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ABSTRACT

Aim To investigate models assessthg influence of geomorphology and climatic shifts
on speciesliversification in suSaharan Africa by reconstructing the pattern and timing
of phylegenetic relationships of rain frogdrévicipitidae:Breviceps.

Location"Sub Saharan Africasouth of the Congo Basin.

Methods Multi-locussequencelataweregenerated for near compledpeciedevel
sampling of the genuBreviceps Phylogeneticelationships were inferred via Bayesian
inferenee and maximum likelihood analyses on both concatenated andggngle-
datssetsiNetworkanalysesdentifiedlocusspecific reticulate relationships among taxa
Bayesian methodsere used tinfer dates of divergenc@mongBrevicepdineages, and
niche modeling was used to identify possédiaptive divergence

Results Brevicepss monophyletic andomprisedf two major,largely allopatricsub
cladesDiversity within each sukzladeis concentratedh two areasvith contrasting
geologie anatlimatic historiesthearid/semiarid winter rainfdl zone in the soutestern
(SW)Cape and the semiropical EasCoastthat receives predominantly summer rainfall
Recognized peciesdiversityin the SW Capebased on phenotypi@riationis consistent
with observed genetic patterns whertresEastCoastis shown to harbor unexpectedly
high genetidiversityandup tosevenputative cryptic speciesNiche models show
significant'everlap between closely related species.

Main conclusions Dating analyses indicate that diversificatmfrBrevicepsoccurred
rapidly within the Miocene, with only a moderate decline ovePtieePleistocene,
suggesting that this process might be slowed but ongoing. Our firgliggsst that a
combination, of two models, a landscape barrier model and climate fluctuatioh narde
explain patterns of diversification Breviceps This demonstitas that Miocene
epeirogenic events and climatic shifts may have had a considerable influence on
contemporary patterns of biodiversity. Topographic complexity and relative geoclimatic
stability in theEasthas promoted cryptic diversification in allopatayd this area clearly
harbors numerous undescribed taxa and is in need of detailed biotic investigation.
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Main Text:
INTRODUCTION

To caomprehend the biogeographical patterns we observe today, one must be
cognizantsof the evolutionary histooy speciesand thepalesenvironmental conditions
under which they evolveespecially as theseay differ fromthe presen{(Tolley et al.,
2008). The generation and persistence of biogeograptiermais often region specific.
For example, the Southern Hemisphere remained largely un-glaciated dutisig the
Cenozoic, preserving biogeographically informative genetic signal that wthédwvise
have beenwerasdyy recurrent episodes of PIRleistocene glaciatiofiHewitt, 2000).
Whereagemperatures gradually decreased in the Northern HemisgloatbernAfrica
became.morevarm andarid (van Zinderen Bakker & Mercer, 1986), relegating
widespreadmesicfloral and faunal lineages to allopatric, climaticashable refugia,
promoting diversificatiorand adaptation to xeric environments (Bauer, 1999; Matthee &
Flemming, 2002; Verboom et al., 2009; Lorenzen et al., 2012; Barlow et al., 2013;
Heinicke"etial., 2017a). Reconstructing the evolutionary history of Southern Hemisphere
organismsy'thereforgresents gotentially informativesystem for understanding how
contemporary communities were influencedpbg-Quaternary environmental change.

Since, the breakup of southern Gondwana in the late Jueassg@arly Cretaceous,
southern Africehasexperienced many epegenic eventthat have contributetb
contemporary topographical reliefplifts at the OligoceneéMiocene and Pliocere
Pleistocene boundaries formed most modern mountain ranges and the Kalahari
DepressioffDingle et al., 1983; Birkenhauer, 1991; Clark et al., 2011). These wgititis
created the Great Escarpment, a feature that influefioeste as well athe distribution
and diversification of organisnf€lark etal., 2011) Along the east coast ebuthern
Africa, the warm Agulhas current combineth the Great Escarpmeiispecifically the
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Drakensberg Mountaing) create a rain shadawaintaininga subtropical climatalong
theEscarpment’s eastern slogdg&umann & Bamford, 2015). Consequenggichesof
forest habitahave persistetlere since the Miocemnehile the rest of the subontinent
underwentridification (Sepulchre et al., 2006). This aridification was drivemby
Mioceneshift in circumpolaair circulation in the Southern Oceemmbined withthe
nascenBenguela upwelling system off the southstern African coagFig. 1; Siesser,
1980; MeCarthy & Rubidge, 2005; Neumann & Bamford, 2015). Wind pattieems
brought winter moisture to the southiestern Cape, creating discrete rainfall zones with
contrasting seasonali{¢hase & Meadows, 2007). Additional pddteceneepeirogeny
(includingssignificant crustal flexuringncreased top@daphic heterogeneity.

Thercontinued evolution éandscape features and climate over ticoenbined
with landscape and climate heterogeneity across space, has likely stimulated floral and
faunal diversificationn southern AfricgMoore, 1999; Cowling et al., 2009). The
regioris,long history of aridificatiornas also generated a largely aadhpted and
endemidbiota (Brain, 1985; Bauer, 1999). Indeed, a commonly observed biogeographic
pattern‘in‘the southern African faunaeésent(late Miocene to Pleistocene)
diversificationdriven by climate fluctuatigrpromoting allopatric speciatioDéniels et
al., 2004; Tolley et al., 200&wart etal., 2009; Lorenzen et al., 2012; Barlow et al.,
2013; Diedericks & Daniels, 2014; Furman et al., 20H®wever Africa is an old
continent and modern lineages vary in age. Tmas)yolder lineages have persisted
alongsiderecently diversifying ones, and the historical biogeographic factors that
promoted.diversification in these older lineages may have differed.

The genuBrevicepgqrain frogs)represents one such older lineage=vicepss
an ancient African genus, having diverged from their sister clade (the East African
brevicipitids) in the early Paleoge(leoader et al., 20145pecies accumulation within
the East African radiatioof Brevicipitidsoccurred predominantly in the Miocene and
has beenattributed to the loteym persistence of forests across the Eastern Afromontane
Biodiversity Region (EABR; Loader et al. 2014) (Fig. 1). DiversificatioBi&vicepsn
southern Africa has thus far remained unstudied. However, they are an ideal exempla
group for studying the historical biogeography of more ancient lineages in southern
Africa, for a number of reasons. First, ttee widely distributed across eastern and
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southern AfricaBrevicepscan be found from Angola eastward through southern
Democratic Republic of the Congo and Tanzania, and southward to South(Kinter,
2004), only absent from the most arid regions of the Namib¥araitb (Namibia) and
NamakKaroo(South Africa) and areas that experience winter frost ancfowal
averagerainfall (Karoo/Highveld Grassland of South Africa). Sedbed,ecology, life
history-and/morphologlkely limit gene flow(i.e.they are largely nocturndhssorial,
smaltbodied insectivees with poor dispersal abilignd reproduce vidirect
development [no freewimming tadpole stagg]potentially fostering allopatric
divergenceThird, southern AfricaBrevicepsarevaried in habitat choice, occurring in
afromontane and coastal forest, as welrasbos Mediterraneasike shrub or
heathland)yvegetated dune, savannah gaasklandabitatswhere they prefer
sandy/loamyyvell-drained soils (Channing, 2001; Minter, 2004; du Preez & Carruthers,
2009). Thus, niche divergence could have played a role in diversification.

Here weincorporate multiocus molecular data and broad taxonomic sampling to
reconstructithe pattern and timing of diversificatdBreviceps These data are
combinedwith niche models ttieducevhathasshaped:ontemporary patterns of
diversity, distribution, and biogeograpbf/Brevicepsn Africa south of the Congo Basin
We userthese data to evaluate three alternatogels of diversification caused by
allopatric divergencdn theclimate fluctuatiormodel, climate change isolates
populations in patches of suitable habitat, allowing allopatric divergenceuo. ddis is
the samemadel suggested for many faunal groups in southern Africa, as described above.
Under thissmodel, we expect most divergences arBoagicepgaxa to be relatively
recent and for there to be little niche separation among closely related species, since
niche conservatism would be the primary factor isolating populatBpeies
distribution.models would imply large areas of overlapping suitable habitat for close
relatives.ln.a landscape barrier model, divergences are caused by barriers ligrmed
geological'processes.(., deposition of the Kalahari sandplift associated with
formation of the Great Escarpment, river capture and formation of resulting getgjes
Under this model, we expect divergences to be older, and coincident in time rattspe
of geologicalchange. Closely related species wouddy in their degree of niche overlap,
sinceecological differentiation would not affegopulation divergence. The third model
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is an adaptive change model. In this model, we expect divergences apexigdo vary
in age, but closely related species \wdlve significant divergence in theicological
niche,with nonoverlapping species distribution models as divergence would be driven

by adaptation to different ecological conditions.

MATERIALS AND METHODS
Taxon"sampling and laboratory protocols

Weobtained tissue from 77 individual frogs representingflte 18 recognized
speciesand downloaded partial sequence data from GenBank fowtheemaining
speciegsee,Table $in Appendix 3. For two speciesvherevoucher identification is
difficult'and/or ambiguousH. sopranusandB. baggins), we include af. designation to
represent identification uncertainty. Furthermaopptypicmaterial was not available for
all speciesAlthough the phylogenetic position Bfevicepds well-establishedvithin the
greater.Afrobatrachian radiatigRyron & Wiens, 2011), there have been no studies
exploringrthe monophyly ddrevicepssensu strictoThus, we includeomplete sampling
of brevieipitid genera téest the monophyly of this genus. Outgroupsude species
from other members of Brevicipitidg¢e.g.Callulina, BalebrevicepsProbrevicepsand
Spaeleophryneas well as more distantly related Afrobatractaad microhylidtaxa
(see Table 91

We isolated gnomic DNA from ethanol preserved (95%) liver, skin and/or
musclestissue samples via salt extrac{idijpnabi & Martinez, 1997). We performed
polymerase chain reaction (PCR) to amplify partial sequences of two mitochghagal
and16SribosomalrRNA genes) and three nuclear loci (recombination activating protein
1, RAG] brain derived neurotrophfactor,BDNF; and solute carrier family &iember 3,
SLC8A3. PCR primersare reportedn Appendix 1 Table S2) We viewed and purified
PCR products via 1.5% agarose gel electrophoresis and EXASARSfymetrix, Santa
Clara, GA7"USA), respectively. Sequencing reactions used the BigERMINATOR Vv.3.1
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), whiate then
sent to the DNASU Sequencing Core (Arizona State University) for purification

sequencing using an Applied Biosystems 3730XL automated sequencer.
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185 Sequence alignment, model selection, and phylogenetic reconstruction

186 The forward and reverse rawgsence readeere editedassembled, and then
187  aligned usingsENEIOUSV.6 (Biomattershttp://www.geneious.com)Ve alsochecked the
188 aminoacid translation oproteincodingloci to verify open reading frameSequences
189  weresubmittedo GenBank and their accession numbers can be fouhahleS1

190 Sequencelata from GenBanwere usedor the two missing species mentioned above, as
191 well"asrepresentatives from outgroup taxa for rooting purposerkécted meap

192 sequence‘divergence valuesre calculatedor both12Sand16S(Table S3usingMEGA
193  v.6.0 (Tamura et al., 2013).

194 Datasets (concatenated towhondrial [mtDNA]-only and nuclear [nuDNA]J-only)
195 of all samples were analyzed using Bayesian Markov chain Monte @asaYes v.3.2;
196 Ronquist & Huelsenbeck, 2003) and maximum likelihood metheeevL v.8.1.11;

197  Stamadkis, 2006) using the CIPRES Science Gateway 3.1 for online phylogenetic
198 analysis (http://www.phylo.org/index.php/portal/). An appropriate partitioning strategy
199 and melecular modekpecificallyfor Bayesiamanalyses were chosen using

200 PARTITIONRINDERV.1.1.1 (Lanfear et al., 201,2)hich assessed all possible candidate
201 positions (e.geachcodon in the nuDNA) using the Bayesian information criterion

202 (Lanfearet al, 2019. The resulting partitiang scheme is listed in Table S4nal

203  Bayesian analyses ran for 50 million generations with four independent chains, and
204 sampled every 50,000 generations. We checked for stationarityn#iogrv.1.6

205 (Rambautet al., 2014), after which a 25% burn-in was removed, leaving 750 trees for
206  posterioranalysisgviaximum likelihood analysesere performedising the default

207  settings foRAXML using the GTRGAMMA model of sequence evoluti@tanatakis

208 2006) and ceasing bootstrapping when extended majority rule bootstrapping criteria had
209 been reached.

210 For.comparison witlreebasednethods and in order teew gene tree

211  (haplotype) relationships among the ingroup, netwtskeachnuDNA locus and

212  combined.mtDNAwvere constructedsingspPLITSTREEV.4.12.3 (Huson & Bryant, 2006)
213  with the Neighbomet algorithmWe used an algorithmic approach to phase nuDNA
214  alleles usingpHASEV2.1.1 (Stephens et al., 2001; Scheet & Stephens, p@ioé}o

215  building splitstrees.
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Estimating divergence times

Using alognormalrelaxed molecular clock, the age of Bievicepgadiationand
its constituent lineagesas estimateth BEASTVv.1.8 (Drummond et al., 2012) nalyses
were perfermed using@ncatenatedlignmentsplit into two partitions rguclearvs.
mitochondrialDNA), andlimited to a single individual (or chimera of individuals) per
speciesrepresentirgcomplete sampling of loci. Missing data could yiedteptially
problematicresultéBlankers et al., 2013), thus we excludaxawith high proportion of
missing data, particularly nuclear Idce. B. fichusandB. branchi. Secondary
calibratiorsremployed in these analydeiowed Loadelet al.(2014 and werebased on
the fossil calibrated study &foelantset al (2007)exploring relationshipamong the
Amphibia. Specifically,we used the following asormally-distributedconstraintof
node agesVIRCA of the crown group includingrthroleptis 92.8 (84.5—-111.8hillion
years ago [Mg]Hemisust Brevicipitidae 65.9 (54.1-84.9) Ma&reviceps45.4 (32.9—
63.4) MagandCallulina, 29.6 (19.5-44.5) Ma (see Loader et al. 2014 for more detail).
Directfossil‘calibraiton wasnot possiblalue tothe lack ofpre-Quaternaryfossil material
attributable to BrevicipitidaéMatthews et al., 2015T.he BEAST analyss ran for 100
milli on-g€nerations, sampling every 100@@n., with a 20% burim, andusinga Yule
prior. Stationarity was always reached well before the end of theilbbufRACER
confirmed that all runs had converged on similar model paramettnhéted sample
size>200or all parameters).o view the relative timing of diversification witfespect
to the aeeumulation of lineageslimeage-throughtime (LTT) plotwas generated using
the ‘LTT’ function in the R package ‘ape’ (Paradis et al., 2004).

Species.distribution modeling

We estimated species distribution models (SDMsi)g the programiAXENT V.
3.3.2 (Phillips et al., 2006) farovide a measure of clirha niche divergence among
speciestEstimates usttk default settingas implemented in thelismd and
‘SDMTools R packages. Models were trained using collection localities attached to the
samples used for genetic analysis, as well as supplemeatarpoints obtaineftiom
published sources (e.g. Channing & Wahlberg, 2011heWirtual MuseunfAnimal
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Demography Unit, University of Cape Town; http://vmus.adu.org.za/). The mutsiam
required some manual filtering and we omitted anyerified data points (e.g. those
represented bynrecordedhuptial cals only). Theassignment omuseum samples
widespread speciesgas, at times untenable (due to widespread paraphyly wiBin
adspersu@andB. mossambicysee below Therefore our distribution modeling included
only samples fowhich museum locality data was relativelrtain(i.e. thegibbosus
groupexclusive ofB. branchi[a recently described species known only from a single
sample}and for which our results did not suggest the presence of cryptic st
S5).

Oursample size fd8. sylvestridell to four points post-filtering. Modeling with
sofew paints is notdeal Howeverwhen weadded three additional points for which
GPS data exist (based on unrecorded calls) arahréhe SDM the results were
comparabldresults not shownyuggesting a reasonably reliable modetecent
theoretical studyvan Proosdij et al., 201@)so suggested that as few as three presence
samplessfram a narrovange taxon will provide accurate SDMs.

SDMsweregenerated based on th@ bioclimatic data layers availadlem the
Worldelim database (www.worldclim.orghat were resampled to the WGS1984
Transverse Mercator projection and cropped to a geographically relevant window
(xlim=10 to 36; ylim=-35 to -22) using the ‘maptools’packageFollowing Elith et al.
(2011) we retained all bioclimatic variables, even if correlated, and allowedatkenT
algorithmte,determine the required predictors for each med&ENT performed 100
bootstrapped replicates, using 75% of the locality data to train and 25%tteetesbels,
with aregularization multiplier of 1Area under the curvel/AUC) scores of the
receiveroperating characteristic were calculated to assess the accuracy of the models.
Jackknife tests were also used to determine individual variable contribigiaghe final
SDMs.To.assess the degree of overlap in predi@®isamong the taxave estimated
Schoener'® (a measure of overlap) using ENMtools (Warren et al., 204/@)were
keen to"assess whether closely related d#kared significantly with respect to niche (as
defined by the 1®ioclimatic variables) sowe performegairwiseidentity and similarity

testsin ENMtools togenerate values of SchoenddsWe generated a distribution of
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pseudoreplicates (n=100) &scertairwhether the observed valueis significantly

different from random.

RESULTS
Phylogenetic relationships

The concatenated, alignedgroup dataset totalég34characters (containing
550" parsimonynformative charactersut of 660variablesiteg. The optimized
Maximum-Likelihood ML) tree had a log-likelihood score of —23500.1 Baglesian
Inference BI) produced an optimal tree witaeanlikelihood score of —21730.80th
reconstruetionbased on the concatenated datpsetluced nearly identical consensus
tree topologiegAppendix 2 Fig. S1A-B), and any discordance exhibited poor support.
Many of the'nodes receiving low suppare assciated with distal nodesnd do not
affectour biogeographical conclusions. Mitochondrial and individual nugleae trees
produced largely congruent patterns of relationghat illustrated)and any
disagreements occurrggere associated with lostatistical support.

We:confirm the monophyly drevicepsas allmaterial ascribed tthis genus
(rootedwwith the non-Afrobatrachid¢aloula pulchrg fell within this well-supported
clade(Fig. 2A; posterior probabilitygp] 1.0, bootstrap support [bs] 100%JL
phylogenetic analyses recovered wwell-supported sulolades: i) themossambicus
group, composed of more northergasterlydistributed species that ocdomth above
and belowthe Great EscarpméBE), andarelargely restricted tesavannahRg.
mossambiecysB. adspersusB. poweri B. cf. sopranusandB. cf. baggins) or montane
grasslandB. fichug (Fig. 2B} and ii) thegibbosusgroup composed apecies
distributed exclusively in the Cape, onbmlow theGE and eitherestricted to th€ape
Floristic.Region CFR) and Succulent Karoo Regio8KR) hotspots in theouthwest
Cape(B..macropsB. branchj B. namaquensj$. acutirostris B. fuscusB. gibbosusB.
rosei andB. montanug theMaputePondoland-AlbanyNIPA) hotspot B. verrucosuy
or in isolated patches of afromant forest in northeaSbuth Africa B. sylvestri} (Fig.
2C). Monophyly ofthesetwo sub<lades is well supported by both Bl and ML (pp 1.0, bs
> 90%) and average uncorrected mtDNA p-distances ranged from 10s&2% (

Appendices 1 and 2lrurthermore, there agroupspecific amino acidifferencesn
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308 bothRAG1 andSLC8A3 Inter-relationshipswithin thesegroupsarelargely

309 topologically congruent between the two optimality criteria, although statistipglort
310 varies and is often highly supported by Bl alone.

311 We recovered substantial structurighin thetwo majorsub<lades. Within the
312 mossambicugroup,for exampe, we recovered a clade ob to 11genetically distinct
313 lineageqFig. 2A, indicated with aedstar, based on the operational criteria of the
314 generalineage conceptf speciegDe Queiroz, 1998)), whicimcludesfour of the five
315 most recently describdgrevicepsspeciesincludingB. carruthersiandB. passmorei
316 described just last ye@ivlinter et al., 2017)while the present paper wamsreview

317 (comparative data not shoyi his subgroup(hereafter thgwentherfcomplex)was

318 previously ascribed ta subspecies @. adspersuéi.e. B. a. pentheli orfield identified
319 asB. adspersusr B. mossambicud hese lineageare deeply divergent (inter-lineage
320 uncorrected 12S distance2-9% jmean= 6%]) and are broadlgistributed in

321 southeastern southern Africa, including the MPA. This level of divergence is cear
322 tointerspecific distances thesouthwesCape speciesf the gibbosusgroup (nter-

323 lineage'uncorrected 12Sdistance 411% [mean= 6.6%]). Geographic substructuveas
324  recoveredn widespreadpecies (e.gB. verrucosusB. namaguensjsas well as in

325 speciesepresented by limitesamplescollectedfrom relatively proximatdocalities (e.qg.
326 B. montanusB. fuscu

327

328 Network'structure

329 Network analyses based on single nuclear locis(R2®, S2A-B resemblehose
330 recovered using mtDNA (Fig. S2@nd ardargely congruent with results of

331 phylogenetic analyses basedammcatenated daf&ig. 2A), suggesting that therelitle
332  to no locusspecific discordance.

333

334 Divergence times

335 We,date lhe split separating the two majdrevicepggroupsto the midOligocene
336 (27.5 Ma 95% confidence intervalJl] = 21-34Ma), andcontemporary lineage

337 accumulatioroccurred throughout the Miocene (Fig. 2E). Tinest recentlivergence
338 eventin our tree(1.3 Ma) was betweethe geographically proximat cf. sopranusand
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339 B.cf. bagginsi The slope of the line representing lineage accumulation through time
340 illustratesa dramatic increasa speciedevel diversityduring the Miocene.

341

342 Distribution modeling

343 TheSDMsbased on contemporary climatic conditions and the recorded localities
344  of nine.members of thgibbosusgroup are shown in Figures 3 a®8 Certain

345  bioclimatic'variables had disproportional impact on the models (Table S5), snggest
346  species/speciegroups and biogeographical regions are being influencesthdéned

347  stimuli. For exampleSDMsof the species predominantly distributed in #iater rain
348 dominatedCFR B. acutirostris B. gibbosusB. montanusB. rose) are

349 disproportionately influenceldly winter precipitationHowever, the most important

350 variables affecting the SDMs for species foimthe hotarid SKR were morevariable
351 such as annual temperature variation sunmer precipitatio(B. macrop} or altitude
352  (B. namaguensjsFor B. syvestrisandB. verrucosusdistributedacrosshe sub-tropical,
353 mesicMPAleast SDMs were largely influenced lpyecipitation(summer& annual

354  precipitation, respectively)rhemost influential variabléor B. fuscusvasprecipitation
355 during:the driest time of the yedhé KnysnaAmatole ecoregioneceivegainfall year
356 roundgwith spring and fall being the most predictabigs. 3, S3; Table 15DM

357  specific AUC values were ati0.99.

358 Niche overlaptests rejected the null hypothes# random differences in

359  Schoener'® values formost but not all pairwise comparisons (Tablgdon-bold

360 values)»The SDMsfor the allopatridB. sylvestriandB. verrucosuseem to reflect

361 similar niche space (as seen in AY.a patterrconfirmed by thédnigh, though non

362  significant £=0.371), niche overlagschoener® =0.420) We recovered similar results
363 when comparin@®. macropswith B. namaquensjsandB. montanusvith B. acutirostris
364 andB. rosejalthough these comparisons included partially sympatric species

365 distributions. Other comparisons, however, with particularly high Schoddedtues
366 are bothssignificant and can be explained by overlapping distribMieconsistently
367 recoveredow measures of overlap between species living in the MPABasykvestris
368 + B. verrucosugor the south Capd( fuscu}, confirming that thesspecies occupy

369 climatically distinctniche space
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DISCUSSION

Our resllts suggest that no single model of allopatric divergence can fully account
for patterns of diversification iBrevicepsInstead, the data are most consistent with a
combination of the climate fluctuation and landscape barrier models. Thetearlies
divergence.occurred betweéno largely allopatricsubcladesnear the Oligocene
Miocene boundaryrig. 2;Loader et al., 2014), followed by a surgdinéage
accumulatiorin each of the daughter cladisingthe MioceneThese twasub<clades
(hereafter thenossambicusandgibbosusgroups) are largely allopatr{€ig. 2B-C), with
thegibbosusgroup occupying most of South Africa and thessambicugroup
occurring to the north. The initial divergence in the genus, along with divergences in the
mossambiclgroup, best fit predictions of the landscape barrier model. In contrast, the
climate fluctuation model is a better fit for thgwbosusgroup.

The landscape barrier model predicted that divergences would be relatively deep,
ecologicaldifferentiation would be unimportant in separating species, and riegitor
of landscape barriers could explain cladogenic events. The major split producing the
gibbosus andmossambicugroups occurred between the late Eocene to early Miocene
(21-34-Mya 95% CI), coincident with renewed epeirogenic uplift of the Great
Escarpment (i.e. early Miocen@ing, 1978; Partridge & Maud, 1987;ddre et al.,
2009). Even if this cladogenic event occurred earlier and under different stimuli, the
dramatic*uplift (up to 1000m) almost certainly reinforced geographic separation.
Furthermere, global cooling trends led to the fragmentation oAfaoan forest and
promoted the emergence of savannah and grasgdantos et al., 2001; Couvreur et al.,
2008),.which in turn has sculpted modern species distributions (Medina et al., 2016).
Fossil andoollen records suggest widespread expansion of the these habitats (coinciding
with the shift from C3 to C4 grassesather than contraction, beginning in the Miocene
(Jacobsy#2004; Sepulchre et al., 2008@mbers of thenossambicugroup are found in
savannah;habitatsuggesting that climateaused fragmentation of habitat does not
explain their diversification. Likewise, although we were unable to performidistn

modeling in this clade due to uncertainty in species assignthegtlack obvious
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ecological or morphological differentiation expected in a clade undergoing adaptive
divergence.

Landscape barriers ateetbestsupported model for diversification in the
mossambicugroup. The phylogenetic data show that divergent taxa are concentrated in
the southeastern portion of the group’s rangeehin this region the Great Escarpment
meets a series of major riveteviing from the interior plateau to the Indian Ocean,
including'the Olifants, Limpopo, Save, Zambezi, and Siiwexs These rivers form
substantial’'gorges as they escape the Escarpment, at least some of which clearly delimit
the ranges dBrevicepsspecies. For examplie deeply incised canyon of the Olifants
River in:Limpopo Province, South Africa demarcates the distributions of tweespec
from thegibbosusgroup,B. verrucosusindB. sylvestrigMinter, 1998; Lawes et al.,
2007)(Fig. 3). The SDMs for both species reciprocally predict suitable habitat across
either side of this putative barrier (Table 1). We expect the same would be the case if we
had eneugh data points to develop SDMaiossambicugroup specieslhe Olifants
River hasreceived little attention as a biogeographic barrier in the lite(atgre
Jacobsen‘et al., 2014, Stanley & Bates, 2014; Maswanganye et al., 2017), but both the
steep'gorge and river itself are likely insurmountable obstacl& dorcepsspecies,
which.are poorly suited for either climbing or swimmifgr the majoreastwareflowing
rivers as a wholeeriods ofuplift from the Oligocene to Pleistocespurred large scale
reorganization of river systenisat involvedcapture of the Upper Zambezi system by the
Lower Zambezi (away from the Limpopo system), erosion of major river gorges, and
periodiesfermation of large inteal basins (Moore & Larkin, 2001). The timing of these
events Is consistent with divergences inrf@ssambicugroup.

The data suggest a different history for most species igilthesusgroup, in
which gvidence for divergence caused by climatic fluctuation is stidregibbosus
group inhabits recognized floral biodiversity hotspots (Mittermeier et al., 200¥)ugh
the delimitation of such does not necessarily reflect vertebrate diversity (see Perera et al.,
2011). Eastern South Africa (i.e. the MPA hotspot) is a mosaic of vegetation types, slo
soils,and levels of precipitation, particularly as one moves inland from the coastisowar
the escarpmer{Peeera et al., 2011)and substantial specitsvel diversification has been
noted in other regional vertebrate taxa thought to have limited dispersal ability (da Silva
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& Tolley, 2017). In the southwestern Cape, a period of uplift in the early Miocene,
gradual dmatic deterioration (Zachos et al., 2004nd the onset of the Benguela
upwelling systentaused awitch to winterdominant rainfal(Siesser, 1980; Roberts &
Brink, 2002), and produced significant changes in the resident flora and fauna. The
unique bietic composition of the CFR effectively delimits the area affected by these
climatic.and epeirogenic chang@gatthee & Flemming, 2002; Daniels et al., 2006, 2009,
Tolley ‘etal’; 2006, 2010).

Thetimes of divergence we estimate for species igitit@susgroup are
consistent withisolation of populations being caused by this climatic deteriorafibMs
also support the climate fluctuation model. An adaptive divergence model would predict
that closely‘related species would have significantly different niches (Sen®®
valuesnear zerg)and the landscape barrier model would predict geographic barriers
between close relatives, rather than the range overlap seen between close relatives in the
gibbosusgroup (Fig. 3) Instead, closely related species ingit#osusgroup display
substantialoverlap in nichespecially the most closely related species from the SW
Cape(Figs=3, S3; Table)land it is less closely related species that show significant
niche'divergence. This would be expectegilibosusgroup populations became
fragmentedn situas climate changed and eventually adapted as local climates continued
to diverge. For example, tisplit of B. namaquensj$. macropsandB. branchifrom the
rest of the SW Cape species (€8ggibbosusB. montanusetc.) occurred irhie mid to
late-Migeene, which broadly corresponds to the regional climate shift in the SW Cape
that prometed advanced aridity and generated the winter rainfall zone. This shif
restricted the previously widespread subtropical forest to disjunct, relpzEitcies along
the southern slopes of the Cape Fold mountains (e.g. Kiysadele ecoregion, habitat
of B. fuscusFig. 3) and replaced it with the dominant, contemporary Fynbos and
Succulent Karoo Biomes (Cowling et al., 2009; Neumann & Bamford, 2015; although
see Matthews et al., 2016). The SKR, or more specifically Namaqualand, receives limited
rainfall but,benefits from inlan@enetrating, coastal fog (Olivier, 2002he continued
input of moisture has likely been crucial in maintaining populatiof®ficepsn South
Africa and allowing them to diversify rather than go extinct as a result of climate
deterioration.
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While ecological preferences and geological barriers sthi@pesification, the
SDMs suggest that they also impact contemporary distributioBeegfceps The Albany
Thicket biome(Fig. 3)is a distinct intersection between dramatically different climatic
and vegetative zones between the MPA and CFR hotapdtepresents an example of
an ecological barrieft hasbeen shown to b& natural break in the distributions of
numerous faundbxa (e.g. velvet worm®aniels et al., 2009, amthameleonsTolley et
al., 2006) This gap marks the sowtkstern limit ofthe broadly distributeB. verrucosus
and the eastern distributionthie Cape taxa (represented by the easternmost sy&cies,
fuscus, reflectedin thelack of reciprocal overprediction between species specific SDMs
(Table 4; Fig. 3). Moreover, tHebitat ofB. fuscudalls within (presumably)elictual,
temperate,«coastal afromontane forghe Aseasonal Rainfall Zone (Fig. 1; although it
uniguelyreceives rainfall year roundith spring and fall rainfall being the most
consistent Thisarea is home tother rangeestricted frogge.g.Afrixalus knysnage
Heleophryne hewittiand lizards (e.gBradypodion damaranupiNinurta
coeruleopunctatys suggestinghat this is aunique area for herpetofauia. the Cape
TemperatesFaurgensuPoynton & Broadley, 1978). The Orange River is an example of
a potential geologicdlarrier(Matthee & Flemming, 20Q0ut sedPortik & Bauer, 2012)
and could play a role in the distribution®f namaquensisThe SDM forB. namaquensis
overpredicts suitable habitat north of this river, but the species is only known from the

south.

Conclusions

As shown in this study, a single model of divergence cannot fully explain
diversification inBreviceps Instead, a combination of isolation resulting from geological
processes.and climatic deterioration best explains the current diversity in the group. We
found no.evidence for diversification driven by adaptive divergentus.pattern is
broadly.eonsisterwith patterns seen imore recently diverging amphibian and reptile
lineages+of southern Africa, as described in the Introduction. Thus, we can conctude tha
the processes promoting diversification in the region have remained consistent
throughout the Qezoic; the main change over time is that specific events causing
divergences may differ. In the caseBvévicepsthese events were mostly Miocene in
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age and included geological evolution of the Great Escarpment, major changes to river
systems, and clinta change that included both aridification and establishment of the
winter rain system in the SW Cape.

Two future extensions to this study may allow the primary conclusions to be
refined. First, broader sampling in thssambicugroup would allow rangmits of
species.in this group to be better demarcated and allow development of SDMs to better
assessniche overlap. Second, additional variables could be coded into niche models as
data become available. For example, although we recovere® higlies letween three
similarly distributed SW Cape taxa that all utilize (to some degree) the Fynbos biome
(Table 1) Bamontanugienerally prefer mountain tops (Minter, 2004), as opposed to
mountain slopes. gibbosupor the surrounding Cape flat3.(rose). Likewise, to the
northwestBimacropds found exclusively in white sands close to the coastBand
namaquensiss generally found in red sands further inland (Channing & Wahlberg, 2011)
Substrate specificity has been suggested as a significant driver of divergence in other
southerngAfrican taxa (e.g. Bauer, 198&&inicke et al.2017a, b) and combining such
ecologicaldata with climate data could provide new insight into the degreenef nic
overlap.nBreviceps

This study also has implications beyond identifying factors promoting
diversification of the African biotaDver ninety years have passed since the last major
systematic revision drevicepgPower, 1926)Ourphylogenetic resultslentified
numergugryptic lineagestwo of which were described while this manuscript was in
review(Fig«2; Minter et al., 2017). Such findings were previously predicted (Channing,
2001),and in some cases supported by allozyme and acoustiviatar, 1998;
Engelbrecht.& Mulder, 2000), but so far no modern, comprehensivedaxo revision
of this group has been attemptafthough work is underway to rectify that deficiency).

This.result mirrors previous findings suggesting that our knowledge of African
amphibian‘diversity is still a work in progress (Turner & Channing, 2008yl et al.,

2010; Channing et al., 2013; Loader et al., 2014; Bittencourt-Silva et al., 2016). These
‘cryptic’ lineages are concentrated in an area that is renowned for high hagpetof
diversity (Channing et al., 2013; Jacobsen et al., 2014; Stanley & Bates, 2014 sTetver
al., 2014) yet also identified as a region that will experience rapid amphibian decline due
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524  to habitat losg¢Stuart et al., 2004}hus immediate conservation action is needed to
525 preserve this distinct evolutionary radiathose diversification has been shaped by the
526 interwoven changes of geology and climate in southern Africa.
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TABLES

Table 1. Pairwise SchoenerB values (below the diagonal; and their associptedlues
above) from Niche Identity Tests performedwnxeNT using the ‘phyloclim’ package in
R. Cells with warmer colors indicate the highest values, and values are in bolthehe

measured-averlap falls within the distribution of pseudoreplicates.

sylwestris VEeITUcosus  |namaquensis|macrops acutirostris  |fuscus gibbosus rosei montanus
sylvestrs 0.371 0.012 <0.01 <0.001 0.015 <0.001 <0.001 <0.001 |p-val
Verrucosus, .420 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
namaquensis| 0:042 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001
macrops 0.065 0.395 <0.001 <0.001 <0.001 <0.001 <0.001
acutirostis— fesn G010 0.015 | 0.022 0.021 <0.001 <0.001 <0.001 <0.01
fuscus 0.022 0.029 0.139 <0.001 <0.001 <0.001
gibbosus 0.030 0.317 0.079 0.222 007 <0.01 <0.001
rosei 0.046 0.031 0.312 0.087 0.251 0.065 0.546 <0.01
montanus 2 0.021 0.086 0.017 ) 0.137 0.437 0.568

Schoener's D

FIGURES

Figurel=Map of sub-Saharan Africa south of the Congo basin, highlightgyant
biodiversity hotspotsCape Floristic RegiorQFR, magenta)Succulent Karoo Region

(SKR, orange) MaputaPondoland-AlbanyNIPA, green) Coastal Forests of East Africa
(CFEA, brown); and Eastn AfromontaneBiodiversity Region (EABR, red)
Biogeegraphically relevant features are indicated, including rivers, rainfall zones (winter
[WRZ], summer [SRZ], and aseasonal [ARZ]), and ocean currents (see main text for
detals).
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798 Figure2. (A) Phylogenetic relationships Bfevicepsspeciedevel relationships with

799 representative photographs of each species in life (not size standardized), as well as maps
800 of the geographic distributions of the two major grolg)she mossambicugroup;C)

801 thegibbosusgroup). Colored polygons on the maps coordinate with the small colored
802 circles and.diamonds following the taxon names on the tree. The latter relate to

803 approximate geographic sampling localities indicated on the associated maks. Blac

804 circles'with'hnumbers represtethe eight putatively novel lineages within the

805 mossambicugroup (including two recently described taxa). Within the tree, a solid,

806  Dblack circle indicates nodal support valag9% for Maximum Likelihood bootstraps

807 (BS) and>0:95 for Bayesian inference posterior probabilities (PP), whereas a grey circle
808 representsiPP0.95, but BS <70%. (D) A gene network of phasé®AGlhaplotype

809 sequencesH) Time-calibrated ultrametric tree &revicepdineages based on

810 concatenated, partitioned nuclear data, with support and 95% confidence intervals (blue
811 bars) indicated at each node. Asterisks indicate high PP support. The lineage-through
812 time ploty(red line) was generated using the LTT function in the R package ‘ape’.

813

814 Figure3., Composite map of thepecies distribution models (SDMs) for each species of
815 thegibbosusgroupacross the Cape sbuthern Africa, overlaid with pertinent

816 biogeographic features mentioned in the main tdabitat suitability was calculated

817  usingMAXENT from 100 bootstrap replicates and otilg top 20% of maximum habitat

818 suitability‘is,displayed for each taxon. Diamonds indicate museum and/orioollect

819 localitiessused to generate each model.

820

821 SUPPORTING INFORMATION

822  Appendix.1.Supplementary tables including taxon sampling, primer information, genetic
823 distance, substitution models, bioclimatic variable contribution, and pseudoreplicate data
824  for eachsniche identity test.

825 Appendix 2 Supplementary figures including additional plggdaetic trees, gene

826  networks, and niche model output.
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sylvestris Verrucosus | namaquensis | macrops acutirostris | fuscus gibbosus rosei montanus
sylvest 0.371 0.012 <0.01 <0.001 0.015 <0.001 <0.001 <0.001
verrucos 0.420 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
namaqz sis 0.042 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001
macrops 0.065 0.395 <0.001 <0.001 <0.001 <0.001 <0.001
acutirost 0.022 0.021 <0.001 <0.001 <0.001 <0.01
fuscus 0.022 0.029 0.139 <0.001 <0.001 <0.001
gibbosus 0.030 0.317 0.079 0.222 <0.01 <0.001
rosei 0.046 0.031 0.312 0.087 0.251 0.065 <0.01
montanu 0.022 0.021 0.086 0.137 0.437
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