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Abstract 

Uropathogenic Escherichia coli (UPEC) are the main cause of uncomplicated urinary 

tract infections (UTIs), one of the most common bacterial infections in humans. Both adherence 

and motility are critical for productive colonization of the urinary tract. However, the 

mechanisms involved in coordinating the transition between adherence and motility are not well 

characterized. Pyelonephritis-associated pili (Pap), or P-fimbriae, bind the P-blood group antigen 

located on human kidney epithelial cells and erythrocytes, and UPEC strains harboring the pap 

operon are more likely to cause pyelonephritis. In this dissertation, a signature-tagged 

mutagenesis screen identified a P-fimbrial gene (papC) and 18 other genes as being among those 

required for full fitness of the cystitis isolate E. coli F11. Additionally, P fimbriae were 

confirmed by Molecular Koch’s postulates as a virulence factor for the pyelonephritis isolate E. 

coli CFT073 in the murine model of UTI.  

The production of P fimbriae is coordinated with the repression of swimming motility. 

Unlike the majority of other fimbrial operons, the 3’ end of the pap operon encodes a MarR-like 

transcription factor, PapX. Using SELEX and high-throughput sequencing, our lab has 

previously shown that PapX binds to a 29-bp palindromic DNA sequence located upstream of 

flhDC, the master regulator of flagellar gene expression, and thereby represses motility. 

However, the UPEC strain CFT073 carries both papX and a homolog focX, located in the foc 

operon encoding F1C fimbriae. In this dissertation, the dose-effects of these “X” genes on 

flagellar gene expression and cross-talk between focX and papX were investigated. Similar to 

PapX, the production of FocX was shown to repress flhDC transcription. Furthermore, the 



 xi 

deletion of PapX and FocX in CFT073 resulted in a subtle, but not statistically significant, 

decrease in kidney colonization in the ascending murine model of UTI. Using 5'RACE, a 

proximal promoter was located upstream of both focX and papX, suggesting that these genes are 

transcribed independently from their fimbrial operons and therefore may be regulated by 

different transcription factors. Indeed, the deletion of focX resulted in increased expression of 

papX but had no effect on papA expression. Thus, cross-talk between "X" genes may provide a 

mechanism to mediate fine-tune coordinated transitions between motility and adherence.  

Similar to PapX and FocX, the transcription factor TosR is a critical component of the 

regulatory network linking adherence and motility in UPEC. TosR, encoded by the type one 

secretion (tos) operon, has previously been shown to function as a transcriptional repressor of the 

pap operon and as a dual regulator of the tos operon. The tos operon also encodes the non-

fimbrial adhesin TosA, which is predominately expressed during murine UTI, binds to kidney 

epithelial cells, and promotes survival during invasive infections. In this dissertation, TosR was 

demonstrated to also regulate the expression of genes involved with adhesins, including P, F1C, 

and Auf; nitrate/nitrite transport; microcin secretion; and biofilm formation. Altogether, these 

studies provide an in-depth characterization of three transcription factors (PapX, FocX, and 

TosR) and their contribution to the coordinated regulation of motility and adherence in UPEC. 
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Chapter I: Introduction 

Diversity of Escherichia coli  

Escherichia coli strains reside in the intestinal tracts of mammals and are considered 

commensals alongside other microorganisms collectively referred to as the human gut 

microbiota (1, 2). However, E. coli is a highly versatile and diverse species, and various 

pathogenic E. coli strains are capable of also causing diarrhea or extraintestinal infections, 

including neonatal meningitis, surgical site infections, pneumonia, bacteremia, and urinary tract 

infections (UTIs) (3, 4). Accordingly, pathogenic E. coli strains are conventionally categorized 

into pathotypes based on their clinical source and virulence-associated factors: enteropathogenic 

(EPEC), enterohemorrhagic (EHEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), 

enteroinvasive (EIEC), diffusely adherent (DAEC), adherent-invasive (AIEC), sepsis-associated 

(SePEC), neonatal meningitis (NMEC), and uropathogenic E. coli (UPEC) (Table 1.1) (5-7).  

 UPEC, NMEC, and SePEC strains represent a specialized subset of E. coli associated 

with infections outside of the gastrointestinal tract and are classified as extraintestinal pathogenic 

E. coli (ExPEC) (8). To overcome environmental restrictions and host defenses during 

extraintestinal infections, ExPEC strains are equipped with virulence and accessory genes, absent 

from the majority of fecal E. coli isolates, that aid in nutrient acquisition, colonization, injury 

and/or invasion of host cells, and evasion of the host immune responses (9-11). Many of these 

virulence factors, including adhesins, toxins, and iron acquisition systems, are encoded by 

multiple ExPEC strains regardless of pathotype. Therefore, diverse extraintestinal host sites can 

share similar environmental and nutritional restrictions (12-15).  
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 For example, iron is vital for bacterial survival and plays a significant role in multiple 

cellular processes, including metabolism, DNA replication, resistance to oxidative stress, and 

cellular respiration (16-19). However, available iron is heavily restricted at extracellular host 

sites. Instead, the majority of host iron is located intracellularly incorporated into heme, which 

functions as a cofactor of hemoglobin or myoglobin, or sequestered by the iron storage protein 

ferritin (17). Thus, iron limitation serves as a form of host nutritional immunity and is an 

effective defense mechanism to limit bacterial infections (17). ExPEC strains encode multiple 

iron acquisition systems, including siderophores, iron transporters, and outer-membrane iron 

receptors to acquire host iron, and many of these iron acquisition systems contribute to virulence 

during UTI, bacteremia, and neonatal meningitis (20-24). Therefore, the characterization of a 

fitness or virulence factor in UPEC is not only important for expanding our understanding of 

uropathogenesis but may also provide insight to mechanisms of pathogenesis used by NMEC 

and SePEC.  
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Table 1.1. Description of virulence factors associated with pathogenic E. coli  

E. coli Pathotype Disease Syndrome Subtypea Virulence-associated 
factors or phenotypesb 

Enteropathogenic (EPEC) Diarrhea IPEC 

Locus of enterocyte 
effacement (LEE) 
Pathogenicity Island, 
Bundle-forming pili (bfpA) 

Enterohemorrhagic (EHEC) 
Hemorrhagic 

colitis, hemolytic 
uremic syndrome 

IPEC 
Shiga toxin 1 and 2 
Intimin (eae), Hemolysin 
(ehxA) 

Enterotoxigenic (ETEC) Diarrhea IPEC Heat-labile (LT) and heat-
stable (ST) enterotoxins 

Enteroaggregative (EAEC) Diarrhea IPEC 
pAA virulence plasmid 
Cytotoxin (Pet); aggregative 
adhesion (AAF fimbriae),  

Enteroinvasive (EIEC) Bacillary dysentery IPEC 
pINV virulence plasmid, 
type 3-secreted effector 
protein (IpaH) 

Diffusely Adherent (DAEC) Diarrhea IPEC Diffuse adherence (AIDA-1), 
Afa/Dr adhesins 

Adherent-invasive (AIEC) Associated with 
Crohn’s disease IPEC 

Adherent-invasive phenotype  

Sepsis-associated (SePEC) Bacteremia, Sepsis ExPEC Invasion of Vero kidney cells 
Neonatal meningitis 

(NMEC) Meningitis ExPEC K1 capsule, S fimbriae, 
OmpA adhesin 

Uropathogenic (UPEC) UTI, Urosepsis ExPEC 
Fimbriae (type 1, P, F1C, 
and S), Afa/Dr adhesins, Sat 
toxin 

a: Intestinal pathogenic E. coli (IPEC), Extraintestinal pathogenic E. coli (ExPEC) 
b: Common, but not all-inclusive or definitive list of virulence factors or phenotypes associated 
with individual E. coli pathotypes (adapted from Kaper, et al and Robins-Browne et al. (7, 25))  
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Uropathogenic E. coli are the primary cause of urinary tract infections 

 Urinary tract infections (UTIs) are one of the most pervasive bacterial infections, with 

over 150 million cases worldwide each year, and occur when bacteria infect sites within the 

lower (urethra and bladder) and upper (ureters and kidneys) urinary tract (Figure 1.1) (26, 27). 

Due to their high prevalence, UTIs impose a heavy burden on healthcare resources in the United 

States, accounting for 2-3 million emergency department visits in 2007 and an estimated $3.5 

billion per year in direct and indirect health care costs (28, 29). Multiple bacterial species have 

been isolated from UTIs, including Escherichia coli, Klebsiella spp, Proteus spp, Pseudomonas 

aeruginosa, Enterococcus spp, Staphylococcus saprophyticus, Streptococcus agalactiae, 

Enterobacter, and Serratia spp., and many of these species have exhibited increasing levels of 

resistance to antibiotics commonly used to treat UTIs (30). In 1995, the estimated annual cost of 

antimicrobial therapy for community-acquired UTIs was $1.6 billion. With the widespread 

emergence of antibiotic resistance, healthcare-associated costs are projected to remain high until 

there are advancements in therapeutic strategies or the development of an effective vaccine (31-

34).  

UTIs range in severity depending on the genetic attributes of the bacterial pathogen as 

well as predisposing conditions of the patient (35). For instance, UTIs are classified as 

complicated in individuals who are either immunocompromised, have disrupted genitourinary 

function (including urinary catheterization), or structural abnormalities (26). Additionally, UTIs 

in otherwise healthy adult men are rare and therefore are also classified as a complicated UTI 

when they occur (36). In general, individuals experiencing complicated UTIs have a higher risk 

of developing severe clinical outcomes including bacteremia, sepsis and death (37, 38). In 

contrast, uncomplicated UTIs occur in anatomically normal and otherwise healthy individuals. 



 5 

Risk factors for developing an uncomplicated UTI include sexual activity, age, a history of prior 

UTIs, diabetes, contraceptive use, and female gender, with almost 50% of women experiencing 

at least one UTI during her lifetime (33, 39-41).  

While a variety of bacterial species can infect the urinary tract, UPEC are the primary 

cause of approximately 70-90% of uncomplicated UTIs (29, 33, 42). Most uncomplicated UTIs 

occur when periurethral bacteria ascend the urethra and colonize the bladder causing 

inflammation known as cystitis, which can present clinically as increased urinary frequency and 

urgency, dysuria, suprapubic pressure, and malaise (43, 44). In general, uncomplicated UTIs are 

limited to the bladder, and symptoms typically resolve within 3-7 days without antibiotic 

treatment (45). However, 20-44% of women experience at least one recurrent UTI within six 

months of initial diagnosis, and approximately 3% of these women experience multiple recurrent 

UTIs requiring follow-up physician visits and in some cases long-term treatment with antibiotics 

to limit recurrence (46, 47).  

In a small percentage of cystitis cases (< 3%), bacteria ascend the urinary tract via the 

ureters and cause a secondary infection in the kidneys known as pyelonephritis, which can result 

in flank pain, vomiting, fever, and renal scarring (48, 49). Additionally, during pyelonephritis 

there is an increased risk that bacteria will cross the renal epithelium and endothelium barriers to 

disseminate throughout the bloodstream, which may lead to severe outcomes such as urosepsis 

and death (50).  
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Figure 1.1 Schematic of an ascending uncomplicated urinary tract infection 
The urinary tract consists of the urethra, bladder, ureter and kidneys. The kidneys filter 
approximately 1/3 of all blood leaving the heart, which is pumped into the kidneys through the 
abdominal aorta and drained via the inferior vena cava. An uncomplicated UTI begins when 
bacteria (shown as purple rods) colonize the bladder via the urethra, which can result in 
inflammation known as cystitis. Bacteria may also ascend from the bladder to the kidneys via the 
ureters, resulting in pyelonephritis. Bacteremia develops when bacteria residing in the kidneys 
cross the epithelial and endothelial barriers and enter the bloodstream.  
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Most bacteria are unable to thrive within the urinary tract environment due to it's high 

osmolarity, elevated urea concentrations, low pH, and limited iron availability (51, 52). 

Additionally, infecting bacteria must navigate a number of host immune defenses that function 

synergistically to remove bacteria from the urinary tract (53). For example, adherence of UPEC 

via the adhesin type 1 fimbriae to the bladder epithelium triggers exfoliation of host cells into the 

bladder lumen via an apoptosis-like mechanism that is an attempt to eliminate both infected cells 

and bacteria (54). Likewise, urination (also known as micturition) is a powerful host defense that 

can displace bacteria from attaching to the bladder epithelium and during voiding can flush 

bacteria from the urinary tract system (55). Individuals with dysfunctional voiding, including 

those with increased vesicoureteral reflux, experience more frequent UTIs and are more at risk 

for developing pyelonephritis during a UTI (56, 57). Lastly, bacterial colonization of the urinary 

tract can stimulate the induction of host innate and adaptive immune defenses. The early 

recruitment to the bladder of neutrophils can use the generation of reactive oxygen intermediates 

and antimicrobial peptides to eliminate invading bacteria (58-60)  

To circumvent host defenses, UPEC strains encode multiple virulence and fitness factors 

that promote colonization of the urinary tract, including adherence factors (type 1, P, F1C, and S 

fimbriae), toxins, iron sequestration systems, flagella, lipopolysaccharide (LPS), and capsular 

polysaccharides (Figure 1.2) (10, 14, 21, 61). However, despite the ubiquity of UTIs, the UPEC 

virulence factors involved in colonization and persistence in the urinary tract are still not fully 

understood. As it has been difficult to identify a shared UPEC gene essential for UTI, there are 

likely variable or redundant combinations of virulence factors that mediate colonization of the 

urinary tract.  
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Many of the genes encoding virulence factors are located on large (>10 kb) mobile DNA 

regions termed pathogenicity-associated islands (PAIs) that have been acquired through 

horizontal gene transfer. Typically, UPEC genomes harbor multiple different PAIs (62, 63). For 

example, the UPEC strain CFT073, isolated from the blood and urine of a woman experiencing 

acute pyelonephritis, harbors 13 genomic islands with 7 being confirmed as PAIs (64). Thus, 

UPEC strains have high genomic plasticity and heterogeneity. Indeed, only 60-77% of the genes 

in the CFT073 genome are conserved among the UPEC strains 534, F11, UTI89, UMN026, and 

HM isolates (64, 65). Therefore, it is more clinically impactful to study the function of 

transcription factors regulating universal fitness factors, such as adherence and motility, than a 

strain-specific factor. During a UTI, extensive cross-talk regulates genes associated with 

adherence and motility to coordinate the transitions between attachment to host cells and 

ascension of the urinary tract. Thus, further investigation of the regulation between these two 

opposing states is essential for understanding the colonization and persistence of UPEC within 

the urinary tract.   



 9 

 
Figure 1.2 Virulence and fitness factors contributing to colonization of the urinary tract 
A model UPEC bacterium is represented that harbors many of the commonly encoded virulence 
and fitness factors demonstrated to contribute to pathogenesis during a UTI. Virulence-
associated categories include adhesins, capsule, lipopolysaccharide (LPS), iron acquisition, toxin 
production, and motility. The number of encoded factors varies within UPEC strains. Therefore, 
this model is a limited representation of the diversity of the UPEC-associated virulence and 
fitness factors.  
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Production and regulation of flagella  

Motile bacteria can rapidly respond to changes within their environment and, if needed, 

localize to more favorable niches (66). Thus, motility frequently provides a competitive 

advantage for nutrient acquisition and survival during infection where harsh host environments 

can be resource-limited (67). In E. coli, swimming and swarming motility are the two main 

methods of motility. Both mechanisms share a reliance on filamentous extracellular polymers 

known as flagella for locomotion and chemotaxis systems to navigate towards favorable 

conditions (68-71). In response to growth on a semisolid surface, bacteria differentiate into 

hyperflagellated swarmer cells and migrate together as a collective movement (72). In contrast, 

bacteria can perform swimming motility during culture in liquid or a semi-liquid medium (73). 

Many of the genes associated with the regulatory, secretory and signaling pathways for 

swimming and swarming are different, and therefore, bacteria swim and swarm in response to 

different environmental conditions.  

Flagellum construction is a complex process that requires the coordinated regulation of 

more than 50 genes. Flagellar genes are arranged in multiple operons and encode various 

regulatory and structural components needed for the assembly of the hook, membrane-spanning 

basal body and flagellum (74, 75). Thus, flagellar gene expression must be accurately timed to 

effectively assemble the multiprotein complex. To achieve this, flagellar genes are regulated in a 

transcriptional hierarchy divided into Class I, Class II, and Class III gene groups (Figure 1.3) 

(76).  

The class I genes flhDC encode a heteromultimeric complex FlhD4C2 that functions as the 

master regulator of flagellar gene (77). FlhD4C2 interacts with the α-subunit of RNA polymerase 

to promote the transcription of numerous Class II genes, including the alternative sigma factor 
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FliA (σ28) as well as genes needed for the assembly of the hook-basal apparatus that provides a 

structural platform for flagellum export, attachment, and rotation (78, 79). The σ28-RNA 

polymerase induces the transcription of Class III genes encoding the remaining proteins needed 

for flagellum construction, including the motor torque generator subunits (MotA and MotB), 

flagellin (FliC), chemoreceptors (Tar, Tsr, Tap, and Trg), and the signaling Che proteins (80, 

81). The flagellum structure is comprised of > 20,000 FliC proteins and is rotated by a motor 

switch complex within the basal apparatus powered by the protein motive force across the inner 

membrane (Figure 1.4) (82). In E. coli, flagella are assembled in a peritrichous arrangement on 

the cell surface, and the synchronized counter-clockwise rotation of these flagella propel a 

bacterium forward (83, 84).  
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Figure 1.3 Genes encoding structural and regulators of flagellum production are expressed 
in a transcriptional hierarchy 
flhDC encodes the heteromeric FlhD4C2 transcription factor that promotes the expression of class 
II genes found within multiple operons (represented by green boxes). FliA is an alternative sigma 
factor that is required for the expression of multiple Class III genes (represented by blue boxes). 
flhDC expression can be positively (+) or negatively (-) regulated by a variety of transcription 
factors that either directly bind to DNA sites within the flhDC promoter or indirectly affect 
flhDC expression through interactions with another transcriptional regulator.  
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Figure 1.4 Schematic of proteins involved with the assembly of the hook, basal apparatus 
and flagellum in E. coli  
Flagellum exportation occurs after the cytoplasmic export apparatus, basal body, and hook 
(shown in yellow) have all been assembled. The flagellum is a long (5 to 10 mm), hollow 
extracellular structure that is constructed of > 20,000 FliC proteins, which are secreted through 
export apparatus and assembled underneath a FliD cap (not shown). The motor switch complex, 
uses energy generated by a proton motive force across the inner membrane to rotate the 
flagellum 
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Motility is resource-intensive with each flagellum constituting approximately 1% of the 

total cellular proteins (85-87). Additionally, the rigid helical flagellum structure often breaks 

under viscous shear forces experienced during rotation (87). While flagella can be rebuilt, the 

released monomeric form of flagellin can be detected by the host Toll-like receptor 5 (TLR5) 

which can trigger a robust innate immune response targeting the invading bacteria (88). 

Therefore, the investment into motility comes at a cost to survival and must be managed 

appropriately to be advantageous for nutrient acquisition and survival. A benefit of the tiered 

regulatory network of flagellar genes is the ability to rapidly control flagella production through 

minor modifications in the expression of flhDC.  

Expression of flhDC is a key regulatory point to promote or inhibit flagella biosynthesis. 

Therefore, as expected, regulation of flhDC is complex. Numerous transcription factors, post-

transcription factors, and insertion elements are involved in the regulation of flhDC expression, 

including CAP, OmpR, PapX, CsgD, CpxR, and CsrA (89, 90). As a consequence of the 

multifaceted regulation of flhDC, the expression of flhDC can be affected by changes in 

osmolarity, pH, oxygen levels, carbon source, temperature, growth-phase signal, and nutritional 

availability (91-96).  

For example, the transcription factor OmpR can regulate the expression of flhDC in 

response to the nutritional state of the cell and changes in extracellular osmolarity (97, 98). 

OmpR encodes a transcriptional regulator that is involved in the two-component system 

EnvZ/OmpR. Under conditions of high osmolarity, OmpR becomes phosphorylated and 

functions as a negative regulator of flhDC transcription (92, 98). Additionally, limited nutrient 

availability can elevate the intracellular acetyl phosphate levels resulting in elevated phosph-

OmpR production and a subsequent decrease in motility (99). OmpR is only one of many 
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regulators of flhDC, emphasizing that the regulation of flhDC is an intricate network of multiple 

transcriptional regulators at the flhD promoter.   

 

Flagella-mediated motility promotes ascension of the urinary tract  

Motility is critical for UPEC ascension of the urinary tract. Flagellar genes have been 

identified as fitness factors for colonization of the bladder and the kidneys in the murine model 

of UTI (100-103). Indeed, Lane et al. constructed a fliC deletion in the UPEC strain CFT073 and 

determined by cochallenge infection in the murine model that the inability to produce flagella 

resulted in lower levels of early colonization of the bladder and faster clearance from bladder and 

kidneys over the course of two weeks (104). Bacterial ascension of the urinary tract happens 

rapidly, as UPEC can be isolated from the murine kidneys as early as 4 hours following 

intraurethral inoculation. However, expression of flagellar genes is transient during a UTI. 

Indeed, transurethral inoculation of mice with a CFT073 mutant encoding a luciferase reporter 

for fliC transcription demonstrated that flagellar gene expression was coincident with ascension 

of the ureters and repressed following entry into the bladder and kidneys (101). Yet, the 

transcriptional regulators of motility responsible for the early ascension of the urinary tract are 

not well characterized.   

Approximately 70% of UPEC strains isolated from women experiencing cystitis 

displayed motility when tested under in vitro conditions (102). However, non-motile UPEC 

strains have been also isolated from the urine of women experiencing cystitis or pyelonephritis 

(105). Therefore, while motility provides an advantage for early colonization and persistence 

within the urinary tract, it is not required for the establishment of a UTI. Additionally, flagellar 

genes are poorly expressed during in vitro culture in human urine and in UPEC isolated from the 
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urine of women experiencing cystitis, as well as during in vitro culture in human urine (106). 

Therefore, the production of flagella is likely tightly regulated during a UTI as a strategy to 

avoid detection via the TLR5 of the host immune system (107, 108). Furthermore, flagellated 

bacteria are more likely to be targeted for phagocytosis by host immune cells and thereby 

eliminated during infection (109, 110). Therefore, prolonged expression of flagellar genes may 

trigger a more robust immune response and be detrimental to prolonged survival within the 

urinary tract (103). Thus, a UPEC-associated regulatory mechanism to mediate rapid transitions 

in flagellar gene expression would likely be advantageous during infection (101).  

 

Involvement of adherence factors in uropathogenesis 

 Bacteria can attach to a variety of biotic and abiotic surfaces and often switch between 

motile and adherent states in response to different environmental signals (110, 111). Bacterial 

adherence is mediated by the production of extracellular fimbrial and nonfimbrial adhesins. A 

single bacterium often encodes multiple types of adhesins with different binding specificities, 

expanding the number of possible attachment sites (111, 112). The mechanism of bacterial 

attachment occurs in two phases: a brief reversible initial contact mediated by hydrodynamic and 

electrostatic interactions followed by an irreversible attachment to the surface via an adhesin 

(113).  

 Bacterial adherence to host cells is critical for initial colonization and persistence during 

a UTI. UPEC encode a variety of fimbrial adhesins (e.g. P, F1C, S, type 1, and Dr) and 

nonfimbrial adhesins (e.g. TosA) that bind to cells found within the urinary tract (114, 115). A 

major intrinsic host defense mechanism within the urinary tract is the constant flow and 

accumulation of urine that washes bacteria from cell surfaces and expels free-floating bacteria 
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from the urinary tract during voiding (116). Thus, bacterial adherence to the uroepithelium limits 

the effect of shear forces produced by urine flow and thereby improves colonization (117). 

Adherence to host cells also provides a number of additional fitness advantages, including 

evasion of host immune defenses and more effective delivery of bacterial toxins. Adherence can 

also trigger signaling pathways in both the bacterium and the host cell that may modulate gene 

transcription, host chemokine production, or cytoskeletal organization promoting bacterial 

invasion of host cells (118-128). Therefore, bacterial adhesins are critical for pathogenesis, as 

many of these virulence-associated pathways require close contact between bacteria and host 

cells. There is extensive cross-talk between multiple fimbrial types as well as flagellar genes. 

Thus, investigating the transcriptional regulators (i.e. TosR, PapX, and FocX) associated with 

adhesins is critical for understanding what environmental and host factors promote adherence 

and motility during infection.  

 

TosA: a non-fimbrial adhesin 

Non-fimbrial adhesins are a heterogeneous group of protein structures that are secreted 

through either a type 1 secretion system (T1SS), T5SS or are autotransported across the outer 

membrane and anchored to the extracellular surface (129). The TosA adhesin, encoded by the 

tosRCBDAEF operon, is a member of the Repeat-in-Toxin (RTX) protein family. TosA is 

secreted through a T1SS, comprised of TosCBD, and subsequently attached to the outer 

membrane (130, 131). The tos operon is located on the PAI-aspV, and UPEC strains isolated 

from the urine of women experiencing acute cystitis were more likely to encode the tos operon 

(25-30%) than fecal E. coli isolates (114). Additionally, TosA was shown to be one of the most 

highly produced antigens during murine UTIs, and correspondingly, tosA was highly expressed 
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in infected bladder, kidneys, spleen and livers (132). Furthermore, a tosA mutant in UPEC 

CFT073 had reduced fitness during cochallenge in the murine model of UTI and bacteremia (62, 

131, 132). Intriguingly, in vitro induction of tos expression has not been observed, indicating that 

the regulation of the tos operon may depend on being within the host environment (133).  

TosR is encoded by the tos operon and is a member of the PapB family of transcriptional 

regulators (134). TosR functions as a dual regulator of the tos operon (133, 134). Specifically, 

high levels of TosR correspond to decreased TosA production, while low levels of TosR 

correlate with increased TosA production (133). Previous work has demonstrated that TosR 

binds to A+T-rich DNA sequences, and a TosR binding site has been identified within the 

promoters of the tos and pap operon, encoding P fimbriae (133, 134). Therefore, TosR likely 

participates in cross-talk between adhesins. Additionally, TosR may also regulate the expression 

of additional adhesins as well as other virulence factors. Thus, characterization of the regulation 

and function of TosR will elucidate the in vivo signals involved in UPEC colonization and 

dissemination in the urinary tract. 

 

Fimbrial adhesins: type 1, P, F1C 

Chaperone-usher pili (CUP) are the most common fimbrial type encoded by E. coli and 

are morphologically characterized as being relatively thick (5-7nm diameter), rod-like fibers 

(112). The bulk of the pilus (or fimbria) is comprised of multiple copies (>1000) of the major 

fimbrial subunit and terminates with a tip adhesin and adapter complex, which often consists of 

multiple minor subunit proteins (135). During fimbria assembly, the major and minor subunits 

are shuttled to the periplasm via the general secretory pathway. Next, these subunits are linked 

together via a zip-in zip-out mechanism coordinated by periplasmic chaperone proteins and a 
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pore-forming usher protein, which acts as a scaffold for subunit assembly (129). Briefly, the N-

terminal extension on an incoming pilus subunit displaces the β-strand of the chaperone protein 

bound to the previously-assembled subunit (135). Through this mechanism of strand exchange, 

pilus subunits are rapidly polymerized to form a pilus.  

While there are approximately 38 different types of CUP characterized in E. coli, 

individual commensal and pathogenic E. coli strains encode on average 8-16 different CUP 

(112). However, phase variation between fimbrial types typically limits the production of 

fimbriae to a single type for each bacterium (136, 137). Some fimbrial types are common to both 

commensal and pathogenic E. coli strains, including Mat, Yad, Yeh and Yfc (112). However, 

fimbrial types that have advantageous adherence properties for colonization of a particular niche 

during infection are often preferentially encoded by E. coli pathotypes (115). For example, 

UPEC strains are more likely than fecal commensal E. coli to encode P, F1C, S, Dr, and Auf 

fimbriae that bind various carbohydrates located on host cells within the urinary tract (115, 138, 

139). However, type 1 fimbriae, encoded by the fim operon, are an exception to this correlation, 

since the prevalence of the fim operon is similar across pathogenic and commensal E. coli 

isolates (>90%), yet type 1 fimbria have been confirmed as a virulence factor during murine UTI 

(140, 141). 

The pyelonephritis isolate CFT073 encodes 12 fimbrial types, including type 1, F1C, and 

two copies of P fimbria (P1 and P2) (142). While fimbrial operons vary in operon organization, 

the majority of fimbrial operons encode at least one subunit, a chaperone protein, an usher 

protein. and an adhesin. However, the operons encoding P1 and F1C also contain a terminal “X” 

gene papX or focX, respectively, that encodes a MarR-like transcription factor that functions as a 

repressor of motility (Figure 1.5). 
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Figure 1.5 Individual E. coli strains encode a diversity of fimbrial types   
The schematic shows that diversity of operons encoding fimbriae in the UPEC strain CFT073. 
While these 12 fimbrial operons differ in DNA sequence and overall gene organization, all 
operons contain at least one subunit, chaperone and usher protein. In CFT073, only the operons 
encoding P1 and F1C contain a terminal “X” gene (papX or focX, respectively) that encodes a 
MarR-like transcriptional regulator.  
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Type 1 fimbriae 

 Type 1 fimbriae are among the most common adhesins in E. coli and are encoded by the 

fim operon (Figure 1.6) (143). One of the earliest phenotypic characterizations of type 1 fimbriae 

was their ability to confer D-mannose-sensitive hemagglutination of guinea pig erythrocytes 

(141, 144, 145). Further characterization of the type 1 adhesin, FimH, demonstrated that type 1 

fimbriae recognize mannose residues on uroplakin Ia enriched on the apical surface of urothelial 

cells (141, 144-146). Additionally, the receptor specificity of type 1 fimbriae correlates with 

virulence, as UPEC strains producing high levels of type 1 fimbriae are more robust colonizers 

of the murine bladder and kidneys (140) 

Moreover, the production of type 1 fimbriae confers the ability to attach to the 

uroepithelium for nonpathogenic E. coli strains, as evidence by the redistribution of the 

asymptomatic E. coli strain 83972 from the murine bladder lumen to the walls following ectopic 

expression of the fim operon (147). Yet, while the fim genes are highly expressed in voided urine 

collected from the murine model of UTI, an investigation of fimA, encoding the major fimbrial 

subunit, showed that fim genes are overall poorly expressed in UPEC strains isolated from the 

urine of women experiencing acute cystitis (148-150). A host defense response to a UTI is the 

exfoliation of epithelial cells to remove attached bacteria (54). Therefore, voided human urine 

likely contains a mix of both nonadherent and adherent bacteria and may not best represent the 

fimbrial types needed for successful host colonization (150). Thus, the contribution of type 1 

fimbriae during colonization of the bladder may not be as robust in humans compared to mice, 

highlighting the complexity of interacting and compensatory mechanisms of UPEC 

pathogenesis. 
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Figure 1.6 A schematic of the gene organization of the fim, pap, and foc gene clusters  
All three fimbrial gene clusters encode the structural and regulatory genes necessary for fimbria 
biogenesis, including regulatory proteins (fimB, fimE, papI, papB, sfaC, focB), major subunits 
(fimA, papA, focB), periplasmic chaperones (fimC, papD, focC), ushers (fimD, papC, focD), and 
adhesins (fimH, papG, focH). The foc operon also encodes a putative phosphodiesterase (c1246), 
and the pap and foc operons both encode a 3' terminal MarR-like transcription factor, PapX and 
FocX, respectively.  
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P fimbriae 

Pyelonephritis-associated pili (pap) or P fimbriae are one of the most well studied 

fimbrial types in E. coli. Multiple epidemiological studies have identified a positive correlation 

between UPEC genomes carrying the pap operon and the development of more severe clinical 

outcomes during UTI, notably pyelonephritis (61, 151-153). In addition, it is not uncommon for 

UPEC strains to carry two copies of the pap operon, which are found on PAI-pheV (pap1) and 

PAI-pheU (pap2) (64, 142, 154). In contrast to type 1 fimbriae, P fimbriae mediate mannose-

resistant hemagglutination of human erythrocytes. Furthermore, biochemical analysis revealed 

that the P fimbrial adhesin, PapG, binds to the Gal(α1-4)Gal-containing receptor of the P blood 

group antigen, which is enriched on erythrocytes as well as the kidney epithelium of most 

humans (155, 156). 

Therefore, P fimbriae binding specificity mediates binding to host cells within the 

kidneys. Indeed, in vivo competition assays in cynomolgus monkeys between the UPEC strain 

DS17 and a mutant unable to produce P fimbriae demonstrated that while both strains were 

equally adept at bladder colonization, the production of P fimbriae was critical for the 

establishment of pyelonephritis (157). Additionally, ectopic expression of the pap operon in the 

asymptomatic bacteriuria strain E. coli 83972 was sufficient to improve colonization of the 

human urinary tract following intravesical inoculation (158). Therefore, the production of P 

fimbriae promotes a more robust and rapid establishment of bacteriuria.  

However, these in vivo infections were conducted using an avirulent bacteriuria E. coli 

strain, which is capable of persisting within the urinary tract undetected from host immune 

defenses and therefore likely uses a different strategy than pathogenic E. coli strains to remain 

within the urinary tract. Additionally, in the pyelonephritis UPEC isolate CFT073, which carries 
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both copies of the pap operon, independent infections in the murine model between wild type 

CFT073 and an isogenic mutant unable to produce P fimbriae did not result in a fitness defect 

(153). Therefore, the contribution of P fimbriae in the mouse to colonization requires additional 

investigation. In addition to promoting adherence within the upper urinary tract, attachment of P 

fimbriae to host cells stimulates the production of the pro-inflammatory cytokines IL-6 and IL-8, 

as well as the release of ceramide, an agonist for the TLR4 (159-162). Asymptomatic bacteriuria 

(ABU) strains do not encode P fimbriae as frequently (<20%) as pyelonephritis (90%) or cystitis 

(33%) isolates (163). Thus, the production of P fimbriae in ABU strains may hinder their ability 

to hide from the host immune responses.  

The production of P fimbriae requires the papBAHCDJKEFGX operon, encoding the 

structural, transport, and regulatory machinery for fimbria assembly (Figure 1.6) (164). The 

pilus consists of the adhesin PapG, the adhesin tip complex, comprised of the minor subunits 

PapEFK, and >1000 copies of the major subunit PapA, making up the bulk of the structure. 

Individual units are shuttled by the periplasmic chaperone protein PapD to the usher PapC, 

which acts as a scaffold for subunit assembly on the extracellular surface of the bacterium (165). 

papB and the divergently transcribed papI encode transcriptional regulators that function as both 

positive and negative regulators of the pap operon. The function of papB and papI depends on 

the accessibility of the pap promoter, which is affected by Leucine-responsive protein (Lrp) and 

DNA adenine methylase (Dam) that bind to multiple DNA binding sites within the pap promoter 

(154, 166-168).  
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PapX 

Located at the 3’ terminal end of the majority (60%) of pap operons is papX, which 

encodes a 17 kDa winged helix-turn-helix (wHTH) transcription factor belonging to the Multiple 

antibiotic resistance (MarR)-like protein family (169, 170). The MarR-like protein family 

represents a large class of DNA-binding proteins (>12,000) found in both Eubacteria and 

Archaea. Yet, all MarR-like proteins share conserved structural homology to the canonical 

protein MarR, which was characterized in E. coli and functions as a repressor of the multiple 

antibiotic resistance operon marRAB (171-173). Members of the MarR protein family regulate a 

variety of bacterial processes, including toxin secretion, antibiotic resistance, metabolism, and 

motility (171, 174-176).  

Even through papX is transcribed as part of the pap operon, PapX does not contribute to 

the regulation or assembly of P fimbriae (170, 176). Instead, work by Reiss et al., demonstrated 

that PapX binds to a palindromic DNA sequence centered -410 bp upstream of the ATG start site 

of flhD, and the binding of PapX to this DNA site repressed the transcription of flhDC and 

subsequently swimming motility (169, 177). Therefore, PapX functions as a regulatory link 

between adherence and motility in UPEC and is therefore predicted to contribute to colonization 

and ascension of the urinary tract. However, it has been challenging to identify a fitness 

contribution of papX during murine UTI as a papX mutant in UPEC CFT073 colonized the 

murine bladder and kidneys to the same extent as wild type (176).  

PapX is part of a class of 17 kDa fimbrial-associated transcription factors (e.g. prsX, 

sfaX, and focX) that are all located at 3’ terminal end of a fimbrial operon, share a low GC 

content (~37-40%) and have high sequence and structural homology (169, 178). Thus, "X" genes 

are predicted to share a similar function as repressors of motility. Moreover, this function may 
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also be conserved across uropathogens, as overexpression of papX in Proteus mirabilis was able 

to inhibit its flagella production (170). Therefore, uropathogens may be more likely than 

commensal isolates to use fimbrial-associated transcription factors as a mechanism to coordinate 

the production of adhesins and flagella. The investigation of the similarities between "X" 

proteins may elucidate common mechanisms for the regulation of motility in uropathogens.  

 

F1C fimbriae  

Similar to type 1 and P fimbriae, F1C fimbriae, encoded by the foc operon, also mediate 

adherence to cells found within the urinary tract. In fact, UPEC cystitis isolates are more likely to 

carry the foc operon (14-38%) than fecal E. coli isolates (7%) (138, 179-181). The F1C adhesin, 

FocH, binds to various glycosphingolipids, including galactosylceramides that are prevalent on 

epithelial cells found within the kidneys, ureters and bladder, and globotriaosylceramides found 

on kidney cells (182, 183). Furthermore, the attachment of F1C fimbriae to human renal 

epithelial cells induces the secretion of the cytokine IL-8, and elevated IL-8 levels in urine is a 

common indication of an ongoing UTI (182). Therefore, while F1C-mediated binding promotes 

colonization of the human urinary tract, F1C-mediated attachment to the uroepithelium could 

also stimulate a mucosal immune response targeting bacteria for clearance. Furthermore, foc 

genes are poorly expressed in bacteria collected from the urine of women experiencing acute 

cystitis. Thus additional in vivo studies are necessary to confirm the role of F1C as a virulence 

factor during human UTI (106, 184).  

The foc operon shares high sequence identity and gene organization with the sfa operon, 

encoding S fimbriae (138, 185). Specifically, the F1C main pilus is composed of  >1000 copies 

of FocA and terminates in an adhesin complex comprised of the minor subunits FocFG and the 
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adhesin FocH (Figure 1.6) (183). The export and assembly of F1C subunits mimics the 

mechanism responsible for P fimbriae biogenesis with individual F1C fimbrial subunits being 

secreted through the general secretory pathway and shuttled via the chaperone protein FocC to 

the outer membrane usher FocD for pilus assembly (185). The foc operon also encodes the 

transcription factors SfaC and FocB that share structural homology with PapI and PapB encoded 

by the pap operon and have been shown to regulate the expression of both the foc and pap 

operons (186).  

In contrast to the pap operon, the foc operon carries c1246 (also termed focY or pdeY) 

encoding a putative phosphodiesterase, which contains an EAL domain and is predicted to bind 

c-di-GMP (187). In some bacteria, an increase in c-di-GMP levels can promote biofilm 

formation and the deletion of c1246 in CFT073 enhanced biofilm formation when cultured in 

salt-free LB (187). Additionally, F1C fimbriae are required for biofilm formation on abiotic 

surface in the commensal E. coli strain Nissle 1917, and the production of F1C fimbriae 

improved persistence within the intestine of infant mice (188). Therefore, in addition to 

mediating adherence to the urinary tract, production of F1C fimbriae may also contribute to 

biofilm formation in a context-dependent manner.  

 

FocX 

Similar to the pap operon, the foc operon includes a 3’ terminal gene, focX, encoding a 

MarR-like wHTH transcription factor that shares high amino acid sequence identity (96.7%) 

with PapX (169). While only 60% of pap operons include papX, the majority (>90%) of foc 

operons carry focX (169). FocX is predicted to share the same function as PapX. However, the 



 28 

contribution of FocX to motility and pathogenesis has not established and remains a gap in our 

understanding of how “X” genes regulate motility in UPEC.  

 

Coordinated regulation of adherence and motility 

 It is counterproductive for a single bacterium to produce both adhesins and flagella at the 

same time. Bacteria swimming at a high velocity are unable to remain stationary long enough to 

attach to a surface, and conversely, an adherent bacterium wastes energy by simultaneously 

being motile. Thus, it is important to understand the coordinated regulation between adherent 

and motile states in UPEC since transitioning between these states is presumably advantageous 

for pathogens within a dynamic and resource-restrictive environment, such as the urinary tract. 

Both the pap and foc operons encode PapX and FocX, respectively, which likely mediate the 

switch between adherence and motility. However, it is not known if FocX shares the same 

function as PapX as a repressor of motility. In this work, I first assess the role of P fimbriae as a 

virulence factor in the murine model of UTI and then characterize the involvement of the 

fimbrial transcription factors PapX and FocX and the non-fimbrial transcription factor TosR in 

mediating cross-talk between adherence and motility.  

 

Chapter Outline 

Chapter II: Signature-tagged mutagenesis and co-infection studies demonstrate the importance of 

P fimbriae in a murine model of urinary tract infection 

 

Chapter III: Cross-talk between MarR-like transcription factors coordinates the regulation of 

motility in uropathogenic Escherichia coli 
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Chapter IV: TosR-mediated regulation of adhesins and biofilm formation in uropathogenic 

Escherichia coli  
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Chapter II: Signature-tagged mutagenesis and co-infection studies 

demonstrate the importance of P fimbriae in a murine model of urinary tract 

infection 

 

Notes 

 This chapter was reprinted and modified with permission from the authors Luterbach, 

C.L., Buckles, E.L., Wang, X., Lockatell, C.V., Johnson, D.E., Mobley, H.L.T., and 

Donnenberg, M.S. Signature-tagged mutagenesis and co-infection studies demonstrate the 

importance of P fimbriae in a murine model of urinary tract infection. FEMS Pathogens and 

Disease, 73, 2015 

 
 Abstract 

Escherichia coli is the leading cause of urinary tract infections (UTIs), one of the most 

common infections in humans. P fimbria was arguably the first proposed virulence factor for 

uropathogenic E. coli, based on the capacity of E. coli isolated from UTIs to adhere to exfoliated 

epithelial cells in higher numbers than fecal strains of E. coli. Overwhelming epidemiologic 

evidence has been presented for involvement of P fimbriae in colonization. It has been difficult, 

however, to demonstrate this requirement for uropathogenic strains in animal models of 

infections or in humans. In this study, a signature-tagged mutagenesis screen identified a P-

fimbrial gene (papC) and 18 other genes as being among those required for full fitness of cystitis 

isolate E. coli F11. A P-fimbrial mutant was outcompeted by the wild-type strain in cochallenge 
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in the murine model of ascending UTI, and this colonization defect could be complemented with 

the cloned pap operon. To our knowledge, this study is the first to fulfill molecular Koch’s 

postulates in which a pathogenic strain was attenuated by mutation of pap genes and then 

complemented to restore fitness, confirming P fimbria as a virulence factor in a pathogenic 

clinical isolate.  

 

Introduction 

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of colonizing 

niches distinct from the gut environment and can cause severe infections in humans, including 

neonatal meningitis, urinary tract infections (UTIs) and sepsis. UTIs are among the most 

prevalent bacterial infections in humans and in some cases can require extensive medical 

attention. Each year, as many as 1–2 million people suffering from UTIs visit the emergency 

department and almost 400 000 infections are severe enough to require hospitalization (189). 

Antimicrobial drug resistance among ExPEC, steadily on the rise, adds further to the difficulty of 

treating these infections (190, 191). Total costs to the healthcare system exceed 3 billion dollars 

annually, making UTIs also a substantial economic burden (189). The majority of UTIs progress 

stepwise from initial colonization by microorganisms of the periurethral area, followed by 

entrance into the urethra, and ascension into the bladder, resulting in inflammation or cystitis. 

More severe complications of UTIs can occur when bacteria travel through the ureters into the 

kidneys, producing pyelonephritis and, in some cases, later bypass the kidney parenchyma to 

reach the bloodstream or lymphatic sys- tem, resulting in bacteremia and potentially sepsis.  

Adhesion organelles, known as fimbriae, mediate colonization by ExPEC of the urinary 

tract, a necessary step in the establishment of UTIs (10, 153, 192, 193). Epidemiologic studies 
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have shown a positive correlation between ExPEC strains and the presence of genes encoding for 

type 1, P, S, F1C, Dr and Auf fimbriae, as well as other non-fimbrial adhesins (115, 140, 153, 

194-196). Among these fimbriae, only type 1 fimbriae, which are encoded by the fim operon, 

have been proven in animal models as a virulence factor according to the conditions of molecular 

Koch’s postulates (140). It was demonstrated in the murine model of UTI using clinical isolates 

that mutations within the fimH adhesin gene or associated with its promoter resulted in reduced 

virulence. Virulence was restored following complementation with a plasmid encoding a 

functional fim operon (140).  

Although P fimbria was arguably the first virulence determinant associated with ExPEC 

strains (197), it has been difficult to directly demonstrate a requirement for P fimbria as a 

colonization factor in UTI. Clinical studies have shown a positive correlation between ExPEC 

strains that cause pyelonephritis and the presence of the genes encoding P fimbriae (198, 199). 

However, in a murine model of ascending UTI, no differences could be detected in colonization 

or histological findings between pyelonephritis ExPEC strain CFT073 and its isogenic mutant 

strain deleted for genes in both copies of the pap operon and unable to produce fully assembled P 

fimbria (153). Conversely, in a primate model in which bacteria were inoculated directly into the 

ureter, pyelonephritis ExPEC strain DS17 persisted significantly longer in the urinary tract than 

its isogenic papG mutant, which was unable to cause acute pyelonephritis (157). However, the 

papG mutant was still capable of colonizing the bladder, resulting in cystitis, similar to what was 

observed with the wild-type strain. Complementation studies were not performed in either study, 

and therefore molecular Koch’s postulates were not fulfilled (200). A volunteer study using E. 

coli 83972, which was isolated from a case of asymptomatic bacteriuria and also does not ex- 

press functional P fimbriae, showed that following transformation with the pap operon, 
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bacteriuria was established faster and to a higher concentration than wild-type E. coli 83972 

(158). However, this study was not conducted using a virulent isolate, and by using a plasmid-

based operon, was not a comparison of isogenic mutants. Furthermore, the data suggest that P 

and type 1 fimbriae were not required for persistence of E. coli 83972 in the human urinary tract, 

since both the isogenic papG and papGfimH mutants of this avirulent strain were still able to 

colonize the human bladder up to 3 months following infection (147).  

The lack of a defined set of virulence factors in ExPEC strains suggests that a 

combination of known and unidentified virulence factors may dictate fitness during infection. 

Signature-tagged mutagenesis (STM) is a useful and unbiased technique to identify genes 

involved with bacterial survival in vivo by screening a pool of mutants simultaneously within a 

limited number of animals (201). This method has been successfully used to both discover and 

confirm virulence and fitness genes in other pathogens (202-204). Previously, we applied STM 

to the pyelonephritis ExPEC strain CFT073 using a mouse model of ascending UTI to identify 

19 mutants with reduced fitness from a non-saturating library of 2049 mutants (205). Of these 19 

mutants, 8 had mutations in six different sites within the type 1 fimbrial locus. Several other 

survival-defective mutants had disruptions in genes responsible for the production of 

extracellular polysaccharides, metabolic pathways as well as within genes of unknown function. 

However, that study had a number of limitations. It was performed using a single strain of a 

particular serotype (O6:K2:H1), originally isolated from a case of pyelonephritis. Furthermore, 

in the murine model of UTI, this strain regularly colonizes the kidneys, and therefore may not be 

fully representative of other ExPEC.  

In this study, we continue to take advantage of STM and the CBA murine model of 

ascending UTI to identify virulence or fitness genes in the cystitis isolate ExPEC strain F11. 
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Escherichia coli F11 is a member of a clonal group commonly found in human UTI that includes 

the prototypic serotype O6:K15:H31 isolate 536. F11 is highly pathogenic in the murine model 

of ascending UTI, as it is capable of colonizing the bladder to a higher concentration and more 

rapidly than ExPEC pyelonephritis isolate CFT073 (199). We tested the hypothesis that some 

virulence or fitness factors are unique to cystitis and pyelonephritis strains and can be identified 

using techniques such as STM. In the original STM study (205), we did not identify a P-fimbrial 

mutant. However, we recognized that doing so was unlikely given that there are two complete 

and functional pap operons in strain CFT073 (142, 153). Here we report that an STM screen of a 

cystitis strain that carries only a single pap operon did yield an attenuated papC mutant deficient 

in synthesis of P fimbriae. In cochallenges of the murine model, pap-negative mutants were 

outcompeted by the wild-type strain, and the loss of fitness could be complemented with the pap 

operon in trans. Thus, we have satisfied molecular Koch’s postulates and conclude that P 

fimbriae contribute to the full colonization potential of ExPEC strains. 

 

Materials and Methods 

Bacterial strains, growth conditions and plasmids.  

Table 2.1 lists the bacterial strains, growth conditions and the plasmids used for this 

study. Escherichia coli strain F11, originally cultured from a case of cystitis, served as the 

recipient strain during transposon mutagenesis (199, 206). Donor strains consisted of E. coli S17 

λpir strains trans- formed with pUT/mini-Tn5km2 (AmpR KanR) plasmid carrying a unique 

pUT/mini-Tn5 sequence. All pUT/mini-Tn5 signature tags were tested for non-cross-reactivity 

(207, 208). Bacteria were cultured at 37°C in Luria-Bertani (LB) medium or on Luria agar with 

the addition of the appropriate antibiotics to provide selective pressure at the following 
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concentration: ampicillin 50 µg mL−1; chloramphenicol, 50 µg mL−1; nalidixic acid, 50 µg mL−1 ; 

and rifampin 50 µg mL−1. Strains were stored at –70◦C in a 1:1 ratio of glycerol and LB medium. 

For RNA preparation, E. coli was cultured on Luria agar for 18 h at 37◦ C with biological 

replicates being inoculated on independent plates to induce pap gene expression (209). Bacteria 

were resuspended in phosphate-buffered saline (PBS) to a final OD600 of 1.0. Bacteria were 

treated with a stop solution (5% phenol, 95% EtOH), harvested by centrifugation (13,000 rpm, 

10 min, 4◦ C), and the pellet was stored at –20◦ C prior to RNA extraction. 
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Table 2.1. Bacterial strains and plasmids used in this study 
Strains Description References 
E. coli   
F11 UPEC strain (cystitis isolate, O6:K2:H31); NalR (206) 
F11 L-ON F11 with fim invertible element phase locked on (210) 
F11 L-OFF F11 with fim invertible element phse locked off (210) 
S17 λpir Conjugative donor strain (211) 
CFT073 UPEC strain (pyelonephritis isolate, O6:K2:H1) (142) 
UPEC76 Deletion derivative of E. coli CFT073 with both 

copies of P fimbrial operon disrupted 
(153) 

DH5α Donor strain for cloning (212) 
Plasmids   
pUT/mini-Tn5km2 Suicide vector for transposon delivery (AmpRKanR) (207) 
Cosmid 1-B10 Encodes for CFT073 genes papIAHCDJKEFG_2 (153) 
Cosmid 1-E8 Encodes for CFT073 genes papIAHCJKEFG_2 (153) 
pWSK29 Empty cloning vector (213) 
pXLW34 pWSK29 containing papIAHCJKEFG_2 between 

the BamHI and SalI sites 
This study 
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Construction of E. coli F11 signature-tagged mutant library 

For conjugation, overnight cultures of S17 λpir donor strains, each being transformed 

with a unique signature tag carried on the pUT/mini-Tn5km2 (AmpRKanR) plasmid (201), and E. 

coli F11 (NalR) were mixed 1:1 in the wells of a 96-well microtiter plate. Aliquots of each 

mixture were plated on LB agar (201, 202). To confirm transposon insertion, isolated colonies 

were cultured overnight at 37◦C on LB supplemented with nalidixic acid and kanamycin. 

Additional screening for ampicillin sensitivity confirmed the loss of the pUT plasmid among the 

transconjugants. This process was repeated to generate 1334 transposon mutants each carrying 1 

of the 46 unique sequence tags. Transposon mutants were grouped and placed into individual 

wells of a 96-well microtiter plate, resulting in 29 pools with each pool having one representative 

of each of the uniquely tagged sequences. Each pool also contained two controls for 

identification of cross-reactivity with the blotting membrane. Mutants were stored in LB 

containing 20% glycerol at –70◦C. 

 

Mouse model of ascending UTIs 

Infections were carried out in a previously described CBA mouse model of ascending 

UTI (214, 215). For the mutant screen, 6 to 8-week-old female mice (Harlan Sprague-Dawley) 

were anesthetized with pentobarbital and 50 µL suspensions of overnight bacterial cultures 

containing 108 CFU of a pool of 48 uniquely tagged mutants were inoculated transurethrally. The 

input pool was standardized by calculating the optical density at 600 nm of a 1 mL sample of the 

initial inoculum and stored as a centrifuged pellet at –20◦C. Mice were sacrificed at 48 h by the 

administration of an overdose of isoflurane. The bladder and kidneys were collected aseptically 

and homogenized in 1 mL aliquots of PBS. Homogenizations were plated on LB agar containing 
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kanamycin and nalidixic acid. Following incubation, bacteria, now representing the output pools, 

were collected by washes with PBS (pH 7.2). The samples were standardized at an optical 

density of 600 nm, centrifuged and stored at –20° C. 

Cochallenge infections were used to confirm attenuation of STM mutants. A total of 108 

CFU per inoculum comprised of a 1:1 mixture of independent overnight cultures of wild-type E. 

coli F11 (5 × 107 CFU) and a single STM mutant (5 × 107 CFU) was inoculated into five mice. 

The inoculum was quantified by plating dilutions onto LB agar containing the appropriate 

antibiotics to provide selective pressure. For studies of P fimbriae in UTI, CFT073 containing the 

plasmid pWSK29, representing the control empty vector, was tested and compared to double pap 

mutant UPEC76 (153) transformed with either the complementing pXLW34 carrying 

papIAHCDJKEFG under control of their native promoter or the control empty vector. At 48 h, 

urine samples were collected and the bladder and kidneys were isolated, weighed and 

homogenized. A spiral plater was used to plate dilutions of the collected samples onto selective 

medium containing the appropriate antibiotics. Following overnight incubation, viable counts 

were represented as CFU mL−1 urine or CFU g−1 tissue with 102 CFU mL−1 urine or CFU g−1 

tissue acting as the lower limit of detection for samples lacking colonies. A competitive index 

(CI) for each mutant from each sample site was calculated by dividing the ratio of mutant to 

wild-type strains in the output pool by the input pool, or inoculum, values of the same ratio. 

 

Statistical analysis 

For the independent infections, comparisons of the CFU mL−1 or CFU g−1 distributions 

were analyzed using the Mann–Whitney test. In contrast, the cochallenge data were analyzed 

using a repeated measure of analysis of variance with rank order data (STATA software) (205). P 
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values less than 0.05 were considered significant. For quantitative real-time PCR (qPCR) 

experiments, an unpaired Student’s t-test was used to analyze differences in gene expression 

between F11 and F11 L-ON (Prism; GraphPad Software). 

 

Screening of STM mutants 

To obtain DNA template for sequencing, more than 5000 CFUs were scraped from the plated 

output samples of the collected bladder or kidneys and resuspended in PBS. Samples were 

normalized to the same OD600 (201). Proteinase K was used to lyse a fraction of each sample. 

Chromosomal DNA was used to generate labeled PCR products of the input and output pools 

using primers targeting the transposon insertion site (Table B.1). The PCR products were labeled 

with digoxigenin-dUTP (Roche) before hybridization to a prepared DNA dot-blot membrane 

carrying the original uniquely tagged plasmids. Two controls to evaluate cross-hybridization 

were included with one tag being absent on the blot but common to the probes, while the other 

tag was only present in the blot. For the primary screen, mutants were considered to be 

attenuated in vivo and were further pursued if the output hybridization signal was weaker than 

the input hybridization signal in all three blots derived from the same organ or in at least four of 

the possible six blots. Confirmation of weak hybridization signals were conducted by testing the 

potentially attenuated mutants in single competition assays with wild-type strain F11. If found to 

be attenuated, DNA adjacent to the transposon junctions was amplified and sequenced. After 

several attenuated mutants with insertions in known fitness factors were identified in this 

manner, specifically colanic acid biosynthesis genes and the fim operon, the order of the screen 

was changed to sequence all mutants with confirmed weak hybridization signals, reserving 

confirmatory co-infection studies for mutants with insertions in previously unconfirmed genes. 
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Identification of pap cosmid clones and subcloning of the pap operon 

PCR primers, Donne646 and Donne792, specific to sequences located 7 bp upstream of 

the papA2 start codon and 42 bp downstream of the papG2, were used to locate the pap operon 

from a previously generated chromosomal DNA library of CFT073 (153). The CFT073 library is 

arranged across 19 microtiter plates and is comprised of approximately 1834 clones. Initial PCR, 

using the eLongase enzyme system, involved isolating the plasmid DNA from clones pooled 

from each microtiter plate. A total of 14 of the 19 pooled samples contained the pap cosmid 

clones. From a selected positive plate, pooled plasmid DNA from each row and column was 

PCR amplified leading to the identification of two cosmid clones, 1-B10 and 1-E8, carrying the 

pap genes. Escherichia coli DH5α was transformed with cosmid 1-B10 or cosmid 1-E8 and 

passaged on LB agar plates with antibiotic selection. The presence of functional P fimbriae was 

confirmed using a previously described hemagglutination assay using human and sheep 

erythrocytes in the presence or absence of 50 mM α-methyl D-mannoside (205). The cosmid 1-

E8 was selected for subcloning of the pap operon after confirming the presence of P fimbriae by 

positive agglutination. 

Cosmid clone 1-E8 was digested using the restriction enzymes BamHI and SalI to yield a 

fragment approximately 10.7 kb containing the papIAHCDJKEFG2 genes (the second of two 

pap operons in strain CFT073). The 10.7 kb BamHI/SalI fragment was isolated from an agarose 

gel and ligated into BamHI and SalI digested pWSK29 (213). The modified plasmid was 

transformed into E. coli DH5α to generate the recombinant clone, pXLW34, containing the 

papIAHCDJKEFG2 genes. 
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RNA extraction and cDNA synthesis 

Total RNA was isolated using the RNeasy Kit (Qiagen) according to the manufacturer’s 

protocol. To remove contaminating DNA, RNA samples were treated with DNase (Ambion). 

The absence of chromosomal DNA was confirmed by PCR using Taq DNA polymerase. For 

cDNA synthesis, the RNA samples were reverse transcribed using the SuperScript II system for 

first-strand cDNA synthesis (Invitrogen). Briefly, a total of 1.5 µg of RNA was mixed with 50 ng 

random hexamers and 10 mM dNTPs based on the manufacturer’s protocol. cDNA was purified 

using a PCR Purification Kit (Qiagen) and stored at –20◦C. 

 

Quantitative real-time PCR 

RNA was harvested from E. coli F11 strains that were cultured for 18h at 37◦C on LB agar 

plates. Isogenic mutants of F11 were constructed by disrupting the invertible element that 

regulates fim expression so that expression of fim genes is no longer phase variable but is either 

locked on (L-ON) or locked off (L-OFF)(210). Primers were generated for F11 fimA (forward—

5’TGCACAAACAACCCTGAATAAC3’ and reverse 5’AAGGTCGCATCCGCATTAG3’) and 

for F11 papA (forward 5’GGGACGCTAATCTCCTGAAAG3’ and reverse 

5’AGGTTGCGACTGCAGAAA3’). Expression of gapA was used for normalization and was 

measured using previously published primers (104). To measure gene expression, 30 ng of 

cDNA was combined with Brilliant III Ultra Fast SYBR green QPCR mix (Agilent), 300 nM of 

forward and reverse primers, and Rox, which acted as a reference dye. Comparative quantitation 

was performed by the 2 ΔΔCt method (Livak and Schmittgen 2001) with F11 L-OFF serving as 

the calibrator for F11 and F11 L-ON. Experiments were performed using three biological 

replicates. 
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Results 

Screening of E. coli F11 signature-tagged mutants in a CBA mouse model of ascending 

UTI.  

 A library of 1334 signature-tagged mutants of E. coli F11 was constructed, and a total of 

48 uniquely tagged transposon mutants, including two controls for cross-hybridization, were 

assembled into 29 screening pools. All mutants were kanamycin-resistant and ampicillin-

sensitive, indicating a legitimate transposition event. 

For screening in the CBA mouse model of UTI, an input pool (108 CFU) of 48 mutants 

(∼2 × 106 CFU of each mutant) was transurethrally inoculated into the bladders of three female 

CBA mice. Two days post-inoculation, bacteria were cultured from urine, bladder and kidneys, 

and represent the output pools. Mutants were identified by PCR amplification of the unique 

sequence tags from both the input and output pools and hybridization of these identifiers with dot 

blots containing plasmids carrying the original sequence tags. Mutants from the initial screens 

with reduced hybridization signals in the output pools were regrouped and assayed by a 

secondary screen of single competition assays in five mice. The secondary screening yielded a 

total of 23 (1.7% of the total bank) putatively attenuated mutants (Table 2.2). 
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Table 2.2. Confirmed attenuated STM mutants 
Mutant Gene/homolog Accession no. Function K-12b CFT073c 

5-A3 fimA EDV68690 type 1 fimbrial subunit + + 
20-A4 fimD EDV68628 type 1 fimbrial usher + + 
29-G4 fimD EDV68628 type 1 fimbrial usher + + 
3-H2 EcF11_0984 EDV69299 Colanic acid biosynthesis - + 
21-E6 galE EDV69028 Colanic acid biosynthesis - + 
22-B3 EcF11_0986 EDV69113 Colanic acid biosynthesis - + 
25-B3 cpsB/EcF11_0983d EDV69166/E

DV69210 
Colanic acid biosynthesis +/- +/+ 

5-C3 papC EDV68631 P fimbrial usher - + 
2-H1 kdpA EDV65279 Potassium transport + + 
5-E3 nark EDV68420 Nitrate/nitrite transport + + 
12-B3 ycjV AAN80256 Putative ABC transporter 

ATP-binding protein 
+ + 

5-C5 uidR EDV65917 Repressor of β-
glucuronidase (uid) 

+ + 

11-E6 yeeP EDV67436 Putative GTPase + + 
6-B3 evgA EDV65560 Positive transcriptional 

regulator of EvgSA two-
component system 

+ + 

24-E2 cpxA EDV66646 Sensor histidine kinase + + 
18-C3 nadB EDV65323 L-aspartate oxidase + + 
25-E2 Wzy EDV69037 Enterobacterial common 

antigen biosynthesis 
- + 

29-A4 None AAN80576 Hypothetical protein + + 
2-F1 EcF11_3365 EDV65997 Hypothetical protein - + 
19-E5 yegP EDV69027 Hypothetical protein + + 
28-G6 Nonee     
7-E3 Nonee     
28-H2 Nonee     

aGenetic locus with the closest match to the sequence interrupted by the transposon in each 
mutant 
b+, present in the genome of E. coli K-12 strain MG1655; -, absent from the MG1655 genome 
c+, present in the genome of E. coli strain CFT073; -, absent from the CFT073 genome 

dSequence data unable to differentiate between homologous genes 
eGenetic locus was not sequenced 
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Confirmation of attenuation in E. coli F11 by competitive cochallenge assays 

Following identification by repeat screening of mutants putatively attenuated for 

colonization of the murine urinary tract, we performed competition colonization experiments by 

coinoculating the wild-type strain F11 and each mutant in a 1:1 ratio. After 48 h, the urine, 

bladder and kidneys were collected, homogenized and CFU were calculated by plating onto 

selective medium. A CI was calculated for each mutant, and statistical analysis was performed to 

quantify the differences between the recovered ratios of mutant to wild type. A total of 23 

mutants (1.7% of the pool) were confirmed that exhibited statistically significant attenuation in 

cochallenge or had transposon insertions in genes that had already been identified as virulence 

factors (Table 2.2). In some cases, we observed multiple independent transposon events 

affecting the same gene, resulting in a final tally of 19 candidate genes. These genes can be 

described initially as ‘fitness factors’ until mutants are assessed in independent challenge and 

subjected to complementation. 

Among these mutants, three carried insertions disrupting fim operon genes encoding type 

1 fimbriae, four mutants had insertions in colanic acid biosynthesis genes and one had an 

insertion in wzy encoding enterobacterial common antigen. All of these loci had previously been 

identified in an STM screen using pyelonephritis isolate CFT073 (205). 

Additionally, a number of genes involved in transport across membranes were also 

identified including kdpA, an ATP-dependent P-Type ATPase potassium transporter, narK, a 

nitrate/nitrite antiporter and ycjV, a putative ABC transporter. Mutants carrying insertions in 

genes encoding transcriptional regulators uidR and evgA were also attenuated. As well, yeeP, a 

predicted GTP-binding protein, and nadB, an L-aspartate oxidase involved in nicotinamide 

adenine dinucleotide (NAD) biosynthesis, were identified as fitness genes from our screen. 
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Finally, we observed that insertion in papC, encoding the usher for P-fimbria biogenesis, resulted 

in attenuation during colonization of the murine model. 

 

Measurement of cross-talk between fim and pap gene expression in E. coli F11 

In CFT073, the production of type 1 and P fimbriae are coordinated such that the 

expression of fim genes results in a decrease in the expression of both pap operons (216). qPCR 

was used to measure cross regulation of type 1 and P- fimbrial genes in E. coli F11. Expression 

of fimA and papA was quantified in F11 and in two isogenic strains that have been mutated such 

that the invertible element that controls fim gene expression is phase locked to either 

constitutively express fimA (F11 L-ON) or to repress expression of fimA (F11 L-OFF) (210). All 

strains were cultured independently on LB agar for 18 h at 37◦C to favor production of P 

fimbriae (209). F11 L-OFF was set as the baseline ‘calibrator’, and expression of gapA acted as 

the normalizing internal control. As expected, qPCR demonstrated that fimA expression was 

22.7-fold higher in F11 and 344-fold higher in F11 L-ON compared to F11 L-OFF (Figure 2.1). 

Expression of fimA was significantly higher in F11 L-ON compared to F11 (P < 0.01). However, 

papA expression was only 7.77- fold higher and 3.93-fold higher in F11 L-ON compared to F11 

L-OFF, and the expression of papA in F11 and F11 L-ON was not statistically different (P = 

0.403). Thus, expression of type 1 fimbriae does not influence expression of P fimbriae in F11. 
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Figure 2.1 fim expression does not affect pap expression  
qPCR analysis of fimA and papA expression in E. coli F11 and type 1 fimbrial phase-locked 
mutants. The black bars represent the change in gene expression (n-fold) 
of fimA and papA between wild type F11 and F11 L-ON. F11 L-OFF was used as the calibrator 
for calculating the fold-change in expression of fimA and papA. Results represent three 
independent experiments, and the error bars show standard deviation. Significant differences in 
gene expression were determined using an unpaired Student's t-test. *, P < 0.01. 
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P fimbriae enhance urinary tract colonization by CFT073 

In prior studies, no difference in urinary tract colonization was detected in independent 

challenges using a wide range of inoculum doses (105–109 CFU) between strain CFT073 and 

mutant construct UPEC76, which had deletions in both of its pap operons (153). However, the 

identification and confirmed attenuation of an E. coli F11 papC mutant in the current screen 

prompted us to re-examine the contribution of P fimbriae in the murine model of UTI by a more 

sensitive co-infection method. Accordingly, we cloned one of the pap operons from strain 

CFT073 into a low-copy-number plasmid and transformed the plasmid, designated pXLW34, 

into UPEC76 (the double pap mutant).  

Consistent with expression of functional P fimbriae, clones were capable of mannose- 

resistant hemagglutination of human and sheep erythrocytes (data not shown). Therefore, 

plasmid pXLW34 restored the ability of UPEC76 to produce functional P fimbriae. To control 

for the effect of the plasmid, we transformed the empty vector into both CFT073 and UPEC76. 

Then, we compared CFT073 containing the vector to either UPEC76 with the vector or UPEC76 

with the cloned pap operon in co-infection studies. 

In 20 mice, CFT073 significantly outcompeted UPEC76 in cultures from urine (median 

2.4 × 104 versus 1.4 × 103 CFU mL−1, respectively, P = 0.003), bladder (median 2.6 × 105 versus 

7.8 × 104 CFU g−1, respectively, P < 0.001) and kidneys (median 1.9 × 105 versus 6.7 × 104 CFU 

g−1, respectively, P < 0.001), when both strains had the control vector plasmid (Figure 2.2A). 

These results suggest that P fimbriae are important during colonization throughout the urinary 

tract. 

To exclude the possibility that the difference in colonization between CFT073 and 

UPEC76 was due to an inadvertent mutation other than the deliberate deletion of both copies of 
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the papG adhesin genes, we compared CFT073 containing the control plasmid vector to UPEC76 

containing the pap operon plasmid in co-infection of 20 mice (Figure 2.2B). In contrast to the 

results in the absence of complementation, we found no significant difference between CFT073 

containing the control plasmid and UPEC76 containing the complementing plasmid in ability to 

colonize the urine (median 1.2 × 105 versus 4.3 × 104 CFU mL−1, respectively, P = 0.325) or 

bladder (median 5.7 × 105 versus 6.4 × 105 CFU g−1, respectively, P = 0.118). However in the 

kidneys, the wild-type strain outcompeted the complemented mutant (median 9.6 × 104 versus 

5.9 × 104 CFU g−1, respectively, P = 0.035). 
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Figure 2.2 P fimbriae contribute to bladder and kidney colonization 
 (A) Cochallenges of mice with E. coli CFT073 and pap operon mutant UPEC76. A total of 20 
mice were transurethrally inoculated with a 1:1 mixture of the wild-type and mutant strains. 
After 48 h, the mice were sacrificed and urine, bladder and kidneys were collected. Each data 
point represents the CFU per milliliter of urine or per gram of tissue collected, and a solid line 
indicates the median. Paired results from individual mice are connected. pWSK29 acts as the 
empty vector. (B) Cochallenges of mice with E. coli CFT073 and pap operon mutant UPEC76 
transformed with pXLW34 encoding for papIAHCDJKEFG2. A total of 20 mice were 
transurethrally inoculated with a 1:1 mixture of the wild-type and mutant strains. The mice were 
sacrificed after 48 h, and urine, bladder and kidneys were collected. Each data point represents 
the CFU per milliliter of urine or per gram of tissue collected, and a solid line indicates the 
median. Paired results from individual mice are connected. 
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Discussion 

Compared to commensal E. coli, ExPEC strains are more likely to carry additional 

virulence or fitness factors that enable more effective colonization and extended persistence 

within the urinary tract (115, 153, 217) (14, 194, 199). However, efforts to identify a defined set 

of requisite virulence and fitness factors remain incomplete. The aim of our study was to identify 

novel genes in ExPEC that are required for fitness during infection. In this study, we describe 

screening of signature- tagged mutants of E. coli F11, a cystitis strain originally isolated from a 

human case of uncomplicated UTI, in the murine model of UTI and the identification of 19 

candidate fitness genes. STM is an effective technique to screen an array of transposon mutants 

in parallel in an animal model of infection. Indeed, STM has been used previously on ExPEC 

pyelonephritis strain CFT073 and Proteus mirabilis in the murine model of UTI (205, 218-220). 

This work identified novel fitness factors in cystitis isolate E. coli F11 and provides support for 

previously identified virulence or fitness factors, including fimD, wzy and colanic acid 

biosynthesis genes (205). In addition, our study has for the first time successfully fulfilled 

molecular Koch’s postulates for P fimbriae (papC) as a virulence factor. 

To conduct this trial, mutants in E. coli F11 were generated by transposon mutagenesis 

using unique sequence tags that allowed for detection of individual mutants following passage in 

the CBA murine model of UTI (201). The final library consisted of 1334 transposon mutants. 

Pools of 48 mutants were transurethrally inoculated into 6 to 8-week-old CBA mice. Urine, 

bladder and kidneys were collected at 48 h and suspensions were analyzed by dot-blot 

hybridization to identify absent or attenuated mutants. We initially identified 27 candidate fitness 

genes necessary for bladder or kidney colonization (2% of the bank). A subset of 19 fitness 



 51 

genes were confirmed by co-infection of each mutant with wild-type strain F11 in the CBA 

murine model. 

Importantly, one gene identified was papC, which encodes the chaperone required for P-

fimbriae biogenesis. Additionally, papC , like the rest of the pap operon, is found more 

frequently among UPEC strains than in fecal E. coli strains (152, 153, 194). P fimbriae are 

extracellular adhesion organelles that bind to the P blood group antigen found on erythrocytes as 

well as to the Galα(1-4)βGal moieties of glycosphingolipids found on renal epithelial cells (221). 

While overwhelming epidemiologic evidence supports a role for P fimbriae during the 

development of UTI, heretofore, no specific studies have satisfied molecular Koch’s postulates, 

demonstrating P fimbria as a complementable virulence determinant. 

P fimbriae have been shown to participate in coordinate regulation with type 1 fimbriae 

in an inverse manner, and deletion of Pap-related fimbrial clusters in the pyelonephritis strain E. 

coli 536 resulted in increased fim expression (163, 216). Transcription of the fim operon is 

dependent on the orientation of a σ70 consensus promoter located on an invertible element (222). 

PapB has been shown to block expression of fim by inhibiting the site-specific recombinase 

FimB, which mediates switching of the invertible element to either on or off orientation, while 

concurrently promoting expression of FimE, which can only mediate switching from on to off 

(163, 223, 224). Conversely, microarray analysis in CFT073 demonstrated that when fim 

expression was phase L-ON, and thereby constitutively expressed, there was a subsequent 

decrease in expression of both pap gene clusters with the pheU-associated pap2 being more 

strongly repressed than the pheV-associated pap1 (216). Additionally, inhibition of fim 

expression in the L-OFF phase resulted in an increase in the expression of both pap operons, 

further supporting the presence of cross-talk. This coordinated regulation has also been verified 
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by qRT-PCR in CFT073 where expression in the wild type and L-ON backgrounds led to 

repression of papA2 expression compared to L-OFF (216). 

Unlike CFT073, cross-talk between type 1 and P fimbriae has not been as well 

characterized in the F11 strain (216). To characterize coordinated regulation between type 1 and 

P fimbriae in F11, we cultured wild-type, L-ON and L-OFF strains on LB agar for 18 h at 37°C, 

which are conditions that have been shown to favor pap expression (209). We performed qPCR 

to quantify fold-change gene expression in fimA and papA using F11 L- OFF as the relative 

measure for comparison. As we expected, fimA expression was elevated in wild type compared 

to L-OFF and dramatically increased in L-ON. Despite this elevated fimA expression, there was 

only a subtle decrease in papA gene expression in the L-ON background compared to wild type, 

which was not statistically significant. Our results demonstrated that fimA expression did not 

impact pap expression when cultured under these conditions. F11 carries a different subset of 

fimbrial types including only one copy of pap, compared to the two copies found in CFT073, 

which may influence the degree of cross-talk between type 1 and P fimbriae. Additionally, F11 

has been shown to have a higher percentage of phase-on fim switches than CFT073 at 24 h in the 

CBA murine model of UTI demonstrating that fimbrial expression can vary between UPEC 

strains (149). 

The E. coli F11 genome has only one pap operon, which may explain why our current 

study was able to identify papC as a candidate fitness gene in contrast to previous work with 

pyelonephritis isolate CFT073, carrying two copies of the pap operon (153). Since our 

competition data already gave us a strong indication that papC is important for in vivo fitness of 

cystitis strain F11, we chose to further validate our screen and extend our study to multiple 

strains by pursuing molecular Koch’s postulates in the pyelonephritis strain, CFT073. 
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Previous studies revealed no differences in colonization during murine UTI between wild-type 

CFT073 and an isogenic mutant UPEC76, lacking both pap operons. However, this initial work 

compared colonization by independent infections. It is now understood that cochallenge 

experiments are more sensitive for detecting attenuation during infection (225). To this end, we 

were able to observe attenuation of UPEC76 when cochallenged with CFT073. We were also 

able to complement expression of the pap operon in UPEC76 (double pap mutant), which 

restored its ability to colonize the urinary tract. This is the first time that a gene within the pap 

operon (papC in this case) has been identified using STM. 

In addition to papC, we identified three mutants harboring a transpson within the fim 

operon, which encode for type 1 fimbriae. Type 1 fimbria is one of the most common fimbrial 

types carried by E. coli strains, found in nearly all strains and multiple studies have shown that 

type 1 fimbriae are critical for colonization of mice by both cystitis and pyelonephritis strains 

(136, 140, 226, 227). Therefore, we did not pursue cochallenge experiments with these mutants. 

We applied the same reasoning to genes involved with the biosynthesis of colanic acid, a group I 

capsule-associated extracellular polysaccharide. Colanic acid has been previously identified 

virulence factor of ExPEC (205). Nevertheless, the current study adds weight to the conclusion 

that surface polysaccharides and type 1 fimbriae are preeminent urovirulence factors. 

Bacteria must overcome a unique combination of environmental stresses for successful 

colonization of the urinary tract, including high osmolarity, high urea concentration, variable pH 

and limited nutrient availability (106, 228). Previous data suggest that ExPEC strains are able to 

take advantage of the carbon and nitrogen sources within the urinary tract more effectively than 

commensal E. coli strains (229-231). Our screen identified a number genes in E. coli F11 

associated with metabolism that when disrupted resulted in a reduction of in vivo fitness during 
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UTI. One mutant was identified in uidR, which is a negative regulator of the uidAB operon. 

UidAB is involved with the transport and hydrolysis of glucuronides (232). Imported 

glucuronides are catabolized into 2-keto-3-deoxy-6-phosphogluconate (KDPG) for utilization in 

the Entner–Doudoroff (ED) pathway, an alternative pathway to classic glycolysis (233). KDPG 

can also be generated by the phosphogluconate dehydratase Edd using gluconate as the input 

carbon source, and disruption of edd in commensal E. coli reduces gut colonization (234). 

However, despite genes involved with the ED pathway being upregulated (2–5-fold) in strain 

CFT073 during ascending UTI, an edd mutant does not show a loss of fitness during UTI 

infection (106, 231). Further complementation and knockout studies are needed to ascertain if 

disruption of uidR in our study results in a polar mutation that affects regulation of the uidAB 

operon. However, our data suggest that upon entering the urinary tract, maintaining regulation of 

glucuronide import into the ED pathway is important for fitness. 

Another fitness factor identified was nadB, encoding for a flavoenzyme involved with de 

novo biosynthesis of NAD. NAD plays a central role in metabolism (235), yet the role of NAD 

during ascending murine UTI model is unclear. Nicotinamide auxotrophy did not show an 

influence on bladder colonization by strains CFT073 or UTI89 during UTI (236). Our 

identification of nadB in strain F11 suggests that NAD metabolism contributes to survival within 

the urinary tract. Another mutant identified was in narK, which is one of two nitrate transport 

genes in E. coli and is contributes to anaerobic nitrate respiration (237). narK encodes for a 

nitrate/nitrite antiporter that couples nitrate uptake to nitrite excretion (238). narK is upregulated 

in CFT073 during in vitro growth in human urine in comparison to growth in LB broth (106). 

Our data supports a role for narK as a fitness factor during UTI and suggests an advantageous 

contribution of increased anaerobic respiration within the urinary tract. 
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Our screen also identified ycjV, an uncharacterized member of the ATP-binding cassette 

(ABC) superfamily of transporters and may be involved in sugar transport. It was shown to be 

upregulated in an antibiotic-resistant strain of Klebsiella pneumoniae compared to a susceptible 

isolate, suggesting that it could act as a novel active efflux mechanism (239). However, its role 

during UTI in E. coli has not been fully investigated. 

ExPEC strains have adapted various strategies to maintain cellular homeostasis despite 

variable osmolality and elevated urea levels within the urinary tract (240, 241). Our screen 

identified two genes that were critical during ascending infection of the urinary tract and are also 

involved with limiting the effects of osmotic stress. One mutant that we identified was kdpA, 

which is part of the kdpFABC operon. The kdpFABC operon encodes a high-affinity ATP-driven 

potassium transporter (242). KdpA is the K+-translocating subunit and is essential for Kdp-

ATPase function (243). In prokaryotes, potassium is vital in regulating intracellular pH levels 

and maintaining turgor pressure in response to stress-inducing environments (244). In response 

to low external K+ levels or osmotic upshock, expression of the kdpFABC operon is upregulated, 

which differs from the only other K+ transporters in E. coli, Trk and Kup, that are constitutively 

expressed (245). Recent RNA-seq experiments done by the Mobley lab using clinical samples 

showed that kdpA was selectively expressed during UTI (246) (Subashchandrabose et al. 2014). 

Our work supports the supposition that the Kdp system is critical during infection of the urinary 

tract. Our screen also identified evgA, which encodes one subunit of a two-component signal 

transduction system EvgAS (247) (Utsumi et al. 1992). EvgA regulates the expression of 

multiple genes including those related to osmotic stress, acid resistance and antibiotic resistance 

(248-251). Further studies are needed to investigate the exact role of EvgA in the context of a 

UTI. However, we hypothesize that given the high osmolality of the urinary tract, EvgA is 
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critical for regulating expression of additional genes needed to maintain osmotic homeostasis 

during UTI. We also identified the mutant cpxA, which is the sensor kinase of the CpxRA two-

component signal transduction system. CpxRA is triggered by changes in pH, envelope stress, 

interaction with hydrophobic surfaces or high osmolarity (252-255). In response to these triggers, 

CpxA–CpxR modulates porin expression as well as activates proteases and folding proteins (256, 

257). Deletion of cpxRA operon reduced fitness and virulence in both UTI89 during colonization 

of the murine bladder and in CFT073 during localized and systemic infections in zebrafish 

embryos (258). Our results support these findings and advocate that CpxA is also important in 

F11 during colonization of the murine urinary tract. 

In contrast to P fimbriae, which we show here to be required for full urovirulence, 

additional complementation studies should be conducted with the identified transposon mutants 

to confirm their importance during UTI. Another limitation of this current study is the limited 

number of mutants screened. Thus, additional genes required for UTI likely remain to be 

identified.  

This study demonstrates the advantages of cochallenge experiments and the use of 

transposon mutagenesis to identify novel fitness factors. We were able to confirm, after decades 

of study, that P fimbriae are important during UTI as well as support previously identified 

virulence factors. At this time, there has been no identification of a defined group of virulence 

and fitness factors in ExPEC suggesting that ExPEC strains may express combinations of 

virulence and fitness genes resulting in different strategies for survival within the urinary tract. 
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Abstract  

The MarR-like protein PapX represses transcription of the flagellar master regulator 

flhDC in uropathogenic Escherichia coli (UPEC), the primary cause of uncomplicated urinary 

tract infections (UTIs). PapX is encoded by the pap operon, which also encodes the adherence 

factor P fimbriae. Both adherence and motility are critical for productive colonization of the 

urinary tract. However, the mechanisms involved in coordinating the transition between 

adherence and motility are not well characterized. The UPEC strain CFT073 carries both papX 

and a homolog focX, located in the foc operon encoding F1C fimbriae. In this study, we 

characterized the dose-effects of “X” genes on flagellar gene expression and cross-talk between 

focX and papX. We found that FocX and PapX both repress flhD transcription. However, we 

determined that the ΔpapX mutant was hypermotile, while the loss of focX did not affect 

motility. We further investigated this phenotype and found that FocX represses papX 

transcription. Additionally, we identified a proximal imapromoter upstream of both focX and 

papX and assessed the expression of focX and papX during culture in human urine and on LB 
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agar plates compared to LB medium. Finally, we characterized the contribution of PapX and 

FocX to fitness in the ascending murine model of UTI, and observed a subtle, but not statistically 

significant, fitness defect in colonization of the kidneys. Altogether, these results expand our 

understanding of the impact of encoding multiple “X” genes on coordinated regulation of 

motility and adherence in UPEC.  

 

Introduction  

Escherichia coli is a common, and typically commensal, bacterial species that regularly 

colonizes the human gastrointestinal tract (259, 260). Some strains of E. coli, broadly referred to 

as extraintestinal pathogenic E. coli (ExPEC), are equipped with virulence and accessory genes 

that are lacking from their commensal counterparts and promote infections outside of the 

intestine, including urinary tract infections (UTIs) (11). Uropathogenic E. coli (UPEC) are the 

primary cause of approximately 80% of all community-acquired UTIs, which are a pervasive and 

costly public health burden afflicting approximately half of all women and one-fifth of men at 

least once in their lifetime (261, 262). Most UTIs are established when bacteria contaminate the 

periurethral area and migrate to the bladder via the urethra. While many UTIs are self-limiting 

and resolve within a few days, in some cases UPEC may further ascend via the ureters and cause 

a more severe secondary infection in the kidneys called pyelonephritis, increasing the risk of 

renal scarring, sepsis, and death (33).  

Extracellular polymeric filaments called flagella promote swimming motility in bacteria 

and facilitate UPEC ascension of the urethra and ureters during UTI (103, 263). While the ability 

to produce flagella is not required for colonization of the urinary tract, strains capable of flagella-

mediated motility persist longer within the bladder and kidneys and colonize to higher levels 
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(100, 102). Moreover, expression of fliC, the subunit that polymerizes to form the flagellum, 

coincides with ascension of the urinary tract and colonization of the kidneys in the murine model 

of UTI (101). However, fliC is poorly expressed in UPEC strains isolated from the urine of 

women experiencing acute cystitis, as well as, during in vitro culture in human urine (150, 246). 

Additionally, flagella are energetically costly to produce and monomeric FliC can be detected by 

the Toll-like receptor 5 (TLR5) found on the uroepithelium (107, 108). Thus, expression of 

flagella during UTI may be detrimental for UPEC survival and contribute to the transient 

expression of flagellar genes observed during infection (101, 106).  

During a UTI, bacteria transition between motile and adherent states through coordinated 

cross-talk between genes encoding flagella and adherence factors, termed fimbriae (101, 104, 

170). Adherence of bacteria to host cells is critical for colonization of the urinary tract, and 

UPEC isolates are more likely to encode fimbriae that bind to cells found within the urinary tract 

(61, 140, 264). The UPEC strain CFT073 genome carries 12 fimbriae, including F1C and two 

separate P fimbriae (142). F1C fimbriae, encoded by the foc operon, bind glycolipids found on 

the kidney epithelium and endothelium, and cystitis UPEC isolates were more likely than fecal 

E. coli isolates to encode F1C fimbriae (138, 182, 183). Similarly, pyelonephritis-associated pili 

(Pap), or P-fimbriae, bind the P-blood group antigen enriched on human kidney epithelial cells 

and erythrocytes, and UPEC strains harboring the pap operon are more likely to cause 

pyelonephritis (153, 265). 

Differing from most fimbrial operons, one of the two pap operons and the single foc 

operon carry a 3’ terminal gene encoding a MarR-like transcription factor PapX and FocX, 

respectively. MarR-like proteins share a winged helix-turn-helix structure (wHTH), bind as 

dimers to palindromic DNA sequences, and have been shown to mediate the regulation of 
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numerous genes, including those involved with resistance to antibiotics, oxidative stress and low 

pH, as well as motility (175, 266-268). We have previously shown that PapX binds to a 29 bp 

palindromic DNA sequence located 410 bp upstream of the flhDC translational start site, 

encoding the master transcriptional regulator FlhD4C2 of flagellar gene expression. 

Overproduction of PapX represses the transcription of flhD and subsequently reduces swimming 

motility (169, 170, 176). PapX was also identified in a TraDIS screen for genes affecting motility 

in a different UPEC strain EC958 (269). Thus, PapX is involved in regulatory cross-talk between 

genes associated with adherence and motility.  

FocX shares 96.7% amino acid sequence identity with PapX and therefore is predicted to 

also function as a repressor of motility. However, the function of FocX in UPEC has not been 

well characterized, and the impact of encoding multiple homologous “X” proteins on motility in 

UPEC is poorly understood. In this study, we found that PapX and FocX both repress flhD 

expression as well as swimming motility when ectopically expressed. However, we have 

discovered that FocX can also repress the expression of papX, and that cross-talk between “X” 

genes affect motility. Additionally, we characterized an independent proximal promoter for focX 

and papX, suggesting that focX and papX can be expressed independently from their respective 

fimbrial operons. However, we found that the expression of papX positively correlates with pap 

expression during in vitro culture on LB agar plates. Furthermore, we assessed the relative 

fitness of either the single ΔpapX or double ΔfocXΔpapX mutants compared to wild type by in 

vivo competitive cochallenge in CBA/J mice, and observed a slight, but not statistically 

significant, decrease in kidney colonization. Since UPEC isolates are more likely than 

commensal strains to encode at least two “X” genes, investigating the interactions between PapX 
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and FocX is imperative to understand how UPEC regulates motility and responds to 

environmental signals within the urinary tract.   

 

Results 

PapX and FocX share high sequence and structural similarities.  

The E. coli CFT073 genome harbors both the pap and foc operons, which encode the 

homologous MarR-like proteins PapX and FocX, respectively (Figure 3.1A) (142). The 

predicted structures of PapX and FocX were created using I-TASSER and were modeled as 

dimers based on the solved dimer structure of the MarR-like protein, HucR (270). While MarR-

like proteins contain a conserved winged helix-turn-helix DNA-binding motif, the majority of 

these proteins share limited amino acid sequence identity (~25-35%)(271). Despite being 

encoded by different fimbrial operons, PapX and FocX share high amino acid sequence identity 

(96.7%) (Figure 3.1B) and predicted structural homology (Figure 3.1C) (169). In MarR-like 

proteins, key structural motifs include the dimerization domain between subunits, the DNA 

recognition helices that bind palindromic DNA sequences within the major groove, and the wing 

domain that interacts with residues within the minor groove (172, 272). Therefore, amino acid 

changes within these structural domains are more likely to alter DNA binding site recognition 

and protein function. There are three amino acid differences within key structural areas between 

PapX and FocX, respectively: T35A within the dimerization domain, A97T within the DNA 

binding helix, and M103T within the wing domain. Therefore, while we predict that PapX and 

FocX share the same function based on their high structural and amino acid sequence 

similarities, it is not known if these substitutions affect protein function.  
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Figure 3.1 PapX and FocX share high sequence and structural homology.  
(A) A schematic of the pap1 and foc operons in CFT073. (B) The amino acid sequences of PapX 
and FocX were manually aligned and residues in red signify differences between FocX and 
PapX. The predicted location of α-helices (blue) and β-sheets (red arrows) are shown above the 
amino acid sequence. (C) The predicted dimer structures of PapX (green) and FocX (blue) were 
created using I-TASSER and aligned using Chimera to the known structure of the dimer HucR 
(not shown). Amino acid differences between FocX and PapX are highlighted in red and labeled 
on one monomer.  
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The loss of papX, but not focX, increases swimming motility.  

To determine the effect of PapX and FocX on motility, we measured the motility of 

CFT073 wild type, ΔfocX, ΔpapX, and the double mutant ΔfocXΔpapX strains using a swimming 

motility assay. We observed that the loss of focX did not increase swimming motility (Figure 

3.2A). In contrast, the loss of papX resulted in a hypermotile phenotype, and this result was 

consistent with previous studies showing PapX represses motility (169, 170, 176, 273). 

Interestingly, the loss of both focX and papX resulted in an increased level of swimming that was 

significantly greater than wild type, but not as robust as the ΔpapX mutant, suggesting that there 

may be cross-talk between focX and papX.  

E. coli strains differ in their capacity for motility in part due to heterogeneity in the 

presence of insertion sequence elements upstream of flhDC as well as variability in the encoded 

transcriptional regulators of flagellar genes (89, 274, 275). Therefore, to compare the function of 

PapX in additional UPEC strains, we compared the motility between wild type and a ΔpapX 

mutant in the UPEC cystitis isolates F11 and HM69 (Figure 3.3). Both strains F11 and HM69 

carry the pap operon, including papX, but not the foc operon. We observed that the deletion of 

papX resulted in a significant increase in motility compared to wild type in F11 (121%) and 

HM69 (117%); however, the hypermotile phenotypes were not as robust as what was observed in 

CFT073 (161%) (Figure 3.2A). Therefore, these data support that PapX functions through a 

conserved mechanism in UPEC, but that the impact of PapX on motility is dependent on the 

strain background.   
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Figure 3.2 Effect of focX and papX expression on swimming motility 
(A) Swimming diameter (mm) was measured for CFT073 and isogenic mutants after 16-18 hr 
incubation at 30°C. Data represent five biological replicates with the error bars showing the 
standard deviation. Tukey's multiple-comparisons test following ANOVA was used for statistical 
analysis. *, P < 0.05; ns (not significant) (B) qPCR of flagellar genes flhD, fliA, and fliC using 
cDNA collected from E. coli CFT073 wild type and ΔfocX, ΔpapX, and ΔfocXΔpapX constructs 
cultured in tryptone media until OD600 of 0.3 (~1.5 hr). Data represent the average of three 
experiments. Standard deviation is shown and a Student's t-test was used for statistical analysis. 
*, P < 0.05. No statistical difference was found between ΔpapX and ΔpapXΔfocX using a Mann-
Whitney test. (C) Immunoblot detecting FliC levels from whole cell lysates in CFT073 wild type 
and the ΔfocX, ΔpapX, and ΔpapXΔfocX constructs cultured in tryptone broth. Relative 
quantification of FliC (shown underneath the protein band) was obtained using Image Lab 5.2.1 
and represents the average fold change of two independent experiments compared to FliC levels 
of wild type at 0.5 hr and normalized to a conserved nonspecific band.  
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Figure 3.3 The loss of papX in the cystitis UPEC isolates F11 and HM69 increases motility 
(A) The bars represent the average diameter (mm) of swimming motility of bacteria following 
16-18 hr incubation at 30°C (N=6). The error bars represent the standard deviation, and a 
Student's t test was used for statistical analysis. *, P < 0.05. (B) Growth curves showing similar 
levels of bacterial growth between CFT073 wild type and the ΔfocX, ΔpapX, ΔfocXpapX 
constructs. Bacteria were diluted 1:100 from overnight cultures into either fresh pooled, 
sterilized human urine (red) or LB media (black) and cultured with aeration at 37°C for 5 hrs. 
OD600 measurements were taken over time and plotted on the log10 scale.  
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We have previously shown that PapX inhibits swimming motility by repressing the 

expression of flhDC, resulting in the downregulation of additional flagellar genes (169, 176, 

273). To verify that the observed motility phenotypes correspond to changes in the expression of 

flagellar genes, we performed qPCR to quantify the changes in mRNA abundance of flhD, fliA, 

and fliC between CFT073 and the ΔfocX, ΔpapX, and ΔfocXΔpapX constructs. RNA was 

collected from bacteria cultured in tryptone medium to an OD600 of 0.3. Growth conditions were 

chosen based on previous work demonstrating that the production of flagella in CFT073 is 

elevated during early logarithmic growth in tryptone medium (104). Consistent with our 

swimming results, the loss of focX did not alter the expression of flhD, fliA, or fliC (Figure 

3.2B). However, we did observe a significant increase in the expression of flhD, fliA, and fliC in 

both the ΔpapX (Log2 Fold Change (FC): 1.2-2.7) and the double ΔfocXΔpapX (Log2 FC: 1.2-

2.1) mutants compared to wild type.  

To determine if the qPCR results correlated to an increase in flagellum production, we 

performed an immunoblot comparing FliC levels between CFT073 wild type and the ΔfocX, 

ΔpapX, and ΔfocXΔpapX constructs. Bacteria were cultured in tryptone medium and the levels 

of FliC were assessed from normalized whole cell lysates collected at 0.5, 1.5, and 3 hours, 

representing early, mid and late logarithmic growth (Figure 3.3B). In wild type CFT073, we 

observed a peak in FliC production at 1.5 hours, and this result was consistent with previous 

studies characterizing the temporal production of FliC (Figures 3.2C) (104). Additionally, we 

observed an increase in FliC production in the ΔpapX and ΔfocXΔpapX constructs at all 

collected time points, which were quantified by densitometry based on the average of two 

replicates. While we detected an increase in FliC production in the ΔfocX construct compared to 

wild type at 0.5 hrs, we did not observe a difference in FliC production at later time points. 
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Therefore, these results show that the deletion of papX, compared to focX, has a greater impact 

on swimming motility, flagellar gene expression and FliC production in CFT073.  

 
PapX and FocX both function as repressors of motility.  

Based on the amino acid sequence and structural similarities between PapX and FocX, 

we predicted them to share the same function as transcriptional repressors of motility. Yet 

compared to wild type, the deletion of focX did not significantly increase swimming motility. 

Therefore, to assess PapX and FocX function independent of their native expression, we 

expressed papX (pLX-papX) or focX (pLX-focX) in trans in CFT073 and performed a swimming 

motility assay (Figure 3.4A). Previous work demonstrated that, in the absence of IPTG, papX 

expression was increased 11-fold in CFT073 carrying pLX-papX compared to the empty vector 

(176). Compared to CFT073 carrying the empty vector pLX3607, expression of either papX 

(pLX-papX) or focX (pLX-focX) resulted in approximately a 50% reduction in swimming 

motility. To assess whether this phenotype was specific to CFT073, we repeated this assay in the 

cystitis isolate F11 and observed a comparable decrease in motility following overproduction of 

either FocX or PapX. We have previously shown that the commensal E. coli K-12 MG1655 

strain lacks the PapX binding site upstream of flhDC, and therefore the overproduction of PapX 

does not reduce motility (169). To determine if the function of FocX also depends on the 

presence of the PapX binding site upstream of flhDC, we assessed the swimming motility of K-

12 MG1655 carrying pLX3607, pLX-papX, or plx-focX. We observed that the expression of 

either papX or focX did not decrease motility compared to the empty vector. Therefore, these 

data support that PapX and FocX function as repressors of motility, and that this mechanism is 

dependent on the presence of the PapX binding site upstream of flhDC.  
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To determine if the reduction in motility following overexpression of focX or papX was a 

result of decreased expression of flagellar genes, we used qPCR to assess the gene expression of 

flhD, fliA, and fliC in the double ΔfocXΔpapX mutant carrying pLX3607, pLX-papX, or pLX-

focX. We assessed flagellar gene expression in the double mutant background, versus wild type, 

to eliminate any interference due to native levels of PapX and FocX. RNA was collected from 

bacteria cultured to an OD600 of 0.3 in tryptone medium. We found that expression of either papX 

or focX, compared to the empty vector, resulted in a comparable decrease in the transcription of 

flhD, fliA, and fliC (Figure 3.4B). To verify that our qPCR data correlated with a decrease in 

flagellum production, we performed an immunoblot for FliC using ΔfocXΔpapX carrying 

pLX3607, pLX-focX, or pLX-papX. Bacteria were cultured in tryptone medium, and whole cell 

lysates were collected at 0.5, 1.5, 3, and 6 hours and normalized by OD600. We observed that 

overexpression of either focX or papX resulted in a decrease in FliC production at all collected 

time points compared to the empty vector (Figure 3.4C). These data support that both FocX and 

PapX when ectopically expressed can repress flhD, resulting in decreased flagellar production 

and motility.    
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Figure 3.4 Expression of either focX or papX represses flagellar gene expression and 
motility 
(A) Bars represent the average diameter (mm) of swimming motility of bacteria following 16-18 
hr incubation at 30°C. Data represent five biological replicates with the error bars showing the 
standard deviation. Tukey's multiple comparisons test following ANOVA was used for statistical 
analysis. *, P < 0.05; ns (not significant) (B) qPCR of flagellar genes flhD, fliA, and fliC using 
cDNA synthesized from mRNA collected from E. coli CFT073 ΔpapXΔfocX carrying pLX3607, 
pLX-focX, or pLX-papX cultured in tryptone media until OD600 of 0.3. Data represent the 
average of three experiments with standard deviation. A Student's t-test was used for statistical 
analysis (C) Immunoblot detecting FliC levels from whole cell lysates in CFT073 wild type 
carrying pLX3607, pLX-focX, or pLX-papX. Relative quantification of FliC was obtained using 
Image Lab 5.2.1 and represents the average fold-change of two independent experiments 
compared to FliC levels of ΔpapXΔfocX +pLX3607 at 0.5 and normalized to a conserved non-
specific band.  
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focX and papX are transcribed from a proximal promoter.  

We have previously shown that papX is transcribed as part of the pap operon and have 

confirmed that focX is also transcribed as part of the foc operon (Figure 3.5) (176). However, the 

papX homolog, sfaX, is transcribed as part of the sfa operon as well as from an independent 

proximal promoter (276). Since the upstream DNA sequences of papX, focX, and sfaX share high 

sequence identity, papX and focX likely share a similar proximal promoter. We used 5’ Rapid 

Amplification of cDNA Ends (RACE) to map the transcriptional start sites of both papX and 

focX to an adenosine residue located 144 bp upstream of their predicted ATG start codon 

(Figure 3.6). We manually identified a putative -10 and -35 region separated by a 19 bp spacer 

that resembles the consensus sequence of a bacterial σ70 promoter. This site was shared between 

papX and focX but was located 44 bp upstream of the transcriptional start site identified for sfaX 

(276). The presence of an additional proximal promoter upstream of focX and papX suggests that 

these genes can both be transcribed independently and from their associated fimbrial operons.  

 
Expression of papX or focX trends with the expression of the preceding fimbrial operon.  

Since focX and papX may be also transcribed from an independent proximal promoter, 

we investigated the expression of focX and papX compared to the foc and pap operons, 

respectively, under different environmental conditions. Previous work by Hancock et al. 

determined that the pap and foc genes are upregulated in CFT073 during planktonic growth in 

human urine compared to MOPS, but the expression of focX or papX was not investigated (277). 

Therefore, we used qPCR to quantify the expression of papA, papX, focA, focX, and fliC in 

CFT073 wild type during culture to mid-logarithmic growth in pooled human urine compared to 

LB medium. We included fliC to assess correlations between focX and papX with motility under 

these growth conditions. We found that culture in human urine compared to LB medium led to a 
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significant increase in the transcription of focA (Log2 FC: 2.8) and papX (Log2 FC: 1.3), but we 

did not detect a statistically significant change in focX or papA (Figure 3.7A). Additionally, we 

observed a decrease in fliC expression (Log2 FC: -5.48), and this finding was consistent with 

previous work showing decreased motility in UPEC strains when cultured in human urine (150)  

Additionally, previous studies have shown that the production of P fimbriae is elevated in 

the E. coli CFT073 strain when cultured on LB agar plates compared to planktonic growth (209). 

Therefore, we assessed the expression of papA, papX, focA, focX, and fliC by qPCR following 24 

hr incubation on LB agar plates at 37°C compared to culture in LB medium to mid-logarithmic 

growth. Consistent with previous findings, we observed that expression of papA (Log2 FC: 2.7) 

and papX (Log2 FC: 1.5) was significantly increased but did not observe a change in the 

expression of focA and focX (Figure 3.7B). Additionally, fliC expression was decreased (Log2 

FC: 2.8) following incubation on LB agar plates.  
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Figure 3.5 focX is transcribed as part of the foc operon  
(A) Schematic of the c1246 and focX genes in the foc operon of CFT073. focX is 196 bp 
downstream of the c1246 allele. (B) PCR using Taq polymerase was performed to determine 
whether focX is transcribed with c1246. Arrows indicate the location of the primers (c1246-
Fpcr/focX-Rpcr) used to PCR amplify a 654 bp product (c1246-focX). Additional primers 
(papA-Fpcr/papA-Rpcr) were included that amplified a 240 bp product from focA, which is 
included as a positive control confirming cDNA synthesis. CFT073 gDNA acts a positive 
control, and extracted RNA samples from CFT073 wild type and ΔfocX were DNase treated and 
serve as a negative control for contaminating gDNA.  
 
  

A

B



 73 

 
 

Figure 3.6 focX and papX are transcribed from a proximal promoter 
Schematic of the transcriptional start sites of focX and papX identified using 5'RACE on cDNA 
synthesized from mRNA collected from either ΔpapX or ΔfocX, followed by DNA sequencing. 
Putative -10 and -35 sites with similarity to the bacterial σ70 promoter are underlined. A 144-bp 
distance between the ATG translational start site of focX or papX and the transcription start site 
(+1) is indicated above the figure.  
 

  

papG papX

c1246 focX
+1

+1
65%

Sequence Identity: 98%

bp100600 200300400500 0

CTTTTTCACAGACTTGTCAGCAGCCAGCATTTATGTTCTTTTATCTGAGGGAATTT
+1-10-35

5’

140145150155160165170175180185190195 bp
3’
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Figure 3.7 Expression of foc, pap, and fliC when cultured in human urine or on LB agar 
qPCR of focA, focX, papA, papX, and fliC using cDNA collected from E. coli CFT073 wild type 
cultured in human urine (Top) until OD600 of 0.3 or on LB agar (Bottom) for 24 hr compared to 
cDNA collected from bacteria cultured to mid-logarithmic growth in LB medium. Data represent 
the average of three experiments with error bars showing standard deviation. A Student’s t-test 
was used to calculate statistical significance. *, p < 0.05 
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FocX functions as a repressor of papX.  

We have previously shown in CFT073 that the deletion of papX does not affect the 

production of P fimbriae; however, the effect of FocX on the expression of genes within the foc 

operon has not been characterized (176). Therefore, we performed qPCR to assess the changes in 

gene expression of focA, focX, papA and papX following the deletion of either focX or papX. 

cDNA was synthesized from mRNA collected from CFT073 wild type and the ΔfocX and ΔpapX 

constructs cultured to mid-logarithmic growth in tryptone medium. We found that the deletion of 

focX did not affect focA or papA expression, but did result in higher expression of papX (Log2 

FC: 2.06) (Figure 3.8A). In contrast, deletion of papX did not result in any significant changes in 

the gene expression of focA, focX, or papA. These data suggest that FocX functions as a 

repressor of papX and that the regulatory mechanism is not a result of decreased expression of 

the pap operon. Therefore, FocX may bind to a DNA site upstream of papX and affect 

transcription of the proximal papX promoter. However, we did not identify a DNA sequence 

upstream of either focX or papX that matched with the PapX binding site characterized upstream 

of flhDC, suggesting that regulation of papX by FocX may be indirect or occurs through a 

degenerate DNA binding site (169). 

 We also assessed the changes in the gene expression of focA, focX, papA, and papX in 

CFT073 when either focX or papX was ectopically expressed. cDNA was synthesized from 

mRNA collected from CFT073 harboring pLX3607, pLX-focX, or pLX-papX cultured to mid-

logarithmic growth in tryptone medium. We found that the production of FocX did not affect the 

expression of focA, papA, or papX (Figure 3.8B). Similarly, production of PapX did not impact 

the expression of focA, focX, or papA. Therefore, the function of FocX as a repressor of papX 
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may be dependent on protein concentration, as we did not observe a decrease in papX expression 

in response to increased focX transcription.  



 77 

Figure 3.8 Loss of focX results in elevated papX expression 
qPCR was performed to calculate the average (N=3) Log2 fold change of mRNA abundance of 
focA, focX, papA and papX using cDNA collected from E. coli (A) CFT073 wild type, ΔfocX, or 
ΔpapX or wild type carrying pLX3607, (B) pLX-focX, or (C) pLX-papX cultured in tryptone 
media until an OD600 of 0.3. Error is shown as standard deviation, and statistical significance was 
calculated using Student’s t-test, *, p < 0.05. 
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papX provides a subtle fitness advantage in colonization of the kidneys during murine UTI 

 While P fimbriae have been shown to promote colonization of the kidneys during murine 

UTI, papX has not been confirmed as a fitness factor during in vivo infection (278, 279). Instead, 

PapX has been hypothesized to negatively impact colonization during UTI as a ΔpapX mutant 

showed a slight increase in kidney colonization compared to wild type CFT073 during an 

experimental cochallenge in transurethrally-inoculated CBA/J mice (176). However, the 

contribution of PapX during an ascending UTI may be more observable following intraurethral 

inoculation, since transurethral inoculation places a high number of bacteria directly into the 

bladder and increases the occurrence of vesicoureteral reflux into the kidneys in the murine 

model (280). Indeed, previous work by Lane et al. demonstrated flagella as a fitness factor for 

colonization of the bladder and kidneys through independent infections in CBA/J mice between 

wild type CFT073 and a ΔfliC mutant following intraurethral inoculation (100, 101). Therefore 

to assess the contribution of papX to in vivo colonization, we performed an independent infection 

of CBA/J mice intraurethrally-inoculated with either CFT073 wild type or the ΔpapX mutant. 

Mice were sacrificed at 24 and 48 hrs and the bladder, kidneys and spleen were homogenized 

and plated to enumerate bacterial load. We did not observe any significant differences between 

wild type and the ΔpapX mutant in colonization of the bladder, kidneys, or spleen after either 24 

or 48 hrs (Figure 3.9A and Figure 3.9B). While we did observe high levels of colonization of 

three spleens infected with the ΔpapX mutant, due to limited replicates we did not have sufficient 

statistical power to make any conclusions about the role of papX in dissemination.  

In some cases, a co-challenge model has been shown to be more sensitive than 

independent challenge for the detection of subtle fitness defects during UTI (225). Thus to 

measure relative fitness, CBA/J mice were intraurethrally-inoculated with a 1:1 ratio of CFT073 



 79 

wild type and the ΔpapX mutant. We did not observe any statistically significant differences 

between wild type and ΔpapX in colonization of the bladder, kidneys, or spleen after either 24 or 

48 hrs (Figure 3.9C). However, the ΔpapX mutant had a slight decrease in colonization of the 

kidneys after 24 hrs (P = .063). 

It is possible that FocX can compensate for PapX during UTI and thereby mask fitness 

defects of the ΔpapX mutant during infection. Therefore, we performed a cochallenge infection 

in CBA/J mice transurethrally-inoculated with a 1:1 ratio of CFT073 wild type and the double 

ΔfocXΔpapX mutant. Mice were sacrificed at 48 hrs and the bladder, kidneys and spleen were 

homogenized and plated to enumerate bacterial load. We did not observe any fitness defect in 

colonization of the bladder or spleen, but did observe a subtle, but not statistically significant, 

decrease in colonization of the kidneys (P = .061) (Figure 3.9D).  
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Figure 3.9 The contribution of PapX to in vivo colonization is subtle and only observable 
following intraurethral inoculation 
Independent challenges of CBA/J mice (N=10) inoculated with a 10-µl suspension of 107 cfu/ml 
of either wild type CFT073 or ΔpapX directly into the urethra. Mice were sacrificed at either 24 
(A) or 48 (B) hrs post inoculation (hpi), and the bladders, kidneys, and spleens were 
homogenized and plated to enumerate bacterial load and presented as cfu/g of tissue. (C) 
Cochallenge infection of mice (N=10) using a 1:1 mixture of wild type and ΔpapX mutant. 
CBA/J mice were intraurethrally inoculated with a 10-µl suspension of a total 107 cfu/ml. Mice 
were sacrificed at either 24 (N=5) or 48 (N=10) hpi, and the bladders, kidneys, and spleens were 
homogenized and plated to enumerate bacterial load. Relative fitness is presented as a 
competitive index. (D) Cochallenge infection of mice (N=20) using a 1:1 mixture of wild type 
and ΔfocXΔpapX. Mice were transurethrally inoculated with a 50-µL suspension of total 108 
cfu/mL. Relative fitness after 48hpi is presented as a competitive index. Horizontal bars 
represent the median values of the populations, and the dotted line represents the limit of 
detection (2 x 102 cfu/g). Statistical differences in colonization were determined using a 
Wilcoxon signed-rank test. *, P < 0.05 
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Discussion 

UPEC rely on flagella and fimbriae to successfully ascend and colonize the diverse 

niches within the urinary tract (102, 103). Yet, it is not practical for a bacterium to be both motile 

and adherent simultaneously. Thus, UPEC isolates likely possess mechanisms that mediate a 

rapid transition between adherent and motile states in response to environmental signals during 

UTI. One such mechanism is through the MarR-like protein, PapX, which is encoded as part of 

the pap operon and functions as a transcriptional repressor of the flagellar master regulator flhDC 

(169, 170, 176). PapX is a representative member for various 17-kDa MarR-like proteins 

encoded within fimbrial operons that have been identified in E. coli, and raises the notion that 

harboring multiple MarR-like “X” proteins may result in cooperative regulation of motility(169). 

Hence, the study of PapX and its homologs is central to our understanding of UPEC ascension 

and colonization of the urinary tract.  

In this study, we investigated the regulation of focX and papX gene expression and 

characterized the effect of encoding multiple PapX homologs on motility. We found that ectopic 

expression of focX or papX resulted in comparable inhibition of motility that corresponded with 

decreased flhD, fliA and fliC gene expression and reduced FliC production. Therefore, FocX and 

PapX share the same function as repressors of motility. However, we found that in general 

expression of focX and papX mimicked the expression of their preceding fimbrial operons during 

in vitro culture on LB agar plates as elevated expression of papA was paralleled by an increase in 

papX expression.  

In E. coli, a single bacterium typically expresses one dominant fimbrial type, and since 

focX and papX are encoded within different fimbrial operons, they are likely expressed at 

different times (178, 216). Therefore, strains encoding multiple “X” proteins may be better suited 
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to rapidly repress motility in response to a range of niche-specific cues. Since both P and F1C 

fimbriae mediate adherence to renal cells, the function of PapX may be particularly important 

during kidney colonization (182, 265). We predicted that the production of PapX improves the 

success of in vivo attachment of bacteria to the renal epithelium by decreasing interference from 

swimming motility. Also, reducing flagella production likely allows bacteria to better evade host 

defenses, as the monomeric flagellum subunit, FliC, is recognized by TLR5 found on host 

epithelial cells, leading to the rapid recruitment of neutrophils, inflammation, and bacterial 

clearance (88, 107) However, we observed during co-challenge in the murine model of 

ascending UTI that an isogenic ΔpapX mutant had only a slight decrease in colonization of 

kidneys (P < 0.06). Additionally, while we predict that FocX shares the same function as PapX, 

deletion of both “X” genes did not substantially affect kidney colonization (P < 0.06) and 

evaluation of the relative fitness of the double ΔfocXΔpapX mutant instead by intraurethral 

inoculation may demonstrate a greater effect on colonization. Since there are few studies in the 

literature exploring the effects of hypermotility on kidney colonization during UTI, further 

investigation of the function of “X” genes during infection would broaden our understanding of 

the role of motility in the development of pyelonephritis. Indeed, another "X" genes, vatX, has 

also been identified in strain CFT073 (281). While VatX share 44% amino acid identity with 

PapX, neither mutation nor overexpression of vatX impacted motility of CFT073 (282). 

In this study we also identified a conserved transcriptional start site located 144-bp 

upstream of the ATG start codon of both focX and papX, suggesting that focX and papX can also 

be regulated independently of their fimbrial operon. A similar transcriptional schema has also 

been observed for the papX homolog, sfaX, which is transcribed from an independent promoter 

in addition to being expressed by the sfa operon, encoding S fimbriae (276). Thus, dual 
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transcription from two promoters appears to be a conserved regulatory feature of MarR-like 

proteins encoded within fimbrial operons. Interestingly, the transcriptional start site of sfaX was 

located 44 bp downstream from the start site identified for focX and papX. In the case of papX 

and focX, regulation from an independent promoter may allow for control over flagellar gene 

expression while independently preserving appropriate regulation of fimbriae production, 

allowing for fine-tuned transitions in the regulation of adherence and motility factors during 

ascension from the bladder to the kidneys.  

Additionally, an independent proximal promoter may also serve as a site for cross-talk 

between “X” genes or other transcription factors. Genes encoding MarR-like proteins are 

commonly autoregulated, where increased protein production creates a negative feedback loop 

that inhibits transcription (171, 283). We observed that FocX functions as a repressor of papX, 

and this regulation likely occurs at the proximal independent promoter of papX as we did not 

observe any changes in the expression of the rest of the pap operon. Since FocX and PapX share 

the same function, we predict that PapX is capable of autoregulation, however future studies are 

needed to confirm this regulatory mechanism. We did not observe that PapX repressed 

expression of focX, and it is not clear if a required regulatory element is absent from the focX 

promoter or if expression is better observed under a different condition. Thus, cross-talk between 

focX and papX may serve as a mechanism to limit negative consequences of extended repression 

of motility due to excessive “X” protein production.  

Regardless, maintenance of “X” protein levels appears to be critical for the mechanism 

behind repression of motility by PapX and FocX, as we observed in our swimming motility 

assays that the deletion of focX had no effect on motility, while the double ΔfocXpapX mutant 

had an intermediate motility phenotype compared to the hypermotile ΔpapX mutant. We propose 
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that increased levels of PapX in the focX mutant may compensate for the loss of focX and thus 

result in a similar degree of motility compared to wild type. However, in the double mutant it 

may be that the loss of both focX and papX affects the recruitment of a transcriptional activator 

of flhD or allows another regulator of flhDC expression to partially compensate for the absence 

of “X” proteins, resulting in an intermediate motility phenotype. The mechanism of PapX and 

FocX regulation of flhDC is not clearly defined. The PapX binding site upstream of flhDC does 

not overlap with binding sites of other characterized transcription factors and the impact of PapX 

binding within the flhDC promoter on DNA bending and promoter access for other regulators of 

flhDC is not well characterized (76, 169, 284). Thus, it may be that the binding of FocX or PapX 

interferes with DNA access within the flhDC promoter for other regulatory elements, including 

other transcription factors and DNA insertion elements. The complex interplay of regulators of 

flhDC expression emphasizes the lengths that bacteria employ to control motility, and in the 

context of UTIs, MarR-like “X” proteins may provide a mechanism to mediate fine-tune 

coordinated transitions between motility and adherence allowing for better evasion of the host 

immune systems and improved colonization of the upper urinary tract.  

 

Materials and Methods 

Bacterial strains and culture conditions.  

Strains used in this study are listed in Table 3.1. Unless otherwise noted, bacteria were 

cultured in LB medium (10 g Tryptone, 5 g Yeast extract, 0.5 g NaCl / 1 L) at 37°C with 

aeration. UPEC strain CFT073 was isolated from the blood and urine of a patient hospitalized 

with acute pyelonephritis, and strains F11 and HM27 were isolated from the urine of women 

experiencing cystitis (206, 246, 285). Human urine was collected from at least three women, 
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pooled, filter-sterilized and stored at -20°C in accordance with the University of Michigan 

Institutional Review Board (HUM00004949). When necessary, antibiotics were added at the 

following concentrations: ampicillin (100 µg/mL), kanamycin (25 µg/mL), and chloramphenicol 

(20 µg/mL).  

 

 

Table 3.1. Bacterial strains and plasmids used in this study 
 Strain Genotype/Resistance/Usea Source 

CFT073 Pyelonephritis isolate (O6:K2:H1) [Mobley, 1990] 
ΔfocX CFT073 ΔfocX::cat (CamR) This Study 
ΔpapX CFT073 ΔpapX::kan  (KanR) (176) 
ΔfocXΔpapX CFT073 ΔfocX::cat  ΔpapX::kan  (CamR, KanR) This Study 
E. coli F11 Cystitis isolate (O6:K2:H31) (206) 
E. coli F11 
ΔpapX F11 ΔpapX::kan  (KanR) This Study 
E. coli HM69 Cystitis isolate (65) 
E. coli HM69 
ΔpapX HM69 ΔpapX::kan  (KanR) This Study 

Top10 E. coli Used for cloning 
ThermoFisher 
Scientific 

      
Plasmid Relevant Characteristics References 
pLX3607 IPTG-inducible vector (AmpR) (170) 
pLX-focX pLX3607+focX (AmpR) This Study 
pLX-papX pLX3607+papX, also known as pDRM001 (AmpR) (170) 
pKD4 Vector carrying a FRT-flanked kan gene (AmpR, KanR) (286) 
pKD3 Vector carrying a FRT-flanked cat gene (AmpR, CamR) (286) 
pKD46 Vector carrying phage λ Red recombinase (AmpR) (286) 

   a: cam-chloramphenicol, kan-kanamycin, amp-ampicillin, R-resistant 
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Mutant and plasmid construction 

The primers used in our study are listed in Table D.2. The ΔpapX mutant was 

constructed previously (273). Lambda Red-mediated recombineering was used to construct the 

ΔfocX and ΔfocXpapX mutants. In brief, the chloramphenicol resistance gene (cat) was amplified 

from pKD4 by PCR using EasyA polymerase (Agilent) and the primers focXKO-F/focXKO-R 

and then transformed into competent CFT073 carrying pKD46 harboring the Lambda red 

operon. Transformed bacteria were cultured at 30°C for 2.5 hrs, plated on LB agar containing 

chloramphenicol, and cultured overnight at 37°C. The resulting colonies were screened by PCR 

using Taq polymerase (New England BioLabs) and the primers scrnF/scrnR for deletion of focX. 

The same strategy was used to construct the ΔpapX mutants in E. coli F11 and HM69 but the 

kanamycin resistance gene (kan) was instead amplified from pKD3 for transformation. 

To construct the double ΔfocXpapX mutant, the primers KO-F/KO-R, which have 

homology to both papX and focX, were used with EasyA polymerase to PCR amplify the cat 

gene from pKD3. The resulting PCR product was transformed into competent CFT073 carrying 

pKD46. Colonies were screened by PCR using Taq polymerase and the primers scrnF/scrnR to 

verify deletion of either focX or papX. To remove the second “X” gene, the kanamycin resistance 

gene was PCR amplified from pKD4 using the primers KO-F2/KO-R2, which flank the first set 

of primers, and transformed into the competent single mutant strain carrying pKD46. The 

primers scrnF2/scrnR2 were used with Taq polymerase to screen for deletion of the second “X” 

gene, and the deletion of both focX and papX was verified by DNA sequencing.   

 To induce expression of papX, we previously cloned papX into the vector pLX3607 

under the control of an IPTG-inducible promoter, referred to as pLX-papX (170). A similar 

strategy was used to control the expression of focX. In brief, focX was amplified by PCR using 
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EasyA polymerase and the primers focplx-F/focplx-R from CFT073 ΔpapX. The resulting PCR 

product and pLX3607 were both digested by NcoI and HindIII, ligated together using T4 DNA 

Ligase (New England BioLabs) to generate pLX-focX, and transformed into competent Top10 E. 

coli. Transformants were plated on LB with ampicillin and the resulting colonies were screened 

by PCR to verify plasmid construction. pLX-focX was obtained using a miniprep kit (Qiagen) 

from overnight cultures of Top10 E. coli and transformed into CFT073. We relied on leaky 

expression for induction of papX and focX from pLX-papX and pLX-focX, respectively. 

 

Swimming Motility Assay 

Overnight stationary cultures were diluted to an OD600 of 1.0 and stab-inoculated into 

0.025% agar motility plates (10 g Tryptone, 5 g NaCl, 1.25 g Agar / L). Plates were incubated 

for 16-18 hrs at 30°C, and the diameter of bacterial spread was averaged as a quantification of 

swimming motility. Tukey's multiple comparisons test following ANOVA was used for 

statistical analysis with the error bars representing the standard deviation.  

 

qPCR 

Stationary cultures were diluted 1:100 into 25 mL of either LB medium, tryptone medium 

(10g Tryptone, 5g NaCl / L), or sterilized pooled human urine with ampicillin when needed for 

plasmid maintenance. Strains were cultured at 37°C with aeration until mid-logarithmic growth 

was reached, and then an aliquot was collected for RNA extraction and treated with a stop 

solution (95% EtOH, 5% phenol) to preserve RNA stability. RNA was also collected from 

bacteria that were plated on LB agar and incubated at 37°C for 24hr. Plated bacteria were 

resuspended in 1x PBS (137 mM NaCL, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4 / 
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1L, pH 7.4) and treated with the stop solution. For RNA extraction, bacterial cells were lysed 

using 1 mg/mL of lysozyme, and RNA was purified using the RNeasy kit (Qiagen) following the 

manufacturer’s guidelines. RNA samples were treated with DNaseI (Ambion), and the removal 

of genomic DNA was confirmed by PCR using Taq polymerase and the primers gapA-F/gapA-

R. RNA was converted to cDNA using SuperscriptIII (Invitrogen) and purified using the PCR 

cleanup kit (Epoch Life Science). qPCR was conducted using PowerUP SYBR Green 

(Invitrogen), 4ng of total cDNA as template, and the primers listed in Table S2. CT values were 

normalized to gapA, a housekeeping gene, and analyzed using the ΔΔCT method (287). Data are 

shown as the log2 fold change (FC) of three biological replicates. A Student's t-test was used for 

statistical analysis. 

 

Immunoblot for FliC detection 

Production of FliC was determined by immunoblot using standardized whole cell lysates 

using a previously described method (273). Stationary bacterial cultures were diluted 1:100 in 20 

mL of Tryptone medium and cultured at 37°C with aeration. Samples were taken at 0.5, 1.5, 3 

and 6 hrs, centrifuged at 1500 rpm for 10 min to limit the shearing of flagellum, suspended in 2x 

SDS loading buffer (100 mM Tris-CL (pH 6.8), 4% SDS, 0.2% bromophenol blue, 20% 

glycerol, 200 mM DTT) and boiled for 10 min at 95°C. Whole cell lysates were normalized by 

OD600 and electrophoresed on a 10% SDS-polyacrylamide gel followed by transfer to a 

polyvinylidene difluoride membrane (Immobilon-P; Millipore Corp.). The blot was incubated 

with 1:10,000 dilution of rabbit polyclonal antiserum to H1 flagella (Statens Serum Institute, 

Copenhagen, Denmark) followed by secondary incubation with 1:20,000 dilution of peroxidase-

conjugated goat anti-rabbit immunoglobulin G (Sigma). The Clarity Western ECL Substrate kit 
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(BioRad) was used to develop the blot.  

 

5’ Rapid Amplification of cDNA Ends (RACE) 

Overnight cultures of ΔpapX and ΔfocX strains were diluted 1:100 in LB medium and 

cultured at 37°C to mid-logarithmic growth. An aliquot was collected for RNA extraction and 

treated with a stop solution (95% EtOH, 5% phenol) to preserve RNA stability. To determine the 

transcription start site of papX and focX, we used the 5’ Rapid Amplification of cDNA Ends 

(RACE) kit (Invitrogen) following the Manufacturer’s guidelines and the primers are listed in 

Table S2. cDNA was inserted in pCR2.1-TOPO via the TOPO TA cloning kit (Invitrogen) and 

transformed into competent Top10 E. coli. Transformants were plated on LB with ampicillin and 

plasmids were isolated by miniprep and sequenced to determine the papX and focX transcription 

initiation sites.  

 

Co-challenge and independent infections in the murine model of UTI  

Six-to eight-week-old female CBA/J mice (Jackson Laboratories) were infected as 

previously described (101, 199, 214). Briefly, bacteria were grown to stationary phase in LB 

medium, and then to induce motility, were diluted 1:50 in fresh LB medium and cultured with 

aeration at 37°C until an OD600 of ~0.3 was reached. Bacteria were harvested by centrifugation 

(1500 RPM), resuspended in sterile PBS, and adjusted by OD to a final total concentration of 107 

CFU/mL. For independent intraurethral infections between E. coli CFT073 and ΔpapX, mice 

were inoculated over a 6 second period with a low-dose inoculum (10 µl of 107 CFU/mL) of each 

strain into the proximal end of the urethra. For cochallenge infections, mice were inoculated 
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intraurethrally (10 µL of 107 CFU/mL) with a 1:1 mixture of wild type and ΔpapX for 

cochallenge infection.  

A transurethral infection model was used for cochallenge infections between E. coli 

CFT073 and the ΔfocXΔpapX construct. Bacteria were grown to stationary phase in LB medium, 

and then harvested by centrifugation (4000 RPM), resuspended in sterile PBS, and adjusted by 

OD to a final total concentration of 108 CFU/mL. Mice were transurethrally inoculated (50 µl of 

108 CFU/mL) with a 1:1 mixture of wild type and the ΔfocXΔpapX mutant. Dilutions of the 

initial inoculums were plated to verify input CFU/mL. 

For all infections, after either 24 and/or 48 hrs post inoculation, mice were sacrificed and 

the bladder, kidneys and spleen were removed, homogenized in PBS (GLH homogenizer, OMNI 

International), and plated onto LB agar using an Autoplate 400 spiral plater (Spiral Biotech). 

Bacterial counts were enumerated using a QCount automated plate counter (Spiral Biotech) to 

determine the output CFU/g of tissue. Competitive indices (CI) were calculated as the ratio of 

mutant to wild type in the output over the ratio of mutant to wild type in the input inoculum. 

Statistically significant differences were determined using a Wilcoxon signed-rank test. All 

animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) 

at the University of Michigan (PRO00007111). 
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Chapter IV - TosR-mediated regulation of adhesins and biofilm formation in 

uropathogenic Escherichia coli  

 

Notes 

 This chapter was reprinted and modified with permission from the authors Luterbach, 

C.L., Forsyth, V.S., Engstrom, M.D., and Mobley, H.L.T. TosR-mediated regulation of adhesins 

and biofilm formation in uropathogenic Escherichia coli. mSphere, 2018.  

 

Abstract 

 Uropathogenic Escherichia coli utilize a variety of adherence factors that assist in 

colonization of the host urinary tract. TosA (type one secretion) is a non-fimbrial adhesin that is 

predominately expressed during murine urinary tract infection (UTI), binds to kidney epithelial 

cells, and promotes survival during invasive infections. The tosRCBDAEF operon encodes the 

secretory machinery necessary for TosA localization to the E. coli cell surface, as well as the 

transcriptional regulator TosR. TosR binds upstream of the tos operon and, in a concentration 

dependent manner, either induces or represses tosA expression. TosR is a member of the PapB 

family of fimbrial regulators that can participate in cross-talk between fimbrial operons. TosR 

also binds upstream of the pap operon and suppresses PapA production. However, the scope of 

TosR-mediated cross-talk is understudied and may be underestimated. To quantify the global 

effects of TosR-mediated regulation on the E. coli CFT073 genome, we induced expression of 

tosR, collected mRNA, and performed RNA-Seq. These findings show that production of TosR 
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affected the expression of genes involved with adhesins including P, F1C, and Auf, nitrate/nitrite 

transport, microcin secretion, and biofilm formation. 

 

 Importance 

 Uropathogenic E. coli cause the majority of UTIs, which are the second most common 

bacterial infection in humans. During a UTI, bacteria adhere to cells within the urinary tract 

using a number of different fimbrial and non-fimbrial adhesins. Biofilms can also develop on the 

surfaces of catheters, resulting in complications such as blockage. In this work, we further 

characterized the regulator TosR, which links both adhesin production and biofilm formation and 

likely plays a crucial function during UTI and disseminated infection. 

 

Introduction 

 Uropathogenic Escherichia coli (UPEC) are the primary cause of uncomplicated urinary 

tract infections (UTIs), a widespread public health issue with approximately half of all women 

and one-fifth of men experiencing at least one UTI in their lifetime (261, 288). Most 

uncomplicated UTIs arise when bacteria from the intestine contaminate the periurethral area, 

traverse the urethra and colonize the bladder, resulting in cystitis (43). In some cases, bacteria 

ascend the ureters and infect the kidneys, resulting in pyelonephritis. From the kidney, bacteria 

are capable of crossing the epithelial and endothelial barriers to spread via the bloodstream, 

which in severe cases can lead to urosepsis and death (289).   

 Compared to commensal E. coli, UPEC genomes encode numerous accessory genes, 

including adhesins, toxins, and siderophores, which provide a fitness advantage during 

colonization of the host urinary tract system (290-292). Many of these virulence genes reside on 
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large regions of horizontally acquired DNA, termed pathogenicity-associated islands (PAIs) 

(293, 294). Indeed, the pyelonephritis isolate CFT073 encodes 13 genomic islands (GIs) that 

account for nearly one-fifth of the genome (64, 285, 295). Of these GIs, seven have been 

confirmed as PAIs (62, 64, 294, 296). We have previously shown that PAI-aspV harbors the 

tosRCBDAEF operon, which encodes the repeat-in-toxin (RTX) family member TosA (62, 132). 

RTX protein family members are frequently encoded on large open reading frames and can 

perform a range of functions, including pore-forming, biofilm formation, and adherence to host 

cells (130, 297, 298).  

TosA functions as an RTX non-fimbrial adhesin and can adhere to human kidney 

epithelial cells (132). Additionally, production of TosA occurs during both murine and human 

UTI, and a mutant lacking tosA was attenuated for colonization of the bladder and kidneys in the 

murine model of UTI (62, 131). TosCBD mediate production and export of TosA, while TosE 

and TosF have an unknown regulatory function associated with suppression of motility (132, 

134). The tos operon is regulated by TosR and the global regulatory proteins H-NS and Lrp 

(133). Our laboratory has previously shown that TosR functions as both an activator and 

repressor of the tos operon (133, 134). We found that low levels of TosR correlate with increased 

TosA production, while high levels of TosR inhibit TosA production (133).  

TosR is a member of the PapB family of transcriptional regulators, which includes the 

fimbrial-associated regulators PapB and FocB (134, 186, 209, 299, 300). PapB and FocB bind as 

oligomers to AT-rich DNA motifs to mediate positive and negative regulation of the pap and foc 

operons, which encode the UPEC-associated P and F1C fimbriae respectively (186, 299, 301). 

Pyelonephritis-associated pili, or Pap, bind Gal(α1-4)Gal moieties of the P-blood group-antigen 

located on kidney cells and erythrocytes (153, 302, 303). F1C fimbriae bind glycosphingolipids 
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found on kidney cells and also promote biofilm formation in the commensal E. coli isolate Nissle 

1917 (182, 188, 304). Cross-regulation between fimbrial operons has been extensively studied. 

For example, PapB and FocB mediate the cross-talk between the pap, foc, and fim operons, the 

latter encoding type 1 fimbriae (137, 154, 163, 224, 299, 305). While PapB and FocB share over 

80% amino acid sequence identity, they differ in their function as regulators of fimbrial operons. 

In particular, FocB is a positive regulator of the pap operon and a dual regulator of the foc 

operon; PapB is a dual regulator of the pap operon and a repressor of the foc operon; and both 

FocB and PapB are negative regulators of the fim operon (216, 224, 300, 301, 306). 

 TosR shares only 27.7% amino acid sequence identity with PapB, but may share a similar 

function in regulating fimbrial expression based on predicted structural homology (134). Indeed, 

we have previously shown that TosR binds upstream of the pap operon and suppresses PapA 

production, the major structural subunit of P fimbria (133). However, it is unclear if TosR 

regulates additional fimbrial genes, as observed with PapB and FocB, or additional non-fimbrial 

genes. Thus, the focus of this study was to further define TosR-mediated effects on gene 

expression, in particular on other adhesin genes, we ectopically expressed tosR, collected 

mRNA, and performed RNA sequencing (RNA-Seq). We discovered that TosR significantly 

affects gene expression of multiple functional gene categories including adhesins, biofilm 

formation, microcins, and nitrite/nitrate transport. Specifically, when tosR was overexpressed, 

we observed dramatic upregulation of the auf operon, encoding Auf fimbriae, and 

downregulation of the pap and foc operons. UPEC isolates are more likely to encode Auf 

fimbriae, and production of Auf fimbriae occurs in vivo during murine UTI (115, 139). We also 

observed that tosR overexpression led to increased Congo red and Calcofluor white binding and 

this phenotype was more robust in a mutant deficient in expression of the auf operon. 
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Additionally, we observed that induction of tosR increased biofilm formation in lysogeny broth 

(LB) and human urine. Thus, our study shows the depth of TosR-associated regulation in a 

global network connecting genes encoding adhesins and other biofilm promoting factors 

important in persistence and fitness during UTI (292, 307).   

 

Results 

Induction of tosR results in differential expression of both fimbrial and nonfimbrial genes  

 To identify genes affected by TosR, we performed RNA-Seq on mRNAs derived from E. 

coli CFT073 harboring either pBAD-tosR-His6 or pBAD empty vector, because tosR is poorly 

expressed in vitro (132). Bacteria were cultured at 37°C in LB with aeration to mid-logarithmic 

growth, mRNAs were extracted and RNA-Seq was performed. RNA sequence reads ranged from 

10-15 million per sample with 98.8-99.5% of these reads mapping to sequences in the reference 

E. coli CFT073 genome. Additionally, we excluded genes with variable or low expression by 

applying a cutoff requiring at least 3 of our counts per million (CPM) mapped reads for a given 

gene to be greater than 2. In total, overexpression of tosR resulted in the differential expression 

of 200 genes (123 upregulated and 77 downregulated) with a log2 fold change (FC) greater than 

or equal to ± 1.5. The top 25 genes upregulated and downregulated (log2 FC 10.1 to -6.2) in 

response to tosR overexpression are noted in Table 4.1 and Table 4.2, respectively.  

 E. coli genetic diversity is often mediated by horizontal gene transfer of large GIs, which 

frequently carry genes with accessory functions that are advantageous for host colonization, 

pathogenesis or immune evasion (63, 64, 295, 308). The UPEC isolate CFT073 encodes 13 GIs 

with 7 being confirmed as PAIs (62, 64). We mapped the genomic location of genes 

differentially expressed following overproduction of TosR to determine whether these genes are 
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preferentially localized to GIs (Figure 4.1). We found that a larger percentage of these genes, 68 

out of 945 (7.2%), are located on GIs compared to the rest of the genome, 132 out of 4476 

(2.9%) (p<0.0001; two-tailed Fisher's exact test). In CFT073, the majority of GIs differ in G+C 

content compared to the rest of the genome (50.5%)(64). Since TosR is predicted to bind AT-

rich sequences, we determined the association between the number of genes differentially 

regulated following induction of tosR and the total G+C content of the GI (Table 4.3)(64, 133). 

We found that GIs with higher A+T content were more likely (8.3-20.4% vs 0-4.5% genes/kB) to 

harbor genes differentially expressed following TosR overproduction with the exception of GI-

selC that did not have any genes affected by TosR-mediated regulation. Additionally through in 

silico analysis, we identified an AT-rich motif enriched in the upstream regions of differentially 

expressed genes (44.9%, N=129) compared to non-differentially expressed genes (11.5%, N=52) 

(Figure 4.2, Table 4.4). Of the top 50 differentially expressed genes, the TosR binding motif 

was located more frequently greater than	
  100 bp upstream of the ATG start site of positively 

expressed genes (75%) compared to negatively expressed (14%) (Figure 4.3). Therefore, the 

location of the TosR binding motif may influence whether TosR functions as a positive or 

negative regulator.  
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Table 4.1. Top 25 genes upregulated in response to tosR overexpressiona 
Gene 
Name Gene Locusb  Protein Function 

log2F
C P value FDR 

tosR C_RS26215, c0359 PapB family transcription factor 10.1 8.3E-50 2.7E-46 
c4594 C_RS21660, c4594 Uncharacterized protein 7.0 5.4E-47 8.6E-44 
c0092 NA, c0092 Uncharacterized protein 6.6 2.3E-19 5.6E-17 
aufF C_RS19920, c4208 Auf fimbrial chaperone 6.6 8.6E-15 1.2E-12 

c4924 C_RS23275, c4924 Putative hippuricase 6.6 2.1E-21 6.1E-19 
aufC C_RS19935, c4212 Auf fimbrial usher 5.6 1.5E-21 4.7E-19 
aufD C_RS19930, c4210 Auf minor fimbrial subunit 5.5 5.8E-16 1.1E-13 
aufB C_RS19940, c4213 Auf fimbrial chaperone 5.4 7.8E-22 2.8E-19 
aufA C_RS19945, c4214 Auf fimbrial major subunit 5.3 4.5E-32 3.6E-29 
yqiL C_RS18015, c3791 Yqi fimbrial subunit 5.3 8.3E-23 3.8E-20 
yfcV C_RS13680, c2884 Yfc fimbrial adhesin 5.2 4.4E-23 2.3E-20 

c4423 C_RS20890, c4423 Uncharacterized protein 5.1 6.3E-15 9.2E-13 
pitB C_RS17665, c3724 Phosphate transporter 4.9 1.0E-18 2.2E-16 
aufE C_RS19925, c4209 Auf fimbrial minor subunit 4.4 3.2E-14 4.1E-12 
yicP C_RS21630, c4589 Adenine deaminase 4.4 4.6E-20 1.2E-17 

c0325 C_RS01495, c0325 Uncharacterized protein 4.4 1.0E-14 1.4E-12 
tosC C_RS01650, c0360 TolC homolog 4.3 6.0E-19 1.4E-16 
efuD C_RS01485, c0322 Oligogalacturonide transporter 4.2 1.7E-23 1.1E-20 
yjjQ C_RS25720, c5444 Putative transcriptional regulator 3.7 2.9E-11 2.7E-09 
efuE C_RS01490, c0323 Exopolygalacturonate lyase 3.6 4.0E-22 1.6E-19 

c2408 C_RS11410, c2408 Uncharacterized protein 3.5 7.3E-14 8.3E-12 
c3178 NA, c3178 Uncharacterized protein 3.4 5.5E-15 8.3E-13 
c1936 C_RS09090, c1936 F9 fimbrial major subunit 3.3 2.5E-12 2.8E-10 
c0435 C_RS02025, c0435 Uncharacterized protein 3.3 7.1E-11 6.0E-09 

tsx C_RS23130, c4894 Nucleoside-specific channel 3.3 1.0E-10 8.1E-09 
a: NA-Not Available, FC-Fold Change, FDR-False Discovery Rate 
b: Gene locus tags contain the current NCBI annotation and the discontinued NCBI annotation, 
repectively 
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Table 4.2. Top 25 Genes downregulated in response to tosR overexpressiona 
Gene 
Name Gene Locusb Protein Function log2FC P value FDR 
narK C_RS07865, c1684 Nitrite extrusion protein 1 -6.2 5.2E-38 5.5E-35 
sdiA C_RS11040, c2330 Transcription Factor -3.6 2.8E-18 5.6E-16 

c3655 C_RS17360, c3655 Antigen 43 -3.2 2.3E-05 7.7E-04 
narX C_RS07855, c1682 Histidine kinase  -2.7 3.6E-14 4.4E-12 

papH2 C_RS24515, c5187 P fimbrial minor subunit -2.7 1.6E-11 1.5E-09 
yhcS C_RS18950, c3998 Transcription Factor -2.5 5.5E-09 3.6E-07 
focC C_RS05825, c1241 F1C fimbrial chaperone -2.4 4.9E-10 3.5E-08 
yffB C_RS14240, c2998 ArsC protein family reductase -2.4 7.0E-09 4.4E-07 
sfaD C_RS05820, c1240 F1C fimbrial minor subunit -2.4 4.9E-10 3.5E-08 
papB C_RS17045, NA P fimbriae regulatory protein -2.3 9.7E-11 8.0E-09 
papB2 C_RS24525, NA P fimbriae regulatory protein -2.2 1.4E-09 9.4E-08 
yeiC C_RS12810, c2701 Pseudouridine kinase -2.2 2.5E-03 4.2E-02 

papF2 C_RS24485, c5180 P fimbrial minor subunit -2.2 2.0E-08 1.2E-06 
papA2 C_RS24520, c5188 P fimbrial major subunit -2.2 9.4E-08 4.8E-06 
hybA C_RS17710, c3733 Hydrogenase-2 subunit -2.1 8.9E-05 2.5E-03 
papH C_RS17035, c3591 P fimbrial minor subunit -2.1 1.2E-06 4.9E-05 
focG C_RS05840, c1244 F1C fimbrial minor subunit -2.0 3.5E-07 1.6E-05 
pmbA C_RS25180, c5333 Microcin B17 peptidase -2.0 7.0E-09 4.4E-07 
focH C_RS05845, c1245 F1C fimbriae adhesin -2.0 2.7E-07 1.3E-05 

c1246 C_RS05850, c1246 
F1C-associated 
phosphodiesterase -2.0 2.0E-07 9.8E-06 

ynjE C_RS10200, c2158 Sulfurtransferase -1.9 1.2E-05 4.3E-04 
focF C_RS05835, c1243 F1C fimbrial minor subunit -1.9 4.8E-06 1.8E-04 

narL C_RS07850, c1681 
Nitrate/nitrite response 
regulator -1.9 2.7E-05 8.7E-04 

papF C_RS17005, c3584 P fimbrial minor subunit -1.9 5.7E-07 2.6E-05 
focA C_RS05815, c1239 F1C fimbrial major subunit -1.9 9.4E-07 4.0E-05 

a: NA-Not Available, FC-Fold Change, FDR-False Discovery Rate 
b: Gene locus tags contain the current NCBI annotation and the discontinued NCBI annotation, 
repectively 
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Figure 4.1 Overexpression of tosR affects expression of genes located on genomic islands. 
Schematic of genomic islands (GIs) and pathogenicity islands (PAIs) present in the CFT073 
genome (outer circle). Colored segments indicate the length of each labeled DNA region. Each 
bar (inner circle) represents the log2 fold change for each gene present within the island with red 
bars indicating a log2 fold change ≥ 1.5, blue bars indicating a log2 fold change ≤ -1.5, and gray 
bars representing genes that were not differentially regulated. Clusters of red (upregulated) and 
blue (downregulated) bars are indicative of differential expression of whole operons in response 
to tosR overexpression. 
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Table 4.3. Characteristics of CFT073 genomic islands harboring differentially regulated 
genes identified by RNA-Seq 
 

Genomic Islanda %G+C Size (kb) of 
genomic island 

# of genesb 

PAI-asnT 57 32 0 
PAI-metV 53 32 0 
GI-asnW 53 54 1 
φ-potB 51 44 1 
PAI-icdA 50 54 0 
GI-cobU 50 44 2 
φ-b0847 50 33 0 
PAI-serX 49 113 23 
φ-smpB 49 48 4 
PAI-pheU 48 52 9 
PAI-aspV 47 100 12 
PAI-pheV 47 123 16 
GI-selC 47 68 0 

a: PAI: Pathogenicity island - contains known virulence genes; GI: Genomic Island - contains 
genes with unconfirmed or no roles in virulence; φ: contains phage-rich DNA sequences 
b: genes identified by RNA-Seq to be differentially regulated following induction of tosR 
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Figure 4.2 Putative TosR binding consensus sequence 
Multiple Em for Motif Elicitation software (MEME version 4.12.0, http://meme-suite.org) was 
used to identify a 29 bp consensus sequence enriched in the upstream regions of differentially 
regulated genes (44.9%, N=129) relative to non-differentially regulated genes (11.5%, N=52). 
The 36 bp TosR binding site (5’ATAACAATAATATCTATAATATAGATATTATCTGCA) 
was used as a template for discriminative motif discovery within 450 bp DNA sequences located 
upstream of the translational start ATG of differentially regulated genes.  
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Table 4.4. Presence of a putative TosR binding consensus sequence located upstream of 
differentially expressed genes 

Top 25 Genes Upregulated in Response to tosR Overexpression 
Gene 
Locus 

Gene 
Name Putative DNA binding sequence (5' è 3') Starta P valueb 

c0359 tosR AACAATAATATCTATAATATAGATATTAT 254 1.32E-07 
c4594 c4594 ATATATTTTATATTTATAGTTTGATTGTT 181 2.40E-06 
c0092 c0092 ATTATTGATCAATTAATGTTAAGAATTAA 117 1.42E-08 
c4208 aufF TTAATATATACCATTAATATATATTAAAT 3985 2.43E-07 
c4924 c4924 CTTATAAAACAAATATATAAATATTTTAT 78 1.23E-06 
c4212 aufC TTAATATATACCATTAATATATATTAAAT 1954 2.43E-07 
c4210 aufD TTAATATATACCATTAATATATATTAAAT 4659 2.43E-07 
c4213 aufB TTAATATATACCATTAATATATATTAAAT 1138 2.43E-07 
c4214 aufA TTAATATATACCATTAATATATATTAAAT 360 2.43E-07 
c3791 yqiL ATTACTAATTAATAATATAAATTAATAAG 342 4.81E-07 
c2884 yfcV TATATTTATTGATTTAATTAATATTAAAT 365 3.46E-08 
c4423 c4423 ATAATTAATTATTTAAATTTTTCAATCAG 299 7.40E-07 
c3724 pitB -c - - 
c4209 aufE TTAATATATACCATTAATATATATTAAAT 5077 2.43E-07 
c4589 yicP - - - 
c0325 c0325 TTTTTTTCTTAATATCATTAATAAATTTA 2632 4.31E-07 
c0360 tosC AACAATAATATCTATAATATAGATATTAT 254 1.32E-07 
c0322 efuD CATATTGATATAGTTAACTAATTATCTAT 288 3.14E-06 
c5444 yjjQ ATTATTTAATTATAAATTAAATGAATGAG 258 1.52E-09 
c0323 efuE CATATTGATATAGTTAACTAATTATCTAT 1732 3.14E-06 
c2408 c2408 TGTTAGTTATTTTAAAAAATATAAACTTT 71 6.17E-06 
c3178 c3178 CAGAATGACACGTTTTATTAATAAATAAA 42 1.17E-07 
c1936 c1936 - - - 
c0435 c0435 - - - 
c4894 tsx - - - 

a: # of bp upstream of ATG of the listed gene, NA-Not Annotated 
b: Site P value as determined by Multiple Em for Motif Elicitation (MEME) 
c: No consensus sequence identified 
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Top 25 Genes Downregulated in Response to tosR Overexpression 
Gene 
Locus 

Gene 
Name Putative DNA binding sequence (5' è 3') Starta P valueb 

c1684 narK TTAAATGAGCAATAACCTTAATGAATGTG 282 2.16E-07 
c2330 sdiA ATAAATTATATATAAATCTTATTTATGTG 56 2.21E-09 
c3655 c3655 -c - - 
c1682 narX CACATTCATTAAGGTTATTGCTCATTTAA 21 2.16E-07 
c5187 papH2 - - - 
c3998 yhcS TGTAGATTGATATTTAATATATTAACGTA 58 4.44E-06 
c1241 focC CATGTTTACAACATAAAAAACTAAATATA 1971 4.07E-06 
c2998 yffB TTTAATGTTATTTAATAGTTGTTAATTTG 100 3.00E-08 
c1240 sfaD CATGTTTACAACATAAAAAACTAAATATA 1406 4.07E-06 
NAc papB AATATTTACAACATAAAAAACTAAATTTA 67 1.81E-06 
NA papB2 - - - 

c2701 yeiC - - - 
c5180 papF2 - - - 
c5188 papA2 - - - 
c3733 hybA - - - 
c3591 papH AATATTTACAACATAAAAAACTAAATTTA 1224 1.81E-06 
c1244 focG CATGTTTACAACATAAAAAACTAAATATA 5928 4.07E-06 
c5333 pmbA - - - 
c1245 focH CATGTTTACAACATAAAAAACTAAATATA 6382 4.07E-06 
c1246 c1246 CATGTTTACAACATAAAAAACTAAATATA 7696 4.07E-06 
c2158 ynjE - - - 
c1243 focF CATGTTTACAACATAAAAAACTAAATATA 5379 4.07E-06 
c1681 narL CACATTCATTAAGGTTATTGCTCATTTAA 1744 2.16E-07 
c3584 papF AATATTTACAACATAAAAAACTAAATTTA 6942 1.81E-06 
c1239 focA CATGTTTACAACATAAAAAACTAAATATA 778 4.07E-06 

a: # of bp upstream of ATG of the listed gene, NA-Not Annotated 
b: Site P value as determined by Multiple Em for Motif Elicitation (MEME) 
c: No consensus sequence identified 
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Figure 4.3 The location of the TosR binding motif upstream of differentially expressed 
genes 
Schematic of the location of the putative TosR binding motif (shown as a triangle) upstream of 
the top 25 genes (A) upregulated (blue triangle) and (B) downregulated (red triangle) folllowing 
production of TosR. Genes lacking an upstream TosR binding motif are not shown.  
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TosR induces expression of multiple genes within the tos operon 

 While TosR is both a positive and negative regulator of tos expression, we have 

previously shown by immunoblot that the level of tosR induction used in the cells to derive 

mRNA for our RNA-Seq study results in an increase in TosA production (133, 134). Therefore, 

we predicted that overproduction of TosR would induce expression of the tos operon. As we 

expected, expression of the tos operon as determined by RNA-Seq revealed upregulation of 

tosCBD (log2 FC: 1.5 to 4.3). However, we did not observe a statistically significant change in 

tosA expression (log2 FC: 0.99), and insufficient reads for tosE and tosF precluded detection of 

differential gene expression (Figure 4.4).  

 

 
Figure 4.4 TosR-mediated induction of the tos operon  
RNA-Seq demonstrates that overproduction of TosR promotes expression tos genes. Each bar 
represents the log2 fold change in mRNA transcript levels of gene expression of CFT073 carrying 
pBAD-tosR-His6 compared to CFT073 carrying pBAD as an empty vector control. ND, no data 
(i.e. genes that did not return a sufficient number of sequencing reads for analysis). *, log2 FC ≥ 
|± 1.5| and a false discovery rate (FDR) < 0.05. 
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TosR mediates differential expression of nonfimbrial genes  

 Induction of tosR resulted in the differential expression of multiple nonfimbrial genes 

encoding proteins that participate in nitrate/nitrite transport, microcin production, quorum 

sensing, fucose metabolism, the transport of metabolites and nucleosides, as well as many with 

uncharacterized functions. narK was the most downregulated gene (log2 FC: -6.22) identified 

using RNA-Seq in response to overexpression of tosR (Table 4.2). narK is transcribed with the 

narKGHJI operon and encodes a nitrate/nitrite transporter involved with the uptake of nitrate and 

excretion of nitrite (309-311). narGHJI genes encode subunits of a nitrogen reductase, which 

reduces nitrate to nitrite (311). The expression of narGHJI genes trended towards 

downregulation but was not statistically significant. Nitrate serves as an electron acceptor during 

anaerobic respiration, and narK has been previously identified as a fitness factor in UPEC F11 

during murine UTI (279). Additionally, narX (log2 FC -2.7) and narL (log2 FC -1.9), part of the 

narXLQ operon, were also within the top 25 downregulated genes identified by RNA-Seq (Table 

4.2). NarL and NarQ function as a two-component regulator that senses nitrate availability and 

subsequently induces expression of narK (312-314). However, direct binding of TosR to a DNA 

site within the promoters of the narKGHJI or narXLQ operons has not been investigated. 

Additionally, our RNA-Seq study assayed TosR-mediated regulation under in vitro conditions; 

therefore, the impact of TosR-mediated regulation of nar genes during UTI requires further 

investigation.  

 RNA-Seq also identified upregulation of all five genes of the mchBCDEF operon (log2 

FC: 1.8-3.0), encoding microcin H47, located within the PAI-serX pathogenicity island (64). 

Microcins are small, antibacterial peptides produced by bacteria that target the same or related 

species (315, 316). Microcin H47 is a known UPEC virulence factor, binds catechol receptors, 
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and targets the ATP synthase for bactericidal activity (317-319). The ability to eliminate 

susceptible bacteria may provide an advantage to pathogenic strains during colonization (320). 

Upregulation of mchBCDEF has been observed during human UTI, murine UTI and during 

growth in human urine, which further underscores the importance of tosR-mediated gene 

regulation during UTI (64, 106).  

 

Overproduction of TosR affects expression of the pap, foc, and auf fimbrial operons 

 The CFT073 genome encodes 12 distinct fimbriae, including 10 of the chaperone-usher 

family and 2 putative Type IV pili (142). TosR shares predicted structural homology with PapB 

and FocB, both of which participate in fimbrial cross-talk, and is therefore predicted to also 

regulate other fimbriae (134). Consistent with this prediction, RNA-Seq indicated that TosR 

regulates multiple operons encoding fimbriae. We observed significant upregulation of the auf 

operon (aufABCDEFG) (log2 FC 2.6 to 6.6), which encodes Auf fimbriae (Figure 4.5A). In 

contrast, we observed downregulation of the pap1 (log2 FC: -2.3 to 0.38), pap2 (log2 FC: -2.7 to 

-1.1), and foc operons (log2 FC: -2.4 to 0.15) (Figure 4.5B-D). The CFT073 genome harbors two 

copies of the pap operon, designated pap1 and pap2, both of which encode P fimbriae (142).  

 While we did identify additional differentially regulated fimbria-encoding genes within 

the fim, yqi, F9, yad, yeh, yfc, and mat operons, the majority of the genes associated with these 

operons were either not differentially regulated or excluded due to mapped reads below the CPM 

cutoff value (Figure 4.5). type 1 fimbriae, encoded by the fim operon, bind to mannose-

containing glycoproteins located on epithelial cells within the lower urinary tract and are a 

virulence factor for E. coli during colonization of the urinary tract (136, 321). We observed a 

decrease in fimA (log2 FC: -1.8), encoding the fimbrial subunit, and a modest but statistically 



 108 

significant decrease in fimB (log2 FC: -1.2), encoding a recombinase that catalyzes the inversion 

of the fim regulatory switch (223). We did not identify significant differences in the gene 

expression of additional fim genes, which is not surprising since fim genes are poorly expressed 

during culture in aerated conditions (322, 323).   
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Figure 4.5 tosR overexpression leads to differential expression of fimbrial operons. 
(A to D) Data from RNA-Seq showing the log2 fold change in abundance of mRNA transcript 
levels compared between CFT073 carrying either pBAD or pBAD-tosR-His6 for each gene 
within the auf (A), pap1 (B), pap2 (C), and foc (D) fimbrial operons. NS, differences in gene 
expression are not significant; ND, no data (i.e. genes did not return a sufficient number of 
sequencing reads for analysis). *, log2 FC ≥ |± 1.5| and a false discovery rate (FDR) < 0.05. 
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Figure 4.6 Overexpression of tosR affects the expression of multiple fimbrial genes 
(A-D) RNA-Seq data representing the log2 fold change in mRNA between CFT073 carrying 
either pBAD or pBAD-tosR-His6 for genes encoding (A) type 1, (B) F9, (C) Yeh, (D) Yqi, (E) 
Yad, (F) Yfc, and (G) Mat fimbriae. No data (ND) represents genes that did not return sufficient 
number of sequencing reads for analysis; *, log2 FC ≥ |± 1.5| and a false discovery rate (FDR) < 
0.05. 
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Validation of differentially expressed fimbrial genes 

 To validate our RNA-Seq results, we performed qPCR using primers specific to the 

fimbrial genes papA1, papA2, and aufA to compare log2 fold change in gene expression between 

CFT073 carrying pBAD-tosR-His6 or pBAD. Strains were cultured in a manner that replicated 

our RNA-Seq experiment. We observed identical trends in gene expression as compared to our 

RNA-Seq results. Specifically, we observed upregulation of aufA (log2FC: 5.2) and 

downregulation of papA1 and papA2 (log2FC: -2.3; log2FC: -2.7) (Figure 4.7).  

 We did not observe any changes in the gene expression of papA1, papA2, or aufA when 

comparing wild type with ΔtosR using qPCR, and this may be due to poor in vitro expression of 

tosR (Figure 4.8). However, we found that overexpression of tosR decreased attachment to T24 

human bladder epithelial cells, and this phenotype was abrogated in a mutant deficient in auf 

expression (Figure 4.9). 

 

TosR induces curli-associated genes 

 Curli, amyloid-like fibers, assist in UPEC adherence to human uroepithelial cells and 

participate in the structural development of biofilms (324-326). Curli regulatory and structural 

genes are encoded by the divergently expressed csgBAC and csgDEFG operons (327, 328). In 

response to tosR overexpression, we identified upregulation of two csg genes: csgD (log2 FC: 

2.2) and csgC (log2 FC: 1.6) (Figure 4.10). csgD encodes a transcriptional regulator that induces 

the expression of csgAB encoding CsgA, the main curli fiber subunit, and CsgB, which mediates 

nucleation of CsgA (327, 329, 330). CsgC inhibits toxic intracellular amyloid formation by 

interfering with CsgA oligomerization (331, 332). We were unable to determine if csgA, csgB, 
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csgE, and csgF were differentially expressed as they were excluded from the final RNA-Seq 

analysis due to low CPM values.  

 
 
 
 
 
 
 
 
 

 
Figure 4.7 Overexpression of tosR represses papA expression and induces aufA expression.  
qPCR was performed, and bars represent the average (n = 3) log2 fold change in mRNA levels 
between CFT073 expressing pBAD-tosR-His6 (+TosR) and CFT073 expressing pBAD (+Vector) 
compared to an uninduced empty vector control. Data are normalized to the housekeeping gene 
gapA. Error bars represent standard deviation, and statistical significance was determined using 
Student’s t test. *, P < 0.05 
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Figure 4.8 Loss of tosR does not affect the expression of papA1, papA2, or aufA  
qPCR was performed and bars represent the average (N=2) fold change in mRNA levels 
compared between CFT073 and ΔtosR. Data is normalized to the housekeeping gene gapA. Error 
bars represent standard deviation, and statistical significance was determined using the Student’s 
t-test; *: P < 0.05 
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Figure 4.9 Overexpression of tosR decreases attachment to T24 bladder epithelial cells 
Attachment of CFT073 pBAD-tosR-His6 or Δauf carrying either pBAD or pBAD-tosR-His6 to 
T24 human bladder epithelial cells. Bacteria were grown until mid-logarithmic growth, induced 
with 10mM L-Arabinose, and then incubated with confluent bladder epithelial cells for 1hr at 
37°C with 5% CO2. After incubation, bladder cells were washed three times with sterile PBS, 
lysed with 0.04% Triton-X 100 for 20 min, and bacterial cells were enumerated on LB agar. 
Attachment levels of wild type CFT073 +pBAD was set to 100%. Each bar represents the mean 
(N=6). Error bars represent the standard deviation, and statistical significance was determined 
using Dunnett’s multiple comparisons test; *: P < 0.05 
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tosR overexpression increases Congo red and Calcofluor white binding 

 Bacteria producing curli and/or cellulose will bind Congo red on YESCA plates, which 

can result in a RDAR (red, dry, and rough) phenotype (333, 334). Previous studies have shown 

that expression of the auf operon was elevated in E. coli during biofilm formation, although a 

function for Auf in biofilm formation has not yet been determined (277, 335). Since 

overproduction of TosR resulted in an increase in auf expression, as well as csgD, a known 

regulator of curli biosynthesis, we investigated the contribution of TosR and Auf to Congo red 

binding. We did not observe any phenotypic differences between ΔtosR and wild type, but 

induction of tosR in CFT073 wild type, ΔtosR, and ΔaufABCDEFG led to an increase in Congo 

red binding compared to an empty vector control (Figure 4.11). Interestingly, when TosR was 

overproduced in the ΔaufABCDEFG background, we observed a more pronounced RDAR 

phenotype compared to tosR overexpression in wild type or in the tosR mutant, suggesting that 

Auf fimbriae are interfering with RDAR formation in the presence of high levels of TosR. 

Furthermore, deletion or overexpression of the auf operon did not have any apparent effect on 

Congo red binding. Loss of csgD abrogated Congo red binding and the RDAR phenotype, 

supporting that TosR-mediated regulation of csgD is contributing to increased amyloid formation 

by a pathway independent of the auf locus.  

 CsgD also positively regulates the bcsGE and bcsQABZC operons involved in the 

production and export of cellulose, a secreted polysaccharide that functions as a structural 

component in the formation of biofilms (330, 336). Additionally, the amyloid-binding Congo red 

dye can bind both curli and cellolose. Therefore to better assess cellulose production, we 

performed an additional binding assay using the fluorescent cellulose-binding dye, Calcofluor 

white. We did not observe any difference in Calcofluor white binding between the tosR mutant 
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and wild type. However, induction of tosR in CFT073 wild type, ΔtosR, and ΔaufABCDEFG 

increased Calcofluor white binding, observed as an increase in fluorescence (Figure 4.11). 

Additionally, overexpression of tosR in a csgD mutant did not increase binding of Calcofluor 

white, suggesting that the presence of both CsgD and TosR is necessary for elevated binding of 

Calcofluor white. Our RNA-Seq analysis did not identify any bcs genes to be differentially 

regulated in response to induction of tosR (Figure 4.10).  
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Figure 4.10 TosR increases expression of genes encoding curli, but not genes for cellulose 
production.  
Data from RNA-Seq show the log2 fold change in abundance of mRNA transcript levels 
compared between CFT073 carrying either pBAD or pBAD-tosR-His6 for each gene within the 
csgD and bcsA gene clusters. ND, no data (i.e. genes did not return a sufficient number of 
sequencing reads for analysis). *, log2 FC ≥ |± 1.5| and a false discovery rate (FDR) < 0.05. 
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Figure 4.11 TosR overproduction increases binding to Congo red and Calcofluor white.  
Data from Congo red (CR) and Calcofluor white (CW) binding assays are shown comparing the 
CFT073 wild type and ΔtosR, Δauf, and ΔcsgD mutant strains harboring either pBAD (+vector), 
pBAD-tosR-His6 (+TosR), or pBAD-aufABCDEFG (+Auf) after 48 h of incubation at 30°C. CR 
binding was visually determined as an increase in RDAR (rough, dry, and red) morphology, and 
CW binding was determined as an increase in fluorescence in the presence of UV light. 
Representative images from three independent experiments are shown. 
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TosR overproduction promotes biofilm formation in LB and human urine 

 Biofilms are sessile bacterial communities that mediate cell-cell adherence as well as 

attachment to biotic and abiotic surfaces (337-339). Amyloid fibers and cellulose are two 

components that contribute to the complex formation of biofilms. Since production of TosR 

resulted in increased Congo Red and Cellulose binding, which are markers for the presence of 

amyloid fibers and cellulose, we next investigated if increased expression of tosR would translate 

to increased biofilm formation. Therefore, we compared biofilm formation between CFT073, 

ΔtosR, and ΔaufABCDEFG harboring pBAD, pBAD-tosR-His6, or pBAD-aufABCDEFG. We 

did not observe any differences in biofilm formation between the tosR mutant and wild type. 

However, we did observe a significant increase in biofilm formation, determined by increased 

retention of crystal violet, when tosR was overexpressed in both salt-free LB (Figure 4.12A) and 

human urine (Figure 4.12B) that was not due to an increase in biofilm inhabitants (Figure 4.13). 

We did not see any significant change in biofilm formation upon deletion or overexpression of 

the auf operon. Additionally, overexpression of tosR in the ΔtosR and ΔcsgD mutants did not 

result in a statistically significant change in biofilm formation in salt-free LB but did increase 

biofilm formation in human urine. 
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Figure 4.12 Overexpression of tosR increases biofilm formation in salt-free LB and human 
urine.  
Biofilm formation was measured in (A) salt-free LB or (B) pooled human urine in the CFT073 
wild type and ΔtosR, Δauf, and ΔcsgD mutants harboring either pBAD (empty vector control 
[+pBAD]), pBAD-tosR-His6 (+TosR), or pBAD-aufABCDEFG (+Auf). Biofilm growth was 
assessed using crystal violet and normalized to the induced wild type carrying pBAD (WT 
+pBAD). Each bar represents the mean absorbance from three biological replicates, with error 
bars showing standard deviation. Statistically significant differences between strains were 
determined using Dunnett’s multiple-comparison test. *, P < 0.05. 
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Figure 4.13 TosR does not affect levels of biofilm inhabitants 
(A) Colony forming units (CFU) of adherent or (B) total (adherent and nonadherent) bacteria 
incubated statically in LB medium for 24 hrs at 37°C. To enumerate adherent bacteria, unbound 
cells were removed by washing twice with sterile 1x PBS. The remaining bacteria and matrix 
components were resuspended in sterile PBS using vigorous pipetting and then plated on LB 
agar with ampicillin and incubated at 37°C to enumerate viable counts. Removal of bacteria and 
matrix components were confirmed by crystal violet staining compared to an empty control well.  
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Discussion 

 Using RNA-Seq, our study further characterizes the function of the transcriptional 

regulator TosR in UPEC. In total when TosR was overproduced, we identified 200 genes that 

were differentially expressed (123 upregulated and 77 downregulated). Based on structural 

homology to members of the PapB protein family, TosR is predicted to bind AT-rich sequences 

and mediate regulation by modulating the local nucleoid structure, similar to the mechanism of 

the nucleoid-structuring proteins Lrp and H-NS (133, 299, 340-342). Indeed, PapB has been 

shown to compete against H-NS and Lrp transcriptional silencing of the pap operon, and TosR is 

predicted to similarly antagonize the H-NS and Lrp-mediated regulation of the tos operon (133, 

299, 343). Overproduction of TosR resulted in elevated expression of tosCDB of the tos operon, 

but we did not see any significant upregulation of tosAEF. Previous work has shown via 

immunoblotting that expression of tosR in trans in the strain CFT073 results in a significant 

increase in TosA production compared to an empty vector control (133). However, high 

concentrations of TosR, as was also used in our study, resulted in only a slight increase in TosA 

production compared to wild type and may explain why tosA gene expression trended towards 

upregulation but was not statistically significant.  

 PapB family members frequently participate in regulatory cross-talk between fimbrial 

operons, and our previous work identified TosR as a negative regulator of the pap operon (133, 

134, 224, 305). Our current RNA-Seq study supports these conclusions as we observed 

downregulation of the foc, pap1, and pap2 operons, as well as, upregulation of the auf operon in 

response to overexpression of tosR. The auf operon is more prevalent in uropathogenic than fecal 

E. coli strains (115). However, co-challenge infections between wild type CFT073 and an 

isogenic mutant lacking the auf operon did not demonstrate Auf fimbriae as an important UPEC 



 123 

fitness factor during murine UTI (139). Interestingly, aufA is poorly expressed in urine samples 

collected from human UTI, but aufDEG was previously shown to be upregulated (1.8-2.5 fold) 

in the asymptomatic bacteriuria E. coli isolate 83972 and CFT073 during culture in biofilm-

promoting conditions in human urine (150, 277). Therefore, Auf fimbriae may contribute more 

towards UPEC pathogenesis during catheter-associated UTIs where biofilm formation on urinary 

catheters promotes a more persistent and severe infection (29, 344). As there is little information 

regarding regulation of the auf operon, to our knowledge, TosR is the first known regulator 

associated with this operon. While it is unclear whether TosR directly or indirectly promotes auf 

expression, we were able to identify a shared AT-rich motif that was enriched in the upstream 

regions of genes differentially regulated following tosR overexpression and may represent 

putative TosR binding sites (345-347).  

 The tos operon is more prevalent in UPEC isolates (~25-30%) compared to fecal E. coli 

strains (11%) (131, 134). As we have shown that induction of tosR affects the expression of 

multiple UPEC-associated fitness factors in CFT073, these results are likely broadly applicable 

to other UPEC strains carrying the tos operon. However, our RNA-Seq results represent genes 

affected by TosR induction during in vitro culture in LB, which may not comprehensively 

identify the genes regulated by TosR during infection. Therefore, additional gene expression 

studies in other growth conditions, such as human urine or in vivo studies, would add to our 

understanding of the impact of TosR on gene expression during pathogenesis.  

 Our study reveals that overproduction of TosR increases Congo red and Calcofluor white 

binding, as well as biofilm formation in salt-free LB and human urine. We were able to show 

that Congo red and Calcofluor white binding was dependent on the presence of csgD, encoding a 

transcriptional regulator of curli and cellulose production (327, 334, 348). We found that the loss 
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of tosR did not increase Congo red binding, Calcofluor white binding, or biofilm formation 

compared to wild type. This may be due to limited native expression of tosR or indicate the 

presence of a compensatory regulatory mechanism. Interestingly, deletion of the auf operon 

promoted a more robust RDAR phenotype when TosR was overproduced in the Congo red 

binding assay but did not have any effect on TosR-mediated biofilm formation. We also found 

that overexpression of tosR decreased attachment to T24 human bladder epithelial cells, and this 

phenotype was abrogated in the auf mutant. Therefore, it may be that Auf fimbriae sterically 

inhibit the function of other adhesins. For example, the production of Auf fimbriae may affect 

the formation, secretion, or localization of biofilm components and the contribution of Auf to 

biofilm formation may be context-dependent or require additional factors not present in our 

tested in vitro conditions. Indeed, overproduction of type 1, P, and F1C fimbriae prevents 

autoaggregation by the autotransporter protein Ag43, which is involved in cell-to-cell adhesion 

(349, 350). Additionally, the deletion of auf may affect the expression of genes encoding other 

adhesins or biofilm-related genes. Therefore, deletion of the auf operon may impact biofilm 

development through an unknown mechanism.  

 Additionally, the absence of CsgD did not affect TosR-mediated biofilm formation when 

cultured in human urine, suggesting that additional regulatory or structural factors account for 

TosR-mediated biofilm formation, which is not surprising considering construction of biofilms is 

a complex association of curli, cellulose, fimbrial and non-fimbrial adhesins, flagella, colonic 

acids, and other exopolysaccharides (351-354). Therefore, expanded testing of these phenotypes 

under different culture conditions would improve our understanding of TosR-mediated 

regulation of csgD. Nevertheless, our results reveal for the first time that TosR-mediated gene 

regulation is part of a global gene network linking the regulation of adhesins and biofilm 
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formation, and future studies should be designed to investigate TosR-mediated gene regulation 

during murine UTI.  

 

Materials and Methods 

Bacterial strains and media 

 E. coli CFT073 was isolated from the blood and urine of a patient with acute 

pyelonephritis (285). Strains were cultured at 37°C with aeration in either lysogeny broth (LB; 

10 g/L tryptone, 5 g/L yeast extract, 0.5 g/L NaCl), LB without NaCl (salt-free LB; 10 g/L 

tryptone, 5 g/L yeast extract) or in filter-sterilized pooled human urine. Urine was collected from 

at least 3 healthy female volunteers, pooled, filter sterilized, and stored at -20°C. Urine collection 

was performed as approved by the University of Michigan Institutional Review Board 

(HUM00004949). The following antibiotic concentrations were used when appropriate: 

ampicillin (100 µg/ml) and kanamycin (25 µg/ml). 10mM L-arabinose was added to the medium 

to induce expression from the pBAD promoter.  

 

Construction of mutants and complementation 

 Strains and plasmids used for this study are listed in Table 4.6, while primers used are 

listed in Table B.2. E. coli CFT073 mutants were constructed using recombineering (286). In 

brief, to construct the ΔaufABCDEFG mutant a kanamycin resistance cassette was PCR 

amplified from pKD4 using EasyA polymerase (Agilent) and primers ΔaufKO_f and ΔaufKO_r 

and transformed into CFT073 expressing the λ Red recombinase system genes on the 

temperature-sensitive plasmid, pKD46. Transformants were plated on LB agar with kanamycin 

and incubated overnight at 37°C. Deletion of the aufABCDEFG operon was confirmed by PCR 



 126 

using primers auf_screen_f and auf_screen_r. The ΔcsgD mutant was constructed in a similar 

manner but using the primers ΔcsgDKO_f /ΔcsgDKO_r, and the ΔtosR mutant was previously 

constructed (134).  

 pBAD-tosR-His6 harboring tosR under the control of the arabinose-inducible araBAD 

promoter was previously engineered (134). To generate pBAD-auf, the aufABCDEFG operon 

was PCR amplified using EasyA polymerase (Agilent) and the primers pBAD_auf_f and 

pBAD_auf_r. The resulting PCR product was digested by NcoI and KpnI (New England 

BioLabs), and ligated into pBAD-myc-HisA using T4 DNA Ligase (New England Biolabs). The 

resulting construct was transformed into TOP10 E. coli and transformants were selected on LB 

agar containing ampicillin and verified by DNA sequencing. Plasmids were isolated and 

transformed into electrocompetent CFT073 or isogenic mutants and selected on LB agar with 

ampicillin. 
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Table 4.5. Bacterial strains and plasmids used in this study 

Strain Genotype/Resistance/Usea Source 
CFT073 Wild-type pyelonephritis isolate (O6:K2:H1) (11) 
ΔtosR CFT073 tosR::kan (20) 
ΔcsgD CFT073 csgD::kan This Study 
ΔaufABCDEFG CFT073 aufABCDEFG::kan This Study 
    

 Plasmid Relevant Characteristics References 

pBAD-myc-HisA 
Vector carrying arabinose inducible araBAD promoter, 
ampR Invitrogen 

pBAD::aufABCDEFG 
aufABCDEFG cloned into the NcoI and HindIII sites of 
pBAD-myc-HisA This Study 

pBAD-tosR-His6 
tosR cloned into NcoI and HindIII sites of pBAD-myc-
HisA (20) 

pKD4 Vector carrying a FRT-flanked kan gene (ampR, kanR) (99) 
pKD46 Vector carrying phage λ Red recombinase, ampR (99) 

a: kan-kanamycin, amp-ampicillin, R-resistant 
 

RNA isolation and sequencing  

 E. coli CFT073 carrying either pBAD or pBAD-tosR-His6 were cultured overnight in 

biological triplicates in LB medium containing ampicillin. Cultures were diluted 1:100 into fresh 

LB medium containing 10 mM L-arabinose and ampicillin and cultured at 37°C with aeration. A 

400 µL sample was collected between OD600 0.46-0.96, and stabilized by the immediate addition 

of 800 µl of RNAprotect (Qiagen). Cells were then lysed with 0.2 µM of lysozyme in TE (10 

mM Tris-Cl, 1 mM EDTA, pH 8.0) for 5 min at room temperature, and total RNA was extracted 

using the RNeasy Mini Kit (Qiagen). DNA contamination was eliminated by treatment with 

TURBO DNase (Thermo Fisher). Depletion of ribosomal RNA was accomplished with the 

Ribominus Transcriptome Isolation Kit (Thermo Fisher) followed by ethanol precipitation. A 

stranded library was prepared using a ScriptSeq kit (Illumina) using manufacturer's 

recommended protocols. Each sample was tagged with a unique six-nucleotide barcode for 

multiplexing. The products were purified and enriched by PCR to create the final cDNA library, 
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which were checked for quality and quantity by TapeStation (Agilent) and qPCR using Kapa’s 

library quantification kit for Illumina Sequencing platforms (Kapa Biosystems). Six samples 

were sequenced per lane on a 50 cycle single end run on a HiSeq 2500 (Illumina) in high output 

mode using version 4 reagents. cDNA reads were aligned to the CFT073 genome (NCBI 

accession number NC_004431.1) by the Bioinformatics Core of the University of Michigan 

Medical School and the program SPARTA was used for quality control analysis and calculation 

of differential gene expression presented as log2 fold change (FC) (142, 355). Compositional 

biases between libraries were eliminated using Trimmed Means of M-values (TMM) 

normalization. Genes were identified as differentially expressed if they had a log2 FC greater 

than or equal to ± 1.5, compared to the empty vector, and a false discovery rate (FDR) < 0.05. 

Additionally, we excluded genes with low expression by requiring at least 3 of the six individual 

counts per million (CPM) mapped reads for a given gene to be greater than 2.  

 

qPCR 

 E. coli CFT073 strains harboring pBAD or pBAD-tosR-His6 were cultured overnight in 

LB with ampicillin and then diluted 1:100 into fresh LB medium containing ampicillin and 

cultured to an OD600 of 0.15 at which point 10 mM L-arabinose was added to the cultures to 

induce gene expression. Samples were collected at an OD600 of 0.5-0.6 and stabilized in phenol-

ethanol (95% phenol, 5% ethanol, 4°C). RNA was extracted and TURBO DNase (Thermo 

Fisher) was used to eliminate genomic DNA. Removal of genomic DNA was verified by PCR 

using gapA_f and gapA_r. RNA was converted into cDNA using SuperScript III (Thermo 

Fisher), and GenCatch PCR Cleanup Kit (Epoch Life Science) was used to purify cDNA. qPCR 

was performed using Brilliant III SYBR Green master mix (Agilent) with 12 ng of total cDNA. 
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Primers used to detect papA1, papA2, aufA, and gapA are listed in Table A.4. gapA expression 

was used for normalization of gene expression between samples and data were analyzed using 

the 2-ΔΔCT method (287). Data are shown as the log2 FC in gene expression compared to CFT073 

carrying the empty vector pBAD of three biological replicates. 

 

Congo red binding assay 

 Congo red binding was determined by spotting 5 µl of bacteria cultured overnight in LB 

medium onto YESCA plates (1 g/L yeast extract, 10 g/L casamino acids, 20 g/L agar, 50 µg/ml 

Congo red (Sigma), 1 µg/ml Coomassie Brilliant Blue G-250 (Bio-Rad) with 100 µg/ml 

ampicillin and 10 mM L-arabinose (356). YESCA plates were incubated at 30°C for 48 hours. 

Congo red binding and RDAR (red, dry, and rough) phenotypes were visually determined using 

an Olympus SZX16 microscope.  

 

Calcofluor white binding assay 

 To detect cellulose production, 5 µl of overnight culture was spotted onto YESCA plates 

(1 g/L yeast extract, 10 g/L casamino acids, 20 g/L agar, 50 µg/ml Fluorescent Brightener 28 

(calcofluor white, Sigma) with 100 µg/ml ampicillin and 10 mM L-arabinose. Inoculated plates 

were incubated in the dark at 30°C for 48 hours (357). The level of calcofluor white binding to 

cellulose was visualized using ultraviolet light and images were recorded using a ChemiDoc 

Touch Imaging System (Bio-Rad).   
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Biofilm Formation 

 Levels of biofilm formation were quantitatively assessed using crystal violet, modified 

from (358). Briefly, overnight cultures of CFT073 wild type, ΔtosR, and Δauf harboring either 

pBAD, pBAD-tosR-His6 or pBAD-aufABCDEFG were diluted 1:100 into 2 ml salt-free LB 

medium or human urine with ampicillin and 10 mM L-arabinose in 6 well plates (CELLSTAR, 

BioExpress). Plates were incubated statically at 37°C for 24 hours. After incubation, unbound 

cells were removed by washing with water and the remaining material was stained with 0.1% 

crystal violet (Fisher) for 15 min. Excess crystal violet was removed by rinsing with phosphate 

buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 KH2PO4, pH 7.4) three 

times followed by resuspension of the retained crystal violet (80:20 ethanol to acetone). OD590 

was measured with a µQuant plate reader (BioTek).  

 

Data Availability 

 The RNA-Seq data discussed in this publication have been deposited in NCBI’s Gene 

Expression Omnibus repository with the accession number GSE112878. 
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Chapter V: Discussion 

While both motility and adherence are important for the ascension and colonization of the 

urinary tract, it is not fully understood what signals within the urinary tract influence the 

transition between motility and adherence or what the consequences are for regulatory mistiming 

on the production of these traits during infection. Therefore, deconstruction of the complex 

regulatory network coordinating the expression of multiple adherence factors and flagella in 

UPEC will ultimately aid in the development of therapeutic strategies to reduce colonization of 

the urinary tract. The primary focus of this dissertation was to characterize the function of the 

transcriptional regulators, PapX, FocX, and TosR, encoded within the fimbrial (pap and foc) and 

nonfimbrial (tos) adhesin operons, respectively, and their involvement with cross-talk between 

genes encoding adherence factors and flagella. Specifically, P fimbriae were confirmed as a 

virulence factor during ascending UTI in the murine model. Additionally, papX and focX were 

found to both function as repressors of flhDC expression. Lastly, TosR was demonstrated to be 

involved in the regulation of fimbrial operons, motility, adherence to human bladder cells, and 

biofilm formation. 

 

Chapter Summaries 

Chapter II described the investigation of fitness and virulence factors in the cystitis E. 

coli isolate F11 that contribute to colonization in the ascending murine model of UTI. To 

accomplish this goal, signature-tagged mutagenesis was used to generate 1334 mutants, which 

were assembled into a total of 29 screening pools and independently transurethrally inoculated 
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into CBA mice. Mutants displaying a fitness defect in colonization of the bladder or kidneys 

were confirmed for attenuation by in vivo competitive cochallenge against wild type F11. 

Ultimately, 19 fitness factors were identified in F11, including genes involved with the 

production of P (papC) and type 1 fimbriae (fimA), colanic acid biosynthesis, potassium and 

nitrate transport, and nicotinamide adenine dinucleotide (NAD+) biosynthesis (Table 2.2).  

Since both type 1 and P fimbriae were identified as putative fitness factors, we 

investigated the cross-talk between these fimbrial types in E. coli F11 and determined that 

constitutive fim expression, generated by locking the orientation of a regulatory invertible 

element within the fim promoter, did not affect pap expression (Figure 2.1). Finally, Molecular 

Koch postulates were fulfilled and the role of P fimbriae as a virulence factor was confirmed in 

UPEC CFT073 by cochallenge infections in CBA mice inoculated with a 1:1 mixture of CFT073 

and a mutant unable to produce P fimbriae (Figure 2.2).  

The findings presented in Chapter III represent an extensive characterization of the 

effects of the MarR-like proteins FocX and PapX, encoded by the foc and pap operons, 

respectively, on flagellar gene expression and motility in the UPEC strain CFT073. A 

multidimensional experimental approach was performed using swimming motility assays, qPCR 

and immunoblots to demonstrate that FocX and PapX when overexpressed share the same 

function as repressors of flhD expression, which results in reduced flagella production and 

motility (Figure 3.4). Intriguingly, single gene deletions of papX and focX had different effects 

on motility compared to wild type, with the loss of papX resulting in hypermotility and the loss 

of focX having no effect on motility (Figure 3.2). These swimming data indicated the existence 

of cross-talk between focX and papX, which resulted in the discovery that FocX represses the 

expression of papX (Figure 3.8). Additionally, a shared independent promoter was identified 
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upstream of focX and papX, suggesting that these genes could also be independently regulated in 

addition to being expressed by the fimbrial operon promoter (Figure 3.6). However, the 

expression of focX and papX positively correlated with focA and papA expression when cultured 

in human urine or on LB agar plates compared to LB medium (Figure 3.7). The contribution of 

papX to UPEC fitness was assessed in the murine model of ascending UTI following 

intraurethral inoculation, but a statistically significant fitness defect was not observed in the 

papX mutant when compared to wild type (Figure 3.9). Furthermore, in vivo competition 

infection between wild type and the double ΔfocXpapX mutant did not show a significant fitness 

defect in the colonization of the murine bladder or kidneys (Figure 3.9). 

The findings from Chapter IV detail the effects of overexpression of tosR in the UPEC 

strain CFT073 on global gene expression as well as the contribution of TosR to adherence and 

biofilm formation. RNA-Seq was performed on CFT073 carrying either pBAD or pBAD-tosR. In 

summary, 200 genes were differentially regulated following overexpression of tosR with a 

significant portion of these genes being enriched on genomic islands (Figure 4.1). A number of 

the differentially regulated genes encoded for adhesins; specifically, the overexpression of tosR 

resulted in the upregulation of the auf and tos operons and the downregulation of the foc, pap1, 

and pap2 operons (Figure 4.3, Figure 4.4, Figure 4.5). Interestingly, we found no change in the 

expression of papX or focX, which may indicate a compensatory regulatory mechanism affecting 

the independent proximal promoter upstream of papX and focX (Figure 4.5). Using a 

bioinformatics approach, a putative TosR AT-rich binding motif was identified and found to be 

more prevalent upstream of differentially regulated genes compared to non-differentially 

regulated genes (Figure 4.2 and Figure 4.3). In addition to affecting adhesin production, the 

overexpression of tosR resulted in increased Congo red binding, cellulose binding, and biofilm 
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production, and the increase in biofilm formation was more pronounced when bacteria were 

cultured to stationary phase in human urine as compared to salt-free LB medium (Figure 4.11 

and Figure 4.12). Intriguingly, the increase in Congo red binding was more robust in a CFT073 

mutant lacking the auf operon, encoding Auf fimbriae. Additionally, overproduction of TosR 

reduced bacterial association with T24 bladder transitional epithelial cells, and the deletion of the 

auf operon restored binding (Figure 4.9). Thus, Auf fimbriae may sterically inhibit TosR- 

mediating biofilm formation and adherence.    

 

Regulatory framework for transitioning between motility and adherence in UPEC 

 Since it is counterproductive for a bacterium to attach to a surface while being highly 

motile, the expression of genes encoding adhesins and flagella must be coordinated to efficiently 

transition between adherent and motile states. However, the regulatory network linking motility 

and adherence is highly complex, in part since E. coli strains typically encode 8-16 different 

fimbrial types. Additionally, cross-talk between fimbrial operons limits production to a single 

fimbrial type on a bacterium (112, 224, 359). Also, the regulation of flhDC, which controls the 

expression of > 50 flagellar genes, is itself regulated by numerous transcription factors that can 

compete for binding sites within the flhD promoter (74, 75). Thus, transcription factors 

mediating the cross-talk between motility and adherence, including PapX, FocX and TosR, 

function within a complex regulatory framework. The findings presented in this dissertation fill a 

gap in our understanding of the cross-talk between adhesin operons and predicts a model of the 

regulatory network linking adherence and motility in the E. coli strain CFT073 (Figure 5.1).   
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Figure 5.1 Regulatory network coordinating adherence and motility in CFT073 
Cross-talk between the adhesin operons fim, pap, foc, tos, and auf can occur through direct 
binding interactions (solid lines) or through indirect effects (dashed lines). The transcriptional 
regulators PapB and FocB, encoded by the pap and foc operons respectively, mediate extensive 
cross-talk between pap, foc, and fim, and function as dual regulators of the pap and foc operons 
depending on protein concentration. papX and focX are transcribed with the fimbrial operon 
promoter as well as with an independent proximal promoter. Therefore, papX and focX can also 
be independently regulated. While Auf fimbriae likely promote adherence, a specific cell type 
has not been identified and the expression of auf inhibited TosR-mediated adherence to human 
T24 bladder transitional cells.   
 
  



 136 

There have been multiple studies elucidating cross-talk between fimbrial operons, which 

provided a number of assumptions used in the construction of this regulatory model. For 

example, the production of type 1 and P fimbriae are coordinated in the E. coli isolate J96 such 

that only one fimbrial type is expressed at a time. This mechanism of phase variable regulation is 

presumed to also extend to other fimbrial types in other UPEC strains (137, 224, 359). Indeed, in 

CFT073 the expression of fim genes is correlated with a decrease in pap expression, and 

likewise, the deletion of both the fim and pap operons induced the production of F1C fimbriae 

(216). However, fimbrial expression can be stochastic as well as influenced by numerous 

environmental conditions. Additionally, the mechanism responsible for the repression of pap 

genes in response to fim expression is not well understood. For example, in the E. coli strain F11 

when the phase variable fim promoter was locked-on for type 1 expression (fim L-ON) there was 

no effect on pap expression (Figure 2.1) (279). Thus, the strain background can influence 

fimbrial regulation, which is in part influenced by the diversity of encoded fimbriae types and 

regulators among UPEC isolates. As a consequence, the assumptions of the regulatory model in 

CFT073 presented here may vary between UPEC isolates.  

The pap and foc-encoded transcriptional regulators, PapB and FocB, respectively, have 

been extensively characterized in CFT073 and shown to coordinate the expression of the fim, 

pap, and foc operons. Specifically, PapB can repress fim transcription by inhibiting the 

transcription fimB, encoding a site-specific recombinase responsible for switching the invertible 

element within the fim promoter to either the on or off orientation (224, 300). Concurrently, 

PapB promotes the expression of fimE, encoded another site-specific recombinase that switches 

the fim invertible element from on to off (163, 223, 224, 300). Similarly, FocB also acts a 
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negative regulator of fim expression; however, the mechanism of regulation is not as well 

characterized (305).  

PapB can also function as a dual regulator of the pap operon and repressor of the foc 

operon. Specifically, at low protein concentrations PapB binds with high affinity to DNA sites 

within the pap promoter and promotes expression of the pap operon. However, high protein 

concentrations induce PapB to bind with lower affinity to alternative sites within the pap 

promoter, resulting in decreased pap expression (305, 306). FocB performs a similar function as 

a dual regulator of the foc operon and a positive regulator of the pap operon (305).  

TosR is also part of the PapB protein family and is involved in cross-talk between 

multiple adhesin operons (134). Findings presented in this dissertation demonstrated that 

overproduction of TosR repressed the expression of the tos, pap, and foc operons and induced 

the expression of the auf operon (Figure 4.5). The direct binding of TosR to the pap and tos 

promoters was previously confirmed by EMSA (133, 134). Similar to PapB and FocB, TosR-

mediated regulation is focused on cross-talk between adhesins, as overexpression of tosR does 

not affect flagellar genes or motility (134). However, expression of the tosEF genes repress 

swimming motility in CFT073 through an unknown mechanism (134).   

Conversely, the expression of the fim, pap, and foc operons have all been linked to the 

repression of motility. For example, Simms et al. demonstrated that constitutive expression of 

fim genes (fim L-ON) in E. coli CFT073 resulted in decreased motility, and a number of genes, 

including papX, were found to mediate the repression of motility (273). Additionally, the 

findings presented in this dissertation, as well as previous work by others, demonstrated that 

PapX directly binds within the flhDC promoter and represses motility (Figure 3.2 and Figure 
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3.4). Futhermore, FocX was also found to share the same function as a repressor of motility 

(Figure 3.4) (169, 170, 176, 273).  

Intriguingly, ectopic expression of sfaX in the NMEC strain IHE3034 was shown to 

decrease fim expression by decreasing the expression of fimB (360). However, microarray 

analysis in E. coli CFT073 following the overproduction or loss of papX did not identify any fim 

genes to be differentially expressed. These microarray results were consistent with microarray 

analysis I performed comparing the differentially regulated genes in the double ΔfocXpapX 

mutant compared to wild type CFT073 (Table A.1)(176). Therefore, the function of SfaX on fim 

expression may be specific to SfaX or the NMEC IHE3034 genetic background. PapX and FocX 

may be unable to affect fim expression in CFT073 due to functional differences, an inhibitory 

mechanism, or the absence of a required additional regulator.  

Approximately 25-30% of UPEC isolates carry both papX and focX compared to only 8% 

of fecal E. coli isolates (169). The identification of an independent promoter upstream of focX 

and papX adds additional complexity into the model. The loss of focX resulted in increased papX 

expression (Figure 3.6 and 3.8). Yet, the loss of papX had no effect on focX expression (Figure 

3.8). FocX-mediated repression of papX is presumed to occur at the papX promoter, since the 

loss or overexpression of focX did not affect the transcription of papA (Figure 3.8). Since PapX 

and FocX share high structural and sequence homology, these proteins are presumed to bind to 

the same DNA sequences. Therefore, the regulation of papX is likely autoregulatory. However, 

there are no binding motifs upstream of papX or focX that match with high sequence identity to 

the PapX binding site identified upstream of flhDC. Therefore, PapX may bind to a degenerate 

DNA sequence within the proximal promoter and additional investigations by EMSA are 

necessary to confirm the binding specificity of PapX. For example, the MarR-like protein PecS 
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found in the Gram-negative phytopathogen Dickeya dadantii interacts with degenerate DNA 

sequences that have little sequence conservation with its originally defined DNA binding site 

(361, 362). Additionally, Staphylococcus aureus MepR binds both to a specific DNA sequence 

within the promoter of mepRA, encoding a multidrug efflux pump, and also binds nonspecifically 

to different DNA sites through interactions with the DNA backbone (363). Therefore, one 

possible regulatory model is that when PapX protein levels cross a concentration threshold, PapX 

may then be able to bind to DNA binding sites with lower affinity within the papX promoter and 

thereby repress its own transcription and consequently relieving the repression of motility. This 

mechanism may allow UPEC to limit the attachment time mediated by P fimbriae to host cells 

and act as a signal to transition from an adherent to a motile state. Thus, cross-talk between “X” 

genes may allow for continuous repression of motility while permitting transient expression 

between fimbrial types.  

 One gap in the presented regulatory model is a better understanding of the regulation of 

the independent “X” promoter. An investigation of the transcription factors affecting the 

independent expression of papX or focX will provide insight on how various environmental 

signals stimulate the repression of motility. Another caveat of this model is that the additional 

fimbrial and nonfimbrial operons encoded by CFT073 are not incorporated into the final model, 

including the second pap operon lacking papX. However, the regulation of many fimbrial 

operons is poorly studied and cross-talk between all fimbrial types is not clearly defined. 

Additionally, UPEC strains encode a heterogeneous combination of fim, pap, foc, and tos 

operons, which would likely affect the outcomes on motility and adherence in different strain 

backgrounds. 
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 Interestingly, while there are multiple mechanisms linking the production of adhesins to 

repression of motility, there is not the same level of regulatory sophistication linking the 

production of flagella to the repression of adhesins. For example, a deletion of fliC in the AIEC 

strain LF82, isolated from a patient with Crohn's disease, resulted in decreased fim expression, 

but it is unclear what factors mediate this interaction and whether this also occurs in UPEC 

(364). Therefore, it seems that more resources are invested in the regulation between fimbriae, 

which may be indicative of greater selective pressure to coordinate heterogeneous fimbrial 

expression. Indeed, many fimbrial types, especially type 1, P, and F1C, are immunogenic and 

sequential production of fimbriae may improve evasion of the host immune system during 

infection (154).  

 

A model of coordinated regulation of adherence and motility during ascending UTI 

Additionally, the findings presented in this dissertation can be built into a proposed 

model for the regulation of adherence and motility during UTI (Figure 5.2). Increased voiding is 

an effective host defense mechanism to remove bacteria from the urinary tract; however, UPEC 

strains encode fimbrial types that adhere to cells within the urinary tract and improve resistance 

to the powerful shear forces produced by voiding (116, 117). Additionally, reducing motility 

improves the success of attachment to host cells by granting more time for bacteria to attach to 

host cell moieties and minimizing the risk of fimbrial breakage once attached (365). However, a 

premature stop in flagella production may be detrimental for colonization, if bacteria become 

nonmotile within the bladder lumen and are either voided from the urinary tract or neutralized by 

host immune defenses (366). Thus, the precise timing of the regulation between adherence and 

motility likely contributes to UPEC pathogenesis.  



 141 

 
Figure 5.2 Schematic of the coordinated regulation of adherence and motility during 
murine UTI 
Multiple transitions between adherence and motility occur as UPEC ascend the urinary tract. 
Motility increases during ascencion of the urethra, ureters, and presumably when bacteria cross 
the endothelium and epithelium barriers of the kidneys and enter the bloodstream. This model 
focuses on the dynamics of the fimbrial adheins type 1, P, F1C fimbriae and the non-fimbrial 
adhesin TosA. In the murine bladder, type 1 fimbriae have been shown to the most dominant 
fimbrial type contributing to colonization. PapX can be produced from an independent proximal 
promoter and can mediate type 1 repression of motility through an unknown mechanism. In the 
kidneys, the P, F1C and Tos adhesins all promote binding to renal cells and their expression will 
produce the transcriptional regulators TosR as well as PapX and FocX, which repress motility.  
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 Infection of the urinary tract can be defined into spatially and temporally distinct stages 

as bacteria initially colonize the lower urinary tract and then ascend in multiple rounds to the 

kidneys via the ureters (367). While the expression of flagellar genes is evident during initial 

ascension of the urethra into the bladder in the murine ascending model of UTI, upon reaching 

the bladder, flagellar gene expression is rapidly downregulated (101). Therefore, the early stages 

of bladder colonization represent a transition point were bacteria switch from motile to adherent 

states. Type 1 fimbriae are strongly associated with adherence to mannosylated uroplakin Ia 

glycoprotein receptors on the bladder epithelium, and accordingly, fim genes are highly 

expressed during murine UTI (140, 150, 226, 368). Thus, the expression of type 1 fimbriae is 

likely coordinated in vivo with the down-regulation of flagellar genes. Simms et al. identified a 

number of genes, including papX, that mediated the repression of motility in the UPEC CFT073 

L-ON mutant, a variant that is phase-locked ON for constitutive fim expression (273). Therefore, 

PapX, and possibly FocX based on shared amino acid identity and the presence of an 

independent promoter, may be involved in the repression of flagellar genes within the bladder. 

Since pap and foc genes are only moderately expressed in the urine of infected mice, the 

production of PapX and FocX may occur through transcription at the independent “X” promoter 

and be independent of transcription of the pap and foc fimbrial operons, respectively (150).  

Since fimbriae bind irreversibly to host cells, detachment of bacteria from the bladder 

epithelium is often due to shearing of the fimbriae or as a consequence of bacterial replication, 

which can alter the total concentration of transcriptional regulators mediating phase variation 

between fimbrial types (113, 369). Therefore, ascension from the bladder to the kidneys 

represents a second transition point where bacteria switch from adherent to motile 

subpopulations. Differences in the environmental conditions (e.g. osmolarity) between the 
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kidneys and the bladder may signal for the production of P, F1C, or TosA to mediate adherence 

within the kidneys (132, 157, 182, 370). Therefore within the kidneys, expression of either the 

pap or foc operon would lead to the production of PapX or FocX, respectively, and result in the 

repression of motility. Reduced motility may improve bacterial adherence to the renal epithelium 

or endothelium and thereby promote colonization of the upper urinary tract. Indeed, in vivo 

competitive cochallenges demonstrated that the loss of papX in UPEC CFT073 compared to wild 

type resulted in a subtle fitness defect (P = 0.06) in the colonization of the kidneys after 24 hrs, 

and the loss of both focX and papX had a slight fitness defect (P = 0.06) in colonization of the 

kidneys after 48 hrs.  

An alternative explanation for these findings is that increased flagella production in the 

single ΔpapX and double ΔfocXΔpapX mutants stimulates the host innate immune defenses 

resulting in increased bacterial clearance. The detection of pathogen-associated molecular 

patterns (PAMPs) by host TLRs is one of the primary immune defense mechanisms within 

humans. The detection of monomeric flagellin via TLR5 or adhesins via TLR4 can result in the 

rapid release (~ 1-7 h post inoculation) of inflammatory chemokines, cytokines, and the 

recruitment of neutrophils to the site of infection (371, 372). However, a statistically significant 

fitness defect for the ΔpapX and ΔfocXΔpapX constructs compared to wild type was not 

observed in independent colonization of the bladder, kidneys and spleen. Therefore in mice, the 

contribution of "X" proteins to pathogenesis is subtle. A limitation of this model is that the 

dependency of type 1 and P fimbriae for colonization of the urinary tract may differ between 

murine and human UTIs. For instance, while the fim genes are highly expressed in bacteria 

collected from murine UTI, fim expression is minimal in bacteria collected from the urine of 

women experiencing cystitis (150). Additionally, P fimbriae may play larger role in humans than 
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mice, as P fimbriae were also shown to mediate in vitro adherence to human T24 bladder cells 

(373). Therefore, PapX and FocX may have a greater contribution to fitness during human 

compared to murine UTI.  

Considering the role of PapX and FocX as repressors of motility, the ability to decrease flagellar 

gene expression following ascension into the kidneys would likely be advantageous for 

colonization. Concurrently, bacteria may express the tos genes, which through TosR-mediated 

regulation would result in the down-regulation of the pap and foc operons but not papX or focX 

(Figure 4.5). Therefore, PapX or FocX may also be repressing motility in bacteria expressing the 

TosA adhesin and function in a broader capacity in the regulation of motility during UTI.Yet, 

approximately 20% of UPEC strains isolated from women experiencing pyelonephritis were 

found to be nonmotile. Vesicoureteral reflux occurs when urine flows retrograde from the 

bladder into the kidneys, and increased vesicoureteral reflux promotes more rapid development 

of pyelonephritis in mice (374). However, the majority of healthy women experiencing 

uncomplicated acute pyelonephritis do not show significant levels of vesicoureteral reflux (375). 

Thus, it is not well understood how nonmotile bacteria ascend the ureters during uncomplicated 

UTI, and there are likely additional mechanisms independent of motility during uropathogenesis 

that contribute to the ascension of the urinary tract. In conclusion, the findings presented in this 

thesis have expanded the regulatory network linking key virulence factors, including adhesins, 

motility, and biofilm production, and presented models investigating their contribution to 

uropathogenesis. 
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Future Directions 

 The work presented in this dissertation addressed multiple facets of the transcriptional 

regulation of adherence and motility in UPEC. However, there remain many unanswered 

mechanistic details that should be further investigated.  

 

PapX and FocX  

 A key area of future research should be focused on investigating the transcriptional 

regulation of papX and focX. There are limited data demonstrating the advantages of having an 

independent promoter upstream of papX and focX. Indeed, qPCR data showed that the 

expression of papX and focX was consistent with transcription from the the preceeding pap and 

foc operons, respectively. Thus, the most straight-forward mechanism is that the production of P 

or F1C fimbriae results in the production of PapX and FocX, respectively, and thereby the 

repression of motility. Yet, UPEC strains also encode orphan X genes, which are either papX, 

focX, or a homolog (>90% DNA sequence identity) that are not located at the 3' terminal end of a 

fimbrial operon. Preliminary work characterizing the prevalence and expression of orphan "X" 

genes is presented in Appendix A. Orphan "X" genes also share with papX and focX high DNA 

sequence identity up to 200-bp upstream of the ATG translational start site. Therefore, orphan 

"X" genes are presumed to also be transcribed from their own promoter. However, additional 

testing using 5'RACE should be performed to confirm this assumption. That the function of 

orphan "X" genes on motility has not been characterized, the environmental cues that induce 

their expression may not be obvious. Performing swimming motility assays with orphan "X" 

deletions would begin addressing their role in regulating motility. As UPEC strains frequently 
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encode (60%) orphan "X" genes, they represent a significant piece in the regulatory model 

linking adherence and motility.  

 The presence of an independent "X" promoter as well as orphan X genes suggest that 

there are situtations, potentially unrelated to fimbrial production, that induce "X" expression. 

Thus, future work should characterize the expression of papX and focX independently from their 

fimbrial promoters. The transcription of papX and focX could be quantified by qPCR in a 

CFT073 mutant carrying deletions of the preceeding pap and foc genes. Additionally, it would be 

worthwhile to screen the effects on papX and focX expression in the CFT073 ΔpapA-HΔfocA-

c1246 mutant cultured in various environmental conditions (i.e. temperature, osmolarity, pH, 

urea concentrations). Two approaches for quantification of "X" expression include using qPCR 

with primers specific for papX or focX or using a transcriptional reporter for papX and focX 

expression. Identifying a condition that affects "X" expression would likely identify novel 

transcriptional regulators of "X" genes and may provide an explanation for why independent "X" 

gene expression has arisen. Currently, it is not clear if orphan "X" genes are contributing to in 

vivo fitness during UTI. Defining the environmental cues responsible for "X" expression would 

increase our understanding of the contribution of "X" genes to colonization of different niches.  

 Preliminary work has been done on characterizing the transcriptional regulators affecting 

papX (Appendix B). To identify genes affecting the expression of papX, I constructed a 

chromosomal transcriptional reporter consisting of gfp under the control of the papX promoter 

and inserted this construct into the CFT073 genome at the attTn7 site. This papX reporter strain 

was used to generate a Tn5 transposon mutant library to identify genes that when disrupted 

affected the expression of papX. Future research should focus on identifying the disrupted gene 

within a subset of transposon mutants demonstrating the highest and lowest fluorescence levels. 
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Disrupted genes that result in high levels of fluorescence may indicate that these genes encode 

transcriptional repressors of papX. Conversely, disrupted genes that result in low levels of 

fluorescence indicate that this gene encodes for a transcriptional activator of papX or has 

disrupted the gfp reporter gene. Since the upstream regions of "X" genes are highly similar, 

transcriptional regulators identified through this screen may also affect the expression of focX or 

other orphan X genes. Yet, despite similarities in upstream DNA sequences, only FocX was 

shown to repress PapX expression. Therefore, future research should independently assess the 

function of putative transcription factors of "X" genes on papX, focX, and orphan X genes.  

 In addition to flagellar genes, PapX has been shown to affect the expression of a number 

of non-flagellar genes including a number of putative transposases (Appendix A). The function 

of these genes is unknown. However, mobile and insertional elements can influence gene 

regulation, including flagellar gene expression. For example, there are multiple sites within the 

flhD promoter that are known to be amenable for the targeted placement of insertional elements, 

resulting in changes to the downstream accessibility of binding sites for other transcription 

factors (89). Therefore, the role of these putative transposases in the regulation of motility and 

the mobility of "X" genes in the genome should be further explored. Additionally, there is 

limited data on non-flagellar genes specifically affected by FocX. RNA-seq assays between 

CFT073 wild type and ΔfocX, as well as, wild type and ΔpapX, would allow for comparisons 

between genes affected by FocX and PapX at a resolution that is not possible with previous 

microarray studies. Futhermore, an RNA-seq assay between ΔpapX and the double mutant 

ΔpapXΔfocX may identify the factors reponsible for decreased motility in the double mutant. 

These experiments would provide substantial insight to the genes regulated by "X" genes and 

identify contrasting any differences between the mechanisms of FocX and PapX.  
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 Much of the work presented in this dissertation focuses on the regulation of adherence 

and motility at the transcriptional level. Therefore, future research should also incude a 

characterization of dimerization and ligand binding of PapX and FocX. The presence of cross-

talk between papX and focX provided a rationale for why the deletion of focX does not affect 

motility. However, the mechanism responsible for "X" cross-talk is not clear. One hypothesis is 

that FocX is directly binding upstream of papX and functioning as a transcriptional repressor. To 

test this hypothesis, the presence of a binding site for FocX needs to be confirmed. 

Electrophoretic mobility Shift Assays (EMSA) have been successful in identifying the PapX 

binding site upstream of flhDC. Therefore, a follow-up experiment should include an EMSA 

investigating the ability of FocX or PapX to bind to labeled DNA fragments of the papX and 

focX promoter. Intriguingly, an "X" binding motif was not identified near the ATG start site of 

papX or focX. Therefore, conducting an EMSA on the binding of papX and focX to each "X" 

promoters would clarify if these proteins directly bind to a site within this region as well as the 

the presence of autoregulation. Additionally, using nested DNA probes of the papX promoter 

would narrow down the location of a FocX binding site within the papX promoter. The inability 

to identify an X binding site may indicate that crosstalk occurs through an indirect mechanism 

(i.e. regulation of another transcription factor). One caveat with this approach is that PapX and 

FocX have been difficult to purify due to poor protein solubility. Optimization of the binding 

conditions, including fresh protein samples and minimal processing time, improves the 

consistency of the binding reaction but limits the ability to manipulate the testing conditions.  

  Overall, there are limited data on the dimerization interactions of PapX and FocX. Since 

PapX and FocX are highly homologous in amino acid sequence and structure, it is assumed that 

they are able to form heterodimers with each other with no impact on overall protein function. 
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However, heterodimerization between FocX and PapX has never been tested. Additionally, there 

is some evidence that site-directed mutants in PapX may be capable of forming dominant 

negative heterodimers (Appendix C). Affinity purification between uniquely tagged PapX-Myc 

and FocX-His proteins would address the presence of heterodimer formation. This experimental 

design would include binding FocX-His proteins to a nickel column, passaging PapX-Myc 

proteins through the column to allow for protein-protein binding to occur, followed by elution of 

bound proteins. Heterodimer formation would be present if a dimer was formed carrying both the 

Myc and His tags. Since UPEC isolates frequently contain multiple "X" genes, a better 

understanding of heterodimerization will clarify if different combinations of "X" genes have 

different effects on gene regulation. 

 

tosR 

 Investigation of the genes regulated by TosR demonstrated the broad involvement of this 

transcriptional regulator in adherence, biofilm formation and virulence. Likewise, there a number 

of future experiments that would greatly improve our understanding of the function of TosR. For 

example, the fimbrial auf operon was the most highly expressed adherence-associated operon in 

response to TosR overproduction. However, the function of Auf in host colonization is not well 

understood. Our work demonstrated that the presence of the auf operon inhibited robust RDAR 

formation and adherence of CFT073 to T24 bladder transitional epithelial cells. Our leading 

hypothesis was that Auf fimbriae sterically occluded the binding of other extracellular factors 

involved with adherence and biofilm formation. Based on this work, it appears that production of 

Auf fimbriae would be counterproductive for the development of adherence and biofilm 

formation, both important virulence traits during UTIs. Thus, future work should include a 
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detailed visual evaluation of the effects of overproduction of TosR and Auf on the bacterial cell 

surface. Additionally, the role of TosR in regulating adherence factors should be evaluated on a 

more diverse panel of cell types to detemine if our observed adherence phenotype was cell-

specific. Results from these experiments will provide a better understanding of how the 

production of Auf fimbriae and TosR affect the organization of fimbrial and biofilm components 

at the extracellular surface.  

 Since tos genes are poorly expressed in vitro, our RNA-seq assay was limited to 

investigating conditions of high TosR production. Therefore, results using this experimental 

approach may include regulatory pathways that are not relevant during infection. It would be 

worthwhile to compare the function of TosR on gene regulation in CFT073 grown in sterile 

human urine, which more closely mimics the host urinary tract than LB. Additionally, we 

observed a higher level of biofilm formation in a strain overexpression tosR cultured in human 

urine compared to LB, and the deletion of csgD did not affect biofilm formation. Therefore, the 

environmental growth conditions provided by human urine may be influencing different TosR-

mediated regulatory pathways than what was identified by RNA-seq in LB. Results from this 

approach may identity biofilm-associated genes that are more highly expressed in human urine 

and regulated by TosR.  

 Biofilm formation promotes bacterial persistence within the urinary tract, and the 

overproduction of TosR resulted in elevated bilfilm formation in LB and human urine (307). 

Specifically, overexpression of tosR resulted in a significant increase in the expression of the 

curli-associated genes CsgDC. However, additional curli and cellulose-associated genes were not 

differentially expressed. One explanation for limited supporting transcriptional data is that the 

mRNA for the RNA-seq was collected under growth conditions that are not optimized to induce 
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curli and cellulose production. Taking this into account, one future experiment should be to 

conduct a qPCR analysis of curli and cellulose-associated genes in a strain overexpressing tosR 

cultured under curli-inducing conditions (e.g. growth on agar plates at < 30ºC). The 

quantification of additional differentially regulated curli and cellulose-associated genes will 

better clarify if TosR regulates curli and/or cellulose-associated gene expression. While direct 

binding of TosR has been demonstrated for the tos and pap promoters, the accuracy of the 

predicted TosR binding site has not been vetted. Thus, the predicted TosR binding motif should 

be experimentally confirmed using an EMSA with purified TosR protein. Validation of TosR 

binding sites within the promoters of differentially regulated genes identified by RNA-seq will 

broaded our understanding of direct and indirect TosR-mediated regulation. Defining the binding 

sites of TosR will improve our prediction of additional TosR-regulated genes in other UPEC 

isolates. 
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Appendix A: A brief characterization of orphan "X" genes in UPEC 

While the majority of foc (90%) and pap (60%) operons carry a 3’ terminal “X” gene, a 

bioinformatics screen of the genomes of UPEC isolates revealed that most UPEC genomes carry 

additional “X” genes that share > 90% DNA sequence identity with papX and focX but are not 

associated with a fimbrial operon (Figure A.1A) (169). Overall, UPEC genomes encoded as 

many as 4 “X” genes, and an orphan “X” gene was more prevalent (60%) than either papX or 

focX when only one “X” gene was present within a genome. Furthermore, many of these orphan 

genes are located near mobile elements, which may be involved in the transposition of these 

genes into various regions in the genome. Additionally, orphan "X" genes share high DNA 

sequence identity up to 200 bp upstream of the ATG start site (Figure A.1B). Since "X" genes 

can be transcribed from an independent promoter, orphan "X" genes may be regulated by 

transcription factors that also regulate the expression of papX or focX. Therefore, orphan “X” 

genes represent a significant portion of “X” genes carried by UPEC genomes, yet their 

contribution to the repression of motility and cross-talk between adherence and motility has not 

been well investigated. Additional work characterizing the effects on motility in a UPEC mutant 

with a deleted orphan “X” gene would address whether orphan “X” genes are also capable of 

repressing motility.  

  



 153 

 

 

Figure A.1 The majority of UPEC isolates carry at least one "X" gene. 
(A) Percentage of UPEC E. coli strains (Total N = 107) carrying papX homologs (>90% DNA 
sequence identity). Strains were obtained from the UMEÅ database representing UPEC isolates 
collected from the urine of female patients experiencing uncomplicated UTI made available by 
the E. coli UTI Bacteremia initiative, Broad Institute (broadinstitute.org). (B) The total number 
of all (%) of focX, papX or non-fimbrial associated papX or focX, termed orphan “X", in 
individual E. coli strains. 
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Figure A.2 "X" genes share a conserved upstream DNA sequence but are differentially 
expressed 
 (A) A BLAST search of UPEC genomes was performed to identify all genes that shared >90% 
sequence identity to papX. UPEC genomes were all isolated from female UTI patients with 
uncomplicated UTI as part of the in the UMEÅ database (broadinstitute.org). Gene sequences for 
focX, papX and non-fimbrial associated papX or focX, termed orphan “X” were aligned by the 
Clustal W method and the sequence identity is indicated as the percentage compared to papX. 
(B) An analysis of RNAseq performed by Subashchandrabose et al of the UPEC cystitis strain, 
HM27, isolated from the urine of a woman experiencing cystitis (246). RNA was immediately 
isolated from voided urine (UTI), and compared to in vitro growth in LB or in sterile pooled 
human urine. Data are presented as Reads per Kilobase of transcripts per Million mapped reads 
(RPKM) in the different growth conditions 
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Similar to PapX and FocX, the uropathogen Proteus mirabilis strain HI4320 encodes a 

helix-turn-helix xenobiotic response element (XRE) transcription factor MrpJ that is located at 

the 3' terminal end of the mrp operon, encoding the mannose-resistant Proteus-like MR/P 

fimbriae (170, 376). MrpJ represses both swimming and swarming motility in P. mirabilis, and 

while MrpJ differs structurally from MarR-like proteins, PapX and MrpJ are considered 

functional homologs. Additionally, ectopic expression of papX represses motility in P. mirabilis 

(170, 377, 378). Intriguingly, the P. mirabilis strain HI4320 encodes 17 chaperone-usher 

fimbriae with 15 MrpJ variants, including 4 paralogs that are not encoded within a fimbrial 

operon and are therefore considered to be orphan genes (378). Thus, uropathogens appear to 

encode redundant mechanisms to regulate motility and the role of orphan genes may be 

important in the mechanism of regulating motility independent of fimbrial expression.  

“X” genes share a low G+C content (<40%) compared to the E. coli CFT073 genome 

(50.5%), which is a common feature of genes that have been horizontally acquired. Therefore, it 

is possible that orphan “X” genes are acquired through transposition events within a genome 

from different UPEC strains (64, 169, 178). An analysis of the DNA sequences surrounding “X” 

genes, including papX and focX, revealed that in the majority of cases an upstream or 

downstream mobile genetic element is located nearby. The pap and foc operons are located on 

PAIs and therefore are already associated with horizontally transferred DNA elements. Yet, 

downstream of papX and focX is a 150 bp DNA sequence that shares sequence homology to IS66 

family transposase. Thus "X" genes may be carried on regions of DNA that are prone to 

recombination, resulting in the transposition of papX or focX to different sites within the genome 

(142, 379).  
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 Additionally, there is a tantalizing relationship between the presence of PapX and the 

expression of transposases. Previous work reported that the overexpression of papX resulted in 

the repression of multiple flagellar, as well as, a number of nonflagellar genes, including genes 

encoding phage-related proteins (176). Further investigation by microarray in E. coli CFT073 

found that the top genes upregulated following the loss of papX encoded phage-related proteins, 

hypothetical proteins, or transposases (Table A.1). Similar microarray results were observed 

when comparing gene expression between E. coli CFT073 and the double mutant ΔfocXpapX. Of 

these genes, four of them are found within the same gene cluster c3190:c3186 which is predicted 

to encode a cryptic prophage (380, 381). While these genes do not have a defined role in the 

literature, ectopic expression of c3192:c3186 in a ΔpapX mutant resulted in a slight but 

statistically significant increase in motility (Figure A.3B). An increase in motility was not 

observed following ectopic expression of c3190:86 in wild type CFT073, which may be due to 

native levels of PapX affecting the expression of genes within the c3192:86 gene cluster or the 

presence of an indirect mechanism. The integration of insertion sequences within the flhDC 

promoter can enhance flhDC expression and promote flagella production. Indeed in the E. coli 

K-12 MG1655 strain, multiple insertions of IS1 and IS5 elements upstream of flhDC enhanced 

flhDC expression and subsequently increased motility (89, 382). Thus, additional investigation of 

the association of "X" genes, both fimbrial and nonfimbrial associated, would provide insight 

into the association between "X" genes and mobile DNA elements.  
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Table A.1. The loss of papX and focX results in an increase in the relative gene expression 
of multiple flagellar and nonflagellar genes compared to wild type  
Microarray assays were used to assess the gene expression in E. coli CFT073 ΔpapX and 
ΔpapXΔfocX compared to wild type. RNA was extracted from strains cultured in lysogeny broth 
(LB) to mid-logarithmic growth. Results show a sample of the highest upregulated (A) non-
flagellar and (B) flagellar genes identified from the microarray.  
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Figure A.3 Expression of the c3190:86 gene cluster promotes motility of the ΔpapX mutant 
(A) Gene organization of the c3190:86 gene cluster contains multiple transcriptional regulators 
of unknown function and is predicted to represent a cryptic prophage based on the presence of 
c3186 encoding the λ prophage Q antiterminator protein. (B) Bars represent the average diameter 
(mm) of swimming motility of CFT073 carrying either pLX3607 (+Vector) or pLXc3190-86 
(+c3190:86) encoding the c3190:86 gene cluster, following 16-18 hr incubation at 30°C. Data 
represent three biological replicates with the error bars showing the standard deviation. An 
unpaired t-test was used for statistical analysis. *, P < 0.05 
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Methods 

Bioinformatics Screen.  

 The prevalence of papX, focX, and nonfimbrial-associated papX homologs, referred to as 

orphan “X” genes, were calculated from the Umeå collection of E. coli UPEC genomes provided 

as part of the E. coli UTI Bacteremia initiative, Broad Institute (broadinstitute.org). The Umeå 

collection represents 106 isolates collected from female UTI patients with uncomplicated UTI, 

including both acute and recurrent infections. For each UPEC genome, the presence of papX and 

focX was determined by BLAST using the papX and focX sequences from CFT073. Positive 

matches were defined by sequence identity >90% and 3’ proximity to the pap or foc operons, 

respectively. Orphan “X” genes were characterized as any papX or focX homologs that were not 

located at the 3’ terminal end of a fimbrial operon and sequence identity >90%. The total number 

of any identified “X” gene per strain, which includes papX, focX, and orphan “X” genes, are 

shown in Fig. A.1A, and the relative distributions of papX, focX, and orphan “X” genes is 

quantified in Fig. A.1B. To compare sequence homology, we used MegAlign (DNASTAR) to 

align and calculate the sequence identity of the gene and upstream DNA sequences of papX 

(N=38), focX (N=66), and orphan “X” (N=48) identified from the Umeå collection (Figure 

A.2A). 

 
Microarray analysis 

 CFT073 wild type and the ΔpapX and ΔfocXΔpapX mutants were grown in LB medium 

to an OD600 of ∼0.5. Triplicate cultures of each strain were treated with RNAprotect (Qiagen) to 

stabilize RNA according to the manufacturer's protocol. Total RNA from bacterial samples was 

extracted by using ribopure RNA Purification kit (Thermo Fisher Scientific) as described by the 

manufacturer. cDNA was synthesized and the FairPlay III Microarray labeling kit (Agilent) was 
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used to fluorescently label cDNA with either the Cy3 or Cy5 dye. RNA was then hybribized and 

scanned using Affymetrix E. coli Genome 2.0 GeneChips. Data analysis were performed by 

Gary Moran at the Dublin Dental University Hospital, Trinity College, Ireland.  

 

Construction of pLX-c3190:86  

 The c3190:86 gene cluster was cloned into the vector pLX3607 under the control of an 

IPTG-inducible promoter to induce expression, referred to as pLX-c3190:86 (170). In brief, the 

c3190:86 gene cluster was amplified by PCR using EasyA polymerase and the primers pLX-

c3190:86-F/pLX-c3190:86-R from E. coli CFT073 (Table B.4). The resulting PCR product and 

pLX3607 were both digested by NcoI and HindIII, ligated together using T4 DNA Ligase (New 

England BioLabs) to generate pLX-c3190:86, and transformed into competent Top10 E. coli. 

Transformants were plated on LB with ampicillin and the resulting colonies were screened by 

PCR and sequencing to verify plasmid construction.  
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Appendix B: Investigation of the transcription factors  

involved in regulating "X" genes 

Summary 

papX and focX are members of a 17-kDa family of "X" genes carried in E. coli, which 

includes sfaX, prfX, prsX and fotX (169). The findings presented in Chapter III identified an 

independent proximal reporter upstream of papX and focX. Based on high DNA sequence 

identity in the 200 bp proceeding papX and focX, it is likely that papX and focX share a similar 

mechanism of regulation. However, it is unclear what transcription factors can regulate papX 

and/or focX at the shared "X" promoter. Therefore, to identify genes affecting the expression of 

papX, I constructed a chromosomal transcriptional reporter consisting of gfp under the control of 

the papX promoter that was inserted into the CFT073 genome at the attTn7 site. Culture of the 

papX transcriptional reporter and a positive control carrying the empty vector pSLC284 in LB 

medium demonstrated that gfp expression could be detected from both reporters, but the 

strongest and most consistent fluorescence signal occurred at later time points (Figure B.1). 

Consequently, a CFT073 construct encoding the chromosomal papX transcriptional reporter was 

used to generate a Tn5 transposon mutant library to identify genes that when impaired affected 

the cumulative level of fluorescence. Overall, a total of 12,904 transposon mutants were 

generated and assessed for fluorescence at 24 hr following static incubation at 37°C (Figure 

B.2). A subset of 50 transposon mutants demonstrating the highest and lowest levels of 

fluorescence compared to the control CFT073 (attTn7 PpapX-gfp) were further evaluated. From 

this secondary screen, 25 Transposon mutants were confirmed for significantly higher or lower 
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levels of fluorescence and are being currently investigated to determine the transposon insertion 

site and association to the papX promoter.  

 

 

 

 

 

 

Figure B.1 GFP expression increases over time in CFT073 encoding PpapX-gfp  
CFT073 carrying either PpapX-gfp (blue line) or the positive control (Ptac-gfp) (green line) were 
cultured statically in 200µL of LB medium and fluorescence reading were taken every two hours. 
The OD600 is plotted on the right Y-axis and was comparable in both strains.  
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Figure B.2 Measurement of fluorescence of 12,904 transposon mutants in CFT073 carrying 
PpapX-gfp at the attTn7 Site 
Transposon mutants in CFT073 carrying PpapX-gfp were cultured statically in 200µL of LB 
medium in a 90-well plate, and fluorescence was measured after 24 hr. Each dot represents an 
individual fluorescence reading from a well. In total, 12,904 transformants are plotted with the 
X-axis representing the well location within the 96-well plate. The fluorescence reading has been 
normalized to the OD600 to account for difference in growth. The green dots are the average 
fluorescence reading per well location, the red dots signify transposon mutants whose produced 
with significantly higher or lower fluorescence reading compared to the average fluorescence 
and were thus selected for secondary screening. Culture in the central wells of the 96-well plate 
resulted in a predictable dip in fluoresence and is presumable due to decreased oxygen 
saturation.  
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Methods 

Construct of the CFT073 chromosomal PpapX-gfp transcriptional reporter  

 The papX promoter was cloned upstream of the vsfGFP-9 to generate a transcriptional 

GFP reporter. The E. coli strain DH5α carrying the vector pSLC-284 encoding vsfGFP-9 was 

generously provided by Dr. Melanie Pearson (383). The papX promoter was generated by PCR 

using the EasyA polymerase (Agilent) and the primers papXF-slc and papXR-slc, and the final 

PCR product included 500 bp upstream of the ATG translational start site of papX (Table B.4). 

The pSLC-284 plasmid was linearized using the primers pSLC_284R/pSLX_284F, assembled 

with the papX PCR product using the NEBuilder HiFi DNA Assembly Cloning Kit (New 

England Biolabs), and transformed into Top10 E. coli. The pSLC284 PpapX-gfp plasmid was 

isolated by miniprep and linearized by the primers F-apaI and R-speI. The linearized plasmid and 

the mini-Tn7 vector pMCL2868 were both subjected to restriction digest by ApaI and SpeI, 

ligated, and transformed into S17 λ pir. Confirmed transformants were triparentally mated with 

CFT073 (rifampin resistance-RifR) and E. coli WAM2817 for 24 hr at 30°C on LB medium. 

After 24 hr, bacteria were plated onto LB agar plates containing rifampin and ampicillin and 

cultured at 37°C to isolate CFT073 carrying the chromosomal papX transcriptional reporter at 

the attTn7 site.   

 

Identifying regulators of papX 

 A transposon mutant library was generated using the EZ-Tn5 transposome kit (Lucigen) 

in the CFT07t attTn7 PpapX-gfp construct following the manufacturer's guidelines. A total of 

12,904 transposon mutants were generated and harvested using a QPix Colony Picker. To 

measure the expression of gfp, bacteria were statically cultured to stationary phase in 200 µL of 
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LB medium at 37°C in 96-well clear flat bottom costar plates (Corning). Bacteria were diluted 

1:100 in fresh LB medium and cultured under the same conditions. Fluorescence was measured 

using a Synergy HT plate reader at an excitation wavelength of 480 and emission wavelength of 

510 using a top-view reading. Fluorescence was normalized to OD600 and well location using a 

standard 96 plate inoculated with only the parent strain.  
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Appendix C: Insights on heterodimerization and ligand binding  

of PapX and FocX  

A number of MarR-like proteins bind small molecular ligands at sites located between 

the protein dimer interface and the DNA-binding domain (171, 384). Ligand binding can result 

in conformational changes and alter the dynamics of the DNA-binding domains, frequently 

resulting in attenuation of DNA binding (385). The canonical example was characterized for the 

E. coli MarR protein that is encoded with the marRAB operon, encoding the transcriptional 

regulator MarA associated with antibiotic resistance and the production of a multidrug efflux 

pump (386, 387). MarR binds to two DNA palindromic sequences within the mar promoter and 

inhibits the recruitment of RNA polymerase, resulting in reduced transcription of marRAB and 

the divergently transcribed marC (388). The ligands associated with MarR-like proteins are often 

substrates related to regulatory targets. For example, exposure to the phenolic compound 

salicylate (SAL) promotes expression of the marRAB operon, and MarR co-crystallized in the 

presence of salicylate. Specifically, salicylate was bound at two ligand-binding pockets within 

the protein dimer and SAL-bound MarR was unable to bind DNA (172, 266, 271). More 

recently, MarR was characterized as a copper sensor in E. coli as copper-mediated oxidation of 

the Cys80 residue resulted in disulfide bond formation between two MarR dimers and abrogated 

DNA binding (389). Thus, there are alternatives to ligand binding that can affect the structure 

and function of MarR-like proteins.  

A ligand has not been identified for PapX or FocX and represents a gap in an 

understanding of the timing of PapX-mediated repression of motility. The purification of PapX 
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has been challenging as PapX proteins are poorly stabilized under in vitro conditions. 

Intriguingly, a site-directed mutant the PapX homolog SfaX demonstrated that the alteration of a 

cysteine to a serine within the wing domain (C70S) dramatically improved protein stability, 

presumably due to decreased intermolecular interactions (390). Additionally, a C70S PapX 

protein is also more stable, and therefore the effect of this cysteine on protein stability is shared 

between these two "X" proteins. Furthermore, wild type PapX and C70S PapX repress motility 

to the same extant in CFT073, and therefore the mutation did not initially appear to affect protein 

function. However, in the ΔpapX mutant, ectopic expression of C70S PapX results in a 

substantially greater repression of motility (Figure C.1). Intriguingly, this effect on repression 

appears to be dependent on the presence of FocX and the simultaneous absence of PapX. It is not 

readily apparent the explanation for these effect on motility. While FocX and PapX have not 

been confirmed to form heterodimers, due to their sequence similarities a heterodimer FocX-

PapX would likely perform the same function as homodimers. However, these data suggest that 

there may be additional interactions between FocX and PapX that are not fully accounted for in 

the regulatory mechanism of "X" genes. Indeed, protein turnover may be a strategy to relieve 

PapX repression of motility, and the C70S mutant, which has significantly increased in vitro 

protein stability, may bind longer or with greater affinity to DNA, resulting in greater repression 

of flhDC.  Future experiments exploring the effects of oxidation on PapX function may identify 

an alternative strategy to modulate the DNA binding of "X" genes.  
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Figure C.1 Expression of C70S PapX results in robust repression of motility in the ΔpapX 
mutant 
Bars represent the average diameter (mm) of swimming motility of CFT073 carrying either pLX-
focX, pLX-papX, or pLX-papX-C70S following 16-18 hr incubation at 30°C. Data represent 
three biological replicates with the error bars showing the standard deviation. A Student's t-test 
was used for statistical analysis. *, P < 0.05 
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Methods 

Construction of C70S PapX  

 The site-directed mutant C70S PapX was constructed in pLX3607 using the QuikChange 

II kit (Stratagene) according to the manufacturer's guidelines. Briefly, overlapping primers (pLX-

C70SF/pLX-C70SR) were used for rolling PCR of pLX3607 (Table B.4). PCR products were 

treated for 2 hr with DpnI at 37°C, transformed into electrocompetent CFT073, and plated onto 

LB agar containing ampicillin (100 µg/ml). Site-directed mutagenesis was confirmed by 

sequencing the extracted pLX-C70S plasmid by miniprep.  

 

  



 170 

Appendix D: Supplementary Information for Chapters II-IV 

Table B.1. Oligonucleotide primers used in Chapter II 

Primer 
Direction 
of primer Purpose Sequence (5'-3') 

Donne340 Forward Amplification of variable region 
of DNA signature tags 

GGCCACGCGTCGACTAGTC
ANNNNNNNNNACGCC 

Donne341 Reverse  GGCCACGCGTCGACTAGTC
ANNNNNNNNNNGATAT 

Donne298 Forward Amplification of DNA adjacent 
to transposon junction for 
sequencing 

AAAGCTTGCTCAATCAATC 

Donne299 Reverse  AGCATAAAGCTTGCTCAAT
C 

Donne646 Forward PCR screening for presence of 
pap operon 

CGGTAGCTATGGCAGTGGT
GTCTTTTG 

Donne792 Reverse  CCCAGATATCCACAACACT
CTATCC 

 
Table B.2. Oligonucleotide primers used in Chapter III 
Strain Genotype/Resistance/Usea Source 
CFT073 Pyelonephritis isolate (O6:K2:H1) [Mobley, 1990] 
ΔfocX CFT073 ΔfocX::cat (CamR) This Study 
ΔpapX CFT073 ΔpapX::kan  (KanR) (273) 
ΔfocXΔpapX CFT073 ΔfocX::cat  ΔpapX::kan  (CamR, KanR) This Study 
E. coli F11 Cystitis isolate (O6:K2:H31) (206) 
E. coli F11 
ΔpapX F11 ΔpapX::kan  (KanR) This Study 
E. coli HM69 Cystitis isolate (65) 
E. coli HM69 
ΔpapX HM69 ΔpapX::kan  (KanR) This Study 

Top10 E. coli Used for cloning 
ThermoFisher 
Scientific 

      
Plasmid Relevant Characteristics References 
pLX3607 IPTG-inducible vector (AmpR) (170) 
pLX-focX pLX3607+focX (AmpR) This Study 
pLX-papX pLX3607+papX, also known as pDRM001 (AmpR) (170) 
pKD4 Vector carrying a FRT-flanked kan gene (AmpR, KanR) (286) 
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pKD3 Vector carrying a FRT-flanked cat gene (AmpR, CamR) (286) 
pKD46 Vector carrying phage λ Red recombinase (AmpR) (286) 

a: cam-chloramphenicol, kan-kanamycin, amp-ampicillin, R-resistant 
  

Table B.3. Oligonucleotide primers used in Chapter IV 
 Primer Purpose Sequence (5'-3') 

ΔaufKO_f 

Amplification of kanamycin cassette 
from pKD4 for λ Red 
recombineering with aufABCDEFG  

GCTTGGATTTTTTAACAAAAGG
AAAGGTATAAATGGTGTAGGCT
GGAGCTGCTTC 

ΔaufKO_r 

Amplification of kanamycin cassette 
from pKD4 for λ Red 
recombineering with aufABCDEFG  

TGCGCAGAAGCAGCCTAGTTTT
CCACCAATCTGAAATGGGAATT
AGCCATGGTCC 

ΔaufKO_f 

Amplification of kanamycin cassette 
from pKD4 for λ Red 
recombineering with csgD 

TGTGCGATCAATAAAAAAAGC
GGGGTTTCATCATGGTGTAGGC
TGGAGCTGCTTC 

ΔcsgDKO_r 

Amplification of kanamycin cassette 
from pKD4 for λ Red 
recombineering with csgD 

AACGTTTCATGGCTTTATCGCC
TGAGGTTATCGTTATGGGAATT
AGCCATGGTCC 

auf_screen_f Screening for deletion of auf operon AAGAACCTTCTGGAATTAGC 
auf_screen_r Screening for deletion of auf operon AGCCAGTGCATTATAACGAC 
csgD_screen_f Screening for deletion of csgD GCAACATCTGTCAGTACTTC 
csgD_screen_r Screening for deletion of csgD GAAATTCTGCCGCCACAATC 

pBAD Screen_f 
Screening for insertion into pBAD-
myc-HisA TGCCATAGCATTTTTATCC 

pBAD Screen_r 
Screening for insertion into pBAD-
myc-HisA CTGATTTAATCTGTATCAGG 

pBAD_auf_f 
Amplification of aufABCDEFG with 
5' NcoI restriction site for cloning 
into pBAD-myc-HisA 

NNNNCCATGGCCAAATTCAATT
TATCTAATTTATCCGCAG 

pBAD_auf_r 
Amplification of aufABCDEFG with 
5' KpnI restriction site for cloning 
into pBAD-myc-HisA 

NNNNGGTACCCAGGTAAAGTC
AGAAAAGTAAC 

gapA_f qPCR CGTTAAAGGCGCTAACTTCG 
gapA_r qPCR ACGGTGGTCATCAGACCTTC 

papA1_f qPCR 
ATTTGATGGTGCGACAGCAACA
GG 

papA1_r qPCR 
TCTGTTACAGGGTTGCCACTAC
CA 

papA2_f qPCR 
CGGGTGAAATTTGATGGAGCCA
CT 

papA2_r qPCR 
AGGCACCTTCAGCTACATTCTT
GC 

aufA_f qPCR GAATCGGTTGCGACCTTACA 
aufA_r qPCR CAGGCTCACTGATATGGATGAC 
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Table B.4. Oligonucleotide primers used in Appendix A, B, and C 
pLX-C70SF CAGCGGAGAGTCATTCCCTGTCACCTTCAGAG 
pLX-C70SR CTCTGAAGGTGACAGGGAATGACTCTCCGCTG 
pLX-c3186:92 
 

NNNNCCATGGCAAGCACTAAATTAACCGG 

pLX-c3186: 
 

NNNNAAGCTTTTATCTCGTCACTTTTCTTAATTGC 

pslc_284r TTGCCAGAACCGTTATGATG 
pslc_284f CAGAATTCGAGCTCGGTACC 
papxf-slc CATCATAACGGTTCTGGCAA 
papxr-slc GTACCGGGCCCAAGCTTCTCGAAGCTTGCATGCC

TGCAGGAG 
slc284_f_apai NNNNGGGCCCGACATCATAACGGTTCTGGC 
slc284_r_spei NNNNACTAGTGTTTCACTTCTGAGTTCGGC 
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