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PREFACE 
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Scientific Reports with the following authors: Ting L. Luo, Marisa C. Eisenberg, Michael 

A.L. Hayashi, Carlos Gonzalez-Cabezas, Betsy Foxman, Carl F. Marrs, and Alexander 

H. Rickard. Chapter II and Chapter IV are anticipated to be submitted in the near future 

for publication.
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Abstract 

 

Dental caries and periodontal disease affect billions of people annually with a 

global prevalence estimated at 35% and 11%, respectively. Oral biofilms that develop on 

tooth surfaces and within gingival crevices are a major risk factor. Disease prevention 

efforts are focused on controlling the overgrowth of biofilms by removal (e.g., 

toothbrushing), antimicrobial-containing mouth rinses, and dentifrices. A number of 

laboratory (in vitro) models of biofilms are used to understand how biofilms develop and 

their response to mouth rinses and dentifrices.   

 

However, there are two major limitations to currently available in vitro biofilm model 

systems. First, there is no biofilm model system validated for the development of 

representative dental plaque biofilms. Second, there is no standard approach to analyze 

biofilm images. Current techniques rely on thresholding algorithms that are not designed 

for fluorescent images. Combined, these limitations can lead to differences in 

quantification of biofilm outcomes and thus raise questions regarding the relevance of the 

model system to the “real-world”.  

 

This dissertation seeks to bridge the gap between current laboratory techniques 

and software algorithms and provide investigators additional tools to conduct in vitro oral 



 xvi 

biofilm studies. First, a distillation of model systems relevant to modern in vitro oral biofilm 

research is provided. Second, we adapted one of these described model systems, the 

24-well BiofluxTM to reproducibly grow multi-species dental biofilms. An objective imaging 

strategy was further developed to capture all biofilm architectural features. Before 

analyzing biofilm images, a novel thresholding algorithm, the biovolume elasticity method 

(BEM), was developed to threshold fluorescent signal. Finally, a software package called 

Biofilm Architecture Inference Tool (BAIT) was built and evaluated to measure core 

architectural features of biofilms.  

 

In summary, this dissertation describes the modification of a 24-well Bioflux system 

that facilitates the reproducible development of biofilms. For better visualization and 

quantification of in vitro biofilms, a novel thresholding algorithm was described. Finally, a 

software package integrating the BEM thresholding method was developed to measure 

architectural outcomes. The work presented here represents the outcome of a 

combinatorial approach to redefine techniques to study oral biofilms, and may also be 

relevant to the study of biofilms that exist outside the oral cavity. 
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Chapter I 
 

 
 

Introduction 
 

 
 

Oral Diseases and Biofilms 

 

Dental caries and periodontal disease affect people in developing and 

industrialized nations alike (Sheiham, Williams et al. 2015). An estimated 3.9 billion 

people worldwide suffer from caries and periodontal disease, which often leads to 

decreases in quality of life, reduced productivity, and lost wages (Sanders, Slade et al. 

2009, Harford and Chrisopoulos 2012, Marcenes, Kassebaum et al. 2013). A 2015 

estimate puts the direct and indirect costs of oral health burdens at $442 billion (Team 

2015) with caries and periodontal disease being major contributors (Beikler and Flemmig 

2011, Kassebaum, Bernabe et al. 2015). Early clinical symptoms are minor and often 

neglected until treatment is needed, inflating healthcare costs. Today, caries and 

periodontal disease remain a global public health challenge. 

 

 Microorganisms play a major role in the etiology of caries and periodontal disease. 

Historically, oral diseases were thought to be outcomes of only a few microbial species: 

acid-producing Streptococcus sp. and Lactococcus sp. for dental caries and 

Porphyromonas gingivalis and Treponema denticola for periodontal disease (Berry and 
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Henry 1977, Liljemark and Bloomquist 1996, Hajishengallis and Lamont 2012). Today, 

the paradigm is that oral health status is a function of the entire biofilm community 

consisting of up to 1,000 bacterial species and its interaction with the host. With the 

advent of Next-generation sequencing technologies, there is renewed focus on 

community ecology and its role in disease pathogenesis (Sbordone and Bortolaia 2003). 

Evidence from clinical studies, and animal/laboratory model systems indicate that dental 

caries and periodontitis result not from the activity of a few species but from the interaction 

of a dynamic consortia of species contained within dental biofilms (Marsh 2006). Thus, a 

strategy of creating and maintaining a healthy oral microbial community could translate 

into successful strategies to prevent and control dental caries and periodontal disease. 

 

Epidemiology of Caries & Periodontal Disease 

 

 Dental caries and periodontal disease cause the vast majority of human oral 

diseases (Petersen, Bourgeois et al. 2005). In 2010, in a ranking of the global burden of 

291 diseases, untreated caries ranked first (Murray and Lopez 2017).  The estimated 

global prevalence of dental caries was 35%, which translates to roughly 2.4 billion people 

(Murray, Ezzati et al. 2012, Kassebaum, Bernabe et al. 2015). Periodontitis was number 

six in that list with an estimated global prevalence of 11%. Over the past two decades, 

disability-adjusted life years (DALYs) attributable to untreated caries and periodontal 

disease increased roughly 20% (Marcenes, Kassebaum et al. 2013). Further, caries and 

periodontal disease are strong indicators of overall systemic health and have been linked 

to many chronic conditions including heart disease (Dhadse, Gattani et al. 2010), diabetes 
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(Torpy, Burke et al. 2008, Casanova, Hughes et al. 2014, Tavares, Lindefjeld Calabi et 

al. 2014), coronary heart disease (Geismar, Stoltze et al. 2006), endocarditis (Anolik, 

Berkowitz et al. 1981, Lockhart, Brennan et al. 2009),  and preterm birth (Newnham 2005). 

Thus, caries and periodontal disease are significant public health challenges that have 

garnered significant attention. 

 

Non-microbial risk factors for caries and periodontal disease include a combination 

of environmental and behavioral factors that affect the microbial composition of dental 

plaque, and genetic factors that affect overall host susceptibility. Environmental and 

behavioral factors include, diet, oral hygiene, socioeconomic status, and use of dental 

services (Vieira, Modesto et al. 2014). Some social risk factors are more predictive of 

caries depending on geography and population demographics. For example, a study 

showed a wider gap in caries burden between the upper class and the lower class in 

industrialized nations compared to developing nations (Schwendicke, Dorfer et al. 2015). 

Socioeconomic position also predicts prevalence and severity of periodontal disease 

(Borrell and Crawford 2012). Although heterogeneity of oral health is often congruent with 

socioeconomic heterogeneity, closing the socioeconomic gap does not necessarily 

remedy oral health disparities due to multifactorial risk factors and habitual poor oral 

hygiene (Grembowski, Conrad et al. 1987, Polk, Weyant et al. 2008). Thus, designing 

interventions to promote oral health has proven difficult in high-risk regions where 

dentition has traditionally been a relatively low priority in the community (Taani 2002, Wu, 

Ren et al. 2014).    
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The Role of Bacteria in Caries & Periodontal Disease 

 

Dental caries and periodontal disease are clinical outcomes of microbial processes 

(Takahashi and Nyvad 2008, Genco and Borgnakke 2013, Wade 2013). Acidic 

byproducts of bacterial fermentation cause demineralization of dentin, enamel, and 

cementum leading to the breakdown of dental hard tissue (Selwitz, Ismail et al. 2007). 

Tissue degradation in periodontal disease and caries can be exacerbated by chronic 

gingivitis or periodontitis induced by an inflammatory response from the host. Eventually, 

pocket formation, bone loss, and tooth loss occur (Dye 2012). Early studies have 

identified acid-producing Streptococcus sp. and Lactococcus sp. as causative agents 

linked to dental caries (Berry and Henry 1977). Likewise, many studies have linked the 

presence of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia to 

periodontal disease (Liljemark and Bloomquist 1996, Hajishengallis and Lamont 2012). 

Due to how intimately oral conditions are predicated on the individual’s oral microbial 

ecology, prevention efforts primarily focus on plaque control to reduce bacterial bioburden 

(Axelsson, Nystrom et al. 2004, Tonetti, Eickholz et al. 2015). 

 

The Changing Paradigm of Oral Diseases 

 

The human oral cavity contains many surfaces that serve as distinct niches to 

microbes. These include the tongue, hard and soft palate, tooth enamel, buccal surfaces, 

palate, tonsils, and gums. Each of these niches supports compositionally diverse 

microorganisms including viruses, fungi, Archaea, protozoa, and bacteria coexisting in 
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complex community structures (Dewhirst, Chen et al. 2010, Palmer 2014).  Historically, 

dental caries and periodontal disease were thought to fit the standard infectious disease 

paradigm: a single pathogen could cause disease. However, the simple presence of 

suspected pathogens are not necessarily predictive of disease and thus do not fulfill 

Koch’s postulates (Bradshaw and Lynch 2013). For example, Streptococcus mutans and 

Porphyromonas gingivalis, which have traditionally been identified as causative agents of 

caries and periodontal disease, are present in the mouths of healthy individuals and 

increased abundance of these species is not necessarily predictive of dental disease 

(Kolenbrander, Palmer et al. 2006, Marsh, Moter et al. 2011). 

 

The contemporary paradigm is that oral health status is a function of the entire oral 

bacterial community consisting of up to 1000 bacterial species, each interacting with one 

another as well as the host. The community of surface-attached microbes living within the 

intraoral cavity can be collectively referred to as biofilms. Biofilms are dynamic cellular 

arrangements of multiple species of microscopic organisms bound by extracellular 

polymeric substances (Figure I.1).  Bacteria in biofilms are physiologically and 

architecturally different from their planktonic counterparts.  Biofilms are estimated to be 

responsible for up to 80% of all human infections (Romling and Balsalobre 2012, Akers, 

Mende et al. 2014). In context of the oral cavity, biofilms can contribute to periodontal 

disease, caries, and host inflammatory conditions. Thus, successful prevention and 

control strategies should focus on creating and maintaining a healthy oral biofilm 

community.  
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In Vitro Laboratory Model Systems 

 

Role of In Vitro Laboratory Models in Dental Biofilm Research 

 

In vitro model biofilm systems enable researchers to monitor the development of 

biofilms over time while simulating in vivo parameters that are representative of the 

conditions within the human oral cavity. Oral biofilm models are highly controlled 

experimental systems characterized by the growth of microorganisms under continuous, 

semi-continuous, or closed flow (McBain 2009). Closed-flow systems were predominant 

at the turn of the 20th century and today still have many applications. However, 

continuous systems are favored over closed systems for multi-species dental biofilm 

research applications since the continuous delivery of media simulates salivary flow 

(Blanc, Isabal et al. 2014). Newer conceptual designs that improve upon model 

reproducibility and intraoral mimicry have also emerged, yielding more representative 

results. When conducted appropriately, in vitro model systems can provide expeditious 

and generalizable results for the study of dental biofilms.  

 

Resurgence of In Vitro Laboratory Models 

 

 The popularity of oral laboratory model systems peaked in the mid 1990’s and then 

stagnated until a revival in the mid 2000’s. Recently, interest in oral in vitro model biofilm 

systems has been reinvigorated (Tang, Yip et al. 2003, Salli and Ouwehand 2015). Many 

factors contributed to this resurgence, such as higher-throughput and better in vitro model 
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designs. However, the resuscitation of interest in laboratory-based systems can mainly 

be attributed to the integration of increased computational capacities and ‘omic’ 

technologies, particularly 16S community profiling, into established oral in vitro model 

systems (Edlund, Yang et al. 2013). For example, with enhanced computer hardware and 

software, the ability to measure 3-dimensional architecture of biofilms becomes feasible. 

This ability allows for the development of computational models to predict the response 

of biofilms to external stimuli (e.g., changes in pH, presence of antimicrobials, or 

colonization of a particular microorganisms).  Coupled with decreasing costs, oral in vitro 

model systems become a more appealing method to conduct experiments evaluating the 

effects of proposed anti-biofilm or antimicrobial agents on the development, community 

succession, and architecture of dental biofilms. 

 

Considerations for Using In Vitro Laboratory Models 

 

 Modeling biofilms in the oral cavity is biologically and technically challenging for a 

variety of reasons. Due to the heterogeneity of multiple overlapping niches contained 

within the oral cavity, the oral microbiome must be deconstructed to identify a locale of 

interest (Parahitiyawa, Scully et al. 2010, Xu, He et al. 2015). The choice of model 

systems presents an additional challenge. At present, most oral biofilm research is 

conducted using either in vitro or in vivo approaches, each with their own advantages and 

disadvantages (Haffajee and Socransky 2006). In vitro approaches use biofilm systems 

that are logistically easier to conduct at higher throughput, but may lack clinical relevance 

(Baehni and Takeuchi 2003, McBain 2009). In vivo approaches have typically lower 
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throughput and rely upon animal model systems that reproduce certain aspects of the 

human oral environment, but suffer from limitations due to differences in anatomy, 

physiology, and microbiology between animals and humans (Chun, Kim et al. 2010, 

Graves, Kang et al. 2012). Thus, sample size tradeoffs, costs, and generalizability 

between in vivo systems and laboratory in vitro model systems must be considered when 

choosing an appropriate model system. 

 

Limitations of Current Approaches in In Vitro Laboratory Models 

 

Paucity of Model System Standard Protocols 

 

 Currently, there are a plethora of in vitro laboratory models to study biofilms 

ranging from simple static plates to complex rigs containing multiple pieces of hardware 

(McBain 2009). The difficulty lies in selecting the best model system given one’s 

objectives. Factors to consider include open or closed systems, inoculum type, medium, 

shear force, temperature, atmospheric content, and substratum. With so many 

parameters to consider, there are few standardized protocols for developing multi-species 

microcosm dental biofilms. Additionally, the adaptation of modern commercially-available 

model systems could be technically challenging, involving many parts and accessories 

(Gabrilska and Rumbaugh 2015).  

 

Biased Imaging Strategies 
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 Another limitation relates to the natural heterogeneity of biofilms and the 

subjectivity of a human microscope operator. Microcosm dental biofilm architecture is 

remarkably diverse (Figure I.2) and can be difficult to characterize within the field of view 

of an objective lens. Time permitting, user subjectivity can be completely eliminated by 

imaging the entire substratum. However, this is normally not the case and sampling is 

required. Sampling frequently is not random or systematic, but defaults to the microscope 

operator locating the portion of the substratum that contains the most biomass. This 

strategy is marred by user subjectivity and can bias interpretation of results, especially if 

the operator is not blinded to treatment and control samples. An alternative to selective 

imaging is devising a schematic approach where each sample is imaged at fixed 

locations, regardless of presence of biofilm material.  

 

Quantification of Digital Data 

 

 Biofilm architecture is a construct that is difficult to characterize. It is simpler to 

qualitatively describe biofilm architecture rather than quantify it. For example, a biofilm 

may appear compact or fluffy, and may be described qualitatively as that. However, the 

degree of compactness or fluffiness is important for drug delivery kinetics and can provide 

insights into how biofilms behave in response to treatment. It is often difficult to gauge the 

magnitude of qualitative descriptors with a glance of a two-dimensional image. 

Computational algorithms can deconstruct digital data into its constituent pixels (2-

dimensional images) or voxels (3-dimensional images) in order to quantify biofilm features 

that are traditionally thought of as qualitative. There are a few software packages that can 
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quantify biofilm images, such as COMSTAT (Heydorn, Nielsen et al. 2000), Phlip 

(Mueller, de Brouwer et al. 2006), Icy (de Chaumont, Dallongeville et al. 2012) and 

ImageJ (Collins 2007). To our knowledge, there is no software package dedicated solely 

to biofilm architecture and no standardized protocol for analyzing biofilm images. 

 
 

Overall Aims  

 

At present, there are few standard protocols specific to commercially-available in vitro 

model systems for the development of dental biofilms. To our knowledge, there are no 

standard protocols that address the limitations of biased imaging strategies and image 

quantification. Given these limitations, the primary objective of this dissertation is to 

develop a standard protocol, from laboratory to analysis, for evaluating in vitro dental 

biofilm outcomes. This will bridge the gap between equipment and algorithms to address 

current limitations in laboratory dental biofilm research. The contents of this dissertation 

can be broken down into four aims. The first aim is to provide a historical distillation of in 

vitro model biofilms systems and its integration with modern technologies for the study of 

dental biofilms. The second aim is to adapt the 24-well BiofluxTM model system to 

reproducibly develop overnight supragingival plaque. The third aim is to develop a 

sensitive thresholding method called the Biovolume Elasticity Method (BEM), designed 

to maximize signal to noise ratio in fluorescent microscopic images. The fourth aim is to 

develop a software package, called the Biofilm Architecture Inference Tool (BAIT), which 

applies the BEM thresholding technique to calculate core architectural descriptors. Lastly, 

potential future work that builds off this project will be discussed. Overall, the work 
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presented in this dissertation will provide investigators a complementary hardware to 

software protocol to conduct generalized biofilm research within the laboratory.  

 
 

 

Figure I.1. Microcosm Dental Biofilm. A visual representation of a multi-species dental 
biofilm formed on a tooth and the types of resulting interactions. First, a conditioning film 
is acquired on the tooth surface. This pellicle consists of salivary proteins, 
polysaccharides, and mucins to which initial colonizers can attach. Depending on the time 
the biofilm remains undisturbed, ecological succession brings secondary and tertiary 
colonizers typically associated with disease. This community that can consist of hundreds 
of species that interact with one another through gene transfer events, cell-cell signaling, 
cross-feeding, and co-adhesion. Image acquired with permission from Kolenbrander et 
al. (Kolenbrander, Palmer et al. 2006). 



 12 

 
 
Figure I.2. Structural Heterogeneity of Biofilm. An oral biofilm developed over 22 hours 
using the 24-well BiofluxTM model system. The image contains the entire surface area of 
the glass substratum. The ends of the substratum most distal to each other are magnified 
to demonstrate structural heterogeneity of dental microcosm biofilms. Biofilms can be 
qualitatively described such as A) compact with large-chain islands, or B) fluffy with small 
fragmented archipelagos. Capturing the representative features of a biofilm within a 
sample is no trivial task, and is often chosen by the confocal operator. 
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Chapter II 

 

In Vitro Model Systems for Developing Oral Microbial Communities 

 

Summary 

 

In vitro biofilm model systems provide a platform for oral health researchers to 

conduct fundamental or applied research on dental biofilms without the need for human 

or animal subjects. One of the earliest documented dental biofilm model systems was 

developed in the 1950’s. Since then, developments in the last few decades have 

facilitated the simulation of intraoral conditions and allowed for increased generalizability 

of in vitro dental biofilm studies. In this chapter, we survey of model systems that are 

relevant to modern dental biofilm studies. These systems include the: constant depth film 

fermenter (CDFF), Sorbarod perfusion system, angled drip-flow reactor, modified 

Robbins device (MRD), flowcells, and the BiofluxTM system. The integration of 

contemporary model systems with technologies such as confocal laser scanning 

microscopy and 16S rRNA community profiling have revitalized interest in the field. These 

technologies enable quantification of biofilm architecture and community composition. 

How biofilm architecture and community composition respond to potential antimicrobials 

or anti-biofilm agents in vitro provide insight into the mechanisms underlying various 
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methods of biofilm control, and a method for evaluating new antibiofilm agents prior to in 

vivo evaluation. 

 

Introduction 

 

The human oral cavity offers numerous surfaces for microbial species to form 

multi-species aggregated communities that are collectively referred to as biofilms (Marsh 

2006). Biofilm communities are perpetually dynamic – component species are constantly 

interacting with the environment, the host, members of its own species, and members of 

other microbial species, leading to compositional changes in the biofilm over time (Hall-

Stoodley, Costerton et al. 2004, Kolenbrander, Palmer et al. 2006, Wimpenny 2009). 

However, biofilm communities can be extremely recalcitrant to physical perturbations 

(e.g. brushing)  and chemical treatments (e.g. antimicrobial) (Marsh 2010). In part due to 

their recalcitrance, biofilms are estimated to be responsible for >65% of all human 

infections (Davies 2003, Joo and Otto 2012). In the context of the oral cavity, biofilms 

contribute to periodontal disease, dental caries, infections, and inflammation, leading to 

debilitating decreases in quality of life (Jakubovics and Kolenbrander 2010). Collectively, 

these diseases cause a financial burden that is estimated to exceed 111 billion dollars in 

the USA  in 2012 (Wall 2014). While clinical studies are the gold standard for evaluating 

approaches to control oral biofilms, their implementation is costly and logistically 

challenging (Bang and Davis 2007, Martin-Kerry, Lamont et al. 2015). Because of this, 

clinical research is often preceded by in vitro studies to offer insight into possible real-

world treatment strategies (Krithikadatta, Gopikrishna et al. 2014). In particular, in vitro 



 15 

biofilm model systems provide preliminary impressions on how biofilm development, 

succession, and architecture respond to environmental challenges under a defined set of 

controlled conditions (Kolenbrander, Palmer et al. 2006, Hojo, Nagaoka et al. 2009). 

Thus, in vitro biofilm systems can provide valuable insights into biofilm control and the 

role biofilms play in the etiology of persistent chronic oral conditions. Ultimately results 

garnered from in vitro studies serve as the foundational impetus to conduct in vivo clinical 

trials, underscoring the importance of laboratory-based models in dental research. 

 

From a fundamental standpoint, in vitro model biofilm systems enable researchers 

to monitor the development of biofilms over time and identify functional roles of organisms 

within the biofilm state (Zhang 2017). Many of the available biofilm systems can 

simulate multiple in vivo parameters that are representative of the conditions within a 

human oral cavity (Coenye and Nelis 2010). This makes in vitro biofilm systems an 

appealing platform for exploratory studies that close knowledge gaps in human dental 

plaque biofilms without the need for human subjects. The closer the in vivo mimicry, the 

more generalizable the results gathered from in vitro model systems. As knowledge gaps 

are filled, in vitro model biofilm systems also can be harnessed for applied research with 

the practical directive of controlling dental plaque biofilm. Altering one parameter within a 

model system is a powerful method to study how biofilm develops in vitro (Fernandez, 

Aspiras et al. 2017). This can provide clues to how the component species interact with 

one another or other species within the oral cavity and can identify potential keystone 

species for oral biofilm development (Costerton, Geesey et al. 1978, Bradshaw, Marsh et 
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al. 1998, Diaz 2012). Examples of how in vitro model systems have been used in 

fundamental and applied dental biofilm research are detailed in Table II.1.  

 

In this review, we provide a distillation of past models used to develop defined 

single-species, defined multi-species, and complex microcosms. This will be followed by 

a focus on select biofilm models and applicable integrated technologies that can be used 

to study microcosm growth under environmentally-germane conditions. A particular focus 

of discussion will be on biofilm models that are open (constant delivery of fresh media), 

multiple-throughput, and require small volumes to conduct experiments. Lastly, the 

impact and potential clinical relevance of biofilm model systems will be discussed along 

with limitations and future directions. 

 

Past and Present: Oral In Vitro Biofilm Models 

 

 Before the term biofilm was coined in the late 1970’s (Costerton, Geesey et al. 

1978), the aggregation of microbial communities on surfaces was described in two 

seminal papers focused on marine microorganisms, one by Henrici (Henrici 1933) and 

another by Zobell and Allen in the 1930s (Zobell and Allen 1935). However, probably in 

part because of the visually conspicuous nature of dental plaque, a significant number of 

in vitro biofilm model systems developed over the past half century have focused on oral 

biofilms. For example, relatively primitive oral biofilm models were developed as early as 

the 1950s (Pigman, Elliott et al. 1952, Pigman, Hawkins et al. 1955). Throughout the 

ensuing decades, newer conceptual designs improved on their predecessors to allow for 
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development of in vitro biofilms that are either (1) amenable to the study of fastidious 

dental microorganisms (Guggenheim, Giertsen et al. 2001, Thompson, Rybalka et al. 

2015, Owens, Lynch et al. 2017) or are (2) able to grow biofilms that contain mixtures of 

species typically found in supragingival or subgingival  human dental plaque (Edlund, 

Yang et al. 2013, Nance, Dowd et al. 2013). Past and present oral in vitro biofilm studies 

can be characterized by transition from fundamental to applied research within four 

arenas: (1) cariogenesis outcomes, (2) single-species plaque, (3) defined multispecies 

plaque, and finally, (4) microcosm multispecies plaque outcomes. Fundamental and 

applied research in the microcosm arena has recently gained traction due to technological 

advancements and methodologies that enable investigators to measure microcosm 

biofilm outcomes. Notably, these advancements enable interrogating community 

membership with 16S rRNA profiling and measuring biofilm architecture captured by a 

confocal laser scanning microscope.  

 

The earliest fundamental model biofilm systems can be dated back to the early 

1950’s when Pigman and colleagues developed an artificial mouth model to induce 

cariogenesis on extracted teeth (Pigman, Elliott et al. 1952). This model is arranged 

vertically with sterile media drip-fed over an extracted human tooth inoculated with pooled 

human saliva and housed in an acrylic box. The media reservoir is positioned above the 

extracted tooth and media is delivered with a hypodermic needle. The artificial mouth 

model developed by Pigman is arguably the ancestor to contemporary drip-fed systems. 

This experimental setup was focused on identifying conditions that favor cariogenesis, 

and not particularly on plaque outcomes. Therefore, biofilms were developed at room 
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temperature and at times without the proper use of aseptic technique (Sissons 1997). 

From the 1950’s to the 1960’s, many in vitro oral studies used variants of Pigman’s 

artificial mouth system with improvement modifications such as incubator cabinets at 

35oC and sterilization with ethylene oxide (Pigman, Hawkins et al. 1955, Pigman, Brasher 

et al. 1962, Pigman and Newbrun 1962). Fundamentally, these studies linked common 

dietary sugars such as D-glucose and sucrose to cariogenicity. From the applied 

perspective, anticariogenic effects of compounds and dentifrice slurries can be evaluated 

by exposing tooth enamel with treatment concomitantly with conditions that would favor 

cariogenesis, such as supplementing bacteriological media with glucose (Pigman and 

Newbrun 1962). These models were used to demonstrate that fluorides reduced the rate 

of softening of enamel. 

 

During the 1960’s and 1970’s, many key microbial species associated with oral 

diseases were identified. Consequently, model biofilm studies from the 1970s onward 

involved these organisms. Many of these studies were fundamental in nature, and 

focused on single-species surface-attachment, biofilm development, or dual-species 

interaction studies (Coulter and Russell 1976, Russell and Coulter 1977, Russell and 

Ahmed 1978). Although the popularity of multispecies microcosm studies have increased 

(Kinniment, Wimpenny et al. 1996, Foster and Kolenbrander 2004), single and small 

consortia oral biofilm studies still play a role in uncovering behavioral tendencies and 

interactions of keystone species. One such discipline that benefitted immensely from 

reductionist-based biofilm model systems is coaggregation or cell-cell interaction. Using 

an in vitro biofilm model, Palmer et al. built flowcells to test interspecific interactions 
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between S. gordonii, S. oralis, and A. naeslundii, known early colonizers of dental plaque. 

Independently, A. naeslundii and S. oralis were incapable of growing in a biofilm state 

within the model system. However, the dual-species culture of the two species resulted 

in abundant biofilm formation (Palmer, Kazmerzak et al. 2001). Coaggregation has been 

shown, using in vitro biofilm models, to be integral in biofilm formation in other studies as 

well (Nagaoka, Hojo et al. 2008, Rickard, Campagna et al. 2008, Walter, Schwab et al. 

2008, Hill, Malic et al. 2010). This knowledge can pave the way to more directed applied 

studies such as interventions to disrupt coaggregation as a facilitator of biofilm control 

(Weiss, Lev-Dor et al. 1998). 

 

Experiments using early model systems generally involved single or few species. 

This was in part due to technological limitations. However, studies involving small 

consortia communities provide inadequate understanding of how microbial communities 

function in their native environment (Rudney, Chen et al. 2012). Indeed, dental plaque 

exists as a dynamic ecosystem teeming with biodiversity, with estimates of the total 

number of native species ranging from hundreds to thousands (Marsh 2006, Zaura, 

Keijser et al. 2009, Dewhirst, Chen et al. 2010, Peterson, Snesrud et al. 2013).This 

prompted Sissons in his 1997 review on dental plaque biofilm model systems to remark: 

“an attempt to explain plaque behavior based on the properties of monocultures can be 

regarded somewhat as heroic.”  (Sissons 1997). Through broad technological 

advancements, investigators acquired tools and methods to better characterize dental 

plaque grown from microcosm inoculum, most notably advances in microscopy and 16S 

community profiling (Tan, Lee et al. 2017). Somewhat unsurprisingly, the focus 
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consequently shifted from single-species and defined-species to microcosm-multispecies 

studies. In recent years, many fundamental validation and protocol studies emerged to 

gauge reproducibility and provide cursory microbiological results from oral microcosm 

biofilms (Edlund, Yang et al. 2013, Nance, Dowd et al. 2013, Samarian, Jakubovics et al. 

2014). Oral microcosm biofilm studies will enable the measurement of different biofilm 

outcomes, such as biofilm architecture, microbial community profiles, and taxonomic 

spatial distribution (Gross, Beall et al. 2012, Valm, Mark Welch et al. 2012, Xiao, Hara et 

al. 2017).  

  
The model systems focused upon in this review have been used in the past to 

study dental plaque biofilms and are the mainstay for current studies. These systems are 

all open biofilm models that constantly deliver fresh media to the site of biofilm 

development (McBain 2009). Canonically, model systems used to study dental plaque 

biofilms can be classified as drip-fed or flow-fed. Drip-fed systems deliver nutrient semi-

continuously, whereas flow-fed systems deliver a constant laminar flow of nutrients. The 

drip-fed systems discussed are the constant depth film fermenter (CDFF), the Sorbarod 

perfusion system, and the drip flow biofilm fermenter. The flow-fed systems are the 

modified Robbins device (MRD), flowcells, and the BiofluxTM system. Many of these 

possess attributes that make them appealing candidates as model systems for modern 

dental plaque studies. All discussed model systems are compatible with confocal laser 

scanning microscopy and can be manipulated to harvest biofilm cells for microbial 

community profiling. Finally, all are multiple-throughput and many require small volumes 

for experiments. A summary of the discussed model systems is presented in Table II.2. 
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Relevance of Biofilm Model Systems to Health & Disease Research 
 

 
 

Model systems that are capable of developing environmentally-germane biofilms 

will provide more generalizable outcomes as it pertains to health and disease research. 

There are many parameters of the oral environment to consider for optimal in vivo 

mimicry. These parameters include shear force, bacteriologic media, atmospheric 

content, and substratum. Growth of biofilms under low shear mimics salivary or gingival 

crevicular flow (Blanc, Isabal et al. 2014), which is important for bacterial interactions 

(Huang, Li et al. 2011). One particularly important modification replaced bacteriologic 

medium with human saliva to feed in vitro oral biofilms (Yaari and Bibby 1976). The 

resultant oral biofilm is more representative of in vivo plaque as the bacterial composition 

is influenced by selective pressure of the physico-chemical properties and nutrients of 

human saliva, rather than artificial media.  Another study delivered a gas mixture 

consisting of 95% atmospheric air and 5% carbon dioxide into the artificial mouth system 

(Dibdin, Shellis et al. 1976). This was designed to mimic the composition of expired 

breath. Lastly, choice of a substratum that represents human dentin and enamel is also 

important. Hydroxyapatite and glass are two surfaces commonly used to represent oral 

hard surfaces and as discussed before, there is no indication of differences in acquired 

pellicle formation and resultant biofilm development in either (Elliott, Pratten et al. 2005). 

Many of these in vivo parameters can be carefully controlled in modern studies involving 

model systems. 
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In vitro model systems are extraordinarily important to dental biofilm research from 

the perspective of both fundamental and applied research. With the development of in 

vitro biofilms that are increasingly representative to plaque that grows in vivo, 

investigators will gain a better platform to observe the role dental plaque plays in disease. 

Mounting evidence suggests that changes in the ecological and environmental factors 

drive plaque communities to impose etiologic roles in caries and periodontal disease 

(Aas, Griffen et al. 2008, Peterson, Snesrud et al. 2013). The importance of in vitro model 

systems lies within its ability to preserve and develop the polymicrobial community that is 

representative of the human oral microbiome. With that accomplished, researchers may 

be able to perform applied research studies to evaluate potential antimicrobial or anti-

biofilm compounds. (Nance, Dowd et al. 2013, Kolderman, Bettampadi et al. 2015, Shin, 

Ateia et al. 2015). Additionally, investigators can use in vitro biofilm systems to study 

critical coaggregation interactions that occur between defined oral microbial species. For 

example, using a flowcell model, Egland et al. discovered that S. gordonii amyB gene is 

upregulated in the presence of V. atypica, assisting the recruitment of V. atypica as an 

early colonizer to dental plaque (Table II.1). V. atypica and other periopathogens can 

then integrate with the maturating biofilm as secondary colonizers (Figure I.1). Thus, from 

the applied research perspective, targeting S. gordonii amyB expression or V. atypica 

colonization can prevent recruitment of periopathogens.  

 
 

Animal models and human clinical trials also should be considered in oral health 

research. These two should complement promising results from in vitro experiments. Both 

offer the advantage of an in vivo environment and are important for validation of certain 
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hypotheses. However, compared to animal models and human clinical trials, in 

vitro models offer several considerable advantages for studying oral biofilms. One 

advantage is the affordability post development of a model system. Once a model system 

had been validated, costs to maintain the system and serially produce multiple runs 

decreases significantly and the throughput is increased due to the decreased per sample 

cost. Compared to the high costs associated with in vivo based research (Oz and Puleo 

2011, Kantarci, Hasturk et al. 2015), validation for proof of concept and testing for efficacy 

of new anti-biofilm agents through in vitro model systems is time and cost saving. Another 

advantage over using animal models for biofilm research is that human oral biofilm-like 

community can be captured rather than a very different biofilm community that exists in 

the oral cavity of animal models such as mice (Coenye and Nelis 2010, Struillou, Boutigny 

et al. 2010). Currently, in vivo animal models for caries and periodontal disease often 

utilize single, or few select pathogens in high numbers unable to mimic the human biofilm 

community (Rivera, Lee et al. 2013, Chukkapalli, Easwaran et al. 2017).  Lastly, in 

vitro systems can be extremely versatile. Key factors associated with biofilm disease 

pathogenesis such as nutrient availability, flow and shear rate, and time can be 

strategically controlled to help answer specific research questions regarding biofilm 

architecture, cellular organization, and mechanisms associated with biofilm growth, 

persistence and resistance. 

  

Drip-fed Biofilm Models 

 

Constant Depth Film Fermenter 
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 The constant depth film fermenter (CDFF) was first described by Peters and 

Wimpenny in 1988 as a means to develop freshwater biofilms at a defined thickness 

(Peters and Wimpenny 1988). The theory of maintaining the biofilm at a constant depth 

is to achieve a steady biofilm state within a reactor where measurable properties do not 

change significantly over time: perturbations to a steady state biofilm will be more 

interpretable and reproducible compared to the same perturbations applied to a non-

steady state biofilm (Kinniment, Wimpenny et al. 1996). Mechanically, the CDFF is a 

chamber housing a rotating disc on the bottom. The rotating disc is embedded with 

customizable plugs where each plug is made of a material on which to develop biofilms. 

Media is drip-fed from above with inlets as the disc rotates to distribute media to each 

plug. Spent media is collected in a waste outlet located below the disc. The CDFF that 

keeps biofilms at a constant depth using a scraper blade that removes excess biofilm 

biomass and spent media as the disc rotates. (Figure II.1). Of the six systems reviewed, 

the CDFF has the highest throughput. The initial model described by Peters et al. held 25 

plugs (Peters and Wimpenny 1988). Later models had the capacity of 75 plugs (Deng, 

van Loveren et al. 2005). 

 

Initially created for freshwater biofilms, the CDFF has been applied successfully to 

the development of in vitro biofilms modeling dental plaque (McBain 2009, Hope, Bakht 

et al. 2012). Perhaps the most appealing aspect of the CDFF is the reproducibility of 

results. Replicate biofilms are kept at a constant thickness and are, theoretically, in a 

dynamic steady state. The CDFF has been used extensively for single-species (Deng, 
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van Loveren et al. 2005, Zanin, Goncalves et al. 2005, Metcalf, Robinson et al. 2006), 

defined consortia (Ledder, Madhwani et al. 2009, Fan, Wen et al. 2012, Owens, Lynch et 

al. 2017), and oral microcosm studies (Hope, Clements et al. 2002, McBain, Bartolo et al. 

2003, McBain, Bartolo et al. 2003, Cenci, Pereira-Cenci et al. 2009, Abdulkareem, 

Memarzadeh et al. 2015). CDFFs are particularly well-equipped to conduct studies of 

antimicrobial challenges on mature dental biofilms, and biofilm growth monitoring. 

Because it is a high throughput system, biofilm biological replicates can be grown in the 

same chamber, and assigned to treatment or control groups post-growth. For example, 

Deng et al. grew S. mutans on 45 dentin plugs in a split CDFF chamber that was 

simultaneously treated with sodium fluoride or sodium fluoride/chlorhexidine formulations 

after the biofilm had matured (Deng, van Loveren et al. 2005). Sodium 

fluoride/chlorhexidine formulations conferred the most kill, lactic acid reduction, and 

remineralization of dentin compared to sodium fluoride alone. In another study, Feldman 

et al. monitored dual species C. albicans and S. mutans biofilm development on pre-

treated hydroxyapatite discs (Feldman, Shenderovich et al. 2017). The discs were coated 

with a membrane designed to slowly percolate thiazolidinedione-8, a quorum sensing 

quencher. Biofilm development was hindered on discs containing the treatment. 

 

Sorbarod Perfusion System 

 

In the mid 1990’s, Hodgson et al. integrated Sorbarod filters with the conceptual 

framework of the perfused biofilm fermenter system (Hodgson, Nelson et al. 1995). The 

rationale for the development was to distinguish growth rates of bacteria in planktonic 
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phase from bacteria that had attached to a substratum. It was already evident that 

adhered bacteria had altered physiology from their planktonic counterparts and grew at 

different rates. The perfused biofilm fermenter system described by Gilbert et al. in 1989 

(Gilbert, Allison et al. 1989) was inadequate for determining growth rate of adhered S. 

aureus and P. aeruginosa because the model tended  to clog. To remedy this, Hodgson 

and colleagues inoculated Sorbarod filters with mid-logarithmic phase cultures and used 

the primed filters as the site of attachment and biofilm growth. The filters had wider 

average spaces between fibers than the 0.22µM membranes used in the perfused biofilm 

fermenter system, and therefore were less prone to clogging. The primed Sorbarod filter 

was then put below a drip of medium delivered by a hypodermic needle that was 

controlled by a peristaltic pump. The improved model system can be run continuously for 

up to ten days without issues. The principles of the Sorbarod perfusion system (Figure 

II.2) are very similar to the CDFF. As the site for biofilm development is the Sorbarod filter 

and not a solid surface, microscopy will require pre-imaging processing (See Rickard et 

al. (Rickard, Campagna et al. 2008). 

 

Many studies have used the Sorbarod perfusion system design to study oral 

biofilms, particularly oral malodor. Because the system is stable for many days, it is often 

used for anaerobic and microcosm biofilm studies which require extended runtimes for 

growth. Taxa implicated in oral malodor generally include Fusobacterium, Treponema, 

Haemophilus, Veillonella, and Porphyromonas (Krespi, Shrime et al. 2006). In oral 

malodor studies, a microcosm derived from dorsal tongue scraping is used as inoculum 

to grow representative communities believed to expel volatile sulfur compounds (VSC). 
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Time required for analogous steps in the biofilm development protocol is much longer for 

VSC producing communities. Initial attachment is 24-48 hours compared to 1 hour for 

studies modeling early supragingival plaque (Samarian, Jakubovics et al. 2014). 

Additionally biofilm development occurs over 96-120 hours as opposed to 20-24 hours. 

The Sorbarod perfusion system also has been used to develop dental biofilms inoculated 

from saliva (McBain, Sissons et al. 2005). McBain et al. concluded that the Sorbarod 

system was effective at maintaining a stable and reproducible oral biofilm community with 

relative abundances reflecting the initial starting inoculum. 

 

Angled Drip-Flow Biofilm Reactor 

 

Unlike the CDFF and Sorbarod systems, the drip-flow biofilm reactor is reclined at 

an angle. The angled biofilm reactor was first described by Xu et al. in the late 1990’s as 

a means to develop P. aeruginosa biofilms (Xu, Stewart et al. 1998). Media is dripped 

from above at the portion of the reactor that sits highest. During use, the media flows 

downward coating a microscope slide layered with a substratum chosen by the 

investigator. The gravity-assisted flow of media creates a low shear environment that can 

be adjusted by elevating or depressing the angle of the system. At the bottom of the 

reactor is an outlet where effluent media traverses into a waste receptacle. Variations of 

the system have emerged through the years but the principles behind the system remain 

unchanged. A commercially-available reactor is produced by BioSurface Technologies 

(http://biofilms.biz/products/biofilm-reactors/drip-flow-reactor). In this model, the system 

has four or six individual parallel channels (Figure II.3). Care must be applied in sampling 

file:///C:/Users/Ting%20Luo/AppData/Roaming/Microsoft/Word/(http:/biofilms.biz/products/biofilm-reactors/drip-flow-reactor
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biofilms over a large surface area. As demonstrated by Xu et al., oxygen availability can 

influence heterogeneity of P. aeruginosa biofilms and if media flow across the slide is not 

uniform, then the development of a heterogeneous biofilm is expected (McBain 2009). 

This can be mitigated by unbiased biofilm sampling scheme, such as scraping biomass 

from the bottom of the slide.  

 

Several studies have used the angled drip flow reactor to model single species 

and multispecies dental biofilms. Two studies coated the glass substratum with agents to 

determine if the agents possessed any anti-biofilm effects on S. mutans (Brambilla, 

Ionescu et al. 2014, Williams, Epperson et al. 2017). One agent was silver loaded into 

polymethyl methacrylate (PMMA) plates and the other agent was chlorhexidine loaded 

into dentin bonding systems. Silver PMMA plates were able to resist S. mutans biofilm 

formation in short-term washouts, but not long-term washouts. Chlorhexidine-loaded 

dentin adhesion bonds demonstrated variable results, leading authors to believe the 

variable chemical composition of the dentin binding systems masked the effects of 

chlorhexidine. The angled drip flow reactors also have been used for dentifrice studies on 

mature biofilms (Ledder, Sreenivasan et al. 2010, Ledder and McBain 2012). In those 

studies, microcosm biofilms were grown over 24 or 48 hours, followed by treatment 

regimens delivering dentifrice slurries every six hours for six days. In these studies, 

dentifrice treatments reduced culture counts and affected plaque community composition. 

 

Flow-fed Biofilm Models 
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Modified Robbins Device (MRD) 

 

First described by McCoy & colleagues in 1981, the modified Robbins device 

(MRD) allows reproducible biofilm formation for studying different types of biofilms under 

fluid shear conditions (McCoy, Bryers et al. 1981). MRD is commercially available through 

companies such as Biosurface Technologies Corporation (Bozeman, MT) and Tyler 

Research Corporation (Edmonton, Alberta, Canada). However, different versions of MRD 

can be made and customized in-house to fit the research design needed by independent 

laboratories. For example, Johnston et al. adapted the MRD with Malthus tubes to 

evaluate disinfection of biofilms(Johnston 1995). The principle behind the MRD is using 

individual coupons or discs attached to a plug that is inserted into a port. Coupons can 

be modified or built from different materials to resemble surfaces more akin to dental 

prostheses or tooth enamel.  A peristaltic pump provides unidirectional media flow across 

all ports after the coupons are inoculated with microorganisms. Biofilm development 

occurs on the surfaces of the coupons as the system runs for a set amount of time. The 

throughput of the MRD varies by design. Low pressure and small volume MRDs offered 

by Tyler Research corporation range from 12-25 ports (http://www.tylerresearch.com/low-

pressure-devices). The MRD equivalent offered by Biosurface Technologies has a 

throughput of 12 (http://biofilms.biz/products/biofilm-reactors/bio-inline-biofilm-reactor). A 

schematic of the physical system and direction of flow is illustrated in (Figure II.4).  

 

The MRD has been used extensively to study oral biofilms, with many studies 

demonstrating its reproducibility at developing oral biofilms (Honraet and Nelis 2006, 

http://www.tylerresearch.com/low-pressure-devices
http://www.tylerresearch.com/low-pressure-devices
http://biofilms.biz/products/biofilm-reactors/bio-inline-biofilm-reactor
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Coenye, De Prijck et al. 2008, Noiri, Katsumoto et al. 2008, Sliepen, Van Essche et al. 

2010, Blanc, Isabal et al. 2014, Yassin, German et al. 2016). The system and its 

detachable coupons proved to be particularly useful in evaluating efficacy of 

antimicrobials, antibiotics, disinfectants, and other agents. Coupons can be primed with 

the agent prior to biofilm development as in the study by Yassin et al. (Yassin, German 

et al. 2016). In the study by Yassin and colleagues, MRD coupons were prepared from a 

mixture of polymethyl methacrylate and sodium fluoride to create a copolymer that can 

be used for dentures while also releasing fluoride ions passively while worn. The 

investigators observed that mixed-species (C. albicans, L. casei, S. mutans) biofilm 

growth was inhibited by a factor of 10-fold on coupons containing the fluoride compared 

to biofilm growth on coupons that did not. Likewise, biofilms on coupons can be treated 

post hoc to evaluate efficacy of treatment after a biofilm has developed (Coenye, De Prijck 

et al. 2008). In 2008, Coenye et al. grew monospecies biofilms of C. albicans, S. mutans, 

S. aureus, and P. aeruginosa in a stainless steel MRD. After growth, the biofilms were 

treated with NitrAdineTM, sonicated to remove biofilm from the coupons, and plated to 

determine efficacy of treatment in preventing regrowth. Similarly, Blanc et al. developed 

consortia biofilms on hydroxyapatite coupons to test antimicrobial efficacy of 

chlorhexidine, cetylpyridinium chloride, and sodium fluoride mouthwash rinses (Blanc, 

Isabal et al. 2014).  

 

Flowcells 
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The flowcell is the smallest in size of the six biofilm model systems described. Due 

to the compactness of the system, flowcells use small volumes of inocula and media for 

biofilm development. Flowcells are commercially-available through Stovall Life Science 

Inc. (Greensboro, NC), and Biosurface Technologies (Bozeman, MT), or can be 

constructed in-house for custom usage. Described by Palmer & Caldwell in the mid-

1990s, the flowcell consists of two glass coverslips adhered to a rubber or silicone spacer 

(Palmer 1995).  The main advantage of flowcells to study oral biofilms is the capability of 

observing changes to biofilm properties and architecture over time. This can be 

accomplished if the substratum of the flowcell is constructed from glass. With confocal or 

epifluorescent microscopy, morphological composition of bacteria and accumulation of 

biomass can be monitored over time. The throughput of flowcells vary by manufacturer. 

Stovall flowcells (http://www.seilsci.com/Stovall/flow-cell.pdf) contain three chambers and 

Biosurface flowcells (http://biofilms.biz/products/microscopy-flow-cells/) have 

throughputs ranging from 1-4 depending on application. A visual representation of the 

flowcell is presented in Figure II.5. 

 

The flowcell has played a prominent role in oral biofilm research. In 2004, Foster 

et al. used a flowcell to test the efficacy of antimicrobials or anti-biofilm agents on dental 

biofilms. In that study, Foster and colleagues grew single species S. gordonii biofilms in 

saliva-conditioned flowcells and treated them with commercially available mouthwashes 

(Foster 2004). The experiment showed different active ingredients varied in antimicrobial 

efficacy, demonstrating the utility of flowcells in the expeditious evaluation of candidate 

compounds. Later, Foster and colleagues used the same saliva-conditioned flowcell for 

http://www.seilsci.com/Stovall/flow-cell.pdf
http://biofilms.biz/products/microscopy-flow-cells/
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consortia biofilms featuring four oral residents. These experiments showed that biofilm 

formation can depend on whether the microorganisms form coaggregates with each other 

in the planktonic phase (Foster and Kolenbrander 2004). The flowcell has also been used 

in studies to test pellicle formation on glass compared to hydroxyapatite. The results 

indicated that the two surfaces were similar and had no effect on biofilm attachment 

(Elliott, Pratten et al. 2005).    

 

 

BiofluxTM Model System 

 

The BiofluxTM system, manufactured by Fluxion Biosciences (San Francisco, CA), 

is another continuous flow system used by investigators to model oral biofilms (Benoit, 

Conant et al. 2010, Samarian, Jakubovics et al. 2014). The system consists of three main 

parts: the consumable plates, the controller, and the software control 

interface. The software controls the flow rate expelled from each hose, the total runtime, 

and determines which pumps are active. The pneumatic pressure top creates an airtight 

environment within the BiofluxTM plate, allowing pressure to be applied only from the 

controller. This expels fluid from inlet well to output well at a fixed rate. A viewing port 

exists between the inlet and outlet wells and is where biofilm is developed under the 

prescribed flow rate. The BiofluxTM plate, similar to flowcells, can be imaged with 

inverted microscopy techniques during biofilm growth or after maturation. The 24-well 

BiofluxTM system is shown in Figure II.6.  
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Of all the systems described in this review, the BiofluxTM requires the least amount 

of media and inocula. Oral biofilms have been developed overnight at .2 dynes/cm2, 

which requires 380 uL of media per sample. Inoculum-wise, as little as 100 µL is 

needed. The low volumes required are especially advantageous for studies using 

donations of bodily fluid for media.  Another advantage of the BiofluxTM system is its 

throughput. With evenly-distributed flow supplied by a computerized pneumatic 

pump and a heating plate that covers the entirety of the plate, multiple biofilms can be 

produced in parallel under the same environmental parameters. Additionally, the 

atmospheric contents of the interface can be controlled by fitting a BiofluxTM controller 

with a pressurized gas cylinder containing a defined gaseous mixture. Different plate 

models enable 3, 8, or 24 biological replicates of oral biofilms to be developed in parallel. 

When compared to the modified Robbins device, the BiofluxTM model system has 

comparable throughput. However, unlike the BiofluxTM system, each biofilm sample from 

the MRD are not biological replicates. This is because each peg is situated at a different 

distance downstream from the introduction of media. This results in a nutrient gradient 

that affects biofilm formation on pegs more distal to the media source (Johnston 1995). 

Biological replicates can be achieved with the flowcell model system as well as the drip 

reactor; however, with the throughput of those two systems, considerably more effort is 

required to accumulate a comparable sample size to the BiofluxTM.  

 

First described in 2010, Benoit et al., used the throughput advantage of the 

BiofluxTM system to quickly screen several antimicrobials in their effectiveness on P. 

aeruginosa PAO1 flow biofilms (Benoit, Conant et al. 2010). Since then, the BiofluxTM 
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system has been adapted for oral biofilm architecture and community studies.  In 2013, 

Nance et al., developed overnight microcosm biofilms seeded from salivary inoculum and 

tested the antimicrobial effectiveness of cetylpyridinium chloride (CPC) (Nance, Dowd et 

al. 2013). Using LIVE/DEADTM staining, a dose-response viability gradient was observed 

between .001% and .5% w/v CPC. Also in the study, Nance established that the BiofluxTM 

system was capable of developing a dental biofilm that was compositionally very similar 

to early supragingival plaque. A standardized protocol for developing oral multi-species 

biofilms using the BiofluxTM system was described by Samarian et al. in 2014.  Since then, 

the BiofluxTM system has been used to study the effects of other compounds on dental 

biofilms. In 2015, Kolderman et al. demonstrated the biofilm destabilization properties of 

L-arginine (Kolderman, Bettampadi et al. 2015). Lastly, the BiofluxTM system has been 

used in single-species studies. Ding et al. grew single-species S. mutans biofilms with 

flowing media and tested the antimicrobial peptide bactenecin (Ding, Wang et al. 2014). 

The group observed a significant decrease in viability. 

 

Integration of Model Systems with Microscopy and Bioinformatics 

 

Since the first model biofilm systems were described in the 1950s, innovation in 

methodologies have enhanced the generalizability of oral biofilms grown in vitro. Today, 

investigators can cultivate an in vitro oral biofilm that is compositionally similar to the 

microbial community of plaque (Rudney, Chen et al. 2012, Nance, Dowd et al. 2013). The 

ability to replicate the in vivo to the in vitro is crucial to conducting representative studies 

without the need for human subjects. Two disciplines where technological advancements 
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have significantly augmented the value of laboratory model systems are microscopy and 

bioinformatics, particularly in the domain of 16S rRNA bacterial community profiling. 

Microscopy is the cornerstone behind the exploration of biofilm architecture, whereas 

bioinformatics techniques are becoming increasingly popular for characterizing the 

function of biofilm microbial communities as a whole.  

 

Confocal Laser Scanning Microscopy (CLSM) 

 

Microscopy enables investigators to observe dental plaque biofilm while it is still 

attached to the substratum (Zaura-Arite, van Marle et al. 2001). Instead of destructively 

removing dental biofilm for downstream quantification, microscopy enables in situ 

quantification. For example, instead of culture viability counting, which often requires 

sonification of biofilm to remove it from its substratum, a confocal laser scanning 

microscope can take a digital snapshot of a biofilm stained with LIVE/DEADTM. Viability 

measured post-sonification may underestimate true viability due to the destructive nature 

of the harvesting process. Although the stains that comprise LIVE/DEADTM are 

intercalating agents that renders microbial life inert, a cross-sectional measurement of the 

biofilm’s viability can be achieved. Of more importance is that structural features of dental 

biofilms can only be visualized with the aid of microscopy. Understanding how dental 

plaque structure matures over time and observing how it responds in real-time to 

treatment have important implications for treatment delivery strategies (Wood, Kirkham 

et al. 2000). 
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Biofilm architecture captured with microscopy can also give clues to its microbial 

membership. Like the edifices that define the skyline of a metropolis, multi-species oral 

biofilms feature conspicuous architectural features interspersed along a heterogeneous 

topography. This complexity in biofilm structure is attributed to the heterogeneity of taxa 

found within dental plaque.  The architecture of biofilms is an enticing research topic 

because certain physical attributes could indicate the prevalence of known 

pathogenic taxa. In a 2010 study, Zijnge et al. used fluorescent in situ hybridization to 

observe subgingival plaque on extracted teeth from four subjects diagnosed with 

periodontitis. They identified Acintomyces sp., Tannerella forsythia, 

Fusobacterium nucleatum, Spirochaetes sp., and Synergistetes sp. with dominant co-

localizations, embedded in distinct formations within the subgingival plaque (Zijnge, van 

Leeuwen et al. 2010). Using a variety of microscopic methods, other studies also have 

investigated co-localization and spatial arrangement tendencies of pathogenic species 

within dental plaque (Dige, Nilsson et al. 2007, Ng, Kin et al. 2016).   Understanding these 

biofilm structures and cellular arrangements could be important to biofilm control and 

therapeutic options. For instance, identifying coaggregation partners and targeting 

participating species could destabilize biofilm development (Rickard, Gilbert et al. 2003). 

Thus, considerable effort has been dedicated into identifying a disease-associated motif 

seen in biofilm architecture and its possible role in pathogenesis.     

 

However, exploring biofilm architecture in vitro is challenging, as it requires a 

model system capable of growing an environmentally-germane biofilm, the hardware to 

visualize biofilms attached to a substratum and appropriate analytic tools. One popular 
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technology to directly visualize the physical architecture of a biofilm is confocal laser 

scanning microscopy (CLSM). CLSM technology captures a 3-dimensional stack of x-y 

planar images at user-defined z-interval distances and translates it into input for analytical 

software. Additionally, CLSM is amenable to the study of spatial relationship of species 

(taxa-specific fluorescent antibodies) and cells that are intact or damaged 

(LIVE/DEADTM). Multiple analytical software packages are publically available and offer 

a multitude of outcome measurements. Alternatively, customized in-house analysis can 

be performed from the raw digital data stored by confocal imaging. A computing 

environment such as Matlab (Natick, MA, USA) is necessary for the latter alternative and 

is described in more detail by Lewandowski et al. (Beyenal, Donovan et al. 2004). The 

also data can be used as input for 3D rendering software, such as Imaris (Zurich, 

Switzerland), which generates the topography of the physical biofilm and gives 

investigators insight to structural features of an intact dental biofilm in its natural 

state.   Scanning electron microscopy (SEM) also can capture the 3-dimensional 

architecture of biofilms, but biofilms can suffer from architectural deformation during 

fixation steps prior to imaging (Bomchil, Watnick et al. 2003).  

 

16S rRNA Community Profiling 

 
 

Biofilm research also has benefited from developments in sequencing which 

enable identification of all taxa present.  The focal point of bacterial pathogenesis of oral 

diseases has shifted from individual causative agents to microbial community profiles that 

function as a unit within the intraoral cavity (Li, Zou et al. 2016, Vogtmann, Hua et al. 
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2018). There is mounting evidence that consortiums of species, and their interactions with 

the host, are responsible for initiating the pathway for soft and hard tissue destruction 

seen in periodontal disease and caries. For 

example, Streptococcus mutans and Porphyromonas gingivalis, which have traditionally 

been identified as causative agents of caries and periodontal disease, are present in the 

mouths of healthy individuals and increased abundance of these species is not 

necessarily predictive of dental disease (Kolenbrander, Palmer et al. 2006, Marsh, Moter 

et al. 2011, Whitmore and Lamont 2011). The present challenge is identifying community 

profiles, not individual species, most associated with disease. 

 

A popular technique for constructing community membership within a sample is 

16S rRNA sequencing. All prokaryotes possess the 16S rRNA gene coding for the 16S 

ribosomal RNA. Variations within the nine hypervariable regions of the 16S rRNA gene 

can be used to identify taxa (Janda and Abbott 2007). With more hypervariable regions 

sequenced within a read, a higher resolution taxonomic assignment can be achieved. 

Prior to the advent of next-generation sequencing (NGS), investigators relied upon 

technologies that produced low read counts of 16S rRNA sequences. These technologies 

included clone libraries (Diaz, Chalmers et al. 2006) and denaturing gradient gel 

electrophoresis (Strathdee and Free 2013), for the study of the oral microbiome. With 

NGS, massively parallel and deep sequencing capabilities emerged, enabling the oral 

microbiome to be quickly characterized (Behjati and Tarpey 2013).  
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To interrogate the microbiome of a biofilm grown in vitro, investigators harvest and 

prepare biofilm cells from their model system for integration with next-generation 

sequencing technologies. This involves removing biofilm material from substratum with 

sonification or turbulent shear with the BiofluxTM system. Unlike cell culture viability 

techniques, the destructive nature of removing biofilm is irrelevant for 16S rRNA 

community profiling. The objective is to retrieve a cross-sectional snapshot of the 

community at the time of harvest by sequencing 16S rRNA fragments of bacterial cells 

extant within the biofilm. There are numerous NGS platforms used for 16S profiling. 

Choice of sequencing platform depends on the investigator’s research questions and 

involve trade-offs between read length, read depth, sequencing depth, and accuracy. 

Sequencing platforms relevant to oral microbiome studies are listed below in Table II.3. 

Bear in mind this is not an exhaustive list since NGS technologies that offer insufficient 

or superfluous read length (20Kb read lengths offered by PacBio) for the 16S rRNA gene 

are excluded.     

   

Concluding Remarks and Future Directions 

 

The miniaturization of in vitro platforms operating on the microscale, combined with 

integration with imaging and ‘omic’ technologies have reinvigorated the appeal of 

laboratory biofilm model systems. A PubMed search on the key terms “animal model 

system dental” and “laboratory model system dental” indicates that animal and laboratory-

based models have comparable numbers of publications count up until 2014. In 2014, 

2015, and 2016, nearly double the number of publications relate to dental laboratory 
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model systems. This popularization of laboratory-based systems is likely owed to 

technologies that can be tethered to model systems, such as confocal laser scanning 

microscopy (CLSM) and 16S community profiling (Azevedo, Lopes et al. 2009, Valm, 

Mark Welch et al. 2012, Fritz, Desai et al. 2013). Combined with decreasing costs, in 

vitro model biofilm systems have become an appealing option for multi-species dental 

biofilm studies. 

 
The future directions of in vitro model systems could involve a shift from developing 

representative dental plaque within the system to transplanting already-developed in vivo 

plaque into the system. There are ex situ hybrid studies that involve human participants 

wearing non-invasive oral prostheses housing bovine enamel chips. This enables testing 

hypotheses on mature dental plaque grown in vivo for better applied research. Another 

direction of in vitro model systems could incorporate a biological substratum for biofilm 

development, such as that developed using tissue culture techniques. There are multiple 

surfaces in the intraoral cavity including hard and soft palate, tongue, subgingival, buccal, 

and teeth. Glass and hydroxyapatite are representative of the hard surfaces of teeth, but 

are a poor model for attachment and development of subgingival plaque. Tissue culture 

of host epithelial cells, on the other hand, would more adequately represent the 

substratum of subgingival plaque (Guggenheim, Gmur et al. 2009). This will open a new 

subset of in vitro oral biofilm studies to include modeling of subgingival communities. 

 

 The development and validation of new biofilm model systems for applied dental 

biofilm research is a continual effort. The biggest challenge thus far in translating the in 

vitro model system findings into clinical practice has been the inability to form in vivo-like 
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biofilms in a laboratory setting. The fusion of old and new model systems implementing 

improved protocols are allowing investigators to get closer to mimicking the natural oral 

biofilm states and providing investigators the tools to more accurately measure dental 

biofilm outcomes. 
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Table II.1. Examples of Fundamental & Applied Research of In Vitro Dental Biofilms. 
Studies that improve the understanding of dental biofilms are fundamental. Applied 
studies, on the other hand, are designed to intervene. S. mutans had been observed to 
cause dental caries through its acidogenic metabolism of sugar. Based on this 
fundamental understanding, applied studies can be designed with an intervention to limit 
S. mutans biofilm formation. 
 

a Not a dental biofilm outcome, but listed to provide historical context and highlight the shift of 

focus to dental biofilm outcomes.  

  

Outcomes Fundamental Study 
(Reference) 

Applied Study 
(Reference) 

Model 
System(s) 
Used 

Cariogenesisa D-glucose and sucrose 
induce caries (Pigman, 
Brasher et al. 1962). 

Fluoride slurry inhibits 
enamel softening 
(Pigman and Newbrun 
1962). 

Artificial 
Mouth 

Single-Species 
Plaque 

S. mutans biofilms fed 
sucrose induces caries 
(Deng and ten Cate 
2004). 

Chlorhexidine in dentin 
bonding systems can 
inhibit S. mutans biofilm 
formation (Brambilla 
2017) 

Constant 
Depth Film 
Fermenter, 
Angled Drip-
Flow Reactor 

Defined-Species 
Plaque 

S. oralis and A. 
naeslundii biofilms grew 
more when co-cultured 
than alone (Palmer, 
Kazmerzak et al. 2001). 

S. gordonnii expression 
of amyB gene is 
increased in presence of 
V. atypica, paving way 
for V. atypica 
colonization (Egland, 
Palmer et al. 2004). 

Flowcells 

Microcosm Plaque Community composition 
of in vitro biofilms can 
reflect that of microcosm 
donor (McBain, Sissons 
et al. 2005). 

Exposure to L-arginine 
hydrochloride can alter 
biofilm community 
composition (Kolderman, 
Bettampadi et al. 2015) 

Sorbarod 
Perfusion, 
BiofluxTM  
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Table II.2. Open System Biofilm Models Relevant to Dental Biofilm Research. 
Examples of model biofilm systems that have been used for the study of dental biofilms. 
General properties of each system is described, along with its nutrient delivery 
classification, year it was first described in literature, throughput, and volumetric scale. 
 
Biofilm Model   Classification Yeara General Properties Throughput Volumetric 

Range 

Constant depth 
film fermenter 

(Peters and 
Wimpenny 1988) 

Drip-fed 1988 

-Scraper blade to smear media and 
keep biofilm at constant depth 
-Keeps biofilm in a steady state 
-Rotating disc embedded with plugs 
-Plug composites can be modified to 
simulate a different substratum 
-Can run for several days 

25 (Peters and 

Wimpenny 1988), 
75 (Deng, van 

Loveren et al. 
2005) 

Liters 

Sorbarod 
perfusion system 

(Hodgson, Nelson 
et al. 1995)  

Drip-fed 1995 

-Sorbarod filter substratum 
-Media perfuses through filter 
-Similar to CDFF 
-Can run for several days 

1 (Hodgson, 

Nelson et al. 
1995), 5 (McBain, 

Sissons et al. 
2005), 6 (Taylor 

and Greenman 
2010), 

Milliliters to 
Liters 

Angled drip-flow 
biofilm reactor 

(Xu, Stewart et al. 
1998) 

Drip-fed 1998 

-Reactor angled to allow drip to flow 
continuously across substratum 
-Gravity-assisted flow simulates low 
shear 
-Non-homogenous trickle flow can 
generate  heterogeneous biofilms 
-Shear rate can be 
-Can run for several days 

4-6b Milliliters to 
Liters 

Modified 
Robbins device 

(McCoy, Bryers et 
al. 1981) 

Flow-fed 1981 

-Individual coupons or discs as 
substratum 
-Coupons customizable by 
investigator 
-Proximity of coupon to nutrient 
source a parameter to consider 

12, 25b,c Liters 

Flowcells (Palmer 
1999)   

Flow-fed 1995 

-Rubber or silicone spacer bound by 
glass coverslips 
-Amenable to inverted microscopy 
-Can use other substrata but may 
jeopardize compatibility with 
microscopy 

1-4b,d Milliliters to 
Liters 

BiofluxTM (Benoit, 

Conant et al. 
2010) 

Flow-fed 2010 

-consumable plates etched with 
microchannels 
-software-controlled pneumatic pump 
-Glass-bottomed substratum 
-Amenable to inverted microscopy 

3,8,24e Microliters to 
Milliliters 

a Year that open system biofilm model was introduced for general biofilm research. The cited 
reference may not have used the biofilm model for dental biofilm research at the outset. 
b Commercially available through Biosurfaces Technologies Corporation. 

c Commercially available through Tyler Research Corporation. 
d Commercially available through Stovall Life Science, Inc. 
e Commercially available through Fluxion Biosciences 
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Table II.3. Sequencing Platforms for 16S rRNA Community Profiling. Compatible 
next-generation sequencers that have been used to characterize a dental microcosm 
biofilm grown in vitro are listed. The sequencing chemistry, expected read length, 
sequencing depth, and consensus accuracy of each platform is also described. 
 
Sequencing Platform 

(Reference)    

Sequencing 
Chemistry    

Read 
Length    

Sequencing 
Depth    

Consensus 
Accuracy    

454 GS FLX+  

(Nance, Dowd et al. 2013, 
Kistler, Pesaro et al. 2015, 
Koopman, Roling et al. 
2015)    

Pyrosequencing    Up to 
1000bp    

700 Mb    99.997    

Illumina MiSeq  

(Koopman, Buijs et al. 
2016)  (Agnello, Cen et al. 
2017) 

Sequencing by 
synthesis    

2x150,    

2x250,    

2x300    

4.5-5.1 Gb,    

7.5-8.5 Gb,    

13.2-15 Gb    

80% bases > 99.9    

75% bases > 99.9    

70% bases > 99.9    

Illumina HiSeq  

(Edlund, Yang et al. 2013)   

Sequencing by 
synthesis    

2x125    450-500 Gb    80% bases > 99.9    

IonTorrent PGM  

(Fernandez, Aspiras et al. 
2017)    

Ion 
semiconductor    

Up to 
400bp    

Up to 2 Gb    >99.0    
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Figure II.1. Constant Depth Film Fermenter System (Drip-fed System). A side view 
of a typical CDFF is presented. A drive shaft rotates the turntable as medium is dripped 
onto the turntable. Biofilm is formed on substratum plugs that are inserted into slots on 
each pan (shown top-down on the right). Biofilms are kept at a constant depth (thickness) 
by a scraper blade that is positioned near the interface of biofilm development. 
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Figure II.2. The Sorbarod Perfusion System (Drip-fed System). A side view of a 
variant of the Sorbarod perfusion system is shown. Medium is dripped from above through 
the medium inlet. There the media percolates through the Sorbarod filters, where biofilm 
development occurs. Cells detaching from biofilm are washed away with the perfusate 
and collected after exiting from the medium outlet. 
 

Sorbarod 

Gas 
input 

Media input 

Waste 
collection 

Incubation 
chamber 

c
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Figure II.3. The Angled Drip-Flow Biofilm Reactor (Drip-fed System). A perspective 
view of the angled drip-flow biofilm reactor is shown. The steepness of the angle can be 
modified by adjusting the biofilm reactor’s hind legs. Medium is dripped from the medium 
inlet onto a microscope slide on the end that is elevated. With assistance of gravity, the 
media flows downward toward the effluent outlet, where spent media is expunged. Biofilm 
development occurs across the microscope slide.  
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Figure II.4. The Modified Robbins Device (Flow-fed System). The side view of the 
MRD is shown. Flow of media is unidirectional and provided by a peristaltic pump. Plugs 
retrofitted with coupons are inserted into ports. Coupon inserts can be made of various 
materials. Biofilm development occur on the coupon surfaces. Coupons most distal from 
the medium inlet are fed media that had already bathed coupons that are more proximal 
to the medium inlet. 
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Figure II.5. Flowcells (Flow-fed System). A schematic of a basic flowcell is presented. 
Inoculum is pulsed into square capillaries or glass coverslip, where biofilm development 
occurs. The glass substratum can be coated with hydroxyapatite. A microscope objective 
can observe the system as it is running. 
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Figure II.6. BiofluxTM System (Flow-fed system). The 24-well BiofluxTM system is 
illustrated above, featuring the dual inlet system. The secondary inlet can be used for 
aqueous treatment formulations or products. The BiofluxTM system relies on an external 
control unit and commercially-available consumable plates. Each plate is laser-etched to 
provide micro-channels across each well. The substratum of BiofluxTM consumable plates 
is glass. The control unit flows media unidirectionally at a set shear force and can deliver 
treatment at set times specified by the investigator. 
 
  



 51 

 

 

 

Chapter III 

 

A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image 

Stacks of Microbial Biofilms 

 

Abstract 

 

 Biofilms are surface-attached microbial communities whose architecture can be 

captured with confocal microscopy. Manual or automatic thresholding of acquired images 

is often needed to help distinguish biofilm biomass from background noise. However, 

manual thresholding is subjective and current automatic thresholding methods lead to 

loss of meaningful data. Here, we describe an automatic thresholding method designed 

for confocal fluorescent signals, termed the biovolume elasticity method (BEM). We 

evaluated BEM using confocal image stacks of oral biofilms grown in pooled human 

saliva. Image stacks were thresholded manually and automatically with three different 

methods; Otsu, iterative selection (IS), and BEM. Effects on biovolume, surface area, and 

number of objects detected indicated that the BEM was the least aggressive at removing 

signal, and provided the greatest visual and quantitative acuity of single cells. Thus, 

thresholding with BEM offers a sensitive, automatic, and tunable method to maintain 

biofilm architectural properties for subsequent analysis. 
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Introduction 

 

 Biofilms are architecturally ornate surface-attached microbial communities that 

exist throughout nature (Wimpenny, Manz et al. 2000). The biological activities of biofilms 

vary by ecological niche (Dufour 2010, Diaz 2012) and particular attention has focused 

on the ability of biofilms to have deleterious effects (Costerton, Cheng et al. 1987, Yang, 

Liu et al. 2011). For example, in humans biofilms can cause chronic wounds and a 

multitude of diseases (Beikler and Flemmig 2011, Harriott and Noverr 2011, Mulcahy, 

Isabella et al. 2014). In industry and infrastructure, uncontrolled biofilm growth on ship 

hulls and on piping can interfere with function (Holm, Schultz et al. 2004, Pavissich, 

Vargas et al. 2010, Dombrowsky, Kirschner et al. 2013).  Much of the biological activity 

of biofilms is attributable to community composition and biofilm architecture.  

 

To quantify biofilm architecture, a three-dimensional dataset must be generated 

from biofilms with intact structural integrity. One tool that provides this capability is a 

confocal laser scanning microscope (CLSM), which can capture two-dimensional cross-

sections of a biofilm to produce a three-dimensional representation (Palmer and 

Sternberg 1999). Cross-sections that make-up a confocal stack data often consist of 8-

bit grayscale values from 0-255, which correspond to the intensity of signal captured, but 

images with higher bit depths can be generated (e.g. 12 bit, which corresponds to gray 

scale values from 0-4095). Following thresholding, the digital data contained within 

confocal stacks can be quantified by image analysis software such as COMSTAT 

(Heydorn, Nielsen et al. 2000), Icy (de Chaumont, Dallongeville et al. 2012), and PHLIP 
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(Mueller, de Brouwer et al. 2006), or imported to MatLab (Mathworks, Natick, MA) for 

customized analysis (Yang, Beyenal et al. 2000, Renslow, Lewandowski et al. 2011). 

 

Thresholding allows pixels of a grayscale image to be classified as foreground 

biomass or background interstitial space, depending on its signal intensity (Unnikrishnan, 

Pantofaru et al. 2007, Mansoor, Patsekin et al. 2015, Vyas, Sammons et al. 2016). 

Thresholding can be performed on a two-dimensional image or a three-dimensional 

confocal stack (Beyenal, Donovan et al. 2004, Yerly, Hu et al. 2007). A threshold that is 

too low will lead to false positives that will infer spatial presence of biomass when there 

is none. Conversely, a threshold that is too high will lead to false negatives:  missing 

measurement of true biomass emitting low-intensity signal. In either case, suboptimal 

thresholding will bias measured features of the biofilm architecture. Thresholding can be 

done manually or automatically. Manual thresholding relies on individual(s), often 

operating under guidelines, for visually determining thresholds. This method can be 

arbitrary and the reproducibility/generalizability of results can be affected by inter-operator 

subjectivity (Yang, Beyenal et al. 2000, Bergouignan, Chupin et al. 2009, Millioni, 

Sbrignadello et al. 2010). By contrast, automatic thresholding eliminates subjectivity in 

thresholding; however, algorithm selection can drive sensitivity/specificity of regions of 

interest detection and predicate the success or failure of downstream outcome 

measurement (van Aarle, Batenburg et al. 2011).  Further, imaging platforms can affect 

algorithm performance (e.g. CLSM vs light microscopy) as well as within-platform 

acquisition parameters (e.g. gain, smart offset, and excitation energy in CLSM) (Yerly, Hu 

et al. 2007). In the absence of a consensus on the best algorithm to automatically 
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threshold CLSM images, manual thresholding has been used (Takenaka, Iwaku et al. 

2001, Derlon, Grutter et al. 2016). 

 

Two algorithms used for automatically thresholding images are Otsu and the 

iterative selection (IS) methods (Ridler 1978, Otsu 1979). Otsu’s method selects a 

threshold that maximizes between-class (background vs. foreground) variance (Otsu 

1979). Thus this method is particularly powerful for segregating foreground signal from 

background noise in images characterized with a bimodal intensity histogram (Yang, 

Beyenal et al. 2001, Yerly, Hu et al. 2007). The IS method has demonstrated the most 

congruency with manually-set thresholds for light and confocal biofilm images (Yang, 

Beyenal et al. 2001). This method seeks to find a threshold that maximizes the separation 

between mean background and foreground values (Ridler 1978). Functionally, Otsu and 

IS are similar and assume that histograms of image intensity values possess similarly-

sized bimodal peaks that resemble a normal distribution (Rosin 2001, Xue 2012).  CLSM 

images, however, are often characterized by unimodal histograms with long tails 

(Baradez 2003). These characteristics are poorly compatible with implicit assumptions of 

IS/Otsu’s methods and are not well-matched for its use with confocal images (Rosin 2001, 

Baveye 2002). In the case of CLSM images with long tails, IS/Otsu sacrifice actual biofilm 

material in favor of maximizing the separation between apparent foreground and 

background. This limitation led us to develop an automatic thresholding method designed 

to cope with unique features of CLSM image histograms. 
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Results 

 

Consistency and agreement within and between automatic and manual 

thresholding 

 

 The distribution of thresholds by treatment and control groups is summarized in 

Table III.1. The BEM thresholds for each image were lower than the thresholds calculated 

by IS and Otsu’s methods or those set manually. Additionally, the BEM had the least 

variance of all the methods. Overall, manual thresholding was consistently more 

aggressive at removing signal than BEM, but less aggressive than IS and Otsu. Each 

method produced slightly higher average thresholds for images of biofilms that had been 

treated intermittently with water. The difference in average thresholds between water 

treated and control group images was not significant for all four methods.  

 

Differences in magnitude between each pairwise combination of thresholding 

methods were evaluated with student’s paired t-test and is summarized in Table III.2. 

Each pairwise method tested statistically significant, indicating magnitude differences 

between any two thresholding methods. Treatment status of oral biofilm images did not 

affect the conclusion that the four thresholding methods can be differentiated from one 

another in terms of magnitude. Although Otsu and IS mean thresholds were close to each 

other, the consistency of IS thresholds scoring two intensity units higher than Otsu 

thresholds on the same images minimized variance. Considering quantification and 

rendering, the significance of a two unit difference in threshold is negligible.  
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Average Outcomes Following Each Thresholding Method 

 

The post-thresholding architectural measurements are summarized in Table III.1. 

Regardless of thresholding method, the biofilms treated with water at 8 and 18 hours had 

lower end-stage biovolume, surface area, and number of objects detected. In all four 

thresholding methods, biovolume and surface area differences between the two sets of 

biofilms were significantly different as tested by student’s 1-tailed heteroscedastic t-test 

with moderate effect sizes. For objects detected, the BEM automatic threshold and 

manual thresholds indicated significant differences between treatment and control biofilm 

images whereas IS and Otsu’s methods did not. Following the implementation of the less 

conservative thresholding methods (BEM & manual), water treated biofilms had a 

significantly decreased number of objects than control biofilms. The higher thresholded 

image stacks, using Otsu and IS methods, filtered out low-intensity signal fragments that 

were picked up by BEM (Figure III.1).  

 

The values derived using the BEM thresholding method for the average biofilm 

biovolume, surface area, and objects were consistently much greater than the other two 

automatic methods. In the control set, the number of objects detected increased roughly 

five-fold with BEM thresholds measuring an average of 19,435 objects. In the same set 

of 25 images, Otsu and IS thresholds yielded averages of 3,780 and 3,818 objects 

detected, respectively. Similarly, in the treatment set, the application of BEM thresholds 

increased the average number of objects detected four-fold compared to the other two 
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algorithms. In general, average biovolume, surface area, and objects detected from 

manual thresholding occupy a middle ground between BEM and IS/Otsu thresholds. Out 

of the three automatic methods, BEM was most similar to manual thresholding values. 

 

Visual Clarity of Biofilm Following Each Thresholding Method 

 

 Figure III.1 shows three rendering modes of the same image after application of 

BEM, Otsu/IS, and manual thresholds. A shadow projection of the same image without 

thresholding is presented in Figure III.2. After applying thresholds, the image was 

projected with maximum intensity projection (MIP), blend, and thresholding. The BEM 

threshold of 10 differed visually from the Otsu and IS thresholds of 59 and 61, respectively 

(Figure III.1). The first row shows the MIP where each pixel’s given intensity value is the 

maximum out of all pixels at that location across the entire Z-axis. For the demonstration 

image, there are 53 slices. Thus, each pixel location has a set of 53 values. As compared 

to the other methods, The BEM MIP reveals more biofilm material in small flocs attached 

to the acquired pellicle. Additionally, the center of the large biofilm mass contains more 

signal (vis-à-vis biofilm) compared to the Otsu and IS thresholded images. The manual 

threshold average of 31.8 is intermediary to the results seen in BEM and Otsu/IS 

thresholds. The second row shows a blend render where the intensity of each pixel value, 

across the Z-axis, are blended together with inclusion of transparency. This mode allows 

for shadows within a 3D environment. In this mode, tiny flocs of biofilm material picked 

up by BEM’s lower threshold also are observed. Additionally, the cavitation in the middle 

of the biofilm is less pronounced. 
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The third row shows two renderings. The blue channel represents voxels that are 

removed by thresholding by each of the methods and the green channel represents 

voxels that are considered signal and true biovolume. The blue channel rendering has a 

transparency applied as to not mask the green signal render. Overall, the BEM-

thresholded image captured the most biovolume, closely followed by manual threshold 

average. Additionally, the void space in the center of the large floc is less saturated with 

blue in the BEM image.  The fourth row images are 4x snapshots of the high resolution 

render shown above where the focus is on the bottom left corner. At this magnification, it 

is evident that the blue haze that is removed by Otsu and IS thresholding is bacterial cells. 

There are numerous streptococcal signatures (multiple cocci cells arranged in chain-like 

morphology) that have been retained using the BEM method and lost with the other 

methods. 

 

Performance of the Three Automatic Thresholding Methods 

 

 The distribution and modality of the grayscale histograms differ by imaging 

platform used (light microscope, MRI, or CLSM).  Figure III.3 and Figure III.4 support this 

assertion. As shown in the representative image, CLSM grayscale histograms were 

unimodal with a strong skew to the right resembling a power-law distribution (Figure III.3). 

The same distribution of grayscale intensity was also observed in other images containing 

fluorescent tags (Figure III.3, Figure III.4). Log transforming the frequency of these 

histograms is recommended to make low-frequency values relatively more comparable 
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to high frequency values. This will create a more manageable functional form for 

operators to threshold manually. In fluorescently-labeled images with the described 

histogram characteristics, IS thresholds are consistently two units higher than Otsu’s 

thresholds. This precision was also observed in the 50 CLSM oral biofilm images in this 

study. 

 

Effect of Gain on the Three Automatic Thresholding Methods 

 

 An oral biofilm that presented complex architectures was chosen to serve as the 

biological replicate for CLSM image stack captured using three different gains (Figure 

III.5). The 726V gain image stack capture was not sensitive enough to capture biofilm 

biomass that was visually conspicuous and architecturally ornate through the objective 

lens. Acquiring an image stack with a 726V gain resulted in a grayscale histogram that 

was severely weighted toward the low-intensity values. In the portion of the histogram 

that was toward the higher intensity values, the log frequency values became erratic, 

indicating noise. For this scenario, where gain is insufficient, all three automatic 

thresholding methods were comparable. The Otsu, IS, and BEM methods calculated 

thresholds were 22, 24, and 29, respectively. The biovolume dropped precipitously as 

threshold increased due to low abundance of voxels containing signal.  No voxels were 

saturated with high intensity (255) signal and the highest detected intensity was 230.  

 

Using the Leica Look-Up-Table (LUT), a gain of 900V was used to generate an 

image stack that contained an “optimal” spread of intensity values between 0 and 255. 
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This “optimal” is achieved when biofilm starts showing saturated pixels in blue in the LUT, 

indicating the entire dynamic range of 8-bit intensities are utilized. The image stack 

derived from using the 900V gain resulted in an image that was visually representative of 

the biofilm observed by eye through the objective lens. At this gain, the grayscale 

histogram was still weighted toward the low-intensity portion, but not as severely as the 

726V (Figure III.5a vs. Figure III.5b). The log frequency was more uniformly distributed 

across the intensity axis. In this gain-optimized image, the BEM-calculated threshold of 

10 differed significantly from the thresholds calculated by Otsu (threshold of 85) and IS 

(threshold of 87).  The maximum intensity projection of saturated voxels revealed its 

presence along the X-Y Cartesian coordinate system. It should be noted that the image 

histograms of all 50 biofilm images as well as all fluorescent-based micrographs in Figure 

III.2 resembled the 900V image histogram.  

 

In the image stack acquired with a gain of 1250V, the biofilm biovolume was 

noticeably greater, as visualized by eye, than viewed through the objective lens. The 

grayscale intensity histogram was similar in shape to the log-frequency histogram and 

both reveal a sharp peak at 0 and 255, but also a modality in the region of 20. At maximum 

gain, the BEM-calculated threshold of 8 remained disparate from Otsu and IS thresholds 

of 121 and 123, respectively. Additionally, the biovolume was least elastic to changes in 

threshold amongst the three tested gains. The MIP of saturated voxels reveals that over 

half the X-Y coordinates contained a saturated voxel. 

 

Validation of BEM Threshold Range with Negative Controls 
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 Five images of varying depth were taken of a stained channel completely void of 

biofilm. Image acquisition parameters were identical to those used for biofilm images. The 

image histograms were then used to identify the distribution of false positive noise 

assuming each voxel should be classified as 0. Table III.3 shows the percentage of voxels 

belonging to the first 11 intensity classes with 0 considered as interstitial space and 1-10 

as false positives assuming no thresholding. Despite absence of biofilm material, 

approximately 3% of voxels were noise. The distributions of false positives are near 

identical. For the image with 53 slices, 401,152 voxels were false positives with 399,776 

belonging to intensity bins of 1-10. In the demonstration image (Figure III.1, Figure III.2, 

Figure III.3a) of 53 stacks, the BEM calculated threshold was 10, reclassifying a 

hypothetical 99.66% of false positive biovolume correctly back into interstitial space. This 

indicates that a threshold range of 9-14 seen in all 50 of our biofilm images with varying 

depth is sufficient to remove the vast majority of imputed false positives. Thresholds in 

the higher ranges calculated from Otsu/IS automatic methods, and even manual 

methods, are thus unnecessarily high. 

 

Assessment of BEM to Other Images & Bit-depths 

 

 The BEM threshold provided the best visual detail of a mouse imaged with an MRI, 

plant cells image under epifluorescence, and single-species Rothia mucilogenosa 

fluorescence imaged under confocal microscopy (Figure III.6). For bit-depth, the current 

BEM criterion placed thresholds too low (Figure III.7). After adjusting 8-bit values 
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calculated with BEM to 12-bit values (8-bit threshold of 10 would equal the 12-bit threshold 

of 80) for 12 bit images, the BEM provided the best visual detail for Rothia mucilogenosa 

biofilm 12-bit images (Figure III.8). 

 

Discussion 

 

 The work presented here demonstrates the utility of a sensitive method to 

threshold image stacks of biofilms generated with a CLSM, which we called the biovolume 

elasticity method (BEM). BEM is a model-based approach that applies a criterion to the 

biovolume by threshold curve. Threshold is determined where biovolume becomes 

relatively inelastic to changes in threshold. We then compared our proposed method to 

two existing automatic methods – Otsu and iterative selection (IS), which rely on intensity 

histograms to calculate optimal thresholds. Otsu’s method is ubiquitous across many 

analytical packages and iterative selection had been shown in studies to be congruent 

with manually-set thresholds for biofilms captured with light microscopy and CLSM 

(Heydorn, Nielsen et al. 2000, Yang, Beyenal et al. 2001, Mueller, de Brouwer et al. 2006, 

de Chaumont, Dallongeville et al. 2012). However, these methods are optimized for 

distinct intensity histograms that poorly fit the functional form of CLSM-acquired images 

of biofilms using fluorescence-based tagging (Baradez 2003, Arce, Wu et al. 2013), 

resulting in high thresholds. At these elevated thresholds, our renderings showed that 

meaningful biofilm biomass is sequestered from the image stacks (Figure III.1), which 

could lead to biased analyses.  
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In 2001, Yang and colleagues compared five algorithms to threshold confocal 

biofilm images and concluded iterative selection (IS) was the most suitable method. The 

images used were of mono-species biofilms grown in a flow-cell reactor and captured 

with light microscopy and CLSM. They did not evaluate Otsu’s method. Their work, 

suggesting that IS functioned well enough to potentially replace manual operators in such 

images, (Yang, Beyenal et al. 2001) motivated our inclusion of IS for comparison with 

BEM and Otsu. However, we discovered that the IS method was very similar to Otsu’s 

method for all biofilm CLSM images.  Yang and colleagues focused their panel of 

algorithms on light microscopy images, which are unimodal with the mode located at a 

middling intensity, which, as we show, will give different results from Otsu’s method. 

However, for confocal images where the histogram is unimodal with a strong right-skew, 

Otsu’s method and IS are less easily differentiated.  

 

Reliability between the five biofilm image analysis operators, who performed 

manual thresholding, was evaluated with intraclass correlation coefficients (ICC) 

calculated with both the consistency and agreement arguments as outlined by Koo et al. 

and Kim (Kim 2013, Koo and Li 2016).  Consistency measures whether operators’ rank-

order of ratings were similar whereas agreement measures whether the raters’ ratings 

are similar in magnitude. A 95% confidence interval was calculated for each ICC value to 

determine significance from a null hypothesis of ICC=0. The intraclass correlation 

coefficients for absolute agreement and consistency amongst the five independent 

operators were .243 (-.040 < ICC < .517) and .707 (.556 < ICC < .818), respectively. This 

indicates that although the manual operators had preferences that lead to differences in 
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magnitudes, their rank-order of thresholding by image was similar. The high variance of 

manually-calculated thresholds indicate that some individual operators prefer higher or 

lower thresholds than other operators (Table III.1). However, within the set of images 

provided to them, they generally agree on which images should have the lowest 

thresholds and which images should have the highest thresholds. This highlights the 

concern that post-thresholding manual outcomes can vary depending on the nuances 

and preferences of an individual.  

 

Manual thresholding serves to gauge the automatic methods, but is not the gold 

standard for comparison of threshold methods: that standard should be post-threshold 

renders that provide the most biologically-sensible representation of biofilm. As described 

in Baveye’s comments to the 2001 study by Yang and colleagues, manual operators, 

when confronted with image histograms, tend to shy away from vigorous threshold values 

in favor of a compromise of what is intuitively deemed to be a reasonable balance 

between background and foreground (Yang, Beyenal et al. 2001, Baveye 2002). This is 

functionally inherent in algorithms used in IS and Otsu’s methods and thus, the thresholds 

selected by manual operators using only image histograms may or may not be biologically 

relevant. Thresholds calculated using BEM were more inclusive of biologically relevant 

signal, such as streptococcal cells and visible micro colonies. Manual operators were less 

conservative than IS/Otsu, but not seemingly bold enough to place thresholds as low as 

BEM thresholds.  
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The BEM is not without limitation. For example, using BEM to threshold confocal 

biofilm image stacks flooded with too much saturated voxels is not recommended. At its 

current configuration, it is not recommended to apply BEM to 12-bit images, as the 

calculated thresholds were too low, leaving traces of background noise. Low threshold 

values calculated by the BEM is a product of stretching in the dynamic range from 256 to 

4096 units in the x-axis. Slope elasticity is much more sensitive in 8-bit formats. However, 

after scaling the 8-bit thresholds to the dynamic range of a 12-bit image, the BEM-

calculated thresholds successfully optimized background removal while retaining biofilm 

architecture. This underscores the importance of an adjustable criterion that is flexible 

between image formats. Otsu and IS performances can vary drastically between image 

formats, and is not adjustable due to their maximization criterions.   

 

Our study highlights the importance of thresholding in defining biofilm properties. 

In particular, biofilm outcome measurements can be sensitive to thresholding methods. 

Automatic methods eliminate issues of operator subjectivity and inter-rater reliability that 

are inherent to manual methods, but are not a panacea to thresholding. Investigators 

must consider their image histograms and image-acquisition parameters prior to selecting 

an automatic method. For CLSM image stacks that produce unimodal histograms with an 

extended tail, the BEM is a sensitive alternative to IS/Otsu’s and even manual methods. 

By calculating lower thresholds, the biovolume elasticity method minimizes data loss and 

retains low-intensity architecture. 
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Methods 

 

Biovolume Elasticity Method (BEM) 

 

 The BEM is a model-based approach to image segmentation whereby parameters 

to the model are optimized based on a priori expectation of oral biofilm shape and size 

(Caicedo, Cooper et al. 2017). The optimal BEM threshold is calculated by plotting the 

biovolume as a function of threshold. First, biovolume is calculated as the sum of all 

foreground pixels after a threshold is applied. Thus, the biovolume plots (right column 

Figure III.5) are directly related to the histograms (left column Figure III.3):  biovolume is 

simply the sum of the histogram values above the chosen threshold. However, plotting 

biovolume directly rather than using the histogram allows us to tune our approach based 

on the outcome measures we are aiming to estimate. The higher the threshold, the more 

stringent the criteria for a voxel to be classified as foreground, leading to decreased 

biovolume estimates. 

 

Second, we plot biovolume across all 256 data points and fit a 2-term power curve 

which takes on the functional form of 𝑏𝑣(𝑡) = 𝑎 ∗ 𝑇𝑏 + 𝑐 where: 

 

𝑏𝑣 = biovolume 

T = threshold 

a,b,c = fitted constants 
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A power curve was chosen because we expected biovolume by threshold curve to 

possess a long tail (Baradez 2003). Additionally, it provides excellent fits in the lower 

threshold region where our criterion is applied.   

 

Third, the best-fit curve is differentiated to obtain the slope at each threshold, 

representing the sensitivity of biovolume estimation due to a unit change in threshold. 

Lastly, the criterion for selecting optimal threshold in our proposed biovolume elasticity 

method is the first instance where a one unit increase in threshold changes the slope by 

less than 10%: 

 

𝑏𝑣′(𝑇 + 1) − 𝑏𝑣′(𝑇) 

𝑏𝑣′(𝑇)
< 0.10  

 

The 10% criterion is adjustable and was chosen for this study to select the most sensitive 

thresholds while eliminating over 95% of false positives in a negative control. 

 

There are three assumptions of the BEM. The first is the image histogram of 8-bit 

grayscale values is unimodal with an extended tail (Figure III.3a). Second, the mode is 

located at intensity value of 0. Lastly, the entire dynamic range (0-255) is utilized without 

saturation of 255 voxels (Figure III.5b). The change in slope criterion can be tuned to 

scale for higher bit images. 

 

Otsu’s Method 
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The threshold from Otsu’s method was calculated using MatLab’s graythresh 

function. Otsu’s method seeks to maximize interclass variance, or equivalently, minimize 

intraclass variance. The formulation is detailed in the original proposal of the method 

(Otsu 1979).  Otsu’s method has two main assumptions. The first is that the image 

histogram is bimodal, indicating separation of grayscale intensities of foreground object 

and background. The second is that there is a clear sharp valley between the two modes. 

As the size of the peaks become more disparate in size to each other, or if the image is 

corrupted by noise, the identifiable valley becomes less transparent, and Otsu’s method 

is more prone to error.  

 

Iterative Selection Method (IS) 

 

The threshold from the IS method was calculated using a MatLab script coded to 

the specifications described by Yang et al (Yang, Beyenal et al. 2001). Briefly, IS places 

the threshold where the difference between mean intensity values of background pixels 

and mean intensity values of foreground pixels is maximized. This functionally provides 

the most contrast between objects and background. The IS has two assumptions. The 

first is that the image histogram is bimodal. The second is that the image possesses 

objects that have average mean intensity that is distinguishable from the average mean 

intensity of the background (Ridler 1978).  

 

Manual Thresholding 
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Manual thresholding was also performed on each of the 50 acquired images. Five 

operators with experience rendering biofilm images with Imaris (Bitplane, Zurich, 

Switzerland) manually thresholded each image. The manual operators were presented 

the grayscale intensity histograms of each image to manually threshold and were 

instructed to select a threshold value where the foreground intensity signal is linearly 

distributed. Operators were blinded to treatment status. The five manual thresholds for 

each image were averaged, rounded to the nearest integer, and used for biovolume, 

surface area, and object detection. 

 

Production of Biofilms 

 

 Ten oral biofilms were developed overnight using 24-well microfluidic plates on the 

Bioflux 200C (Fluxion Biosciences, San Francisco, CA). The 24-well system is an 

adaptation of the 48-well BiofluxTM system that has demonstrated reproducibility in 

developing biofilms representative of early supragingival plaque (Nance, Dowd et al. 

2013, Samarian, Jakubovics et al. 2014). The 24-well system features a secondary inlet 

well which enables the introduction of a treatment regimen concomitantly with media 

infusion. We used the media and inoculum collection protocol described by Samarian et 

al. (Samarian, Jakubovics et al. 2014).  

 

To inoculate a 24-well plate, cell-free saliva media (CFS) was flowed backwards 

from outlet wells to inlet wells to coat the viewing port. The CFS was incubated at room 
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temperature for 20 minutes to allow for acquired pellicle formation. Cell-containing saliva 

inoculum (CCS) was then added from outlet wells to inlet wells and incubated for 1 hour 

at 37oC to enable cells to adhere to the acquired pellicle. After incubation, the primary 

inlet wells were filled with 2 mL of CCS media and the secondary inlet wells were filled 

with 2 mL of sterile water. An automated protocol was set up with the BiofluxTM software 

to supply the viewing port with media at a constant flow rate of 0.4 dyne/cm2. Five samples 

were grown uninterrupted for 22 hours while another five samples were treated with water 

at 8 and 18 hours into its 22 hour growth phase. Each treatment regimen was at 2.0 

dyne/cm2 for two minutes.  

 

At the end of the 22-hour growth, the remaining CCS media from the primary inlet 

well were aspirated and replaced with 1 mL of 1x PBS. The biofilm was washed at 0.4 

dynes/cm2 for 20 minutes. After washing, the remaining PBS in the inlet wells were 

aspirated and the biofilm was stained with 3.34 µM Syto-9 and 20 µM propidium iodide 

solution at 0.4 dynes/cm2 for 40 minutes. The stained biofilms were subsequently washed 

by flowing PBS through the system at 0.4 dynes/cm2 for 20 minutes. 

 

Image Acquisition 

 

 A Leica Model TCS SPE (Leica Microsystems, Buffalo Grove, IL) inverted confocal 

laser scanning microscope equipped with an air immersion objective lens (NA 0.85, 40x 

magnification, model HCX PL APO) was used to capture biofilm stacks from the BiofluxTM 

viewing ports. Excitation of stain mixture was achieved with a 488nm solid state laser. 
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Emission capture parameters were standardized for the stain concentration used in the 

experiment and unchanged between plates. Specifically, these parameters included: 15% 

laser intensity of the 488nm laser, 900V gain, -7.6% smart offset, and 1.00x digital zoom. 

Each biofilm channel was imaged five times at five locations along the viewing port using 

the same image acquisition parameters. To provide an objective methodology of imaging 

a heterogeneous biofilm, five locations of the viewing port imaged were determined a 

priori and correspond to roughly the beginning of the viewing port, 1st quarter, middle, 3rd 

quarter, and the end of the viewing port. Gains of 726V, 900V, and 1250V were applied 

to one confocal stack to determine the effects of gain increases on thresholding 

performances. Additionally, an empty channel was stained with Syto-9/propidium iodide 

mixture and imaged at various depths to evaluate background noise distribution. 

 

Converting Confocal Stacks to MatLab Readable Format 

 

 Archives containing the confocal images were converted to the MatLab .mat format 

using the MatLab Exporter plugin in Icy (de Chaumont, Dallongeville et al. 2012). Each 

image is represented by a X*Y*Z*T*C cell array in uint8 format where X,Y and Z represent 

a voxel in three-dimensional space, T represents a time point, and C represents channel. 

Contained within each cell is an 8-bit unsigned integer (0-255) corresponding to signal 

strength from image acquisition. Under the parameters of image acquisition, the only 

dimension that is variable is Z, which the confocal operator sets for each image depending 

on biofilm thickness at the location of image acquisition. The dimensions of X, Y, T, and 

C were constrained to 512, 512, 1, and 2 respectively. Since the biofilms used were highly 
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viable and all images were endpoint acquisitions, the red channel and time dimension 

were disregarded, leaving a three-dimensional cellular array for each image. Automatic 

and manual thresholds were then applied to cell array data using Matlab 8.5. 

 

Post-thresholding Calculation of Core Biofilm Architecture 

 

 Once a threshold is determined manually or automatically with BEM/Otsu/IS, 

voxels with signal below or equal to the threshold are converted to background and voxels 

with signal above the threshold are retained as foreground. The core architectural 

outcomes calculated post-thresholding were biovolume, and surface area, and the 

number of objects detected. Object detection was done using the MatLab bwconncomp 

function using a 26-connectivity neighborhood criteria (i.e. so that two voxels count as 

‘connected’ if they touch at any face, edge, or corner). An illustration of this type of object 

connectivity is shown in Figure III.9 where two voxels with different connectivity are 

considered to be individual objects and the total objects detected would be three. The 

total number of detected objects is the sum of all objects detached from other signal via 

26-connectivity rule. Biovolume is calculated as the sum of all foreground voxels at a 

threshold. Similarly, surface area is calculated as the sum of exposed surfaces of all 

foreground voxels at a given threshold. All three outcomes are sensitive to thresholds. 

 

Sources of Additional Images Used for Validation 
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 To assess the generalizability of BEM to images from different platforms, we used 

several images for comparison.  

 

1) A confocal image of an oral biofilm grown over 22 hours with no treatment was selected 

as the representative CLSM image (Figure III.1, Figure III.2 taken with a Leica TCS 

SPE). 

 

2) A magnetic resonance image of a human brain was provided with the MatLab software.  

 

3) A light microscopy image of prostate cancer cells from rats, taken as a series over time, 

was also provided with the MatLab software.   

 

4) Three confocal images of an oral biofilm grown over 22 hours with no treatment were 

taken at one location using 726V, 900V, and 1250V gains with a Leica TCS SPE (Figure 

III.5). Additional images were taken to further study the modality and distribution of image 

histograms from different imaging platforms (Figure III.4). These images include: 

 

5) A magnetic resonance image of a mouse acquired with a 2T Varian Unity/Inova MRI 

small animal imaging system equipped with Acustar S-180 gradients. The image shown 

was obtained with a 3D gradient echo pulse sequence with a TR of 20 ms, TE of 4 ms, 

flip angle of 20°, and isotropic voxel size of 200 microns. 
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6) A light microscopy image of plant cells (Leica-prepared slide - As3211 – Convallaria 

rhizome, tissue section fast green safranin) taken with a Leica SPE equipped with a DFC 

310FX camera. 

 

7) A confocal image of plant cells (Leica-prepared slide - As3211 – Convallaria rhizome, 

tissue section fast green safranin) taken with a Leica TCS SPE. 

 

8) A confocal image of fluorescently-labeled Rothia mucilagenosa biofilm stained with 

DAPI (blue), AMCA (red), and labeled with anti-Rothia polyclonal antibody (green) taken 

with a Nikon A1R confocal microscope. 

 

Comparison of 12-bit vs 8-bit Fluorescence 

 

 To compare thresholding performance between 12-bit and 8-bit images, we 

furthered analyzed the fluorescence image of Rothia mucilagenosa biofilm stained with 

DAPI, AMCA, and labeled with anti-Rothia antibody (Figure III.7). This image was taken 

natively in 12-bit and converted to 8-bit using Icy bioimage analysis software. BEM, Otsu, 

and IS thresholds were calculated and applied to each 12-bit and 8-bit formats (Figure 

III.8).  

 

Comparing Manual & Automatic Thresholds 
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 To compare magnitude differences between thresholding methods, a student’s 

paired t-test was used to evaluate whether mean threshold difference of one method 

versus another method was zero. This analysis was performed for each pairwise set of 

thresholding methods and was stratified by treatment and control images. 

 

Comparing Biofilm Architectural Outcomes by Thresholds 

 

 Means of architectural outcomes post-thresholding between biofilms intermittently 

treated with water over 22 hours and biofilms grown over 22 hours were compared with 

Student’s 1-tailed t-tests. The treatment and control groups had sufficient sample size 

with 25 images each. We hypothesized that biofilms treated intermittently with water will 

have lower biovolume, surface area and total number of objects detected. Since biofilm 

architecture is intrinsically heterogeneous and as a consequence of our pre-established 

positioning for biofilm imaging, we expected the treatment and control measurements to 

come from distributions with unequal variances. Thus a more conservative 

heteroscedastic assumption was made and applied to the t-tests. A two-tailed t-test was 

used to compare average thresholds between treatment and control groups since we 

believed there to be no differences in thresholds between the groups. Significance 

threshold was set at α=.05. 
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Table III.1. Biofilm Outcomes by Thresholding Method and by Treatment. Otsu and 
IS thresholds are significantly higher than BEM and manual thresholds and with higher 
standard deviation. BEM thresholds have the lowest standard deviation. Measured 
biovolume, surface area, and objects detected is highest for BEM, followed by manual, 
Otsu, and IS. Significance in the number of objects detected between treatment and 
control is detected with BEM and manual thresholds and not detected with Otsu/IS 
thresholds. Treatment reduces biovolume and surface area in all four methods. Outcomes 
can vary by up to five-fold depending on threshold as in the case of objects detected in 
control images. Effect size between control and treatment groups is calculated with 
Cohen’s D, which quantifies the standardized difference of two means.  
 

Outcomes by Method 
Control Average 

(Standard Deviation) 
Treatment Average 

(Standard Deviation) 
Effect Size 
(p-value)a 

BEM Threshold 11.360(1.411) 11.96(1.060) 0.234(.096) 

Otsu’s Method Threshold 64.520(13.257) 65.280(10.550) 0.032(.824) 

IS Threshold 66.400(13.200) 67.280(10.450) 0.037(.795) 

Manual Thresholdb 28.688(6.279) 30.016(4.531) 0.120(.396) 

BEM Biovolume 2,741,745(1,578,495) 1,783,828(637,768) 0.370(.004) 

Otsu Biovolume 1,035,338(606,875) 618,107(261,824) 0.408(.002) 

IS Biovolume 1,009,385(594,804) 601,211(260,313) 0.406(.002) 

Manualb Biovolume 1,797,055(1,051,159) 1,089,955(392,289) 0.407(.004) 

BEM Surface Area 2,512,276(1,132,122) 2,055,876(551,373) 0.248(.039) 

Otsu Surface Area 1,272,407(621,281) 884,563(216,642) 0.385(.003) 

IS Surface Area 1,256,817(619,135) 868,678(215,324) 0.386(.003) 

Manual Surface Area 1,669,107(761,516) 1,283,350(310,629) 0.315(.025) 

BEM Objects 19,435(10,451) 14,552(4,442) 0.291(.020) 

Otsu Objects 3,780(1,939) 3,614(1,586) 0.047(.371) 

IS Objects 3,818(1,951) 3,687(1,594) 0.037(.398) 

Manual Objects 4,486(2,261) 3,406(815) 0.303(.032) 
a Test performed was a 2-tailed student’s t-test for thresholds and 1-tailed student’s t-
test for biofilm architectural outcomes. 
b Manual threshold used for an image is the average value from five different operators 
for that image, rounded to the nearest whole number. 
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Table III.2. Paired T-tests Between Thresholding Methods Stratified by Treatment. 
The null hypothesis states that the mean difference between sets of thresholds obtained 
from one method vs another method is zero. Since all 12 null hypotheses were rejected, 
we conclude that each thresholding method was different from one another and is 
unaffected by treatment status of the images operated on. Although mean thresholds for 
Otsu and IS were roughly 2 intensity values apart, IS thresholds were consistently 2 units 
higher than Otsu thresholds applied to the same image, minimizing standard deviation 
and producing significant effects.  
 

 
1For an image’s individual manual threshold value, the five values given by our five 
operators were averaged. 

  

 

Pairwise 
Thresholding 

Method 
Comparison 

Control Images (n=25) Treatment Images (n=25) 

Mean 
Threshold  

Group 1 - 
Group 2 (95% 

confidence 
interval) 

 

p-
value  

Mean 
Threshold  

Group 1 - 
Group 2 (95% 

confidence 
interval) 

 

p-
value  

Manual avg1. vs 
BEM 

28.69/11.36 17.33(14.47,20
.19) 

<0.01 30.02/11.96 18.06(16.09,20
.02) 

<0.01 

Manual avg. vs 
Otsu 

28.69/64.52 -35.82(-39.44,-
32.22) 

<0.01 30.02/65.28 -35.26(-38.48,-
32.04) 

<0.01 

Manual avg. vs IS 28.69/66.40 -37.71(-41.30,-
34.13) 

<0.01 30.02/67.28 -38.26(-40.45,-
34.08) 

<0.01 

BEM vs Otsu 11.36/64.52 -53.16(-59.01,-
47.31) 

<0.01 11.96/65.28 -53.32(-57.89,-
48.75) 

<0.01 

BEM vs IS 11.36/66.40 -55.04(-60.87,-
49.21) 

<0.01 11.96/67.28 -55.32(-59.85,-
50.79) 

<0.01 

Otsu vs IS 64.52/66.40 -1.88(-2.02,-
1.74) 

<0.01 65.28/67.28 -2.00(-2.12,-
1.88) 

<0.01 
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Table III.3. False Positive Noise Distribution of Negative Controls. Five images of 
varying depths were taken of a sterile channel containing LIVE/DEADTM stain. The 
theoretical percentage of all voxels belonging to intensity value 0 for all five images is 
100.00. Over 95% of voxels are correctly labeled as intensity value 0. Less than 5% of 
remaining voxels are false positives that are incorrectly labeled as biovolume. The vast 
majority (>95%) of false positives can be eliminated by setting a threshold of 10. 
 

 
Images of Stained Channel By Depth 

20 slices 40 slices 53 slices 60 slices 80 slices 

In
te

n
s

it
y

 V
a

lu
e

 (
0

-2
5

5
) 

0 96.05 97.36 97.11 96.32 96.68 

1 1.55 1.05 1.10 1.45 1.32 

2 0.95 0.64 0.70 0.80 0.80 

3 0.58 0.38 0.42 0.54 0.48 

4 0.35 0.23 0.25 0.32 0.29 

5 0.21 0.13 0.15 0.19 0.17 

6 0.12 0.07 0.08 0.11 0.10 

7 0.07 0.05 0.05 0.06 0.05 

8 0.04 0.03 0.03 0.03 0.03 

9 0.02 0.01 0.01 0.02 0.02 

10 0.01 <0.01 <0.01 <0.01 <0.01 
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Figure III.1. Visual Comparison of Different Methods to Threshold Biofilm Images. 
The maximum intensity projection, blend of all intensity values, and segmentation are 
shown from a top-down viewing angle. The first, second, and third columns are the 
projection of the same confocal laser scanning microcopy image stack that is rendered 
after applying threshold selected by the BEM, Otsu/IS, and manual operators’ average, 
respectively. The MIP and blend projections show Otsu and IS methods threshold out the 
most biovolume, followed by manual and BEM methods. The segmentation projection 
shows biovolume that is above threshold in green, and biovolume that is thresholded out 
as blue. The fourth row is a magnification from the lower left corner of the thresholded 
image stacks and shows that Otsu and IS methods are too conservative in their 
thresholds. Low-intensity Streptococcus chains are thresholded out, leading to 
underestimates of actual biovolume. Manual threshold average is comparable to BEM 
threshold in all three projection modes. 
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Figure III.2. Thresholding Necessary to Remove Background Noise. The figure 
shows a sample CLSM image stack of a biofilm grown over 22 hours in the BiofluxTM 
system with a top-down, angled, and side perspective views. A) Image that is not 
thresholded is visually compared to B) image that is thresholded with the biovolume 
elasticity method. Images that had been thresholded display higher visual acuity of biofilm 
structure. Background noise that decreases image sharpness is evident in images that 
have not been thresholded. 
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Figure III.3. Image Intensity Histograms Vary By Imaging Platform. The left column 
shows 8-bit grayscale intensity histograms of images taken from different platforms. The 
right column shows the biovolume as a function of threshold and a fitted 2-term power 

curve with the functional form 𝑏𝑣(𝑡) = 𝑎 ∗ 𝑇𝑏 + 𝑐 . The Biofilm Elasticity Model (BEM) 
threshold is determined by first instance of a <10% change in slope of fitted power curve 
as threshold increases by 1. A) A sample CLSM image stack of a biofilm grown over 22 
hours. The grayscale histogram shows a unimodal distribution with a heavy skew to the 
right. The BEM and manual thresholds are less conservative than Otsu and IS. The fitted 
power law curve had a near perfect correlation coefficient with the biovolume by threshold 
data points. B) A light microscope image of cells shows a more classical unimodal 
histogram. The BEM is the least conservative. Otsu’s and IS methods set higher 
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thresholds with Otsu setting the highest. The correlation coefficient between the fitted 
power curve and data is the lowest amongst the three imaging platforms. C) A sample 
MRI stack of the human brain shows bimodality in the grayscale histogram. The BEM sets 
the most conservative threshold whereas Otsu and IS thresholds are higher and 
comparable. The correlation coefficient between the fitted curve and data is high. 
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Figure III.4. MRI, Light Microscopy, and Fluorescence Microscopy Image 
Histograms. A) The mouse MRI image histogram was a hybrid between bimodal and 
unimodal. There were two visible peaks, but of unequal sizes. B) Light microscopy of 
plant cells was deconstructed into RGB channels. Image histograms of the red and green 
channel were unimodal with a normal distribution. Image histogram of the blue channel 
revealed negligible amount of signal. C) The same plant cells were visualized under 
confocal microscopy. The image histograms of the red and green channel revealed 
unimodality with peak at 0 and an extended tail. D) Rothia mucilagenosa biofilm under 
three different fluorescence tags showed image histograms resembling that of C). In all 
platforms, BEM threshold was the least aggressive out of the three automatic methods. 
Otsu and IS thresholds were very similar for MRI, and fluorescence-based microscopy, 
but were differentiated in light microscopy. 
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Figure III.5. Image Intensity Histograms Vary by Confocal Operator. Three biological 
replicates were imaged with identical image acquisition parameters except for gain. The 
first column shows grayscale histograms as well as the maximum intensity projection of 
the biofilm image. The second column shows biovolume as a function of threshold, the 
fitted power law curve, and the maximum intensity projection of saturated voxels.  A) 
Scenario where signal sensitivity is too low, yielding no saturated voxels. In this scenario, 
the BEM, Otsu, and IS are comparable in threshold detection. B) Scenario where signal 
sensitivity is optimized by a confocal operator for the stain mixture, producing saturated 
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voxels. BEM selects for a lower threshold compared to Otsu and IS methods. C) Scenario 
where signal sensitivity is too high. BEM threshold selection is no longer applicable 
whereas Otsu and IS methods show robustness to operator error or inexperience. 
Correlation coefficients are high in all three scenarios, with the highest belonging to the 
image optimized by an operator. 
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Figure III.6. Thresholding Methods on Images from Different Platforms. Thresholding 
was visibly necessary for three of the four images. Background noise contributing to 
image fuzziness was evident in mouse MRI, plant confocal, and Rothia mucilagenosa 
biofilm fluorescence. Difference between no threshold and BEM threshold of plant light 
micrograph was minimal. BEM maintained the most structural integrity of mouse MRI 
(cartilage of ears and tail), plant confocal, and Rothia mucilagenosa biofilm. Otsu and IS 
were too aggressive and removed biologically meaningful signal in all four images.  
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Figure III.7. Image Intensity Histograms of 8-bit & 12-bit Images. Dynamic range (X-
axis) was larger for 12-bit images compared to 8-bit images. As a distribution, the image 
histograms were similar between formats: a unimodal histogram with peak at 0 and an 
extended tail. BEM thresholds were relatively unchanged between formats. Otsu 
thresholds were mildly higher and IS thresholds were distinctly lower in 8-bit format 
compared to 12-bit format.  
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Figure III.8.  BEM Thresholding Scaled to 12-bit Images. BEM and Otsu left traces of 
background noise whereas IS did not. IS was too conservative, compromising the 
architectural integrity of Rothia mucilagenosa biofilm. BEM threshold from 8-bit scaled to 
12-bit was the best. It eliminated all visible background false positives and retained 
architecture of Rothia mucilagenosa biofilm.  
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Figure III.9. 26-neighborhood Connectivity Determination of Regions of Interest. All 
three objects below are considered separate Regions of Interest (ROIs) with a biovolume 
occupying 2 voxels. The object on the left has two voxels on the same plane connected 
by a plane at an interface. The middle object has two voxels on the same plane connected 
by a line. The object on the right has two voxels on different planes connected by a point. 
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Chapter IV 

 

Introducing BAIT (Biofilm Architecture Inference Tool): A Software Program to 

Evaluate the Architecture of Oral Multi-Species Biofilms 

 

Abstract 

 

 In vitro model systems are used to study biofilm growth and predict the effects of 

anti-biofilm interventions within the human oral cavity. Many in vitro biofilm model systems 

use confocal laser scanning microscopy (CLSM) in conjunction with image analysis tools 

to study biofilms. The aim of this study was to evaluate the usefulness of a new image 

analysis software developed in-house that we call BAIT (Biofilm Architecture Inference 

Tool) to quantify the architecture of oral multi-species biofilms after anti-biofilm 

interventions using an automated 24-channel BiofluxTM. Differences in biofilm architecture 

were compared between untreated biofilms and those treated with water (negative 

control), sodium gluconate (“placebo”), or stannous fluoride (SnF2). The 24-well BiofluxTM 

microfluidic system, which has two inlets, was inoculated with pooled human saliva and 

biofilms developed over 22h in filter sterilized 25% pooled human saliva. During this 

period, biofilms were treated with water, sodium gluconate, or stannous SnF2 (1,000, 

3,439, and 10,000 PPM Sn2+) after 8h and 18h post-inoculation. After 22h of growth, 



 93 

biofilms were stained with LIVE/DEADTM, imaged with CLSM, and analyzed with BAIT. 

Biofilm biovolume, total number of objects, surface area, fluffiness, connectivity, convex 

hull porosity, and viability were calculated with BAIT. Image analysis showed oral biofilm 

architecture was significantly altered by 3,439 and 10,000 PPM stannous treatment 

regimens, resulting in decreased biovolume, surface area, number of objects, 

connectivity, and viability, while fluffiness increased (p<0.01). In conclusion, BAIT was 

shown to be able to rapidly measure the changes in biofilm architecture and evaluate 

possible antimicrobial and anti-biofilm effects of candidate agents. 

 

Introduction 

 

 Biofilms are  cellular assemblages of multiple species of microorganisms that are 

arranged in complex three-dimensional architectures (Stoodley, Sauer et al. 2002). The 

contained biofilm bacteria are physiologically different from their planktonic counterparts 

(Mah and O'Toole 2001) and this is evidenced by their intrinsic tolerance to antimicrobials 

(Foley and Gilbert 1996). Biofilms are estimated to be responsible for up to 80% of all 

human infections and contribute to the etiology of periodontal disease and caries (Marsh, 

Moter et al. 2011, Romling and Balsalobre 2012, Akers, Mende et al. 2014). Dental caries 

and periodontal disease cause the vast majority of human oral diseases (Petersen, 

Bourgeois et al. 2005). In 2010, in a ranking of the global burden of 291 diseases, 

untreated caries ranked first and periodontal disease ranked sixth (Marcenes, 

Kassebaum et al. 2013).  
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For many dental plaque studies, in vitro model systems are used to capture 

snapshots of biofilms during and/or after development and/or following anti-biofilm 

interventions (such as treatment with an antimicrobial) under defined conditions (Salli and 

Ouwehand 2015). In this study, we used a 24-well BiofluxTM system to develop oral 

biofilms under flowing salivary conditions. The biofilm devices were seeded with a salivary 

inoculum and sterile saliva was used as the growth medium. A similar 48-well BiofluxTM 

system has been previously described to develop dental biofilms that are compositionally 

similar to early supragingival plaque (Nance, Dowd et al. 2013, Samarian, Jakubovics et 

al. 2014). An advantage to the 24-well system is its dual inlet feature, enabling delivery 

of potential treatment compounds while media flows uninterrupted. This two-inlet feature 

facilitates the study of both biofilm development and biofilm regrowth following a 

candidate anti-biofilm treatment.  

 

Biofilm architecture is an umbrella-term used to describe the two and three-

dimensional properties of biofilms and is based on cellular arrangements and features, 

including thickness, porosity, irregularity and fragmentation (Bridier, Dubois-Brissonnet et 

al. 2010, Zijnge, van Leeuwen et al. 2010, Hu 2013). Digitization of microscope images 

have enabled software assisted quantification techniques for 2-dimensional images, such 

as measuring biofilm accumulation (Larimer, Winder et al. 2016) or using gray level 

correlation to estimate structural heterogeneity of biofilms (Milferstedt, Pons et al. 2009). 

With the advent of confocal laser scanning microscopy (CLSM), 3-dimensional outcomes 

can also be measured (Bridier, Meylheuc et al. 2013, Shukla and Rao 2013). Some 

outcomes, such as biovolume are relatively straightforward to define; others such as 
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porosity are not. While there are many image analysis packages available, including 

COMSTAT (Heydorn, Nielsen et al. 2000), Phlip (Mueller, de Brouwer et al. 2006), Icy 

(de Chaumont, Dallongeville et al. 2012), and ImageJ (de Carvalho and da Fonseca 

2007) that provide approaches to measure biofilm architecture, measurement is still not 

a trivial task. For example, the measurement of biofilm architecture relies on a suitable 

thresholding approach to maximize foreground (biofilm) signal from background noise 

(Yerly, Hu et al. 2007, Rojas, Rueda et al. 2011). Indeed, we recently developed an image 

thresholding approach that maximizes signal to noise ratio so that biofilm biomass is 

readily discerned, and this is included in the software package that we developed in this 

study. We also coded in-house algorithms for measuring biofilm biovolume, total number 

of objects, surface area, fluffiness, connectivity, convex hull, and unweighted viability. 

Outcomes such as fluffiness, convex hull, and viability are seldom included in currently 

available packages. Together, the scripts were coded into a workflow and compiled into 

the software package we have called BAIT (Biofilm Architecture Inference Tool) that 

enables users to quickly quantify measures that describe biofilm architecture. 

 

The primary aim of this study was to evaluate the performance of a new analysis 

software called BAIT. Proof of concept for BAIT was achieved by inputting three tiers of 

datasets into the software. The first dataset included a synthetic image stack manually 

generated. This small mock dataset contained measurements that can be hand-

calculated. Outcome measurements calculated by BAIT can then be compared to 

expected values. The second dataset included large image stacks of oral biofilms. These 

biofilm images are visibly distinct from one another and its expected quantification by 
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BAIT can be predicted visually. This is to test the rigor of the algorithms to large datasets 

where outcomes can’t be calculated manually, but can be visually differentiated. Finally, 

to test the feasibility of the software for in vitro oral biofilm studies, an experiment was 

devised to test the antibiofilm properties of a candidate compound. Hundreds of oral 

biofilm images were generated to test the stability of BAIT when inputted with a large 

volumes of data. 

 

The candidate compound chosen for the experimental validation of BAIT is 

stannous fluoride (SnF2) (Tinanoff, Hock et al. 1980, Camosci and Tinanoff 1984). 

Stannous fluoride is commonly used in oral healthcare products and it is known for its 

anti-cariogenic and antimicrobial effects.  SnF2 is also an attractive compound to study 

because few investigations have examined its effects on dental biofilm development. One 

study estimated biofilm biomass before and after treatment with SnF2 using a crystal violet 

based staining and quantification technique and found that stannous fluoride did not 

reduce biofilm adherence in an in vitro model (Reilly, Rasmussen et al. 2014). Another 

study showed that stannous fluoride dentifrice was effective at reducing biomass, viability 

and composition of a three-species oral biofilm (Cheng, Liu et al. 2017). Unfortunately, 

anti-biofilm studies of SnF2 and other anti-biofilm agents seldom focus on the complex 

architecture of oral biofilms. Understanding changes in oral biofilm architecture could 

have profound impact in developing more efficacious agents. For instance, altering dental 

plaque biofilm architecture through antimicrobial or anti-biofilm treatments could result in 

changes to biofilm regrowth (Bakke 1986) and/or biofilm instability leading to sloughing 

and cell detachment (Flemming and Wingender 2010). 
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Methods 

 

Development of BAIT 

 

 MatLab 8.5 was used to code all scripts used in the BAIT package. Individual 

scripts for biovolume, surface area, number of objects, fluffiness, connectivity, convex hull 

porosity, and viability were coded. The measurement descriptors are defined in Table 

IV.1. The software graphical user interface integrating all scripts was compiled with 

MatLab runtime environment (Figure IV.1). MatLab cellular array .mat files are 

compatible for use with the BAIT software. For standardization and convenience with 

MatLab, the .mat cellular array data format was chosen as the compatible input file type 

for BAIT. As of this current version of BAIT, only the .mat file format is compatible. 

Confocal .lif archives were converted to .mat files using the MatLab Exporter plugin in the 

software package ICY (de Chaumont, Dallongeville et al. 2012). To be noted, the final 

dimensions of each .mat file compatible with the current version of BAIT is (X,Y,Z, T, C) 

where X,Y and Z denote Cartesian coordinates, T is fixed at 1, and C denotes channels. 

Channel 1 is the propidium iodide channel and Channel 2 is the Syto-9 channel. Confocal 

stacks in 8-bit, 12-bit, and 16-bit formats are compatible for import into BAIT. Here, 

confocal images in 8-bit format were studied as these types of images are more amenable 

to our previously described thresholding technique (Luo 2018). In this study, all steps 
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were performed on a Sager NP9377-S laptop equipped with two Nvidia GeForceTM GTX 

970m graphics cards in SLI. 

 

Validation of Outcomes Calculated by BAIT 

 

 To verify results calculated by BAIT, a mock cellular array dataset was created and 

imported into BAIT. Specifically, a visual schematic of two objects was created with an 

online voxel builder app (http://voxelbuilder.com). The mock dataset contains a voxel-

space small enough to calculate outcomes by hand (Figure IV.2). Next, the visual 

schematic was deconstructed into binary data and manually inputted as a MatLab cellular 

array data compatible with BAIT. The hand-calculated results were compared to BAIT 

results.  

 

In addition to the manually constructed mock-data set, three confocal oral biofilm 

images illustrating a visually conspicuous gradient of biovolume were chosen to validate 

the MatLab workflow to real data with voxel-space occupying millions of voxels. The 

images were classified as voluminous, moderate, and sparse, based on the amount of 

biofilm biovolume that was visually evident. 

 

BAIT as a Tool to Measure Architecture Changes after Treatment 

 

 A total of 615 confocal images with representatives from each treatment group 

(Table IV.2) were converted to .mat files and imported into BAIT. Prior to quantification, 
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the biovolume elasticity method was applied to distinguish background interstitial space 

from foreground biomass (i.e. thresholding). Other thresholding methods available in 

BAIT include Otsu’s method and iterative selection. A comparison of thresholding 

techniques for fluorescence microscopy was compared in a previous work (Luo 2018). 

BAIT’s ‘Analyze All’ functionality was used to calculate all six biofilm architecture 

outcomes for each group of image stacks described in Table IV.2. The BAIT output of 

results were exported as a .csv and analyzed in Microsoft Excel (Microsoft, Redmond 

WA). 

 

Treatment Formulations & Study Design 

 

 Biofilms developed in a BiofluxTM system were treated with either SnF2 at different 

concentrations, sodium gluconate at different concentrations (“placebo” control), or 

deionized water (negative control) at 8h and 18h of growth or received no treatment 

(Table IV.2). Because sodium gluconate is required to maintain stannous fluoride in 

solution, “placebo” treatments containing sodium gluconate but lacking SnF2 were used. 

Four comparison groups were used to evaluate the effects of a treatment with water or a 

treatment with different concentrations of stannous fluoride. Specifically, the 22h 

untreated group was matched to water-treated group; placebo 1,000 was matched with 

stannous 1,000; placebo 3,439 was matched with stannous 3,439, and placebo 10,000 

was matched with stannous 10,000. The placebo treatment groups only contained the 

needed amount of sodium gluconate to keep 1,000, 3,439, or 10,000 PPM stannous 
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stable in solution.  Sodium gluconate and/or stannous fluoride solutions were adjusted to 

pH 5.8. 

 

Media & Inoculum Collection 

 

 Saliva batches were collected from at least five non-smoking healthy individuals 

that had not eaten or drank for the last two hours (except water) and had not taken 

antibiotics the last three months. Individual saliva samples were pooled together. Cell-

containing saliva (CCS, the inoculum) and cell-free saliva (CFS, growth media) were 

prepared according to previously established protocol (Samarian, Jakubovics et al. 2014).  

 

Overnight Growth of Oral Biofilms 

 

 One mL of CFS was added to the outlet wells of 24-well BiofluxTM plates and 

flushed through the viewing port at 1.0 dyne/cm2 for one minute (Figure IV.3). The plate 

was then incubated for 20 minutes at room temperate to develop an acquired salivary 

pellicle. The remaining CFS in the outlet wells were then aspirated and replaced with 100 

uL of CCS. CFS media for the run and applicable treatment formulations were then added 

to inlet one and inlet two of the biofilm system, respectively. The plates were inoculated 

by flowing CCS in reverse from the outlet well at 1.0 dyne/cm2 for 12 seconds and 

incubated at 37oC for one hour to enable attachment of cells to the acquired pellicle. After 

incubation, the automated protocol was initiated. Our automated protocol continuously 

supplied CFS from inlet 1 (Figure IV.3) to the site of biofilm development at 0.4 dyne/cm2. 
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At hours 8 and 18, treatment was delivered from inlet 2 at 2.0 dyne/cm2. The protocol 

ended after 22 hours of growth under flowing conditions. 

 

Post-growth Staining of Biofilms 

 

 After the automated protocol terminated, the remaining CFS and treatment 

formulations from the first inlet wells were aspirated and replaced with one mL of 

phosphate buffered saline (PBS, pH 7.4). The overnight biofilm was washed with PBS for 

20 minutes at 0.4 dyne/cm2 from inlet one wells. After wash, the remaining PBS in inlet 

one wells were aspirated and replaced with a LIVE/DEADTM stain mixture containing 3.34 

µM Syto-9 and 20 µM propidium iodide solution in PBS. The biofilm was stained for 40 

minutes under a flow of 0.4 dyne/cm2. After staining, the plate was washed with PBS from 

inlet one for 20 minutes at dyne/cm2 and the biofilms were subsequently imaged using a 

CLSM.  

 

Confocal Laser Scanning Microscopy 

 

 A Leica (Model TCS SPE) inverted confocal laser scanning microscope (CLSM) 

equipped with an air immersion objective lens (NA 0.85, 40x magnification, model HCX 

PL APO) was used to capture biofilm stacks along the viewing port. Excitation of stain 

was achieved with a 488nm laser and emission capture parameters (640-700nm for red 

and 500-550nm for green) were standardized for the stain concentration used in the 

experiment and unchanged between plates. Five image stacks (with 1 µm z-sections) 
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were captured for each sample at predetermined locations (imaging schematic shown in 

Figure IV.3), representing approximately a third of the surface area of the viewing port.  

 

Statistical Analysis 

 

 Comparisons of outcome means between groups were evaluated with student’s t-

test to evaluate treatment effects. In order to determine if treatment effect are differential 

across the viewing port, comparisons were also stratified by image proximity from inlet 

forks by excluding images 4 and 5 for the 1st half of the viewing port and images 1 and 2 

for the 2nd half of the viewing port (Table IV.3). 

 

Results 

 

Validation of BAIT Scripts 

 

The BAIT outcomes were validated with mock data as shown in Figure IV.2. The 

voxel-space of the mock data was small to ensure ease of manual measurements. Figure 

IV.2 contains one object in the green channel and one object in the red channel. The 

green object is 12 voxels in size and the red object is 14 voxels. Based on the 

arrangement of these voxels, the green object has 66 exposed voxel surfaces and the 

red object has 70. Fluffiness and connectivity were then calculated from biovolume, 

surface area, and number of objects measurements. The convex hull volume of an object 

was calculated as the volume of the polyhedron generated when the straight lines are 
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drawn from object vertices. For the green object the expected convex hull volume was 16 

voxels; for the red object, the convex hull volume was 21.33 voxels. These values were 

used to calculate convex hull porosity, the proportion of the convex hull volume that was 

devoid of biomass. The expected convex hull porosities for the green and red object are 

0.25 and 0.34, respectively. Unweighted viability is a measurement that incorporates 

green and red channels; the expected viability of the sample data was 0.46. It should be 

noted that for this type of viability measurement, the intensity of green and red channels 

was not used as weights for viability calculation. The sample data were used as input in 

BAIT and the calculated outcomes matched all results calculated manually.  

 

The three images chosen to illustrate a visually conspicuous gradient of biovolume 

(voluminous, moderate, and sparse), as well as the image metrics measured using BAIT, 

are shown in Figure IV.4. The biovolume outcomes reflected what was expected with the 

‘voluminous’ image measuring 1,925,598 voxels and the ‘sparse’ image measuring 2,463 

voxels (Figure IV.4). Like biovolume, surface area and number of objects detected 

matched what could be deduced upon visual inspection. What is less visually obvious is 

connectivity (average size of an object) and fluffiness (surface area to biovolume ratio). 

In Figure IV.4, ‘voluminous’ and ‘moderate’ had comparable connectivity and fluffiness 

while ‘sparse’ had markedly increased fluffiness and decreased connectivity. The convex 

hull porosity of the ‘voluminous’ and ‘moderate’ biofilms were similar at 0.70 and 0.69, 

respectively. However, the ‘sparse’ image had a convex hull porosity measure of 0.50, 

suggesting the objects in that image are more regular and contain less oblong protrusions 

than the objects in the other two images. The unweighted viability of the three biofilms 



 104 

was high (>99% indicating the presence of more than 99 green voxels per red voxel), and 

this is evidenced visually by the amount of green fluorescent signal compared to red 

fluorescent signal from each biofilm. 

 

Biofilm Sampling 

 

 Each biofilm sample was imaged five times at five fixed locations (Figure IV.3). 

The imaging locations were evenly distributed across the viewing port for each image. A 

total of 123 biofilms were imaged in this study generating a total of 615 confocal image 

stacks. The distribution of samples by treatment group were as follows: 20 untreated, 18 

water, 18 placebo 1,000, 19 stannous 1,000, and 12 each of placebo 3,439, stannous 

3,439, placebo 10,000, and stannous 10,000. One sample from each group was manually 

imaged across the entire viewing port to generate Figure 5. The entire viewing port could 

be covered by 14 lengths of the objective lens’ viewing field, thus the 5 images per sample 

strategy covers roughly 36% of the viewing port. 

 

Qualitative Visual Observations of Treatment Group Effects 

 

 Figure IV.5 shows a visual representation of oral biofilms from each treatment 

group imaged across the entire viewing port. The panels show the effects of water, 1,000 

Sn2+, 3,439 Sn2+, and 10,000 Sn2+ treatments. The most notable decrease in biofilm 

growth occurred in the biofilms treated with 3,439 and 10,000 PPM Sn2+. In particular, the 

architecture of the 10,000 PPM Sn2+ group had the least visible biovolume while the 1,000 
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PPM Sn2+ group had the most. The 1,000 PPM Sn2+ group contained small fragments of 

biovolume that was comparable to the 22h untreated group, but less confluent. The effect 

of 1000 PPM Sn2+ was visually more pronounced in the second half of the viewing port.  

Water and sodium gluconate treatment also appeared to change the biofilm architecture. 

Biofilm fragments in the 1,000 PPM placebo group were larger than the 22h untreated 

group. The higher the concentration of sodium gluconate, the more pronounced this 

observation was. In the 10,000 PPM placebo group, large islands of biovolume were 

present, particularly at the tail end of the viewing port. 

 

Quantitative Water Treatment Effects 

 

 Water effects on biofilm architecture were measured using BAIT by comparing 

outcomes from biofilms treated with water at 8 and 18 hours into development to biofilms 

that were grown for 22 hours uninterrupted. Treatment with water had significant effects 

on biofilm outcomes. A total of 20 untreated and 18 water-treated samples were imaged 

at the end of each period, yielding 5 images per sample matched by proximity from inlet 

forks.  Significant decrease in biovolume, objects detected, and surface area were found 

in all water-treated samples.  Fluffiness and viability, on the other hand, significantly 

increased (Table IV.3). Stratification by image location revealed that water-treated biofilm 

in the 1st half of the viewing port contributed for most of the differences detected. For 

instance, the average biovolume decrease between water-treatment and untreated 

groups was 29.87% across the entire viewing port, while for the first half of the viewing 

port it was 39.1%. Viability was the only significant outcome in the second half of the 
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viewing port. In the linear mixed effects model where fixed effects of imaging location 

(proximity from the inlet fork) and random effects of sample were accounted for, treatment 

with water had no appreciable effect on transformed-outcomes (Table IV.4). The direction 

of effects in the linear mixed effects model were all concordant to the direction seen in 

the 2-sample t-tests. 

 

Quantitative Stannous 1,000 PPM Treatment Effects 

 

 The treatment effects of 1,000 PPM Sn2+ were measured using BAIT by comparing 

differences from biofilms treated with a placebo formulation that was identical to 1,000 

PPM Sn2+ without the presence of SnF2. Comparing images across the entire viewing 

port, biofilms treated with 1,000 PPM Sn2+ resulted in significantly higher number of 

objects detected and fluffiness (Table IV.3). Restricting analysis to viewing port halves, 

there was evidence that 1,000 PPM Sn2+ effects on biofilm development were 

differentially distributed across the viewing port. As opposed to water treatment effects in 

the first half of the viewing port, 1,000 PPM Sn2+ treatment had the most detectable effects 

on biofilm development in the second half of the viewing port. In this region biofilm that 

had been treated with 1,000 PPM Sn2+ had lower biovolume, surface area, connectivity, 

and higher fluffiness compared to biofilms that had been treated with the placebo 1,000 

PPM Sn2+ formulation. However, the difference in the number of objects detected in the 

second half of the viewing was not significant between Sn2+ and placebo. In the first half 

of the viewing port, 1,000 PPM stannous had significant effects on number of objects 
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detected. In the linear mixed effects model, 1,000 PPM Sn2+ group had no effect on any 

of the biofilm outcomes (Table IV.4). 

 

Quantitative Stannous 3,439 & 10,000 PPM Treatment Effects 

 

 Using BAIT, the effect of 3,349 and 10,000 PPM Sn2+ treatment was determined 

by comparing samples treated with stannous at 8 and 18 hours into development to 

samples treated with placebo treatments at the same time points. The majority of biofilm 

analysis outcomes, regardless of location within the viewing port, were significantly 

different. Formulations containing stannous ions reduced biofilm biovolume, surface area, 

connectivity, total number of objects, and viability (Table IV.3). Additionally, stannous 

treatments increased biofilm fluffiness. The only outcome that was not significantly 

different was convex hull porosity, suggesting that stannous treatments at high 

concentrations did not affect object irregularity. Stratifying the analysis to viewing port 

halves, % change in outcomes indicated no differential effects based on region of viewing 

port imaged. The effect size of stannous increased using 10,000 PPM Sn2+ formulation 

compared to 1,000 and 3,439 PPM Sn2+, suggesting a dose response. The linear mixed 

effects model detected significance in all biofilm outcomes as well. The beta estimates 

also suggested a dose response to stannous ions as described and shown in Table IV.4. 

 

Discussion 
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 In this study, we introduce the Biofilm Architecture Inference Tool (BAIT), a 

software package that can rapidly quantify the architecture of biofilms captured with a 

confocal laser scanning microscope. The software integrates a graphical user interface 

along with automation to provide users an intuitive interface to analyze biofilm 

architecture. BAIT was designed to be the post-imaging standard in a workflow that also 

includes an automated in vitro model system to study oral biofilms. We also adapted a 

24-well BiofluxTM system to reproducibly grow multi-species oral biofilms treated with 

water, sodium gluconate, and stannous-containing formulations. Our study demonstrates 

that pairing a microfluidic in vitro model system with BAIT enables investigators to quickly 

evaluate the effects of candidate treatment formulations on biofilm development. 

 

The biofilm architectural outcomes chosen for inclusion in BAIT are those expected 

to determine how well a treatment retards biofilm development and consequently affects 

host-biofilm homeostasis. Biovolume is a representation of the bioburden of a biofilm. In 

lieu of CLSM technology, total bioburden of biofilms has been estimated with techniques 

such as crystal violet assays (Luo, Rickard et al. 2015, Xu, Liang et al. 2016).  The lower 

the biovolume measure, the more retarded the growth. Biofilm surface area, fluffiness, 

and convex hull porosity have implications for biofilm metabolic activity and overall 

physiology of the biofilm as it determines how exposed the biofilm is to the bulk-liquid 

phase (Bester, Kroukamp et al. 2011). Higher surface area and relative surface area to 

volume ratio could determine aggregate exposure to a nutrient or an antimicrobial. The 

higher the fluffiness, the greater the effect of an antimicrobial by mitigating the limitation 

diffusion phenomena of thick biofilms (Stewart 2003). The total number of objects 
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measured, and connectivity are estimates of biofilm fragmentation. Biofilm fragmentation 

has been estimated by the ratio of perimeter length over surface area, enhancing solute 

transfer by reducing average distance of diffusion (Battin, Kaplan et al. 2003). Similarly 

to fluffiness and surface area, fragmented biofilms can enhance antimicrobial delivery. 

 

At its current stage in development, BAIT only contains outcomes calculated from 

a binary image stack that have undergone thresholding. These belong to a class of 

outcomes called areal parameters, which describe the biofilm architecture in context of 

morphology (volume, surface area, number of objects, porosity, etc.) (Beyenal, Donovan 

et al. 2004). We envision that future versions of BAIT will have the capacity to calculate 

outcomes dependent on the image stack’s intensity histogram. This will allow for 

measurements of another class of outcomes called textural parameters, which 

characterize heterogeneity of biofilms using variations in signal intensities (Beyenal, 

Donovan et al. 2004, Beyenal, Lewandowski et al. 2004, Milferstedt, Pons et al. 2008).  

  

In addition to the development of BAIT, we also adapted a variant of a published 

microfluidic system to demonstrate the anti-biofilm properties of stannous fluoride within 

the model system, simulating environmentally-germane conditions. The development of 

a workflow script with validated algorithms to quantify biofilm features was also integral 

to accommodate the significant confocal data it generated. Overall, the 24-well BiofluxTM 

model system was capable of reliably developing oral multi-species biofilms over the 

course of 22 hours, similar to the 48-well system, using identical preparations. The 

difference is the inclusion of a second inlet well that enabled the automatic delivery of 
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exogenous aqueous treatment solutions to the site of biofilm development. With the 

addition of this feature, candidate formulations and their effects on biofilms can be 

evaluated more conveniently than the traditional 48-well system, which requires halting 

biofilm development and manually adding treatment to the sole inlet.  

 

The decision to evaluate the effects of stannous fluoride on biofilm architecture 

was motivated by past literature documenting its antibacterial effects on key oral species 

(Yoon and Berry 1979, Ellingsen, Svatun et al. 1980, Tinanoff 1995). In our study, we 

discovered that at sufficient concentrations, stannous fluoride can serve as a mild 

antimicrobial as indicated by viability measurements using BAIT. However, the more 

significant result was that at 3,439 PPM Sn2+ (the concentration of stannous in dentrifice), 

the periodic exposure of stannous fluoride solutions to developing nascent oral biofilms 

seemingly retarded or inhibited biofilm development and biofilm architecture. Of 

relevance, also, end-stage treatment with the highest concentrations of stannous fluoride 

did not demonstrate any immediate biofilm control effects seen to the extent revealed in 

periodic exposure treatment regimens (Figure IV.6). Together our results suggest that 

the efficacy of stannous fluoride’s anti-biofilm properties is contingent on the maturity of 

the oral biofilm. With the destruction and removal of dental plaque biofilms that is 

accompanied with brushing, the addition of stannous fluoride to oral healthcare products 

could prove effective at retarding dental plaque development.  

 

In conclusion, using BAIT, we can rapidly measure the changes in biofilm 

architecture and evaluate possible antimicrobial and anti-biofilm effects of candidate 
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agents. We envision that BAIT will enhance understanding of the effects of anti-biofilm 

and antimicrobial agents, ultimately shedding light on possible clinical outcomes following 

the use of such agents. 
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Table IV.1. Outcomes Currently Available in BAIT. Biofilm architectural outcomes 
available in BAIT are defined and coded to the following specifications. All outcomes are 
calculated on binary cellular array data post-thresholding. The biovolume elasticity 
thresholding method was applied to each image prior to quantification.   

Architectural 
Outcome 

Description 

Biovolume 
Sum of all voxels post-thresholding. 

Number of 
Objects 

Sum of all foreground objects that are separated from other 
foreground signal obeying a 26-connectivity rule 

Surface Area Sum of all exposed surfaces (i.e. dimensionless, not just the bulk-
fluid exposed surface of the biofilm) of voxels post-thresholding. 

Fluffiness Surface area to biovolume ratio of all voxels within an entire 
image 

Connectivity 
Average biovolume per object. 

Convex Hull 
Porosity 

Following the removal of objects less than 100 voxels a convex 
hull mesh is applied to each object. The volume of this meshed 
object is defined as the convex hull volume. The convex hull 
porosity is the proportion of void voxels within the convex hull 
volume 

Viability 
BEM thresholding was applied to both the red channel and the 
green channel, yielding a binary image for each. Viability is 
calculated as the proportion of green voxels amongst all green 
and red voxels 
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Table IV.2. Groups of Biofilm Images Quantified by BAIT. Treatment schedule is 
described for each group to evaluate effects of water, sodium gluconate, and stannous 
fluoride treatments on oral biofilm architecture.  

  Formulation Final Concentrations 

Group Water 
(Grams) 

Sodium 
Gluconate 
(Grams) 

Stannous 
Fluoride 
(Grams) 

Sodium 
Gluconate 
(mMol) 

Sn
2+

  
(PPM) 

Water 100 0 0 0 0 

Placebo 1000 
PPM  

99.348 .652 0 2.989 0 

Stannous 1000 
PPM 

99.216 .652 .132 2.989 1000 

Placebo 3,439 
PPM  

98.736 1.264  0 5.795 0 

Stannous 
3,439 PPM 

98.282 1.264 .454 5.795 3439 

Placebo 10,000 
PPM  

96.324 3.676 0 16.852 0 

Stannous 
10,000 PPM 

95.004 3.676 1.320 16.852 10000 
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Table IV.3. BAIT Outcomes by Treatment Group and Stratified by Viewing Port Half. 
Respective treatment groups are compared to its appropriate baseline groups to evaluate 
effects of water, Sn2+ 1,000, Sn2+ 3,439, and Sn2+ 10,000 effects. Results are also 
stratified by location of biofilm development. Water, Sn2+ 3,439, and Sn2+ 10,000 
treatments have significant overall effects on biofilm architecture. Sn2+ 1,000 treatments 
effects are more predominantly detected in the 2nd half of the viewing port.   
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Entire Viewing Port Water Effect Sn2+ 1000 Effect Sn2+ 3439 Effect Sn2+ 10000 Effect 

 
Outcome 

22 hr. 
growth 
(n=100)  

Water 
(n=90) 

Placebo 
1,000 
(n=90) 

Sn2+ 
1,000 
(n=95) 

Placebo 
3,439 
(n=60) 

Sn2+ 
3,439 
(n=60) 

Placebo 
10,000 
(n=60) 

Sn2+ 
10,000 
(n=60) 

Biovolume 2,225,952 1,561,029 1,504,714 1,522,859 1,578,658 53,594 1,421,197 11,958 

% change p-value -29.87 <0.01 1.20 0.92 -96.6 <0.01 -99.2 <0.01 

Number of Objects 32,011 23,636 22,188 28,311 29,279 2,411 25,922 772 

% change p-value -26.16 <0.01 27.60 0.04 -91.8 <0.01 -97.0 <0.01 

Surface Area 2,656,538 2,096,775 2,035,852 2,166,362 1,963,659 112,970 1,868,002 32,532 

% change p-value -21.07 <0.01 6.41 0.52 -94.3 <0.01 -98.3 <0.01 

Fluffiness 1.35 1.52 1.59 1.82 1.37 3.40 1.55 4.47 

% change p-value 12.19 <0.01 14.47 <0.01 148.0 <0.01 187.8 <0.01 

Connectivity 78.42 70.29 68.18 57.92 51.57 16.57 50.77 6.64 

% change p-value -10.32 0.17 -15.1 0.07 -67.9 <0.01 -86.9 <0.01 

Convex Hull 0.69 0.71 0.71 0.71 0.65 0.67 0.64 0.66 

% change p-value 3.1 0.10 0.2 0.90 1.9 0.62 2.9 0.55 

Viability 0.9872 0.9942 0.9955 0.9950 0.9996 0.9760 0.9990 0.9201 

% change p-value 0.7 <0.01 -0.0 -0.79 -2.4 <0.01 -7.9 <0.01 

1st Half of Viewing 
Port 

Water Effect Sn2+ 1000 Effect Sn2+ 3439 Effect Sn2+ 10000 Effect 

 
Outcome 

22 hr. 
growth 
(n=60)  

Water 
(n=54) 

Placebo 
1,000 
 (n=54) 

Sn2+ 
1000 
(n=57) 

Placebo 
3,439 
 (n=36) 

Sn2+ 
3439 
(n=36) 

Placebo 
10,000 
 (n=36) 

Sn2+ 
10000 
(n=36) 

Biovolume 2,773,916 1,688,084 1,740,974 1,992,875 1,789,587 64,812 1,684,122 18,052 

% change p-value -39.1 <0.01 14.5 0.33 -96.4 <0.01 -98.9 <0.01 

Number of Objects 37,684 24,997 24,767 34,280 31,818 3,201 29,160 1,086 

% change p-value -33.7 <0.01 38.4 0.03 -89.9 <0.01 -96.3 <0.01 

Surface Area 3,189,567 2,238,238 2,266,805 2,685,027 2,183,431 142,978 2,144,665 47,523 

% change p-value -29.8 <0.01 18.4 0.15 -93.5 <0.01 -97.8 <0.01 

Fluffiness 1.27 1.51 1.53 1.70 1.33 3.31 1.51 4.41 

% change p-value 18.5 <0.01 11.2 0.15 148.8 <0.01 193.2 <0.01 

Connectivity 83.70 72.04 71.96 63.56 54.61 16.36 54.14 6.80 

% change p-value -13.9 0.14 -11.7 0.28 -70.0 <0.01 -87.4 <0.01 

Convex Hull 0.67 0.70 0.71 0.70 0.65 0.70 0.63 0.66 

% change p-value 4.8 0.09 -1.8 0.54 8.6 0.09 3.8 0.54 

Viability 0.9873 0.9938 0.9934 0.9941 0.9996 0.9667 0.9989 0.9343 

% change p-value 0.7 0.06 0.0 0.80 -3.3 0.02 -6.5 <0.01 

2nd Half of Viewing 
Port 

Water Effect Sn2+ 1000 Effect Sn2+ 3439 Effect Sn2+ 10000 Effect 

 
Outcome 

22 hr. 
growth 
(n=60)  

Water 
(n=54) 

Placebo 
1,000 
 (n=54) 

Sn2+ 
1000 
(n=57) 

Placebo 
3,439 
 (n=36) 

Sn2+ 
3439 
(n=36) 

Placebo 
10,000 
 (n=36) 

Sn2+ 
10000 
(n=36) 

Biovolume 1,771,609 1,411,601 1,326,207 940,614 1,305,436 405,15 1,062,772 2,632 

% change p-value -20.3 0.06 -29.1 <0.01 -96.9 <0.01 -99.8 <0.01 

Number of Objects 28,264 22,830 20,231 20,788 26,284 1,296 21,392 271 

% change p-value -19.2 0.08 2.8 0.82 -95.1 <0.01 -98.7 <0.01 

Surface Area 2,274,604 1,971,009 1,871,617 1,542,311 1,711,102 71,968 1,485,230 9,226 

% change p-value -13.3 0.13 -17.6 0.04 -95.8 <0.01 -99.4 <0.01 

Fluffiness 1.45 1.54 1.64 1.94 1.44 3.55 1.61 4.58 

% change p-value 6.5 0.19 18.0 <0.01 146.0 <0.01 184.3 <0.01 

Connectivity 71.80 67.48 66.1 51.5 47.3 16.1 47.1 6.1 

% change p-value -6.0 0.55 -22.1 <0.01 -66.0 <0.01 -87.1 <0.01 

Convex Hull 0.71 0.72 0.72 0.73 0.66 0.66 0.63 0.63 

% change p-value 1.2 0.51 1.8 0.41 -0.6 0.88 1.3 0.86 

Viability 0.9863 0.9941 0.9974 0.9965 0.9996 0.9902 0.9992 0.9168 

% change p-value 0.8 0.03 -0.1 0.59 -0.9 <0.01 -8.2 0.01 
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Table IV.4. Linear Mixed Effects Models of Each Biofilm Architecture Outcome. 
Results are controlled for random effects of plate and fixed effects from imaging proximity 
to inlet junctions. Seven different models were tested, corresponding to each outcome. 
Count outcomes were log-transformed, ratio outcomes were square-root-transformed, 
and proportion outcomes were arcsin-transformed.  Stannous 3,439 and stannous 10,000 
PPM treatments had significant effects in all architectural outcomes except for convex 
hull porosity. All significant effects are in the direction of biofilm control. High 
concentrations of sodium gluconate decreases convex hull porosity, making the biofilm 
objects less irregular. Imaging location also has significant effects. The more downstream 
biofilm development is from the nutrient source, the more compromised the biofilm.  

Effects Estimate t-value p-value Estimate t-value p-value 

 Log Biovolume (R2 = 0.91) Sqrt Connectivity (R2 = 0.89) 

Distance* -0.26 -8.56 <0.01 -0.20 -6.77 <0.01 

Water -0.33 -0.91 0.35 -0.42 -0.74 0.45 

Placebo 1,000 -0.10 -0.28 0.76 -0.11 -0.19 0.84 

Placebo 3,439 0.02 0.05 0.76 -0.98 -1.51 0.13 

Placebo 10,000 -0.59 -1.43 0.15 -1.14 -1.75 0.08 

Stannous 1,000 -0.18 -0.50 0.60 -0.81 -1.41 0.16 

Stannous 3,439 -5.16 -11.37 <0.01 -3.50 -4.91 <0.01 

Stannous 10,000 -7.84 -17.27 <0.01 -4.77 -6.68 <0.01 

 Log Number of Objects (R2 = 0.87) Arcsin Convex Hull (R2=0.40) 

Distance* -0.20 -8.36 <0.01 0.01 1.98 0.05 

Water -0.23 -0.94 0.34 0.03 0.92 0.35 

Placebo 1,000 -0.08 -0.32 0.73 -0.00 -0.01 0.97 

Placebo 3,439 0.22 0.78 0.43 -0.08 -2.19 0.03 

Placebo 10,000 -0.30 -1.05 0.29 -0.11 -2.90 <0.01 

Stannous 1,000 0.09 0.34 0.72 0.00 0.06 0.94 

Stannous 3,439 -3.55 -11.34 <0.01 -0.00 -0.11 0.89 

Stannous 10,000 -5.28 -16.85 <0.01 0.03 0.51 0.59 

 Log Surface Area (R2 = 0.90) Arcsin Viability (R2=0.62) 

Distance* -0.22 -7.80 <0.01 0.01 2.17 0.03 

Water -0.22 -0.67 0.49 0.03 1.06 0.28 

Placebo 1,000 -0.06 -0.20 0.83 0.01 0.28 0.77 

Placebo 3,439 -0.07 -0.18 0.84 0.04 0.97 0.32 

Placebo 10,000 -0.58 -1.57 0,11 0.03 0.82 0.40 

Stannous 1,000 -0.08 -0.24 0.80 -0.02 -0.52 0.59 

Stannous 3,439 -4.31 -10.64 <0.01 -0.13 -3.08 <0.01 

Stannous 10,000 -6.87 -16.95 <0.01 -0.23 -5.58 <0.01 

 Sqrt Fluffiness (R2 = 0.86)  

Distance* 0.02 5.51 <0.01 

Water 0.07 1.19 0.23 

Placebo 1,000 0.03 0.46 0.64 

Placebo 3,439 -0.06 -0.87 0.37 

Placebo 10,000 0.01 0.15 0.86 

Stannous 1,000 0.08 1.38 0.16 

Stannous 3,439 0.65 9.11 <0.01 

Stannous 10,000 0.88 12.33 <0.01 

*Distance predictor modeled continuously (1-5) with 1 indicating the image closest to 
the inlet fork and 5 indicating image furthest. 
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Figure IV.1. Graphical User Interface (GUI) Layout of BAIT. The layout of the Biofilm 
Architecture Inference Tool (BAIT) graphical user interface. Boxed regions indicate 
functionalities of BAIT. After loading a .mat cellular array archive of confocal stacks, 
images can be: A) automatically thresholded, B) analyzed for each architectural outcome, 
and C) visualized by its log intensity histogram or biovolume by threshold curve. D) All 
individual outcome measurements are kept in a log file. E) The ‘Analyze All’ functionality 
calculates all outcomes for each image and presents it in a spreadsheet that can be 
exported. 
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Figure IV.2. Mock Dataset Used To Validate Outcomes Calculated by Scripts. 
Cellular array dataset containing two biofilm objects were created for MatLab script 
validation. Voxel-space is small enough to calculate biofilm architectural outcomes 
manually. Outcomes were calculated for both green and red channels and expected 
values listed. Outcomes calculated by BAIT were identical to outcomes calculated 
manually. 
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Figure IV.3. Representation of the 24-well BiofluxTM Plate & Imaging Strategy. An 
acquired pellicle was developed using cell-free saliva (CFS) prior to inoculation with cell-
containing saliva (CCS). CFS serves as media and is flowed constantly at 0.4 dynes/cm2. 
Varying concentrations of SnF2 treatment or placebo treatment were added to treatment 
well. Treatment regimen was set at 2.0 dynes/cm2 for two minutes. Biofilm growth was 
captured by imaging five locations evenly distributed across the viewing port. 
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Figure IV.4. Validation of BAIT Using Three Confocal Oral Biofilm Images. Three 
images were chosen to represent voluminous, moderate, and sparse amount of visible 
biofilm material. The images were rendered in shadow projection with Imaris after 
applying BEM threshold. All three images served as input to BAIT and results were 
assessed. Measurements from BAIT are biologically feasible based on expectations. 
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Figure IV.5. Stitched Images of Representative Biofilms by Group. Stitched images 
of entire viewing port reveal biofilm destabilization effects from periodic exposure to 
higher concentrations of stannous fluoride. Stannous 1,000 PPM was insufficient to inhibit 
biofilm development, but visual signs of fragmentation and streaking were present, 
particularly in the second half of the viewing port. Flow of CFS was from left to right.  
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Figure IV.6. Immediate Effects of Treatments. End stage treatments were applied with 
three treatment groups (water, placebo 10,000, and stannous 10,000). Three intent-to-
treat biofilms were developed over 22 hours and imaged across the entire viewing port. 
Biofilms were then treated for 2 minutes at 2.0 dynes/cm2 with water, placebo 10,000, or 
stannous 10,000 and imaged again using the same coordinates. Post-treated biofilms 
were then compared to its pre-treated counterpart. Stannous 10,000 treatment did not 
eradicate biofilm to the extent observed in intermittent exposure study. However, end-
stage treatment with stannous 10,000 showed precursors of biofilm fragmentation with 
increased # of objects, surface area, fluffiness, and decreased connectivity. 
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Chapter V 

 

Concluding Remarks & Future Directions 

 

Conclusions 

 

 Oral diseases, such as caries and periodontal disease are a contemporary public 

health challenge. These two diseases, as well as many other oral maladies, are highly 

influenced by biofilm or dental plaque accumulation on hard surfaces within the intraoral 

cavity. Thus, strategies limiting biofilm activity and plaque accumulation could decrease 

incidence of caries and periodontal disease and reduce billions in estimated annual 

healthcare costs (Sheiham, Williams et al. 2015).  

 

In vitro biofilm model systems are widely used in dental biofilm research. Their 

appeal to investigators have been reinvigorated the past few decades due to newer 

models and techniques that enable better in vivo mimicry. In chapter II, a historical 

distillation of in vitro biofilm model systems is given, with a focus on model systems that 

are relevant to dental biofilm research today. Additionally, a discussion of integrated 

technologies, such as confocal laser scanning microscopy (CLSM) and 16S rRNA 

community profiling was included. These technologies enable investigators access to 
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non-traditional biofilm outcomes, such as biofilm architecture and community structure. 

Assisted by integrative technologies, recent developments in model system techniques 

and equipment have increased generalizability of results gathered from in vitro biofilm 

models. Ultimately, the goal of in vitro dental biofilm research is to generate 

representative results in order to provide the foundational impetus for continuing with 

clinical trials or further in vivo work. 

 

There are few standard protocols for developing dental in vitro microcosm biofilms 

seeded from salivary milieu. We adapted the 24-well BiofluxTM model system to develop 

overnight microcosm biofilms representing early supragingival plaque. The protocol was 

standardized to include the secondary inlet well, which was utilized as the treatment 

delivery well. The resulting biofilm can be non-destructively imaged with a confocal laser 

scanning microscope (CLSM) to fully characterize its natural architecture. An objective 

imaging strategy was devised to eliminate operator subjectivity in selecting the best field 

of view to image. Biofilms with and without treatment regimens can be reliably duplicated 

using the 24-well BiofluxTM system, demonstrating its utility for in vitro microcosm biofilm 

studies.  

 

Thresholding is a necessary image pre-processing step to distinguish background 

noise from foreground signal. Thresholding can be performed manually or automatically 

with algorithms. Traditional thresholding algorithms used in biofilm research include 

Otsu’s method and iterative selection. These algorithms are shown to be rather 

aggressive in their classification of fluorescent noise, potentially leading to removal of 
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biomass signal. In Chapter III, we developed the biovolume elasticity method (BEM) 

designed for thresholding fluorescent CLSM images. The BEM is a sensitive alternative 

that captures more biomass. Three-dimensional renders of a singular dental biofilm image 

after applying each algorithm and manual threshold averages reveal that true biomass of 

low intensity is removed by Otsu’s, iterative selection, and manual methods. The BEM 

was the only method sensitive enough to capture streptococcal chains and individual 

microcolonies. Thresholding strategies can have massive implications for downstream 

quantification and measurements and choice of algorithm can affect interpretation of 

results. 

Few software packages capable of analyzing confocal stacks exist. The ones that 

do are focused on quantification of biomass material and not dedicated to the 

characterization of biofilm architecture. In Chapter IV, we developed a software package, 

named Biofilm Architecture Inference Tool (BAIT), for the calculation of biofilm 

architecture outcomes. The software is designed to be automated and can analyze 

confocal archives containing multiple images with little user supervision. The BAIT 

package features the BEM automatic thresholding method as well as Otsu’s method and 

iterative selection. Biofilm architectural outcomes included in bait are: biovolume, surface 

area, total number of objects, viability, connectivity, fluffiness, and convex hull porosity. 

These outcomes were chosen because changes in each of these measures could inform 

investigators how efficacious a treatment is at biofilm control. This construct is not limited 

to reduction in biovolume, but other measures that could prime a biofilm to be more 

receptive to treatment. For example, increased fluffiness indicates more biofilm surface 

area that is exposed to the bulk-liquid phase, making it more vulnerable to future drug 
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delivery. We envision BAIT to be the standard software package for biofilm control studies 

that utilizes fluorescent signal.  

 

Future Directions 

 

Textural, Spatial, & Temporal Outcomes in BAIT 

 

 At its current stage in development, BAIT is capable of measuring biofilm 

architecture outcomes from binary image files after a threshold is applied. These 

outcomes: biovolume, surface area, number of objects, viability, connectivity, fluffiness, 

and convex hull porosity belong to an outcome set called areal parameters (Yang, 

Beyenal et al. 2000). Future versions of BAIT will include areal parameters. Areal 

measurements seek to characterize biofilm morphology and measures the size and 

shape of cell clusters (connectivity, fluffiness, number of objects) or interstitial space 

(convex hull porosity). Textural measurements, on the other hand, focuses on microscale 

heterogeneity of biofilm. Qualitatively, texture of a biofilm can be described as coarse, 

smooth, random, or irregular. Quantitatively, its measurement relies on the grayscale 

intensity value for each pixel in 2-dimensional images or voxel in 3-dimensional images 

for calculation. In an 8-bit image, each pixel/voxel value can range from 0-255. A 12-bit 

image can store values from 0-4095 for each pixel/voxel. The rate and direction of change 

in chromatic gradients can be used to calculate entropy, homogeneity, and energy. 

Textural entropy, for example, is calculated from the variation in grayscale values. Higher 

variation confers higher entropy, which indicates a heterogeneous biofilm.  
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 Another outcome set we envision to be a part of the finalized BAIT package are 

spatial outcomes. Within the same channel, these outcomes relate distances between 

objects calculated by the objects’ centroids. This average distance measure can provide 

an estimate of biomass density (Drescher, Dunkel et al. 2016). Signal from other potential 

channels will also be incorporated for outcomes such as colocalization and other 

proximity analyses. This functionality will be extremely useful in fluorescent labeling of 

specific taxa where a single channel can indicate presence of a certain genus. One such 

application is combinatorial labeling and spectral imaging – fluorescent in situ 

hybridization (CLASI-FISH), shown in Figure V.1 (Valm, Mark Welch et al. 2012). Spatial 

presence of one genus relative to another can indicate how certain bacteria interact with 

one another, given its presence in a complex or microcosm community. Outcomes of 

interest include colocalization (Zijnge, van Leeuwen et al. 2010), whether signal from one 

channel occupies the same pixel-voxel space as signal from another channel, and 

average distances (Reighard, Hill et al. 2015) between biomass of the same color vs. 

another.  

 

 Another parameter of interest that can be added to BAIT and fluorescence 

microscopy is time. The confocal laser scanning microscope can be configured to take 

images at multiple time points, creating a time series of confocal stacks. This feature had 

been used for single-molecule and protein tracking (Han, Kiss et al. 2012), but had not 

been implemented in biofilm growth studies due to the technical limitations of integrating 

a BiofluxTM heating stage to a confocal stage. This has significant implications to the future 
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of in vitro dental biofilm studies. With the ability to capture digital data and render in real-

time how the physical biofilm responds to treatment, investigators can observe the 

mechanism of action of proven anti-biofilm agents and generate new hypotheses on an 

optimal delivery regimen.   

 

16S rRNA Community Profiling of In Vitro Dental Biofilms 

 

 Dental biofilms developed in the 24-well BiofluxTM system may also be harvested 

by pulsating water back and forth between the inlet and outlet wells. The harvested cells 

can then be extracted for genomic DNA and sequenced with a next-generation 

sequencing platform. The bacterial community measured from 16S rRNA profiling is a 

cross-sectional snapshot of the biofilm community at the time of harvest. Unfortunately, 

there exists no technology that can interrogate a developing biofilm for their community 

composition in real-time. Community outcomes include alpha diversity, beta diversity, 

community types, and relative abundance by taxonomic depth. Alpha diversity is the 

measure of within sample diversity, or how many operational taxonomic units constitute 

a sample. Beta diversity is a measure of community dissimilarity between samples. 

Community types are clustering assignments made by Dirichlet multinomial models 

based off of operational taxonomic unit data (Holmes, Harris et al. 2012). Relative 

abundance data shows the percent composition by taxonomic level. All outcomes can be 

of particular interest for dental biofilm research, especially with treatments that shift the 

community or reduce the burden of established pathogenic taxa. A full demonstration of 
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16S rRNA community analysis is demonstrated on oral specimen collection and storage 

techniques (Luo, Srinivasan et al. 2016). 

 

Synthesizing All Outcomes 

 

Traditionally, in vitro dental biofilm studies have for many years focused on single-

species or consortia-species biofilms to gain understanding into a complex ecosystem. 

Today, the technology exists for investigators to pursue dental health research with a 

population-level approach. After all, biofilm function is largely attributable to that of the 

ecosystem contained within. We have the model systems to synthetically develop 

representative plaque; we have the microscopy techniques to capture high-resolution 

images of biofilms over time; we have the ‘omics’ technology to puzzle together the 

composition of an undefined community that sprouted from a microcosm; and finally, we 

have the computational capacity to perform analyses on big data. The challenge remains 

to put together this treasure trove of community and architectural data, decipher their 

interplay and associations with each other, and approach biofilm control from a 

combinatorial approach. 

 

Personal Comments 

 

This five year journey has personally been the most challenging academic years 

of my life, and while at the same time, the most rewarding. I’ve always approached 

education: from grade school, to undergraduate, to Masters, with the same misguided 
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effort. To show up to class, learn the rigid curriculum, and take exams. Those years 

provided me with the fundamental knowledge, but not the applied skills to be successful. 

I was qualified on paper, but not competent. It only took independent study courses 

where, quoting my supervisor Alex, “the world is your oyster,” did I discover that learning 

is dynamic and adaptable with no curriculum. For example, under my own initiative, I 

became proficient at R coding, MatLab programming, software development, 

metagenomics techniques, and advanced microscopy. These skills are very technical and 

I had my fair share of troubleshooting and frustration. But every annoying coding bug or 

command line error fixed with persistence, was met with a lopsided feeling of 

accomplishment and satisfaction. I became a problem solver, whether simply brute-

forcing syntax to see if it works, or using online resources, I was able to eventually 

navigate to a solution. To me, that is a far superior form of learning than anything I have 

engaged in, and much more gratifying than any objective test score. 
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Figure V.1. Potential Application of BAIT to CLASI-FISH. 6 pairwise fluorophore 
combinations were used to create 15 different colors, each labeling a different genus 
present in the oral cavity. Each color signal indicates spatial presence of a genus. Spatial 
analysis of multiple signals can provide insight on how genera in the oral cavity interact 
with each other. Image acquired with permission from Valm et al. (Valm, Mark Welch et 
al. 2012). 
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APPENDIX A 

 

Protocol using 24-well BiofluxTM to Develop Dental Biofilms 

 

Preparation of Pooled Saliva as Inoculum & Medium 

 

Saliva to be used as a growth media, cell-free saliva (CFS) will be collected, 

pooled, and prepared according to previously published protocols (Nance, Dowd et al. 

2013). Saliva collected will be from healthy volunteers and from individuals with active 

caries. A portion of the saliva collected will be appropriated as cell-containing saliva 

(CCS) to be used as inoculum within the microfluidics system. The laboratory protocol will 

be as follows: 

1. Recruit >5 healthy/caries-active individuals for saliva donation. Individuals must 

not be ill, have taken oral antibiotics in the past 3 months, or have consumed food 

or liquid, with the exception of water, in the previous 2 hours before donation. 

2. Instruct individuals to donate saliva in 50 mL plastic tubes. Pool the collected saliva 

in a plastic beaker. Pipette 24 mL saliva and transfer to a 50 mL tube.  Transfer 

the plastic beaker with the remaining pool of saliva on ice. Do not use glass as 

polymers in the saliva will adhere to the internal glass surfaces. 



 134 

3. Add 8 mL autoclaved glycerol to the tube containing 24 mL pooled saliva to yield 

3:1 part saliva:glycerol stock inoculum. Aliquot out to 4 mL into 15 mL tubes for 

single use cell containing saliva (CCS) inoculum for use per24-well Bioflux™ run. 

Add Dithiothreitol (DTT) to the pooled saliva in the plastic beaker to a final 

concentration of 2.5 mM.  Stir or shake for 10 min in a plastic beaker on ice. 

4. Centrifuge the pooled saliva for 30 min at 17,500 x g to pellet particulate matter. 

5. Dilute the supernatant saliva with 3 volumes of autoclaved deionized water to give 

one-fourth concentrated saliva. 

6. Filter-sterilize saliva using a 0.22 µm polyethersulfone (PES), low protein binding 

filter. Keep saliva in a plastic container on ice while filtering. 

7. Aliquot 25 mL of pooled saliva into 50 mL tubes. Freeze single use aliquots at –

80° until needed for use. Each plastic tube is for one use only and should contain 

no more than 25 mL as each microfluidic well holds a maximum of 3 mL (3 mL x 8 

wells = 24 mL) and space is needed in each tube as saliva expands during 

freezing. 

For use, thaw the pooled saliva at room temperature. Once thawed, filter-sterilize once 

more using 0.22 µm polyethersulfone, low protein binding filter to remove any precipitates. 

 

Growth of Dental Microcosm Biofilms 

 

 Biofilms are developed overnight with a growth period of 22 hours. Automated 

treatment regimens can be implemented using the BiofluxTM software interface. The 

laboratory protocol will be as follows: 
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1. CFS pre-treatment  

1. First coat the Bioflux™ microfluidic channels with CFS. Add 1 mL of CFS to 

each outlet well. Using the Bioflux control software under manual mode, 

select columns C and F. 

2. Set shear to 1.0 dyne/cm² and start flow for 2 min at room temperature to 

ensure homogenous distribution of the CFS throughout the channel. At the 

end, ensure there is fluid in both inlet wells of each channel to verify that 

CFS flowed through all channels evenly. 

3. Incubate plate at room temperature for 20 min. 

4. Remove the remaining CFS in the outlet wells and transfer to the first inlet 

well. Add 1 mL of treatment solution in the second inlet well. This total 

volume of 1 mL per inlet well will serve to balance against the pressure 

being applied to the inoculum from the outlet well. 

2. Inoculation  

1. To each outlet well, add 500 µl of CCS inoculum. Place the microfluidic plate 

on the 37°C heat plate. Enter manual mode within the software interface 

and set flow from outlet wells to the inlet wells at 1.0 dyne/cm² for exactly 

12.0 sec. 

2. Incubate the microfluidic plate at 37 °C for 45 minutes to allow for initial 

adherence and growth of the bacteria in the inoculum. 

3. Biofilm Development  
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1. Enter automatic mode within the software interface. Customize run by 

ordering sequences. Each sequence can be custom made to select which 

column(s) will have shear force applied, the amount of force, and duration 

of force. Ordered sequences may be saved as protocols that will be fully 

automated after user hits start.  

2. Create a sequence that will introduce flow of CFS at 0.2 dyne/cm2 for 8,10, 

and 4 hours from column A & column D (both inlet 1’s). 

3. Create a sequence that will deliver a treatment at 2.0 dyne/cm2 for 2 minutes 

from column E. 

4. Order sequences from step 2 and step 3 to create an automated protocol. 

For automated treatment regimens, it should be ordered as CFS 8 hours, 

treatment, CFS 10 hours, treatment, CFS 4 hours. 

5. Add more CFS to inlet wells as needed depending on the automated 

protocol length. 

6. Incubate the microfluidic plate at 37 °C, select automatic on the software 

interface and select automated protocol to run. 

4. Stain prewash  

1. Aspirate all fluid from the inlet and outlet wells and add 500 µl of PBS (pH 

7.4) to each of the inlet wells. Flow from inlet 1 for 20 min at 0.2 dyne/cm². 

5. Stain mixture addition  

1. For cell viability staining make 100 µl of stain mixture for each channel to 

be stained. Specifically, add 3 µl of SYTO 9 and 3 µl of propidium iodide per 

mL of PBS using commercial cell viability staining kit such as LIVE/DEADTM.  
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2. Aspirate the remaining PBS from the first inlet well and then add 100 µl of 

the cell viability stain mixture to the center of each well. Set flow at 0.2 

dyne/cm2 and run the solution from inlet to outlet for 45 min at room 

temperature. 

6. Post-staining wash  

1. Aspirate the remaining stain in each of the inlet wells and add 500 µl of PBS 

to each inlet well. Set to flow at 0.2 dyne/cm² and run the PBS solution from 

inlet to outlet for 20 min at room temperature to remove any excess stain. 

 

Objective Imaging Strategy 

 

After staining with LIVE/DEADTM, biofilm samples will be imaged five times along 

the viewing port, as detailed in Figure IV.3. The confocal laser scanning microscope used 

is an adapted Leica SPE (Leica, Buffalo Grove, IL). Biofilms will be imaged using a 40X 

1.25 NA HCX PL APO infinity-corrected oil objective. All renderings and quantification 

analyses will be performed on a computer equipped with an Intel i7 processor (Intel, Santa 

Clara, CA) supported with two Nvidia GTX 970m graphics cards in SLI (Nvidia, Santa 

Clara, CA). Captured renderings will be assembled in CORELDRAW v. X7 (Corel, 

Mountain View, CA). The protocol is as follows: 

1.  Before imaging, optimize the laser intensity, gain, offset, and digital zoom. For 

the LIVE/DEADTM stain cocktail used, we used 15% laser intensity, 900 gain, -
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7.6% offset, and 1.00x digital zoom. Additionally, the images were captured at 

512x512 resolution and each Z-slice was taken 1µM apart. 

2. Locate the viewing port containing the four samples within the plate’s column. 

Locate the first sample’s inlet junction and position the field of view so that the 

left side touches the intersection. At 1.00x digital zoom, the top and bottom of 

the field of view should capture nearly the entire Y-length of the channel.  

3. Image the height of the biofilm by setting Z-coordinates. If no biofilm is present, 

take a 10µM thick image. 

4. Move the microscope stage down to the second sample. The left side of the 

field of view should align with the inlet junction of the second sample. Image 

the biofilm and continue down to Sample 4. 

5. At sample four, move the x-axis knob counterclockwise one full rotation to move 

the stage to the left. The 2nd image of sample 4 should be taken now, followed 

by the 2nd image of sample 3, 2, and 1.  

6. Continue the imaging strategy in the described serpentine pattern until five 

images per sample have been captured.  

7. If necessary, image the 4 samples contained within the other half of the plate. 

8. Name each confocal stack so that it can be readily identified. Save the 

experiment in the native .lif archive offered by Leica. 

 

Harvesting Biofilm Cells for 16S rRNA Community Profiling 
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 After all images had been captured, biofilm cells can be harvested for culture-

independent analysis. This involves a wash protocol to ensure the waste well is cleansed 

of all effluent. The protocol for this is as follows: 

1. Aspirate all remaining fluid from the 24 wells.  

2. Add 1 mL of ultrapure water into each of the 24 wells and place plate on a 

shaker at 120 RPM for five minutes. 

3. Repeat the wash with ultrapure water for a total of three washes. 

4. At the end of the third wash, aspirate all water and add 500µL of water into 

columns C and F (outlet wells). 

5. Pulse the water from outlet to the two inlets at 20.0 dyne/cm2 for 20 minutes. 

At the end of the 20 minutes, pulse the water from the inlets back into the outlet 

well at 20.0 dyne/cm2 for 20 minutes. 

6. Collect the sample from the outlet well and freeze at -80oC until ready for DNA 

extraction. 

 

Calculation of Weighted Viability 

 

 The traditional method of calculating viability involves using the dynamic 8-bit 

range of image histograms in both the propidium iodide and Syto-9 channels. Since 

viability is calculated by weighing higher intensity signals, the terminology used will be 

weighted viability, which differs from unweighted viability calculated by BAIT. Weighted 

viability is calculated from the saved .lif file post-imaging. The .lif confocal archive will 



 140 

need to be batch converted into .ome (open-microscopy environment) files to be read as 

input by ImageJ (Collins 2007). The protocol is as follows: 

 

1. Open Imaris software (Bitplane, Zurich, Switzerland). Under File, select batch 

convert. Convert all confocal stacks into .ome files into a specified directory. 

2. Open ImageJ. Under file, select open and navigate to the directory containing 

all .ome files. Select an .ome file and ensure the “Split Channels” checkbox is 

checked. 

3. For both channels, hit ctrl+h to generate an intensity histogram for each 

channel (Figure A.1).  

4. The intensity histogram distribution from 0-255 can be copied onto clipboard 

and pasted into a spreadsheet software for viability calculation. 

5. Weighted viability is calculated as follows: 

𝑊𝑉 =
∑ 𝑖∗𝑔(𝑖)255

𝑖=0

∑ 𝑖∗𝑟(𝑖)+∑ 𝑖∗𝑔(𝑖)255
𝑖=0

255
𝑖=0

  

Where i = intensity ranging from 0-255. 

                g(i) = number of total green voxels with intensity value i. 

            r(i) = number of total red voxels with intensity value i. 

                WV = biofilm weighted viability as a proportion. 
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Figure A.1. Intensity Histograms of Red & Green Channels. The distribution of 
intensity signal is retrievable with ImageJ from an open microscopy environment (.ome) 
file. The distributions of both channels are used to calculate viability. Each voxel within 
the confocal image stack contains a 0-255 value indicating the brilliance of signal detected 
at that particular voxel space. 0 indicates no signal and 255 indicates the most brilliant. 
In the Syto-9 channel histogram on the right, 440,251 voxels contain the intensity value 
of 2. 
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