSH levels and progressive elevation of LH.? These



GOMES ET AL.

72 | wiLey

TABLE 4 Phenotypes of 46,XY PGD male gender patients who had preserved testosterone secretion at final evaluation

Patient 25 26

Age (y) 17 17

Penile length (cm) 8.0x3.0 8.0x3.0
Z phallus (SD) -3.3 -3.3
Testis final size (cm) 45x25 6.7%x2.1
Basal T° (nmol/L) 441 561

LH (1U/L) 5.6 14

FSH (1U/L) 3.7 26

PGD, Partial gonadal dysgenesis.

27 28 33

17.6 21 28
7.5%x25 9.2x2.5 6.5%x25

-3.6 -2.6 -4.3
4.0x%x25 4.3%x20 6.5%x25

625 482 396

11 11 10.8

25 24 20.7

Almmunofluorometric assay (IFMA), normal male value: prepubertal age <0.65 nmol/L; adults 9.4-33.5 nmol/L.

patients had a mild-gonadal-dysgenesis phenotype as 60% had a
penile urethra opening and all of them were assigned male at birth.?

In humans, the process of gonadal determination is quite com-
plex! and a molecular defect was identified in 20% and 40% of the
46,XY gonadal dysgenesis patients who were studied by Sanger?’
and target massively parallel sequencing, respectively.?® NR5A1
and MAP3K1 allelic variants were the most frequent molecular
diagnosis.?®

In our study, likely pathogenic or pathogenic allelic variants were
identified in 33% of the patients, in one of the following genes:
NR5A1, SRY, WT1, MAP3K1 and FGFR2. NR5A1 defects (n = 6) were
the most frequent in the whole cohort and also among the 12 pa-
tients who developed spontaneous puberty (n = 4). Moreover, three
of these patients were assigned female at birth owing to their se-
verely undervirilised genitalia. This finding is in agreement with
other reports.??®° In those cases, the severe undervirilisation of
external genitalia could not predict virilisation in adulthood because
testosterone secretion recovered during puberty for unknown
reasons.??3¢

SRY defects have been mostly associated with complete gonadal
dysgenesis and rarely with partial gonadal dysgenesis.?>%’? The
SRY p.Arg30lle pathogenic allelic variant was identified in one of
our patients with spontaneous puberty. This same variant was also
found in another Brazilian family, including affected members with
various phenotypes, ranging from complete to partial gonadal dys-
genesis.25 In vitro studies proved the deleteriousness of the vari-
ant.?> None of the reported patients with PGD due to SRY variants
had preserved testosterone secretion.?>%737

Missense defects in Wilms’ tumour suppressor gene 1 (WT1)
cause Frasier and Denys-Drash syndromes.4°'41 One of our patients
with normal size testes and spontaneous puberty harboured the
most common allelic variant in intron 9 of WT1, which is associated
with Frasier syndrome.® This syndrome is generally characterised by
bilateral gonadal dysgenesis, female external genitalia, renal failure
in the second decade of life and high risk of testicular gonadoblas-
toma. Instead, our patient had a predominantly male phenotype,
with normal penile length and perineal hypospadias resembling the

Denys-Drash phenotype. Even though there are five other cases of

Frasier syndrome with a male phenotype,*?*4

including one with
a normal male phenotype,*® there are no reports of patients with
spontaneous puberty.

The novel heterozygous variants MAP3K1p.Leu639Pro and
FGFR2 p.Ser453Leu were found simultaneously in two 46,XY sisters
within our cohort, both inherited from their unaffected mother. Both
had severe undervirilised genitalia at first evaluation, although nor-
mal male testosterone levels were reached after hCG stimulation in
the 1.2-year-old child, and her 9.4-year-old sister had pubertal male
testosterone levels.

MAP3K1 was first associated with 46,XY DSDs by Pearlman
et al.*¢ Targeted massively parallel sequencing has revealed previ-
ously reported and novel MAP3K1 variants not only in patients with
complete gonadal dysgenesis but also in patients with PGD. There
is no information on hormone profile and pubertal development of
those patients.284748

FGFR2 variants most commonly cause craniosynostosis syn-
dromes without any gonadal phenotype. Although there is one
report of a heterozygous FGFR2 p.Cys342Tyr variant that was
associated with complete gonadal dysgenesis and no report
of patients with PGD.* The FGFR2 p.Ser453Leu allelic variant
found in one of our families is located in the hotspot region for
pathogenic variants responsible for craniosynostosis pheno-
types; however, our patients and their mother did not have any
skull problems.

The mechanism by which the gonadal FGF signal is transduced
intracellularly remains unclear, but FGFR2 and MAP3K1 are members
of the RAS/RAF/MEK/ERK signalling pathway, and these patients
may have a digenic inheritance cause of gonadal dysgenesis.

The prevalence of germ cell tumours in PGD is variable.
Reported rates range between 16% and 30%° and for Denys-Drash
and Frasier syndromes is as high as 40%-60%.°° In our cohort, two
patients (7%) had a germ cell tumour: one had an invasive semi-
noma, and the other had bilateral gonadoblastoma associated with
in situ germ cell neoplasia. Both patients had additional factors for
germ cell tumour development: one had an abdominal gonad, and
the other had both testicles lying within the scrotum but carried a
WT1 mutation.
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APPENDIX 1

Questionnaire applied to 46,XY disorder of sex development (DSD) patients due to partial gonadal dysgenesis regarding gender

identification and sexual life quality

Social sex and gender identity

At birth, your assigned social sex was: 1 - female 2 - male 3 - undefined
Have you ever wished to change your gender? 1 - yes 2 - no

Have you changed your gender?: 1 - yes 2 - no

How old were you when you started thinking about to change your gender?
How old were you when you changed your gender?

Define your gender identification: 1 - female 2 - male 3 - both 4 - none

Self- reported gender role at childhood

At childhood, you used to behave like you were: 1 - a girl 2 - a boy 3 - both
At childhood, how you used to feel about your gender?
o If assigned female at birth, you used to feel like a girl:
1 Never

2 Almost never

3 Sometimes

4 Often

5 Always

If assigned male at birth, you used to feel like a boy:
1 Never

2 Almost never

3 Sometimes

4 Often

5 Always

45.

46.

47.

48.

49.

50.

51.
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o Which were your preferable toys at childhood
Classification of the preferable toys at childhood according gender:
Typically female toys Typically boys toys Neutral boys
Dolls, make- ups, drawing, reading, Cars and trucks, building games Plays with ball, running,
costumes, board games (like Lego) group activities
Sexual life aspects
e Do you have regular sexual intercourses? 1 - yes 2 - no
e Do you have a steady partner? 1 - yes 2 - no
e Do you have penetrative sexual intercourses? 1 - yes 2 - no
e Are you satisfied with your sexual life? 1 - yes 2 - no
e Do you have orgasm during intercourse? 1 - yes 2 - no
APPENDIX 2
List of genes related to disorders of sex development (DSDs) included in the panel for targeted massively parallel sequencing
Associated phenotype already related to human DSDs reported in OMIM (OMIM number) or in the literature
Gene (L) (n =43) Inheritance
Gonadal development genes
BMP15 Ovarian dysgenesis 2 (300510); Premature ovarian failure 4 (300510) XL
CBX2 46,XY sex reversal 5 (613080); 46,XY complete gonadal dysgenesis (L) AR
DHH 46XY partial gonadal dysgenesis, with minifascicular neuropathy (607080); 46XY sex reversal 7 (233420) AR
DMRT1 Dysgenetic testis or ovotestis (L) AD
DMRT2 Haploinsufficiency 9p sex-determining gene leads to gonadal dysgenesis (L) NA
FGFR2 46,XY sex reversal with craniosynostosis (L) AD, AR
FOXL2 Premature ovarian failure 3 (608996); blepharophimosis, epicanthus inversus, and ptosis, type 1 and 2 (110100)  AD
GATA4 Testicular anomalies with or without congenital heart disease (615542) AD
MAP3K1 46XY sex reversal 6 (613762) AD
NROB1 46XY sex reversal 2, dosage-sensitive (300018) XL
NR5A1 46, XX sex reversal 4 (617480); 46XY sex reversal 3 (612965); premature ovarian failure 7 (612964) AD
RSPO1 Palmoplantar hyperkeratosis and true hermaphroditism (610644); palmoplantar hyperkeratosis with squamous AR
cell carcinoma of skin and sex reversal (610644)
SOX 9 Campomelic dysplasia with autosomal sex reversal (114290) AD
SOX3 46,XX testicular or ovotesticular DSD (L); 46,XX Sex Reversal 3 (300833) XL
SRY 46XX sex reversal 1 (400045); 46XY sex reversal 1 (400044) Y-linked
STAG3 Premature ovarian failure 8 (615723) AR
WNT4 Mullerian aplasia and hyperandrogenism (158330) AD
WT1 Denys-Drash syndrome (194080); Frasier syndrome(136680) AD
WWOX 46,XY gonadal dysgenesis (L) Y-linked
ZFPM2 46XY sex reversal 9 (616067) AD
Sexual differentiation genes
AKR1C2 46XY sex reversal 8 (614279) AR
AKR1C4 46XY sex reversal 8, modifier (614279) AR
AMH Persistent Mullerian duct syndrome, type | (261550) AR
AMHR2 Persistent Mullerian duct syndrome, type | (261550) AR
AR Androgen insensitivity (300068); Hypospadias 1, X-linked (300633) X-L
CYP17A1 17,20-lyase deficiency, isolated (202110) AR
CYP19A1 Aromatase deficiency (613546); aromatase excess syndrome (139300) AD
CYP21A2  Adrenal hyperplasia, congenital, due to 21-hydroxylase deficiency (201910) AR
DHCR7 Smith-Lemli-Opitz syndrome (270400) AR
FSHR Ovarian dysgenesis 1 (233300) AR
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Associated phenotype already related to human DSDs reported in OMIM (OMIM number) or in the literature

Gene (L) (n=43) Inheritance
HSD11B1 Cortisone reductase deficiency 2 (614662) AD
HSD17B3  Pseudohermaphroditism, male, with gynecomastia (264300) AD
HSD3B2 3-beta-hydroxysteroid dehydrogenase, type Il, deficiency (201810) AD
LHCGR Leydig cell hypoplasia with pseudohermaphroditism (238320); Leydig cell hypoplasia with hypergonadotropic AR

hypogonadism (238320)
POR Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis (201750); Disordered steroido- AR
genesis due to cytochrome P450 oxidoreductase (613571)

SRD5A2 Pseudovaginalperineoscrotal hypospadias (264600) AR
STAR Lipoid adrenal hyperplasia (201710) AR

Other (syndromic DSD, isolated hypospadias)
ARX Hydranencephaly with abnormal genitalia (300215) X-L
ATRX ATR-X syndrome with gonadal abnormalities (301040) X-LD/X-LR
CDH7 CHARGE syndrome (214800); hypogonadotropic hypogonadism with or without anosmia (612370) AD
HNF1B Mayer-Rokitansky-Kuster-Hauser syndrome (L) AD
LHX1 Mayer-Rokitansky-Kuster-Hauser syndrome (L) AD
MAMLD1 Hypospadias, X-linked (300758) XL

Gene Candidate genes associated with human DSDs selected from the literature (L) and in OMIM (O) (n = 20) Inheritance
AKR1C3 Testosterone production in the adrenal reticularis® NA
AXIN1 Wht-beta-catenin signaling (O) NA
CITED2 An upstream regulator of NR5A1 (Lt NA
ESR1 Sex reversal in ESRA/ESRB knockout males (O) NA
ESR2 46,XY DSD candidate gene (L) AR;AD
FGF9 XY mice KO results in male-to-female sex reversal (L)*? NA
GDF9 Ovarian development (L)*? NA
GSK3p Wht-beta-catenin signalling (O) NA
LHX9 Gonadal formation in mouse model (L)* NA
NANOS2 Expressed in adult and foetal testis (O) NA
NANOS3 Nanos3-null mice present reduced spermatogenesis (O) NA
PAPPA Expressed in ovarian follicles and in the seminal vesicles and fluid (O) NA
PAX2 WT1 pathway (L)** NA
PBX1 Miillerian development in the mouse (L)*® NA
PTDGS Required for testis formation (L)* NA
RAC1 Formation of primordial follicles in mouse (L)' NA
RSPO2 Essential for primary follicle development (L)*° NA
STRAS8 Premeiotic DNA replication (L)* NA
TCF21 SRY pathway (L)* NA
TES Testis-specific enhancer of Sox9 (L)* NA



