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ABSTRACT 
 

Offshore regions of the Arctic and the Great Lakes hold valuable resources in many 

respects for harvesting energy and serving as important shipping lanes. Ice loading poses a threat 

to structures in these regions with high local pressure and various failure modes. It is thus essential 

to evaluate the ice peak loadings using limited and site-specific data. This thesis aims to better 

predict the peak ice loading by developing an efficient inverse ice loading prediction methodology 

and accurate stiffened plate analysis for marine structure design. Additionally, the behavior of the 

ice-structure interaction is studied mathematically to understand the cyclic dynamic ice-loading 

applied on offshore structures during continuous ice crushing. 

Multiple inverse algorithms are presented for calculating the variable ice pressure acting 

on a stiffened steel plate. The analytical models are formulated to calculate the quasi-static pressure 

caused by contact of lake ice driven primarily by thermal expansion and winds. Loading pressures 

are calculated using strain measurements from a stiffened plate installed on a Keweenaw Peninsula 

lighthouse in Lake Superior. The ice sheet was essentially stationary through the winter months. 

The linear relationships between pressure and strain values are obtained by both strip beam theory 

and orthotropic plate theory. The inverse solutions are by nature not necessarily unique. Two 

inverse approaches using orthotropic plate theory show results with satisfying accuracy and 

efficiency compared to the finite element analysis. In addition, laboratory calibration and an 

examination using the recorded data from field measurements exhibit the effectiveness of the 

presented approach. 



 xiv 

Continuous ice brittle crushing occurs in the movement of an ice sheet against an offshore 

structure. Matlock’s ice-structure interaction model is used to simulate the behavior of the ice 

crushing by modeling ice teeth indentation contacting a spring-mass-dashpot structure. The 

dynamic behavior of the model is studied using Fourier analysis to predict the response of specific 

periodicity. The time histories of tooth deflections are expressed through non-linear dynamic 

equations. The kinematic initial conditions can be predicted at targeted periodicity via the Fourier 

analysis. Given a representative offshore wind tower system, the first mode shape of the physical 

system is calculated as input for the ice-structure interaction model as an extended validation. The 

amplitudes of the structural dynamic vibrations predicted by the analytical model at specific 

periodicity are compared to the mathematical numerical simulations. 

A discrete energy method is applied to accurately calculate the deformation of either 

unidirectional or cross-gridded stiffened panels. This approach obtains the strain energy of the 

plate and stiffeners using double Fourier series for the displacement fields. Two models are 

described assuming different reference planes. The first model presumes that the reference planes 

are located at the effective centroids which are calculated from the cross-sectional properties. The 

second model formulates the in-plane displacement fields at the mid-plane of the plate. The plate 

is simply supported along all four edges at the effective centroids for the first model, and at the 

mid-plane of the plate for the second model. Both methods accurately capture the deformations 

between stiffeners and the second model eliminates the complicated calculation for effective 

breadth which is an unavoidable effort for stiffened plate analysis using conventional orthotropic 
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plate theory. The methods presented provide efficient design tools and can be applied to light 

weight structural design in various fields.  
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Introduction 

 

 

1.1 Motivation 

 

Offshore regions of the Arctic and the Great Lakes hold valuable resources in many 

respects for harvesting energy and serving as important shipping lanes. Ice loading poses a threat 

to structures in these regions; it is thus essential to evaluate the ice peak loadings using limited and 

site-specific data (Fig. 1.1). Researchers have termed local ice pressure as “high-pressure zones” 

(Jordaan, 2000) or “line-like loads” (Riska and Kämäräinen, 2011) with multiple formulations to 

predict the high local ice pressures. Croasdale et al (1977) carried out indentation tests to 

investigate maximum ice pressures on vertical piers in the Arctic area at low strain rate. It is 

concluded that the laboratory tested ice results in a higher strength of ice compared to the field 

measured ice property. Sanderson (1988) observed that global ice pressures are significantly lower 

than local ice pressures during ice crushing events; Palmer et al. (2009) developed an ice-pressure 

to ice contact area curve to address this issue. 
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Figure 1.1: Photograph of the Molikpaq in the Canadian Beaufort Sea covered with ice (Timco and Johnston, 2003) 
 

 
(a) 

 
(b) 

Figure 1.2: (a): Instrumented areas of hull indicated with black boxes for the Polar Supply and Research Vessel 
(PSRV) S.A. Agulhas II; (b): Instrumentation of the frames and hull plating at the bow (on the right), bow shoulder 
(in the middle), and stern shoulder (on the left) (Suominen et al., 2013) 
 

However, Suominen et al. (2013) discussed the knowledge of the load characteristics used 

by the classification societies (FSCR 2010, IACS 2011) comparing the measured ice loads to the 

design ice loads for PSRV S.A Agulhas II (Fig. 1.2) during March 2012. Also, Kim et al. (2016) 
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argued that the assumptions regarding the pressure-area relationship, ice edge spalling 

characteristics, dynamic viscosity and strength of crushing ice should be evaluated with further 

validation as the simplified models are referenced by classification rules. It is thus concluded by 

previous researchers that full-scale load measurements are needed to obtain more accurate 

descriptions of local ice loads (Jordaan 2000, Suominen et al. 2013, Kim et al. 2016). 

Stiffened plates have been commonly used in various applications such as naval structures, 

and marine platforms as efficient light weight structures to reach maximum strength requirements. 

Examples of full-scale ice force measurements have been carried out on stiffened structures like 

offshore drilling platforms, framed ship scantlings etc. (Sodhi 2001, Timco and Johnston 2003, 

Suominen et al. 2013). Many previous investigations have been devoted to formulating the 

stiffened structure as structurally orthotropic plate using classical plate theory. Hoppman et al 

(1956) used an orthotropic formulation for analyzing simply supported orthogonally stiffened 

plates under static and dynamic loading. The calculated plate rigidities and stiffness compare well 

with the experimental results and it is argued that cross-contraction or Poison’s effect is negligible 

for flexural deformation. However, the orthotropic models “smear” the effect of the stiffeners over 

the entire plate for simplified approximation. As is summarized by Ventsel and Krauthammer 

(2001), the orthotropic plate theory is considered applicable only to cases with closely spaced 

stiffeners. A novel analytical model for variously stiffened panels is needed for efficient and 

accurate process of marine structure design. Also, the success of obtaining an accurate structural 

model for stiffened panel would prominently improve the inverse ice prediction algorithms applied 

in full-scale ice-load measurements on stiffened frames. 

 

1.2 Background on Ice Force Measurement and Ice-structure Interaction 

Analysis 
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While extensive research on ice-structure interaction has been conducted over the past 

several decades, much attention has focused on sea ice (Bjerkås 2006, Palmer and Croasdale, 

2013).  Bjerkås (2006) described several methods for measuring the full-scale ice forcing for first 

year ice in either arctic areas (Zone II) or sub-arctic areas (Zone I) as shown in Fig. 1.3. His 

research revealed the average peak ice pressures to be in the range of 0.6 to 1.8 MPa along the 

American shorelines. Riska and Kämäräinen (2011) reviewed the principles under the important 

Finnish-Swedish Ice Class Rules (FSICR) by investigating the design points and statistics of ice 

loads in the Baltic Sea. Ralph and Jordaan (2013) explored the probabilistic method for ships that 

navigate in the Arctic. Dempsey (2000) discussed the ice mechanics research development from 

geophysical scale and floe scale to structural scales for both sea ice and river ice. However, few 

records can be found for ice loadings on stiffened offshore structures in the Great Lakes area. 

There are various ice-structure interaction modes with different ice failure modes 

depending on different ice indentation speed or strain rate. Sodhi (2001) observed three different 

modes of ice failure depending mainly on the indentation rate: ice fails from ductile deformation 

through “intermittent” crushing to brittle failure when the indentation rate increases from low to 

high. Jordaan (2001) described an ice-structure interaction model using a probabilistic approach 

and suggested that the high pressure zones appear most likely in the confined areas (Fig. 1.4). It is 

however pointed out by Jordaan (2001) that the measurements of ice loads, both local and global, 

in the full scale, demonstrate great randomness. While both Sodhi (2001) and Jordaan (2001) 

modeled ice structure interaction through elastic-brittle failure, other research addressed ice forces 

during impact in which the ice fails against the structure in dynamic fashions, often with the ice 

crushing or spalling against the structure or against a ship hull (Sodhi, 1991; Jordaan 2001; 
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Dempsey et al. 2001; Riska et al. 2002, Leira et al. 2009; Kim et al. 2015).  The highly localized 

pressures, found to be as high as 50 MPa by Joensuu and Riska (1989), and Riska (1991), develop 

in line-like regions during indentation tests and during icebreaking experiments in which the ice 

is crushed and pulverized. It is thus necessary to predict the peak ice loading and the cyclic 

dynamic ice-structure interaction process during the ice crushing event. 

 
Figure 1.3: The Northern hemisphere with three zones studied by researchers as the severity of ice conditions. 

(Bjerkås, 2006) 
  

 
Figure 1.4: Schematic illustration of the main process of spalling, extrusion and high-pressure zone formation 

(Jordaan, 2001) 
 

This present thesis has focused on forces occurring in freshwater ice in situations in which 

the ice acts against the structure by wind and thermal forcing (IEC 61400-3-1, 2009) as part of the 

Department of Energy (DoE) sponsored project with the installation of an Ice Force Measurement 

System (IFMS) for the winter 2013 – 2014 in Lake Superior. Photographs were taken on a daily 

basis throughout the winter season showing constant contact with the ice force measuring plate. 



 6 

The structure’s stiffness is extremely high relative to the ice so there is essentially no dynamic 

interaction in the usual sense of ice-structure interaction dynamics. At low velocities (0.005-

0.01m/s), the ice fails in buckling and bending (Jordaan 2000; Bjerkås and Skiple, 2005; Ziemer 

and Ever, 2016). Because the ice strain rates are therefore very low and the ice is not fracturing or 

spalling, it is reasonably presumed the interface of the fast ice and the structure to be continuous 

through the width of the plate.  

Driven by the need to evaluate the peak ice-loading in the Great Lakes area, hence 

freshwater ice as opposed to sea ice,  and to develop efficient algorithms to accurately determine 

the ice force distributions, this thesis involves the development of cost-efficient analytical models 

to inversely predict ice-pressure distributions from the limited measurements of ice thickness and 

structural strains. The strain measurements were routinely collected at 1Hz and when high winds 

developed leading to increased forcing on the structure, data was collected at 5 Hz. The input 

measurements of the ice thickness and the strains used in the analysis discussed here are obtained 

from the stiffened panel deployed in Lake Superior. These results are considered to have practical 

applications for the design of Great Lakes structures such as for potential offshore wind turbine 

platform design. Design standards (e.g. IEC 2009, Tarp-Johansen et al. 2006) for such facilities 

require estimates for ice forcing from thermal expansion of and wind action on the surface ice.   

 

1.3 Background on Stiffened Plate Analysis 
 

The widely applied orthotropic plate theory for analysis of stiffened plate can yield 

inaccurate results for sparsely-stiffened plates. Eagle and Sewall (1968) considered stringers as 

discrete elements for study of the orthogonally stiffened cylindrical shells and found that the 

stringers couple the circumferential modes. It is noted that the mode shapes determined by their 



 7 

discrete-stiffener approach can differ substantially from the harmonic mode shapes using 

traditional orthotropic plate analysis with an averaging effect from stiffeners.  

Other methods of calculating the structural response of stiffened plates involves the 

evaluation of edge forces, effective breadth or effective width. Rigo (1992) applied the Fourier 

series expansion as an analytical solution for the stiffened sheathing with the improvement to allow 

spacing and dimension changes of ribs. This stiffened sheathing method requires edge forces and 

moments as the dynamic boundary conditions for the mathematical formulation. Wang and 

Rammerstorfer (1996) used a finite strip method to investigate both the effective breadth and the 

effective width. However, the coupling effect of Fourier terms in the stiffness matrices is observed 

to cause an extensive increase in computational effort. Sapountzaki and Katsikadelis (2001)’s 

analysis isolated the beams from the plate and established continuity conditions at the interface. 

The variation of the effective breadth may also require large computational effort which is not 

ideal in terms of a general ribbed plate analysis.  

Some more advanced FEA models are developed through separate consideration of the 

plate and stiffener while maintaining compatibility (Mukherjee and Mukhopadhyay, 1987). Shi et 

al (2015) introduced a local coordinate system and employed the first order shear deformation 

theory to the finite element analysis of shell and beams, obtaining precise structural results for 

arbitrarily spaced stiffener distribution. Barik and Mukhopadhyay (2002) developed a four-nodded 

stiffened plate element to model arbitrary shaped plates without the disadvantage of shear-locking 

phenomena. More research works have been carried out to achieve accurate structural behavior 

through discrete treatment of stiffeners and the plates. Samanta and Mukhopadhyay (2003) derived 

a stiffened shell element by modeling the stiffeners as discrete elements to allow various placement 

of stiffeners within the shell elements. Good correlation is found for this shell element with 
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improved accuracy by including the element’s curvature and obviating its mesh grading restriction.  

However, the FEA modeling using shell element with discrete treatment of stiffener elements still 

require extensive modeling, which may not be ideal compared to an efficient analytical solution, 

particularly at the structure design stage. 

 

1.4 Contributions 
 

The thesis aims at developing an efficient inverse ice loading prediction algorithm to 

effectively reflect the variable ice loading from limited and site specific experimental measured 

data in Great Lakes area. Also, the dynamic ice-structure interaction is studied using Matlock’s 

model to predict the cyclic ice-loading applied on offshore structures during continuous ice 

crushing. As an extended study from the inverse ice loading algorithm development, an efficient 

and more accurate analytical model is established using discrete energy method to evaluate the 

structural response of variously stiffened plate as they are applied in marine structures.  

The first contribution of the thesis is the development of multiple inverse ice-loading 

prediction algorithms that well reflect the peak ice pressure among the variable quasi-static ice 

loading on offshore structure using strain gage measurements, with or without the input of ice-

thickness: 

• In the effort to reflect the variability of the ice-forcing, the plate is formulated as a 

structurally equivalent orthotropic plate in two models: OPT I OPT II. OPT II 

incorporates the input of ice-thickness and constrains the ice loading area to be within 

the ice-covered patch on the structure. OPT II is notable for its faster convergence, 

especially when the ice-covered area is comparatively thin. 
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• The inverse counterpart of OPT II is stabilized through a Truncated Singular Value 

Expansion (TSVE) optimization procedure, thus the stability of the matrix operation is 

retained. 

• The strain gage data is measured by the IFMS instrumentation through the winter 

season 2013-2014 at Lake Superior: Maximum pressure forcing of 3.54 MPa is 

observed on May 01 by OPIT II calculation, while a peak average pressure about 0.90 

MPa to 1.30 MPa were on April 17 and March 18, 2014. The results match well with 

the peak ice loads measured on lighthouses as are summarized by Bjerkås (2007) 

through different measuring programs.  

 

Second contribution of the thesis lies in the prediction of the structural motion of amplitude 

for cyclic dynamic ice structure interaction using Matlock’s model to simulate the continuous ice 

crushing as the common ice failure mode at a higher indentation speed: 

• This approach establishes the non-linear dynamic equations through Fourier analysis 

with respect to the number of tooth-breakages, N per cycle. This method allows rapid 

estimation for the range of motion and the evaluation of structural contact forces. 

• The amplitudes predicted by this Fourier analysis solution correspond well to the 

simulation results obtained from direct simulation solutions with various initial 

condition selections.   

• The previously un-detected periodic response of a Periodic-4 is found through our 

Fourier solution. Furthermore, the time ratios of breakage are accurately predicted thus 

the cyclic behavior can be analyzed a priori. 

 

Further contributions lie in the analyses of variously stiffened plates using Fourier series 

to accurately capture the deformation of the stiffened structure under two different boundary 

conditions: 

• Two sub-models using discrete energy methods, abbreviated as DEM I and DEM II, 

are developed to predict the response of variously stiffened plates using the discrete 
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energy component method via Fourier series formulation with different assumptions of 

the neutral planes. DEM I is valid and efficient assuming the dominance of bending 

effect for plates with pinned ends. DEM II formulates the in-plane displacement fields 

at the mid-plane of the plate.  

• Compared to DEM I, the DEM II captures the in-plane deformation caused by the 

Poisson’s effects of contraction which is noticeable with various stiffening patterns. 

DEM II presents substantial accuracy improvement in prediction of either uni-

directionally or orthogonally stiffened plates for stress evaluation.  

• The improved efficiency and accuracy of formulating the displacement fields highlight 

the advantage of DEM I and DEM II in terms of design evaluation compared to 

traditional computationally expensive FEA analyses or orthotropic plate theory. 

 

1.5 Dissertation Outline 
This thesis reports the extensive research efforts on ice-structure interaction with focus on 

the inverse ice loading prediction, ice-structure interaction analyses and extended analytical 

analyses for stiffened panels.  

Chapter I is an introduction. It summarizes the background on the different ice failure 

modes at different structure indentation speed. This chapter provides a literature review of ice-

structure interaction and explains the scope of the thesis with respect to different ice failure modes 

and the extended focus on structural analysis of the stiffened plate. 

Chapter II and Chapter III give detailed experimental set up information for Ice Force 

Measurement System (IFMS) and explain how the inverse algorithms as the counterpart of forward 

formulations, specifically OPIT I and OPIT II, are developed and compared well with FEA models. 

Chapter III incorporates the strain gage data measured in the experiments described in Chapter 

II and compares with historically observed peak ice load for first year ice in the lake areas. 
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Chapter IV is an extended study on the dynamic ice-structure interaction process to 

understand the continuous ice crushing failure using Fourier series analysis, while Chapter II and 

Chapter III studies the quasi-static ice loading for ice failing in creep and bending at low 

indentation speed. The ice crushing failure is modeled as the Matlock’s spring mass dashpot 

system with a single degree of freedom by assuming continuous ice breakage and continuous ice 

contact with the structure. The cyclic behavior of a given system is predicted for its motions and 

amplitudes. The predicted results compare well with numerical simulation solution.  

Chapter V presents a novel discrete energy method using Fourier series for stiffened plate 

analysis. This chapter serves as an extended study from Chapter II and Chapter III to prepare 

for future inverse load prediction on variously stiffened plates. DEM I and DEM II methods are 

developed based on different assumptions of reference planes and boundary conditions. Both DEM 

methods well reflect the deformation of the plate as an amendment over the smearing effect 

presented in classical orthotropic theory. The DEM II method is able to capture the in-plane 

Poison’s effect with notably improved accuracy compared to DEM I.  

Chapter VII draws the conclusions.  
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Ice Force Measurement System 

 

2.1 Introduction for IFMS Experiment Set Up 

 

The installation and operation of the Ice Force Measuring System (IFMS) were completed 

as a portion of Department of Energy sponsored project entitled “Measurement and Analysis of 

Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design.” 

Instrumentation was deployed in Lake Superior on a Keweenaw Peninsula lighthouse, where a 

large-scale laboratory for cold regions engineering experimentation is naturally formed. A data 

acquisition system captured readings from strain gages encased in the IFMS plate and ice 

thicknesses were monitored from a radiometer located on the deck of the lighthouse (Fig. 2.1a and 

2.1b). The physical dimensions of the IFMS plate with the numbering of ribs and the allocation of 

linear strain gages are sketched in Fig. 2.2a:  a=1.5 m is the depth of the plate defined along the 

vertical x-direction, b=0.6 m is the width of the plate along the horizontal y-direction. Nine 

stiffeners are evenly distributed from the top to the bottom of the plate and are sequentially 

numbered from #0 to #8. The vertical spacing of the two near stiffeners 𝑡𝑡1 is 0.15 m. Also, the 

upper right unloaded zero strain gage 𝑅𝑅0 is used to diminish temperature effect on the readings 

and determine the change of strains caused only by the effects of ice.   
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(a) 

 
(b) 

 
(c) 

Figure 2.1: (a) South Portage Entry Lighthouse and deployment IFMS (image by Nathan Miller, with permission); 
(b) view of the Lighthouse looking south for the deployment of the instrumentation (image by Dr. Lin Van Nieuwstadt, 
with permission); (c) side view of the framing for the IFMS plate after installation (image by Dr. Lin Van Nieuwstadt, 
with permission) 

 



 14 

 
(a)      (b) 

Figure 2.2: (a) Dimensions of the IFMS plate, arrangement of linear strain gages; (b) IFMS plate during strain gage 
installation (image by Dr. Lin Van Nieuwstadt, with permission) 

 

The linear horizontal strain gages 𝑅𝑅ℎ𝑠𝑠𝑠𝑠 are located at the middle span of the ribs from rib 

#1 to rib #7. The vertical strain gages 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣 are located at the back of the face plate and are aligned 

through the vertical midline of the plate. The center of the vertical strain gage is located midway 

between stiffeners. The vertical boundaries of the IFMS face plate are constrained by two stiff 

steel side-bars as shown in Fig. 2.2b. 

 

2.2 IFMS Pre-Testing at CEE Lab 

 

Mechanical testing of the IFMS plate was undertaken for calibration and data acquisition 

verification prior to field deployment. The IFMS plate load test (without the back plate) was 

performed at the Civil and Environmental Engineering (CEE) Structural Engineering Laboratory 
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at the University of Michigan. The 14-inch diameter loading cylinder with a 14-inch square steel 

plate attached to the bottom of the cylinder was used (Fig. 2.3a). The IFMS face plate was loaded 

gradually from zero to 20 Kips in the first round.  In the second round, the plate was reloaded at 5 

Kip or 10 Kip per step until a maximum of 50 Kips. Considering the stiffness of the loading 

cylinder and the attached square plate, the contact area between the loading panel and the back of 

the IFMS plate is reasonably assumed as the circumferential line of the cylinder as shown the 

respective FE analysis (Fig. 2.3b).  The displacements are prescribed in the FE model at the “line-

shaped” contact area. 

 

          
                                          (a)                          (b) 

Figure 2.3: (a) Test device for laboratory calibration; (b) FEA model of the loaded IFMS plate subjected to 
prescribed ring loading 

 

The resistance variation 𝛿𝛿𝛿𝛿 measured in the CEE lab tests is converted to linear strain 

values 𝜖𝜖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.0014𝛿𝛿𝛿𝛿 ohms−1 . Results from comparisons of two horizontal linear strain 

values on rib #3 and rib #4 from the FEA model are shown in Fig. 2.4. It is observed the prescribed 

circular displacement from the finite element analysis gives satisfactory correlation for the total 
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force. Taking into account that the FEA model calculated strains are very sensitive to the location 

of the loading area, it can be observed that both the linear horizontal strain gages and the linear 

vertical strain gages compare reasonably to the strains obtained from the loading tests conducted 

in the CEE lab. These results provided support for the conclusion that the linear strain gauges were 

behaving healthily.  

The IFMS was then transported to Universal Metals of Calumet, MI, for welding and field 

installation of the IFMS. Also at Universal Metals, the vertical frame for the IFMS support 

structure was manufactured and attached to the ice force measuring plate in October, 2013. A 

second test was performed at Michigan Technological University to check the performance of the 

system before the installation of the IFMS at the lighthouse.  

The deployment was in Lake Superior on an existing lighthouse at the Keweenaw 

Peninsula. The facilities were in land-fast ice most of the season and substantial quasi-static forces 

were measured. A data acquisition system included transmission of data from strain gages encased 

in the IFMS to a data logger and measurements were taken during the 2013-2014 winter season. 

These data added to our knowledge of (fresh water) ice forces driven primarily by wind and 

thermal forcing. A more detailed derivation of the inverse ice force prediction algorithm and the 

in-field ice force estimation will be discussed in the following chapter. 
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Figure 2.4: Linear strain ϵlinear variation from the lab results compared to the strain on rib 3 and 4 from the FEA 

model 
 

2.3 IFMS Post Calibration at MHL 

 
The IFMS force measuring panel and the other system were uninstalled, and the panel was 

transported back to Marine Hydrodynamic Lab (MHL) at university of Michigan in May 2015. A 

post-deployment check was carried out by the IFMS team members (Yuxi Zhang and Dr. Roger 

D. Roo) to calibrate the sensitivity level for the data acquisition system (DAQ) equipment for 

strain gage reading with internal and external interruptions. 

Detailed tests and the recorded data are attached in Appendix – Post-deployment 

Calibration Test. It is observed from the post calibration test that the IFMS DAQ system is sound 

as the whole system is generally robust to small external disturbance of cable flex, noise vibration 

and small temperature change. The DAQ system is quite sensitive moisture change which is given 

special attention to. The moisture change was negligible in the field tests as the system is housed 
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in lighthouse-room and measures are analyzed during small time windows. It is concluded for the 

readiness of the equipment for further tests and strain gage allocation improvements.
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Inverse Ice Force Prediction 

 

3.1 Introduction 

 

Inverse algorithms are presented for calculating the variable pressure acting on a stiffened 

steel plate. The analytical models are formulated to calculate the quasi-static pressure caused by 

contact of lake ice driven primarily by thermal expansion and winds. Loading pressures are 

calculated using strain measurements from a stiffened plate installed on a Keweenaw Peninsula 

lighthouse in Lake Superior. The ice sheet was essentially stationary through the winter months. 

The linear relationships between pressure and strain values are obtained by both strip beam theory 

and orthotropic plate theory. Because the inverse solutions are not necessarily unique, multiple 

approaches are developed and compared. Fourier pressure terms are calculated from the strain 

measurements using the inverse orthotropic plate theory algorithms.  

In this chapter, two of the approaches are applied using orthotropic plate theory to reflect 

the variability of the ice: the first sub-model presumes the pressure acts over the entire plate; the 

second sub-model presumes the pressure acts only within the depth of the measured ice thickness. 

Favorable comparisons are made of results determined from orthotropic plate theory to results 

from finite element analyses. A truncated singular value expansion method is applied to retain the 

robustness of the inverse process for the second sub-model. Both inverse approaches show results 
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with satisfying accuracy and efficiency compared to the finite element analysis. In addition, 

laboratory calibration and an examination using the recorded data from field measurements exhibit 

the effectiveness of the presented approach. Inverse strip beam theory and the inverse orthotropic 

methods are applied for the evaluations. Through the recorded winter season 2013-2014, the peak 

ice pressures calculated by the inverse orthotropic plate theories are in the range of 3.5 MPa for 

the local contact ice pressures, and a maximum of 3.0 MPa for the average ice pressures over the 

entire plate. 

 

3.2 Literature Review for Inverse Load analysis for Stiffened Plate 

 
The plate is composed of evenly distributed stiffeners and readily lends itself to application 

of orthotropic plate theory (OPT). Boot and Moore (1988) argued that the centroidal neutral axis 

of the cross section suffices for stress and displacement calculations if the shear deflection is 

negligible. Moreover, Deb and Booton (1988) recommended using the technical orthotropic plate 

under uniform load after comparison of two linear finite element models using discrete plate beam 

formulation.  Here, the IFMS stiffened panel is reasonably idealized as a structurally orthotropic 

plate given the feature of the uniformly distributed flexural rigidities along plate orthogonal 

directions (Shimpi and Patel, 2006). 

While most analyses are forward calculations for structural response under known 

pressure, the inverse problem is to extract a physically practical pressure distribution caused by 

the effect of ice with limited structural measurements. Infinite degrees of loading conditions exist 

with respect to finite structural response inputs. Due to the lack of uniqueness, the inverse 

calculation is an optimization procedure for load parameter identifications and load extractions 

(Engl and Kügler 2005; Chock and Kapania 2003; Li and Kapania 2007). In many cases, small 
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changes in the input strain readings will possibly result in extreme variations out of the physically 

feasible range in the forcing predictions (Starkey and Merrill 1989).  

Classic methods to overcome these difficulties involve a regularization procedure to 

convert the ill-posed matrix to neighboring well-posed matrixes (Hansen and O'Leary 1993; Engl 

and Kügler 2005), thus to eliminate the instability of inverse matrix operation. However, this 

procedure may introduce extra error caused by a different level of approximation of the reciprocity 

gap of each simulation (Bonnet and Constantinescu 2005), when usually no a priori knowledge is 

available. The concept of reciprocity gap is introduced by Andrieux and Abda (1996) to describe 

the identified difference between the forward input and its inverse calculation of the inputs. 

Additionally, Ma et al. (2003) argued that a recursive inverse method may be applied to extract 

the forcing from noisy measurements of a structural response. However, the accuracy of these 

calculations depends strongly on the initial knowledge of force parameters, information which is 

unavailable in many cases. Furthermore, the key point towards a well-established inverse problem 

is the consistency of the description of the class of models to its input data (Snieder 1998). Thus, 

these iterative computation methods for a recursive process can be expensive and will not be an 

ideal consideration when limited accuracy is achievable with a few noise-encased inputs. 

In the case of limited structural measurements and no a priori knowledge for ice forcing, 

the inverse problem can be defined as an under-determined problem with ill-posed relationships 

between the pressure and the structural response. Chock and Kapania (2003) applied a singular-

value decomposition (SVD) technique followed by classic least-square methods to identify the 

pressure parameters for ill-posed inverse systems. Ewing et al. (1999) observed that the presented 

error percentages by SVD are of the same order to the input noise level from the recorded 

simulations.  
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Another widely applicable and similar approach is the truncated singular value expansion 

(TSVE) method (Engl and Kügler 2005, Semnani and Kamyab, 2008), where the singular values 

of the matrix are filtered by a “low pass filter” to retain the robustness of the matrix in dominant 

dimensions. Andrews and Patterson (1976) discussed the application of TSVE in image processing 

to best restore the original image by retaining the value of the condition number of the matrix. 

Leone and Soldovieri (2003) argued that the truncated domains of the matrix are observed to affect 

mainly the dimensions orthogonal to the aimed reconstruction space. More importantly, both SVD 

and TSVE are considered optimal when the coefficient matrix and its singular value 

decompositions are available (Engl and Kügler, 2005). 

Furthermore, the forms of ice loading may remain in question. Kim et al. (2015) took the 

form of the ice load as a triangular prism, given that the peak ice pressure occurs at the frame 

supports.  Riska et al. (2002) argued that, for stiffened ship hull plating, the pressure distribution 

of the ice load is affected by the rigidity ratios of the plate, the stiffeners and the ice during the ice-

structure interaction process. Dempsey et al. (2001) discussed the line-like contact forces identified 

by Riska and high localized pressure zones which may fluctuate rapidly during indentation. In fact, 

the process of indentation usually involves the development of damaged ice zones adjacent to the 

indenter or structure due to spalling and macro- or micro-fracturing (Jordaan, 2001). The modes 

of failure are also velocity dependent (Sodhi, 1991). 

 In this study however, the ice is considered to be deforming in a ductile manner due to the 

low drift speed (Bjerkås and Skiple, 2005; Wells et al., 2011). Based on the observations of limited 

ice motion, this approach studies the quasi-static ice-pressure acting on the plate. Considering the 

high rigidity of the IFMS plate, the medium-to-high ice thickness measurements, the panel aspect 

ratio, and the very low ice-contact velocities, the pressure field is initially presumed as uniform 
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over the width of the panel. This assumption leads to a simple horizontal strip beam formulation 

as a fast approach to estimate the averaged ice forcing. Furthermore, the vertical strip beam model 

is formulated to predict the contact ice pressure between two ribs. This second model allows access 

to estimate the deformation of the plate between stiffeners. These forward strip beam models and 

their inverse counterparts compare well to the finite element results under the assumed uniform 

pressures.  

Next, the orthotropic plate theory is applied to capture the variability of the pressure over 

the plate. In the plate analyses, a trigonometric deflection field that satisfies the approximate 

boundary conditions is assumed. To calculate the Fourier pressure terms from limited strain inputs, 

two forward orthotropic models are derived with respect to the prescribed area over which the ice 

pressures are presumed to act: the first model presumes the pressure acts over the entire plate; the 

second model presumes the pressure acts only within the depth of the measured ice thickness. The 

convergence of the two approaches is studied through strain evaluations. The inverse counterparts 

of these models and the applications are discussed in detail. Results by the orthotropic plate theory 

and the inverse calculations agree well with the finite element model under various loading 

situations. 

 

3.3 Forward Force Prediction Model 

 

3.3.1 Strip Beam Theory (SBT) 

 

A horizontal portion of the plate evenly spaced between two stiffeners is considered to 

form an Euler-Bernoulli strip beam (Fig. 3.1a). The dimensional parameters of a resulting T-
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shaped cross section are sketched in Fig. 3.1b. The beam ends are reasonably considered as fixed 

as a reflection of the constraints from the stiff side bars and back plate. In an effort to obtain a first 

estimation of the average ice pressure, a uniform ice-pressure 𝑝𝑝 is assumed when the entire plate 

is fully covered by ice. The uniformly distributed load 𝑞𝑞 on the horizontal beam is calculated by 

the product of the pressure 𝑝𝑝 and the strip beam cross-section width 𝑡𝑡1 = 0.15 m. The effective 

elastic modulus of the upper flange (assumed to be in plane strain) 𝐸𝐸1 is 220 GPa, and the elastic 

modulus of the steel of the web 𝐸𝐸2 is 200 GPa. Thus, the distance 𝐶𝐶 from the effective centroid of 

the cross-section to the bottom of the fiber is 0.08 m. The effective flexural rigidity 𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦 of the 

cross section is 6.49 × 105 N ∙ m2. The relationship for strains located at the bottom of the mid-

span of the stiffener under a given distributed load q is as follows: 
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Similarly, a vertical strip beam of width 𝑡𝑡𝑣𝑣 = 0.03 m  and of length  𝑎𝑎1 = 0.14 m  is 

analyzed between the span of two neighboring ribs. The dimensions of the vertical strip are 

sketched in Fig. 3.2. The distributed vertical-beam load is calculated as 𝑞𝑞𝑣𝑣 = 𝑝𝑝𝑡𝑡𝑣𝑣. Note that the 

three vertical linear strain gages are aligned along the middle of the plate at  𝑦𝑦0 = 0.31 m as 

denoted by the vertical gray rectangles in previous chapter in Fig. 2.2. 

The flexural rigidity is calculated 𝐸𝐸𝑒𝑒𝑒𝑒𝐼𝐼𝑥𝑥 = 𝑡𝑡𝑣𝑣ℎ𝑝𝑝3𝐸𝐸/12(1 − 𝜇𝜇2) = 7.71 × 103 N ∙ m2 with 

the effective elastic modulus 𝐸𝐸𝑒𝑒𝑒𝑒  as 220 GPa under the plain stress assumption for strip beam 

theory. In this expression, 𝑡𝑡𝑣𝑣 and ℎ𝑝𝑝 are the width and height for the cross-section respectively, 

and 𝐼𝐼𝑥𝑥 is the moment of inertia for the vertical strip beam cross-section. Using the Euler-Bernoulli 

strip beam theory, the strain-loading relationship for a mid-point at the bottom of the ideal beam 

under the distributed load 𝑞𝑞𝑣𝑣 for fixed ends is: 



 25 

2
1 91.30 10 m/N

48
p v

xx v
ev x

h a q
q

E I
ε −= = × ⋅                                                 (3.2)                                                     

 

 
(a) 

                      
(b) 

Figure 3.1: (a) Euler-Bernoulli beam described for horizontal strip beam; (b) T-shaped cross section of the horizontal 
SBT 
 

 
Figure 3.2: Dimensions of the vertical strip beam between two ribs 

 

 

A
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3.3.2 Structural Orthotropic Plate Theory (OPT) 

 

To evaluate the ice loading over the plate, the panel with closely distributed stiffeners is 

formulated as a structurally equivalent orthotropic plate. This idealization models the stiffened 

plate by an orthotropic homogeneous plate with rigidities averaged in orthogonal directions over 

the plate with respect to the form of orthotropy (Ventsel and Krauthammer 2001). Ice thickness is 

found to mainly affect the variability of ice forcing in the vertical direction for narrow structures 

(Frederking and Schuwarz, 1982; Leira et al., 2009). Thus, a uniform loading is assumed along the 

horizontal direction in the current analysis for the narrow IFMS plate.  

Note the net deflection of the stiffeners does have some component due to shear 

deformation in addition to bending deflections. However, considering the geometric symmetry of 

the location of the horizontal linear strain gages, the contribution due to shear deformation is 

negligible in the calculation of the strain. The current analysis thus uses the small-deflection theory 

of thin-plate bending in the orthotropic plate theory (OPT) formulation to calculate the response 

of the plate. Two forward structural calculation models are set up via OPT analyses; both models 

apply the Navier’s equations to simulate the deflection surface and to express the distributed load 

through the terms of Fourier coefficients. The first OPT model (OPT I) assumes the Fourier 

coefficients of the pressure to be expanded over the entire plate; the second OPT model (OPT II) 

constrains the pressure coefficients to be expressed within the area covered by the ice thickness. 

Moreover, the OPT II model focuses on extracting the maximum peak ice pressure, and thus it is 

presumed that no pressure from current or wave acts on the plate beneath the ice. The ice thickness 

is measured from a deployed radiometer included in the IFMS instrumentation. Both forward 
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calculations give accurate strain evaluations with great efficiency for the quasi-static stress 

analysis.  

Based on the IFMS geometry, clamped boundary conditions are applied along the vertical 

edges of the plate (i.e. 𝑥𝑥-direction), and pinned boundaries are applied along the top and bottom 

edges of the plate (i.e. 𝑦𝑦-direction). The stiffened panel is first modeled with two stiff side bars 

and with the back plate on as a reflection of the actual construction of the IFMS plate. The second 

model consisting of only the stiffened face plate is fixed along the vertical edge and pinned along 

the horizontal edge. The designated strains calculated by these two FE models are observed to 

differ by less than 1%, thus justifying the boundary conditions of the second model as reasonable 

constraints in the OPT analysis.  

To satisfy the boundary conditions, a double Fourier series function is composed for the 

displacement field 𝑤𝑤(𝑥𝑥, 𝑦𝑦). Let 𝑚𝑚 =1..𝑀𝑀, 𝑛𝑛 =1..𝑁𝑁, where 𝑀𝑀 is the order of coefficient terms to 

be retained along the 𝑥𝑥 direction, and 𝑁𝑁 is the order of terms along the 𝑦𝑦 direction: 
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3.3.2.1 OPT I—Pressure Acting Over the Entire Plate 

 

For OPT I, the coefficients 𝑃𝑃𝐼𝐼𝑚𝑚𝑚𝑚  are used to express the pressure coefficients over the 

entire plate for the double series pressure solution 𝑝𝑝𝐼𝐼(𝑥𝑥, 𝑦𝑦): 

1 1
( , ) sin( )sin( )

mn

M N

I I
m n

m x n yp x y P
a b
π π

= =

= ∑∑      (3.4)  
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Figure 3.3: T-shaped cross sections of the representative OPT I model 

 
 

Using the assumption of uniform pressure along the y direction, the Fourier series of the 

pressure field pI is expressed by retaining the coefficient terms over the x direction as denoted 

by 𝑃𝑃𝐼𝐼𝑚𝑚:  

1 1,3..

4( , ) sin( )sin( )
m

M N

I I
m n

m x n yp x y P
n a b

π π
π= =

= ∑ ∑                 (3.5) 

Based on the Kirchhoff’s small-deflection plate bending theory and orthotropic plate 

theory, the strain energy 𝑈𝑈 of bending for orthotropic plate is expressed in integral form over the 

entire plate surface area 𝐴𝐴: 

2 2 2 2 2
2 2 2

2 2 2 2
1 [ ( ) ( ) 2 4 ( ) ]
2 x y xy s

A

U D D D D dA
x y x y y x
ω ω ω ω ω∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂∫∫          (3.6) 

Substituting (3) into (6) and integrating, the strain energy of bending for the plate is 

expressed by Fourier displacement terms: 

4 4 2 2 4 4 4 2 2 4
2 2 2 2

3 3
1 1

1 3 2 4 4( )
2 4

M N

x mn xy mn y mn s mn
m n

bm m n an m nU D W D W D W D W
a ab b ab
π π π π

= =

= − + +∑∑  (3.7) 

To calculate the flexural rigidities, the representative T-shaped cross section for the OPT 

model is of the same dimensions as described for the horizontal strip beam (Fig.3.3). The flexural 

and torsional rigidity formulas of the equivalent orthotropic plate are given by Ventsel and 
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Krauthammer (2001) for several commonly encountered stiffener formations. The rigidities of the 

IFMS plate in Eq. (3.6) and Eq. (3.7) are calculated as: 

3 3

3
1 1

3
1

, , 0,
12 2

12(1 )

y p t
y x xy s

p ss

EI Eh Gh CD D D D
h bt tb

t H

= = = ≈ +
− +

            (3.8) 

where 𝐺𝐺 is the torsional rigidity of the rib about its centroidal axis. Also, the external potential 

energy 𝑉𝑉 is written as a function of the displacement and pressure terms integrated over the plate 

volume 𝜈𝜈: 

2
1 1 1,3..

4 1 1 1( , ) ( , ) [ ]
2( 2 ) 2( 2 )m

M N N
mn

I I
m n j

abWV w x y p x y d P
j j j n j nν

ν
π= = =

= = − −
+ −∑∑ ∑∫∫∫           (3.9) 

Note that the same number of deformation coefficients are retained as that of the pressure 

coefficients, in which case 𝑚𝑚 = 1. .𝑀𝑀 , 𝑛𝑛 = 1. .𝑁𝑁 . Applying the principle of stationary total 

potential energy 𝜕𝜕𝜕𝜕/𝜕𝜕𝑊𝑊𝑚𝑚𝑚𝑚 − 𝜕𝜕𝜕𝜕/𝜕𝜕𝑊𝑊𝑚𝑚𝑚𝑚  = 0 , the deformation coefficients are obtained in 

relation to the Fourier pressure terms:  

2

4 4 2 2 4 4 4 2 2 4
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3 3
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∑                    (3.10) 

The horizontal strains are found from the displacement Fourier series and the strain-

displacement relations: 

2

0
1 1

2 2( ) sin( )cos( )
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yy mn
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= =

= − ∑∑             (3.11) 

where 𝑧𝑧0 is the distance of the point to the centroidal plane. The linear relationship of the strain 

value to the pressure Fourier coefficient term 𝑃𝑃𝐼𝐼𝑚𝑚 is: 

 2 2
1,3..
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∑∑

            (3.12) 



 30 

 

3.3.2.2 OPT II— Pressure Acting Over the Ice-covered Area 

 

To capture more accurately the peak pressure over the ice covered area, the pressure 

coefficients of the Fourier series are constrained to act within a specific area defined by the 

measured ice thickness 𝑡𝑡𝑖𝑖𝑐𝑐𝑐𝑐. Satisfying the same displacement boundary conditions stated in the 

previous model, the same displacement expression Eq. (3.3) is used, and the ice-covered area is 

assumed to be 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏. The pressure field 𝑝𝑝𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) on the constrained area is then expanded by the 

coefficients 𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖, where 𝑖𝑖 is the order of the pressure coefficient along the 𝑥𝑥-direction. Similar to 

the OPT I summation, M and 𝑁𝑁 are the total coefficient terms along 𝑥𝑥 or 𝑦𝑦 coordinate respectively: 

1 1,3..

4( , ) sin( )sin( )
i

M N

II II
i j ice

i x j yp x y P
j t b

π π
π= =

= ⋅∑ ∑                                        (3.13) 

Here 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥1, 𝑥𝑥� ⊆ [0, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖], 𝑥𝑥1is the starting coordinate along x for the ice contact area. 

Substituting (3.13) into Eq. (3.6), considering the external energy integral Eq. in (3.9), and 

applying stationary total potential energy, the relationship of Fourier coefficients for 𝑊𝑊𝑚𝑚𝑚𝑚 as a 

function of pressure coefficients  𝑃𝑃𝐼𝐼𝐼𝐼𝑖𝑖  over the confined ice-covered area is obtained. Let 𝑘𝑘 =

𝑚𝑚/𝑎𝑎, where 𝑎𝑎 is the depth of the plate vertically, 𝑊𝑊𝑚𝑚𝑚𝑚 is then expressed as follows: 

if 𝑎𝑎𝑎𝑎 ≠ 𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖: 
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if 𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖: 
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(3.14) 

where 𝑖𝑖 = 1,2, . .𝑀𝑀, 𝑗𝑗 = 1,3, . . ,𝑁𝑁, 𝑚𝑚 = 1,2, . .𝑀𝑀, and 𝑛𝑛 = 1,2, . .𝑁𝑁. 

The linear relationship of the strain value 𝜀𝜀𝑦𝑦𝑦𝑦 at (x, y) to the pressure Fourier coefficient 

terms for OPT II is calculated by substituting Eq. (3.14) into Eq. (3.11):  

if 𝑎𝑎𝑎𝑎 ≠ 𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖: 
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if 𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖: 
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(3.15) 

3.4 Evaluation of Forward Formulation 

 

To compare the analytical solutions with the finite element verification results, three 

loading cases are considered: Loading Case # 1 (LC#1) is a uniform pressure of 0.69 MPa over 

the entire plate; Loading Case # 2 (LC#2) is a single half-sinusoidal pressure between two 

neighboring ribs with amplitude of 1.08 MPa; Loading Case # 3 (LC#3) is a constant patched 

pressure of 0.69 MPa distributed over the first four ribs from the top of the plate. LC#1 and LC#3 
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are applied to extract the average global ice pressure over the entire plate or the designated ice-

covered area; the loading area of LC#3 approximates the measured ice-structure contact area with 

an example of the ice thickness of 0. 6 𝑚𝑚. Additionally, LC#2 is used to simulate a local peak ice 

pressure between ribs. The Finite Element (FE) model is set up for the verification effort using the 

3D solid element analysis, where shear effect is included. 

Both the horizontal and vertical strains calculated by the SBT and OPT I are compared to 

the FE model results under LC#1, and the results are given in Table 1. It is observed that the 

horizontal linear strains 𝜖𝜖𝑦𝑦𝑦𝑦 calculated by the SBT and by OPT I at the order of 6 satisfyingly 

agree with the values predicted from the FE model. In a closer evaluation, the absolute error ratio 

by SBT is to the mean value obtained by FEA calculated to be within 3.4%.  

The error percentage presented by OPT I at the order of 6 to the mean value obtained by 

FEA is also approximately 3.4%. The close approximation achieved by both SBT and OPT I for 

uniform loading LC#1 for the horizontal linear strain evaluations validates the accuracy of 

neglecting the shear effect in the specific strain evaluations. It is noted that using Timoshenko 

beam theory including the shear deformation approximates better the displacements; however the 

strains at the HLSG remain unaffected by the shear deflection effect. 

The vertical SBT agrees well with the FE analyzed in the vertical strain evaluations 𝜀𝜀𝑥𝑥𝑥𝑥 at 

the VLSG locations. The calculated vertical strains by OPT I along the plate mid-line are compared 

with those obtained from the FE analysis, as is shown in Fig. 3.4. It is found that the vertical SBT 

model with fixed ends is 2% more rigid than the finite element model based on the calculated 

bending strains (Table 3.1). Thus the vertical SBT can be applied inversely to extract the contact 

ice-pressure between the ribs using the fixed end conditions for the IFMS plate analysis. The 

vertical linear strains 𝜖𝜖𝑥𝑥𝑥𝑥  calculated by the OPT I are not comparable to the FE model at the 
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designated vertical linear strain gages (VLSG) due to the smearing effect of the structural 

orthotropic plate assumption. 

In further efforts to evaluate the OPT formulation, the horizontal strain solutions 𝜀𝜀𝑦𝑦𝑦𝑦 are 

calculated by OPT I through Eq. (3.12) at the designated locations of the horizontal linear strain 

gages (HLSG). The strains are calculated at different orders as is shown in Fig 3.5. It is found that 

the OPT I converges very accurately at the order M=9 by the observation of an overlapping of its 

results to those at the order M=11 under all three loading conditions. In Fig. 3.5, The FEA results 

are represented by crosses, and the strain solutions obtained by OPT I at the order of 6 are depicted 

by solid lines. The calculated strain lines at the order of 6 suffice for reasonable accuracy. The 

error percentage defined by the difference ratio between the forward calculated analytical strains 

to those from the FE analysis is approximated to be within the range of 1.0% to 13.5% at the order 

of 6 or above. 

The forward pressure simulation and strain solution under LC#1 by OPT II is the same as 

by OPT I. The exact pressure formulation is achieved at the order M=1 for LC #2, and the pressure 

field is then considered convergent at the order M=3 for LC #3, by OPT II (Fig.3.6). Compared to 

OPT I, OPT II converges faster in the forward pressure and strain evaluations; this faster 

convergence is more obvious when the ice-covered area is thinner. The strains calculated by OPT 

I are converging to the FE results more accurately with increased coefficient terms. However, this 

is not necessarily true for the strains calculated by OPT II to converge to the FE solution. Thus, in 

a forward simulation, OPT I is recommended for its accuracy and is applicable without the 

necessary input of ice thickness; while OPT II is considered more efficient in describing the 

pressure distribution over a thinner ice-covered area, where the knowledge of ice thickness is 

necessary. The strain to pressure relationships expressed through Eq. (3.15) are observed to be 
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coupled and thus may yield ill-posed coefficient matrixes for a direct inverse of the OPT II 

algorithm. However the inverse of OPT II will be optimized through a process of system parameter 

identification to retain the stability of the inverse calculation, which is discussed later. 

 
Figure 3.4: Vertical linear strains ϵ_xx calculated by OPT I compared to FEA results, under LC#1 
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(a) 

 
(b) 

 
(c) 

Figure 3.5: Pressure predicted by OPT I and the Convergence of ϵyy by OPT I at different orders of M for: (a) LC#1; 
(b) LC#2; (c) LC#3 
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(a) 

 
(b) 

Figure 3.6: Pressure predicted by OPT II and the calculated strains for: (a) LC# 2 M=1; (b) LC#3 M=3 
 

3.5 Orthotropic Plate Inverse Theory (OPIT) 

 

The orthotropic plate inverse theory (OPIT) is derived from the forward OPT formulations 

to obtain the pressure coefficient terms 𝐏𝐏𝐈𝐈 or 𝐏𝐏𝐈𝐈𝐈𝐈 through the established relationships from the 

strain measurements 𝛆𝛆𝐲𝐲𝐲𝐲. Using the Fourier displacement coefficients 𝑊𝑊𝑚𝑚𝑚𝑚 in Eq. (3.10) and Eq. 

(3.14), the deformation terms can be expressed in linear matrix form: 

 𝐖𝐖𝐥𝐥𝐧𝐧  = 𝐀𝐀𝐥𝐥𝐧𝐧𝐏𝐏𝐥𝐥                                       𝑙𝑙 = 𝐼𝐼, 𝐼𝐼𝐼𝐼                  (3.16) 
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algorithm and the 𝐖𝐖𝐈𝐈𝐈𝐈  is thus expressed through Eq. (3.14). 𝐀𝐀𝐥𝐥𝐧𝐧  is the displacement-pressure 

coefficient matrix; 𝐏𝐏𝐥𝐥 represents the vector of Fourier coefficients for the pressure field with M 
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elements; 𝑛𝑛 ranges from 1 to 𝑁𝑁 , and 𝑁𝑁 is the total order satisfying  the  convergence of uniform 

pressure along the y-direction. 

Similarly, the strain-displacement relationship in Eq. (3.11) is configured using the matrix 

𝐒𝐒n with the subscript 𝑛𝑛 representing the order along y-direction; the strain vector is expressed for 

the 𝑙𝑙𝑡𝑡ℎ OPT algorithm as follows: 

 𝛆𝛆𝐲𝐲𝐲𝐲 = ∑ 𝐒𝐒𝐧𝐧𝑛𝑛=𝑁𝑁
𝑛𝑛=1 𝐖𝐖𝐥𝐥𝐧𝐧                        (3.17) 

Here the 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 input strains compose the strain vector 𝛆𝛆𝐲𝐲𝐲𝐲. For example, 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 6 may be 

used based on the number of linear strains gages allocated on the IFMS. Substituting Eq. (3.16) 

into Eq. (3.17), the strain vector is expressed by the pressure terms as: 

𝛆𝛆𝐲𝐲𝐲𝐲 = ∑ 𝐒𝐒𝐧𝐧𝑛𝑛=𝑁𝑁
𝑛𝑛=1 𝐀𝐀𝐥𝐥𝐧𝐧𝐏𝐏𝐥𝐥                                      (3.18) 

Assuming the coefficient matrix to order of 𝑁𝑁, the general orthotropic inverse coefficient 

matrix operation is obtained in the following form: 

𝐏𝐏𝐥𝐥 = ∑ 𝐀𝐀𝐥𝐥𝐧𝐧
−𝟏𝟏𝐒𝐒𝐧𝐧−𝟏𝟏 ∙ 𝛆𝛆𝐲𝐲𝐲𝐲𝑛𝑛=𝑁𝑁

𝑛𝑛=1        (3.19) 

 

 

3.5.1 OPIT I-Inverse Model I 

 

The maximum number of coefficients is  𝑀𝑀1  to be retrieved through the linear matrix 

operation described in (3.19); in OPIT I, 𝑀𝑀1 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖. For example, 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 6, the coefficient vector 

is thus described as: 

𝐏𝐏𝐈𝐈 = [𝑃𝑃𝐼𝐼1 𝑃𝑃𝐼𝐼2𝑃𝑃𝐼𝐼3 𝑃𝑃𝐼𝐼4 𝑃𝑃𝐼𝐼5 𝑃𝑃𝐼𝐼6]′              (3.20) 

The total HLSG measurements are taken from ribs #1 to rib #5 plus rib #7; the six linear 

strain input elements are defined in the strain vector: 
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𝛆𝛆𝐲𝐲𝐲𝐲 = [𝜀𝜀𝑦𝑦𝑦𝑦1𝜀𝜀𝑦𝑦𝑦𝑦2𝜀𝜀𝑦𝑦𝑦𝑦3𝜀𝜀𝑦𝑦𝑦𝑦4𝜀𝜀𝑦𝑦𝑦𝑦5𝜀𝜀𝑦𝑦𝑦𝑦6]′                                        (3.21) 

The strain values can be calculated from Eq. (3.11) via both OPT methods. In the case of 

the horizontal linear strain gages: 𝑦𝑦0 = 𝑏𝑏/2; 𝑥𝑥𝑔𝑔are the coordinates of the horizontal linear strain 

gages, here 𝑔𝑔 = 1. . 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖. It is found: 

6
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m x n yx y z W
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ππ πε ε
= =

= = ∑∑       (3.22) 

The elements for the 𝑛𝑛𝑡𝑡ℎ strain-displacement matrix 𝐒𝐒𝐧𝐧 are: 

2 0
0
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It is observed that 𝑁𝑁 = 33 will sufficiently allow for the convergence of uniform pressure 

along the y direction, thus, 𝑁𝑁 = 33 is used in the following derivations and sample calculations. 

The elements in the diagonal displacement-pressure coefficient matrix 𝐀𝐀𝐈𝐈𝐧𝐧  can be derived from 

Eq. (3.10) as follows: 
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(3.24)           

where, 𝑗𝑗 = 1,3, . . ,33. Let the strain-pressure coefficients relation matrix 𝐂𝐂I for OPIT I be 

defined by,  

𝐂𝐂𝐈𝐈 = ∑ 𝐒𝐒𝐧𝐧𝐀𝐀𝐈𝐈𝐧𝐧  𝑛𝑛=𝑁𝑁
𝑛𝑛=1                              (3.25) 

The strain-pressure relationship is then established as, 

𝛆𝛆𝐲𝐲𝐲𝐲 = 𝐂𝐂𝐈𝐈𝐏𝐏𝐈𝐈                               (3.26) 

Inversely, 

𝐏𝐏𝐈𝐈 = 𝐂𝐂𝐈𝐈−𝟏𝟏𝛆𝛆𝐲𝐲𝐲𝐲                                          (3.27) 
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The matrix 𝐂𝐂𝐈𝐈−𝟏𝟏 is a well-posed full-matrix with the condition number roughly equals 8.0 

to calculate the pressure coefficient terms over the whole plate. 

 

3.5.2 OPIT II-Inverse Model II 

 

Still using 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖strain inputs from the HLSG locations, the pressure Fourier coefficients are 

extracted over the constrained ice covered area. Similarly, 𝑀𝑀2 is the maximum number of the 

pressure coefficient terms that can be calculated through the linear matrix operation by OPIT II, 

and 𝑀𝑀2 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖  in this initial evaluation of OPIT II. The pressure-displacement matrix 𝐀𝐀𝐈𝐈𝐈𝐈𝐧𝐧 for 

OPIT II will be expressed in linear matrix form from the Eq. (14). Firstly, let: 
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where 𝑖𝑖 = 1 …𝑀𝑀2. Then using Eq. (3.16), the (𝑚𝑚, 𝑖𝑖) element in matrix 𝐀𝐀𝐈𝐈𝐈𝐈𝐧𝐧  is: 
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where 𝑚𝑚 = 1, . . ,𝑀𝑀2.   

The strain-displacement coefficient matrix 𝐒𝐒𝐧𝐧  is independent of the form of pressure 

applied, and it is the same as in Eq. (3.23) for OPIT I. The inverse of the coefficient matrix  𝐂𝐂𝐈𝐈𝐈𝐈 

relating the strain vector to the pressure terms is calculated as the summation of the products of 𝐒𝐒𝐧𝐧 

and 𝐀𝐀𝐈𝐈𝐈𝐈𝐧𝐧 

𝐂𝐂𝐈𝐈𝐈𝐈 = ∑ 𝐒𝐒𝐧𝐧𝐀𝐀𝐈𝐈𝐈𝐈𝐧𝐧
𝑛𝑛=𝑁𝑁
𝑛𝑛=1                             (3.30) 
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Similarly the strain-pressure relationship is then established as, 

𝜺𝜺𝐲𝐲𝐲𝐲 = 𝐂𝐂𝐈𝐈𝐈𝐈𝐏𝐏𝐈𝐈𝐈𝐈                     (3.31) 

Inversely, 

𝐏𝐏𝐈𝐈𝐈𝐈 = 𝐂𝐂𝐈𝐈𝐈𝐈−𝟏𝟏𝛆𝛆𝐲𝐲𝐲𝐲                              (3.32) 

 

3.5.3 TSVE Optimization –for OPIT II 

 

The coefficient matrix 𝑪𝑪𝐼𝐼𝐼𝐼 may be ill-posed when the order of the coefficient matrix 𝑀𝑀2 

increases to a certain degree, depending on the confinement of the ice-covered area for the pressure 

terms. The condition number of the forward coefficient matrix 𝐶𝐶𝐼𝐼𝐼𝐼 is found to be over 103 for both 

LC#2 and for LC#3, when 𝑀𝑀2 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 6. A direct inverse of the OPT II model for LC#2 and 

LC#3 leads to variations in pressures which are out of the feasible range (Fig. 3.7a and 3.7b). 

 

 
(a)                               (b) 

Figure 3.7: Infeasible pressure solution by a direct inverse of OPT II without truncation for: (a) LC#2; (b) LC#3 
 

The reason is that the non-orthogonal Fourier coefficient matrix for OPT II is coupled and 

ill-posed, and this near singularity will intensify with the increment of the orders of the 

coefficients. The truncated singular value expansion method (TSVE) is first applied as an 
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optimization procedure to truncate the order of the coefficient matrix to 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and re-expand the 

truncated matrix through the pseudo inverse matrix operation (Hansen and O'Leary 1993; Chock 

and Kapania 2003). The philosophy of the optimization procedure is to truncate the terms of zero 

or near-zero singular values to control the condition number of the coefficient matrix (Hansen 

1987; Semnani 2008; Semnani 2010). The optimal number of the pressure terms 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is 

determined through the TSVE procedure by applying a “low-pass” filter to filter out the values of 

the singular values 𝑠𝑠𝑖𝑖(𝑖𝑖 = 1,2. .𝑀𝑀2) that are smaller than 𝑒𝑒, where 𝑒𝑒 is a prescribed lower limit 

subject to optimization according to different loading case. The TSVE optimization scheme is 

sketched in Fig. 3.8. 

 

 
Figure 3.8: Schematic diagram of the TSVE procedure for calculating of Mtrun  and Coetrun 
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As a rule of thumb, the order 𝑘𝑘𝑐𝑐 of the condition number indicates the level of accuracy 

caused by a loss of precision from the arithmetic method (Kaiman 1996). The minimum filtering 

value 𝑒𝑒 for the “low-pass” filter is defined as 1 /10 cκ . Chock and Kapania (2003) reported that the 

error by using only the singular value decomposition methods (SVD) in the steepest descents is 

however of similar order as that from the input noise level. A difference of 5% to 15% to those 

exact strains obtained from the FE model is found in the OPT II forward strain prediction at 

convergence. Thus by constraining 𝑒𝑒 within the range of 10−6 to10−7, the optimization process 

suffices to retain the robustness of the inversion of the matrix calculation to an error range of less 

than 15%. Finally, by re-expanding the coefficient matrix at the truncated order 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , the 

coefficient matrix is of dimension of  𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 by 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 , as shown in Fig. 3.8. For simplicity, the OPIT 

II model refers to the inverse calculation of OPT II after the TSVE process in the following 

discussion. 

 

3.6 Sample Inverse Calculations 
 

In an effort to evaluate the pressure solution from strain measurements, six linear strain 

readings at the HLSG from the FE model serve as inputs to the OPIT I and OPIT II models. Three 

loading conditions are evaluated, and the results of the calculated pressure by both OPIT methods 

are compared to the exact pressure prescribed in the FE model, depicted as the plane layers in Fig. 

3.9. 

As discussed in the forward strain evaluations, the pressure solution by OPIT II under LC 

#1 is of exactly the same value as obtained by OPIT I (Fig. 3.9a). For LC#2, the peak pressure is 

calculated as 1.29 MPa with 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2 coefficient terms by OPIT II, while the peak value is 
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evaluated as 0.41 MPa by OPIT I for LC#2. The amplitude is 1.57 MPa for LC#2 in the FE model 

(Fig. 3.9b).   

For all load cases, the peak values and the integrated pressure over the ice-covered area 

calculated by the OPIT algorithms are compared with the FE model pressure values given in the 

FE model, and the results are listed in Table 3.2. For LC#3, integrating pressure over the ice 

thickness, both algorithms achieve 80% of the FE result (Fig. 3.9c). The reduction of the integrated 

force is due to the Fourier approximation. The OPIT I extracts 6 coefficient terms while the OPIT 

II is truncated to 3 terms. From the results, it is observed that the OPIT I is stable in estimating ice 

pressure distribution with great accuracy for most loading cases, especially when the ice-covered 

area spans over one-half of the plate. The OPIT I is able to achieve an improved accuracy by 

increasing the coefficient terms with additional strain recordings. On the other hand, the peak value 

solution found by OPIT II for LC#2 is accurate to within 80%, retaining only two coefficient terms. 

The capability of capturing peak pressure by OPIT II is notably efficient and accurate when the 

ice-covered area is reduced. 
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(a) 

 
(b) 

 
(c) 

Figure 3.9: Pressure extracted by OPIT I and OPIT II for: (a) LC#1; (b) LC#2; (c) LC#3 
 

 

3.7 Field Measurement Results 

 

The presented algorithms are applied using the field measured strains by the IFMS system 

on three specific days: Mar 18th, Apr 17th and May 01st, 2014. Photos showing the ice features 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 6 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3 
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have been recorded by a camera installed above the measuring stiffened panel. The ice 

accumulation reaching over the top of the plate is observed on Mar 18th; an event of accumulated  

         
(a)      (b) 

 
(c) 

Figure 3.10: (a) March 18, 2014; (b) April 17, 2014; (c) ice thickness measurements from January to May 2014 
(adapted from Nejati 2014; by David R. Lyzenga) 
 

ice pushing against the plate on April 17th (Fig. 3.10a, Fig. 3.10b), during which east winds were 

recorded by NOAA (9099018 Marquette C.G, MI). Additionally, correlated data of ice thickness 

are measured from the Wideband Autocorrelation Radiometer ice thickness sensor (WiBAR) and 

Acoustic Wave and Current Profiler (AWAC) below the ice surface from the lake bottom (Nejati, 

2014). The recorded ice thickness from February to May is plotted in Fig. 3.10c. These 
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measurements are used as inputs into the OPIT II algorithm for depth of ice coverage. Three linear 

horizontal gages were measured at 5 Hz on Mar 18th; also, six horizontal strain gages (HLSG) were 

recorded at 1 Hz on Apr 17th. The maximum strain variations recorded through the winter were 

observed on May 01st at 5 Hz in stormy weather with ice breaking-up. The pressures are calculated 

by both OPIT I and OPIT II algorithms from strain measurements on March 18th and April 17th, 

with the estimated ice thickness applied as constraint for the OPIT II scheme. Ice thickness data 

were not available for the May 1st events. 

 
(a) 

 
(b)       (c) 

Figure 3.11: (a) Three strain inputs from March 18, 2014; (b) Pressure solution by OPIT I; (c) Pressure solution by 
OPIT II 
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The strain gage readings are examined for March 18th at 5 Hz, April 17th at 1 Hz and May 

01st at 5 Hz as the input for the inverse pressure calculation algorithms. The strain variations are 

measured at the HLSG and are subtracted from the unloaded zero strain gage 𝑅𝑅0. The recorded 

strain values and the retrieved forcing are given in Fig. 3.11 to Fig. 3.13. The pressure calculated 

by SBT are in good agreement with the results obtained by OPIT I, justifying an averaging effect 

of OPIT I by assuming pressure terms over the entire plate (Table 3.3).  

Strain gage readings on rib #1, rib #3, and rib #5 are recorded as input for pressure 

extraction on March 18th at a sampling frequency of 5 Hz (Fig. 3.11a). Peak ice pressure is 

calculated as 0.84 MPa or 1.04 MPa through OPIT I; the OPIT II estimates the peak pressure to 

be 0.90 MPa with the constraint of ice thickness to be 0.6 m covering from the top of the plate 

(Fig. 3.11b). Six strain gages are recorded on April 17th; it is observed that the OPIT II estimates 

the peak ice contact pressure to be 1.35 MPa over the ice-covered area, which is slightly larger 

than the peak values calculated from OPIT I (Fig. 3.12). 

Four strain gages on rib#1, rib#3, rib#5, and rib#7 showed the maximum strain variation 

through the winter season on May 01. Maximum ice contact pressure is calculated to be 3.5 MPa 

using the OPIT I algorithm with the given strain inputs shown in Fig. 3.13a and 3.13b; the 

calculated pressure is plotted in Fig. 3.13c. Note that the preliminary assessments of peak ice 

pressures are consistent with previous findings summarized by Bjerkås (2007) (Fig. 3.14). 

Additionally the peak lake ice measurements compare closely with this curve developed for 

prediction of extreme pressures for sea ice impacts as shown in Fig. 3.15 (Tõns et al., 2015), which 

of particular interest is the lower curve for first year sea ice.  
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(a) 

 
(b)       (c) 

Figure 3.12: (a) Six strain inputs from April 17, 2014; (b) pressure solution by the OPIT I; (c) Pressure solution by 
OPIT II 
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(a) 

 
(b)                                                                                             (c) 

Figure 3.13: (a) Strain measurments on rib #5 on May 1st; (b) three input strains; (c) pressure solution by OPIT I 
 

 
Figure 3.14: Effective ice pressure vs. the structural width (adapted from Bjerkås 2007) 

 

Peak on May 01(OPIT I)
Peak on May 01 (SBT)
Peak on Apr 17 (OPIT II)
Peak on Mar 18 (OPIT II)
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Figure 3.15: Predicted extreme load pressure for the specific route and comparison to the extreme load pressure 
measured by IFMS on May 1 (adapted from Tõns et al. 2015) 
 

3.8 Conclusions 

 

Inverse algorithms are formulated through forward analytical models to calculate the quasi-

static pressure distribution on a stiffened plate. The stiffened panel is first modeled by strip beam 

theory (SBT) to estimate the uniform ice-loading over the entire plate and to extract the contact 

ice-load between two stiffeners. In order to reflect the variability of the ice-forcing, the plate is 

formulated as a structurally equivalent orthotropic plate to simulate the variable ice loading 

distribution along the depth of the plate (OPT I and OPT II).  

In the forward formulations, the horizontal SBT and the OPT I are used when the stiffened 

panel is known to be fully covered by ice. While the horizontal SBT is limited to the form of 

uniform pressure; it is fast and stable under full ice-coverage. The OPT I is applicable for strain 

evaluation regardless of ice-covered area; moreover, the OPT I approximates closely to the exact 

strain solution at convergence. The vertical SBT and the OPT II set up the relationships between 

the ice-pressure distributions over a small portion of the plate to the structural strain-responses. 
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The vertical SBT calculates accurately the wavy deformation between the ribs, an effect which is 

not captured if using the orthotropic plate formulation. Nevertheless, the OPT II is notable for its 

faster convergence, especially when the ice-covered area is comparatively thin.  

The inverse counterparts derived from the forward formulations compare well with the 

sophisticated finite element analysis with respect to different assumptions in the form of ice loads. 

In the second orthotropic method, the inverse coefficient matrix of the OPT II is truncated through 

a “low pass filter” by a minimum value 𝑒𝑒 via the TSVE optimization procedure, thus the stability 

of the matrix operation is retained. Three sample calculations using the FE input strains identify 

the stability and accuracy of the OPIT I method in predicting pressure distribution over the entire 

plate. The effectiveness of the OPIT II is observed in extracting the peak ice-pressure by retaining 

fewer pressure coefficient terms, especially for reduced span of ice-covered area.  

In general, the inverse of the horizontal SBT is beneficial as an initial estimation of the 

averaged ice forcing when the number of structural inputs is extremely limited; the inverse of the 

vertical SBT provides a close estimation for contact ice-forcing between the ribs given the 

availability of vertical strain measurements. The OPIT I is always recommended for its accuracy 

to extract the variable ice-forcing when several strain measurements are available and the ice 

thickness measurement is not available. Additionally, the number of coefficient terms obtained for 

convergence from the OPT I of 6 to 9 indicates the optimal number of strain deployments for this 

system. The OPIT II is notably efficient in approximating the amplitude of contact ice forcing, if 

the ice thickness measurement for the span of the ice-contact area is available. Finally, the 

combination of both OPIT I and OPIT II is encouraged: first to get an evaluation of the distribution 

of the ice forcing over the entire plate, then to obtain more acute contact ice force amplitudes if 

the ice thickness measurements are available. 
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The variable loading caused by the coupled effect of ice, wind and thermal forcing has 

been retrieved using the strain measurements recorded by the IFMS instrumentation through the 

winter season 2013-2014. Maximum pressure forcing of 3.54 MPa is observed on May 01 by OPIT 

II calculation, while a peak average pressure about 0.90 MPa to 1.30 MPa were found based on 

the strain measurements on April 17 and March 18, 2014.  
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Table 3.1：Analytical strain evaluations compared to FE results (under LC#1) 
Strain SBT OPT I at M=6 FE 
Avg. Horizontal 
Linear Strain at 
Rib#1 to Rib#5, 
Rib7 

 
1.95 × 10−4 

 
2.03 × 10−4 

 
2.18 × 10−4 

 
Avg. Vertical 
Linear Strain at 
𝒙𝒙
= 𝟎𝟎.𝟒𝟒𝟒𝟒,𝟎𝟎.𝟕𝟕𝟕𝟕,𝟏𝟏.𝟎𝟎𝟎𝟎 

2.26 × 10−5 
(Fixed ends) 

6.79 × 10−5 

 
 
 

 
2.21 × 10−5 

(Pinned ends) 

Note: SBT=Strip Beam Theory; OPT=Orthotropic Plate Theory; FE=Finite Element. 
 

 

Table 3.2：Peak pressure value and integrated pressure over the ice covered area 
 Load Condition Peak Pressure Value (MPa) Integrated Pressure Along Depth 

of Ice Coverage (KN/m)  
Exact 
Loading 

Solution 
by OPIT I 

Solution 
by OPIT II 

Exact  
Loading 

Solution by 
OPIT I 

Solution by 
OPIT II 

LC#1 0.69 0.72 0.72 1050.0 912.3 912.3 
LC#2 1.08 0.41 1.30 105.0 55.8 95.7 
LC#3 0.69 0.77 1.03 414.0 332.0 333.0 

 

 

Table 3.3：Calculated peak pressure for field measurements by the SBT and the OPIT methods 
 Measurement date           Peak Pressure Value   

Ice thickness 
(m) 

solution by 
SBT (MPa) 

solution by OPIT 
I (MPa) 

Solution by OPIT 
II (MPa) 

Mar 18, 2014 0.6 0.81 0.85 and 1.04 0.90 
Apr 17, 2014 0.4 1.18 1.01, 1.21 and 

0.82 
1.31 

May 01, 2014 -- 3.27 3.55 and 2.95 -- 
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Nonlinear Contact Dynamic Response Simulation of Matlock’s Ice-structure 

Interaction Model using Fourier Analysis 

 

4.1 Introduction 

 
This model considers the nonlinearity of a simplified ice-structure interaction model 

(Matlock et al., 1971) and predicts the dynamic response for the vibrations at specific periodicity. 

Previous studies indicate that periodic behavior of ice-structure interaction is highly non-linear 

and difficult to predict due to geometrical variability in the intermittent ice breakage and contact 

to the structure (Karr et al., 1993). The average and maximum magnitude of the structural contact 

forces are determined for the structural motion responses (Jonkman, 2009 and Yu, 2014). The 

periodic cycles, the average contact forces and the magnitude of the oscillating force are key 

factors for estimating structural fatigue life.   

It can be observed that the steady-state responses previously obtained were found by 

selection of initial conditions. However, due to the limited experimental volume, it’s not feasible 

to examine all possible combinations of inputs. The aim here is to predict the behavior of the 

dynamic response at any specific periodicity by expanding the dynamic equations of motion using 

Fourier analysis.    

Based on Matlock’s model, Karr et al. (1993) discussed the actual force time histories 

which show oscillations and are highly dependent upon the initial velocities and physical 
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properties of the ice-structure dynamic system. Forces intermittently rise and drop with respect to 

the deflection and breakage of the ice-teeth; the cyclical forces thus form an intermittent repeating 

process. This dynamic system is complicated by the ice deformation response, variation in ice-

properties, geometry of the contact interface, as well as the dynamics of repeated impacts in each 

cycle. The imperfect system may have random variation in the ice-pitch, ice-stiffness and ice-

strength to reflect the complexity of a real problem. However, the perfect system discussed here is 

argued to be representative of the more complicated imperfect system by showing similar 

characteristics. 

Many mathematical approaches have been applied to solve non-linear dynamic system 

response with similar features of intermittent contact forces. Wang (1994) used the Trigonometric 

Collocation method to eliminate the need to evaluate the integrals of systems of mild non-linearity. 

Wong et al. (1991) applied the Incremental Harmonic Balance (IHB) method to obtain all possible 

harmonic responses of unsymmetrical piecewise-linear systems. However, these methods are 

computationally expensive and cannot predict the specific periodicity and the oscillating 

amplitude. Karr et al. (1995) and Yu (2014) discussed periodic solutions for the Matlock’s ice-

structure interaction model from the closed-form piece-wise linear solution. Similarly, the orbits 

of the steady-state periodic responses are not predictable a priori due to the numerical integrations 

over time steps and the non-linear nature of the dynamic relations. The periodic solutions are found 

only by simulation from arbitrary initial conditions. 

While it has been noted in previous research that an overshoot effect will occur at the jump 

discontinuity using finite Fourier series, the Gibbs constant can be applied to reduce the over 

shooting effect (Foster and Richards, 1991).  David and Shu (1997) discuss the sufficiency of 

achieving the same order of accuracy as in the case of smooth functions by applying expansion 



 56 

coefficients. We apply the traditional Gibbs constant 𝑔𝑔 = 0.1790 to adjust the over shooting effect 

in calculation of the initial position of the structure in the dynamic system. 

 

4.2 Mathematical Matlock’s Ice Structure Interaction Model 

 
Based on Matlock’s (1971) ice-structure interaction model, a first-order approximation for 

the dynamic ice-structure interaction modeling is a mass-spring-dashpot system with a single 

degree of freedom (Figure 4.1a,b). 

 

 
(a)     (b) 

Figure 4.1: (a) Ice brittle crushing against an offshore structure; (b) Simplified Matlock’s dynamic model for ice-
structure interaction 

 

The model parameters shown in Figure 1 are: 𝑀𝑀—oscillator mass; 𝐶𝐶—oscillator damping 

coefficient; 𝐾𝐾1 – stiffness of oscillator spring; 𝐾𝐾2 – ice teeth stiffness; 𝑦𝑦(𝑡𝑡) –displacement of the 

mass oscillator; 𝑧𝑧(𝑡𝑡)—displacement of the ice sheet; ∆(𝑡𝑡)– deflection of ice-tooth; 𝑃𝑃�- distance 

between teeth interval (ice pitch); 𝑢𝑢—constant velocity of the ice-sheet in the 𝑦𝑦 direction.  
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Following the normalization procedure of Karr et al. (1993), we define the non-

dimensional system parameters with respect to the structure’s stiffness 𝐾𝐾1 and the maximum ice 

forcing 𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥 on the oscillator due to the ice teeth deflection at its maximum: 
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Time is normalized with respect to the natural angular velocity of the structure 𝜔𝜔𝑛𝑛, 𝑁𝑁 is the 

number of ice-breakage during each cycle of movement, hence: 

𝜏𝜏 = 𝜔𝜔𝑛𝑛𝑡𝑡    𝜔𝜔𝑛𝑛2 = 𝐾𝐾1
𝑀𝑀

    𝑇𝑇 = 𝑁𝑁𝑁𝑁
𝑈𝑈

    (4.2) 

where 𝑇𝑇 is the normalized period for a single cycle. Substituting the parameters in Eq. (4.1) and 

Eq.(4.2) into the equations of motion, we obtain the governing differential equations with non-

dimensionalized parameters as follows: 

 

𝑥̈𝑥(𝜏𝜏) + 2𝜁𝜁𝑥𝑥(𝜏𝜏)̇ + 𝑥𝑥(𝜏𝜏) = � 0, 𝛿𝛿 ≤ 0 𝑜𝑜𝑜𝑜 𝛿𝛿 = 1
𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖[𝑧𝑧0 + 𝑈𝑈𝑈𝑈 − 𝑥𝑥(𝜏𝜏) − 𝑝𝑝(𝑖𝑖 − 1)], 0 < 𝛿𝛿 < 1  (4.3) 

Defining 𝑑𝑑 = 𝑝𝑝(𝑖𝑖 − 1), the tooth deflection at the initial point 𝛿𝛿(0) is 0. The kinematic 

expression for tooth deflection 𝛿𝛿(𝜏𝜏) is: 

𝛿𝛿(𝜏𝜏) = [𝑧𝑧0 − 𝑥𝑥(𝜏𝜏) + 𝑈𝑈𝑈𝑈 − 𝑑𝑑]𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖    (4.4) 

In an effort to expand the deflection 𝛿𝛿(𝜏𝜏) in a Fourier series, it’s assumed that no teeth 

separate from the mass during each cycle of movement. This assumption implies immediate 

contact with the following tooth at the fracture of a previous tooth and it is justified in the perfect 
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dynamic system where the evenly distributed teeth pitch 𝑃𝑃� equals the maximum tooth deflection 

∆𝑚𝑚𝑚𝑚𝑚𝑚. Rearranging Eq. (4.3) by applying the constraint of 0 ≤ 𝛿𝛿 ≤ 1.0 yields: 

𝑥̈𝑥(𝜏𝜏) + 2𝜁𝜁𝑥̇𝑥(𝜏𝜏) + (1 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖)𝑥𝑥(𝜏𝜏) = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖[𝑧𝑧0 + 𝑈𝑈𝑈𝑈 − 𝑑𝑑]  (4.5) 

For a periodicity of N-teeth breakage per cycle (P-N response), we have: 

𝑈𝑈𝑈𝑈 = 𝑁𝑁𝑁𝑁       (4.6) 

The breakage occurs at time 𝜏𝜏 = 𝛼𝛼𝑖𝑖𝑇𝑇, where 𝑖𝑖 = 1. . (𝑁𝑁 − 1),𝑁𝑁; 𝛼𝛼𝑖𝑖 is the time ratio within 

one cycle of period 𝑇𝑇 when the 𝑖𝑖𝑡𝑡ℎ tooth breakage occurs, and 𝛼𝛼𝑁𝑁 = 1. The last two terms in Eq. 

(4.5) can then be expressed by the Heaviside step function as follows: 

𝑈𝑈𝑈𝑈 − 𝑑𝑑 = 𝑈𝑈𝑈𝑈 − 𝑝𝑝𝑝𝑝{𝜏𝜏 − 𝛼𝛼1𝑇𝑇} − 𝑝𝑝𝑝𝑝{𝑡𝑡 − 𝛼𝛼2𝑇𝑇} …− 𝑝𝑝𝑝𝑝{𝑡𝑡 − 𝛼𝛼𝑁𝑁𝑇𝑇}   (4.7) 

Defining 𝑔𝑔(𝜏𝜏) = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧0 + 𝑈𝑈𝑈𝑈 − 𝑑𝑑), 𝑔𝑔(𝜏𝜏) is expanded in a Fourier series: 

𝑔𝑔(𝜏𝜏) = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧0 + 𝑈𝑈𝑈𝑈 − 𝑑𝑑) = 𝑧𝑧0𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑈𝑈𝑈𝑈𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝� 𝐻𝐻{𝑡𝑡 − 𝛼𝛼𝑖𝑖𝑇𝑇}
𝑖𝑖=𝑁𝑁

𝑖𝑖=1
 

         = 𝑎𝑎0
2

+ ∑ [𝑎𝑎𝑛𝑛 cos(𝑛𝑛𝑛𝑛𝑛𝑛) + 𝑏𝑏𝑛𝑛sin (𝑛𝑛𝑛𝑛𝑛𝑛)]∞
𝑛𝑛=1                         (4.8) 

The Fourier coefficients are calculated as: 

𝑎𝑎0 = 2𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑧𝑧0 − 𝑁𝑁𝑁𝑁𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 + 2𝑝𝑝𝑘𝑘𝑖𝑖𝑐𝑐𝑐𝑐�𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1  

𝑎𝑎𝑛𝑛 = 𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
𝜋𝜋𝜋𝜋

∑ sin (2𝜋𝜋𝜋𝜋𝛼𝛼𝑖𝑖)𝑁𝑁
𝑖𝑖=1       (4.9) 

𝑏𝑏𝑛𝑛 = −
𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
𝜋𝜋𝜋𝜋

� cos(2𝜋𝜋𝜋𝜋𝛼𝛼𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

Substituting Eq. (4.9) into Eq. (4.5), the steady state displacement trajectory 𝑥𝑥(𝜏𝜏) is: 

  

𝑥𝑥(𝜏𝜏) = 𝑎𝑎0
2(1+𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖) + ∑ [𝑎𝑎𝑛𝑛 cos(𝑛𝑛𝑛𝑛𝑛𝑛−𝜙𝜙𝑛𝑛)+𝑏𝑏𝑛𝑛 sin(𝑛𝑛𝑛𝑛𝑛𝑛−𝜙𝜙𝑛𝑛)]

�𝛽𝛽𝑛𝑛
∞
𝑛𝑛=1                  (4.10) 

where 
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𝑟𝑟 = 2𝜋𝜋
𝑇𝑇               (4.11) 

𝛽𝛽𝑛𝑛 = [(1 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖) − (𝑛𝑛𝑛𝑛)2]2 + (2𝜁𝜁𝜁𝜁𝜁𝜁)2          (4.12) 

𝜙𝜙𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [ 2𝜁𝜁𝜁𝜁𝜁𝜁
1+𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖−(𝑛𝑛𝑛𝑛)2

]            (4.13) 

The changes in displacement between two points of breakage are expressed by the 

following relation, where 𝑞𝑞 = 1, 2, … (𝑁𝑁 − 1): 

𝑥𝑥(𝜏𝜏)|𝑡𝑡=𝛼𝛼𝑞𝑞𝑇𝑇 − 𝑥𝑥(𝜏𝜏)|𝑡𝑡=0 = 𝑝𝑝�𝑞𝑞 − 𝑁𝑁𝛼𝛼𝑞𝑞�    (4.14) 

Substituting Eq.(4.14) into Eq (4.10), yields (N-1) equations for a specific Period-N 

response: 

𝐹𝐹�𝛼𝛼𝑞𝑞� = ∑ 1
𝑛𝑛�𝛽𝛽𝑛𝑛

{∑ sin(2𝑛𝑛𝑛𝑛𝛼𝛼𝑖𝑖) �𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑛𝑛 − cos�2𝜋𝜋𝜋𝜋𝛼𝛼𝑞𝑞 − 𝜙𝜙𝑛𝑛��+𝑁𝑁
𝑖𝑖=1

∞
𝑛𝑛=1

∑ cos(2𝑛𝑛𝑛𝑛𝛼𝛼𝑖𝑖) [𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑛𝑛 + sin(2𝜋𝜋𝜋𝜋𝛼𝛼𝑞𝑞 − 𝜙𝜙𝑛𝑛)]𝑁𝑁
𝑖𝑖=1 } − 𝜋𝜋

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
�𝑞𝑞 − 𝑁𝑁𝛼𝛼𝑞𝑞� = 0    (4.15) 

Furthermore, recalling the kinematic relationship for tooth deflection in Eq. (4.4) and the 

maximum deflection limit 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 1.0, we obtain the initial location 𝑧𝑧0 for the ice sheet at time 

𝜏𝜏 = 0 as follows: 

𝑧𝑧0 = −𝑁𝑁𝑁𝑁𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖
2

+ 𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 + (1 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖)∑ (𝑎𝑎𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑛𝑛−𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑛𝑛)

�𝛽𝛽𝑛𝑛
∞
𝑛𝑛=1                (4.16) 

The initial velocity of the oscillator at 𝜏𝜏 = 0 is calculated as: 

𝑥̇𝑥(𝜏𝜏)|𝜏𝜏=0 = ∑ 𝑛𝑛𝑛𝑛(𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑛𝑛+𝑏𝑏𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝑛𝑛)
�𝛽𝛽𝑛𝑛

∞
𝑛𝑛=1                                                          (4.17) 

 

4.3 Periodic Motion Response Predictions 
 

To seek the motion response for a specific periodicity, we first assume that the number of 

tooth breakages is 𝑁𝑁  for each cycle. The 𝑁𝑁𝑡𝑡ℎ element 𝛼𝛼𝑁𝑁  of the vector 𝜶𝜶 equals 1.0, and the 

remaining elements 𝛼𝛼1. .𝛼𝛼𝑁𝑁−1are unknowns. The corresponding breaking time ratios 𝛼𝛼𝑖𝑖  can be 
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determined numerically from the  (𝑁𝑁 − 1) non-linear equations 𝐹𝐹(𝛼𝛼), as expressed in Eq. (4.15). 

The corresponding time history of teeth deflection 𝛿𝛿(𝜏𝜏) is thus determined through the set 𝜶𝜶, but 

the 𝜶𝜶 must be examined to verify that the responses are within the constraints of 0.0 ≤ 𝛿𝛿(𝜏𝜏) ≤

1.0. In the following sample calculations for a given system, periodic solutions of N=1 (P-1) to 

N=5 (P-5) have been examined and the calculated displacements are compared with the results 

from the closed-form solutions.  

The system parameters used in the sample periodic motion predictions for both the Fourier 

analysis and the closed-form simulation are: 

𝑈𝑈 = 10
54𝜋𝜋

,  𝑝𝑝 = 2
9
,  𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 = 4.5,   𝜁𝜁 = 0.06     (4.18) 

Effort is given to verify the accuracy of the predicted amplitude of motion and the 

occurrence of tooth-breakage for specific periodicity. The fixed point of breakage for the closed-

form P-1 solution is (0) = 0.56, 𝑥̇𝑥(0) = −0.015 . It is observed that the predicted displacement 

of P-1 response by Fourier analysis is in close agreement with the displacement simulated from 

the closed form solution (Figure 4.2a). However, at the time of tooth fracturing, it is observed that 

the displacement-time derivative from the Fourier simulation is less than the velocity obtained by 

the closed-form solution. The normalized velocity at breakage is -0.015 from the closed-form 

solution, and it is -0.37 from the Fourier simulation. The difference in velocity is caused by the 

Gibbs effect of overshooting at the point of discontinuity due to tooth-breakage. The ice-tooth 

deformation forcing obtained by Fourier analysis is gradual at the breakage of 𝛿𝛿(𝜏𝜏 = 𝛼𝛼𝑖𝑖𝑇𝑇) rather 

than shifting directly to zero. The overshooting effect in time history of the tooth-deflection is 

estimated to be 0.09, which agrees with the product of Gibbs constant 𝑔𝑔 times one-half of the jump 

size at the point of breakage (Figure 4.2 b). There is thus a source of error in estimating the velocity 

of the mass at breakage due to the Gibbs effect. In fact, inputting the kinematic initial condition at 
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breakage from the calculated P-1 response into the closed-form simulator, a periodic solution of 

P-5 is obtained.  

The 𝜶𝜶  components for P-3 response are calculated as 𝛼𝛼1 = 0.095,𝛼𝛼2 = 0.41 , which 

compares well to the vibrations in Karr et al.’s (1993) steady-state P-3 response (Figure 4.3). Less 

than 6.6% of difference in the amplitude of motion is found, and the tooth breakage occurrences 

are in close agreement. Also, similar observations are found for P-2 response. 

In addition to this periodic response, another possible P-3 response is calculated from the 

Fourier analysis (Figure 4.4). Moreover, we find possible P-4 solutions which are missing from 

the previous closed-form solutions (Karr et al., 1993). One typical simulation is shown in Figure 

4.4b. It is observed that both the P-3 and P-4 responses resemble a portion of the oscillating motion 

from the closed-form P-25 steady-state response (Figure 4.5a). This P-25 response is obtained by 

using the Fourier calculated breakage initial conditions from a P-3 response: 𝑥𝑥(0) = 0.49, 𝑥̇𝑥(0) =

−0.48. Another closed-form solution with static initial condition 𝑥𝑥(0) = 0, 𝑥̇𝑥(0) = 0 is shown in 

Figure 4.4a. It is noticed that this response consists of transient indentations during which the mass 

sweeps through 5, 4, 2 and 3 tooth-breakages respectively. The amplitudes of the transient response 

from Figure 4.5b resemble the motion amplitudes from the P-3 to P-4 responses calculated by 

Fourier analysis (Figure 4.4, Figure 4.7) with the same number of tooth-breakage in one single 

sweeping cycle.  

Finally, the time history of displacements for a P-5 response predicted by the Fourier 

analysis compares well to the steady-state closed-form solutions in terms of the motion of response 

and the tooth breakage occurrence (Figure 4.6). Furthermore, the predicted motion of amplitude 

for P-5 by Fourier analysis is in agreement with the transient response shown in Figure 4.5b for P-

1 response with 5 teeth breaking in the first sweep. Closed-form solutions for steady-state P-1, P-
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2, P-3, P-5 and P-25 responses have been recorded by random initial inputs. The P-5 response 

features the maximum oscillating magnitude from the Fourier periodic solutions from P-1 through 

P-5 responses. The transient motion resembling the P-5 response shown in Figure 4.5b is thus not 

negligible. Therefore the Fourier analysis can be used to estimate the extreme motions of the 

dynamic system for both transient and steady-state response. 

 
(a)                (b) 

Figure 4.2: (a): The P-1 response 𝑥𝑥(𝜏𝜏) obtained by Fourier series and closed-form solution; (b): Tooth deflection 
𝛿𝛿(𝜏𝜏) for a P-1 response by Fourier analysis 
 

    

   (a)       (b) 

Figure 4.3a: A P-3 response by closed-form simulator (𝑥𝑥(0) = 0.66, 𝑥̇𝑥(0) = 0.021)  
Figure 4.3b: A P-3 response predicted by Fourier series analysis (𝜶𝜶 = [0.095, 0.41, 1.00]) 
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 (a)       (b) 

Figure 4.4 (a) The transient time history of displacement by closed-form simulation with 𝑥𝑥0 = 0.84, 𝑥𝑥0̇ = 0.0009; 
(b) A P-3 response calculated by Fourier analysis (𝜶𝜶 = [0.83, 0.91, 1.00]); 
 

 
 (a)       (b) 

 Figure 4.5 (a) Time history 𝑥𝑥(𝜏𝜏) by Closed-form solution with input 𝑥𝑥(0) = 0.49, 𝑥̇𝑥(0) = −0.48; (b) Time history 
𝑥𝑥(𝜏𝜏) by Closed-form solution with input 𝑥𝑥(0) = 0, 𝑥̇𝑥(0) = 0 
 

 
(a) (b) 

Figure 4.6 (a) A P-5 response by Closed-form simulator (initial condition 𝑥𝑥0 = 0.93, 𝑥̇𝑥 = −0.012); (b) A P-5 
response predicted by Fourier analysis (α=[0.027,0.058,0.087,0.11,1.00]) 
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Figure 4.7 (a) A P-4 response calculated by Fourier analysis (α=[0.094,0.83,0.92,1.00]); (b) A P-4 response calculated 
by Fourier analysis (α=[0.30,0.39,0.91,1.00]) 
 

4.4 Proposed Validation using Offshore Wind Tower 

 
As an extended application of the Matlock’s ice structure interaction model using Fourier 

analysis, we convert the physical parameters input from other existed literature to compare the 

calculated dynamic response with the numerical simulated results and the experimental 

measurements. The analytical calculations will be carried out using the closed form solution and 

the Fourier analysis demonstrated in the previous section. The experimental measurements and the 

numerical results are referred from the previous research (Kärnä et al., 2010) 

The model of an offshore wind turbine structure is depicted in Fig. 4.8 (Kärnä et al., 2010). 

The multi-modal analysis of the compliant offshore structure is studied and its eigenvalue and the 

corresponding mass for eigen-mode 1 and 4 are summarized in table 4.1. Note that the turbine 

blade is idling with no additional dynamic inputs for the dynamic response under the ice-crushing 

event. 
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Figure 4.8 A wind turbine exposed to ice actions (Kärnä et al., 2010) 
 

It’s observed that mode 1 at 0.37 Hz and mode 4 of 1.77 Hz dominate the dynamic response 

of the vertical offshore structure during ice structure interaction simulation (Kärnä et al., 2010). 

The response at the hub height of 65 m is dominated by mode 1 and the response at the water level 

is dominated by mode 4. The velocity of the sheet ice is 0.1 m/s, while the ice thickness is 0.3 m. 

In our Matlock’s ice-structure interaction model, the ice pitch is assumed as equal to the ice 

thickness. The conversion of the non-dimensional parameters from the physical wind tower model 

to the Matlock’s ice structure interaction model is shown in Table 4.2.  Note that 𝑦𝑦� is calculated 

as 𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎
𝑲𝑲𝟏𝟏

, where the maximum ice force is assumed as the maximum bending stress of ice multiply 

by the width of the cylindrical structure in this scenario. 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐷𝐷ℎ𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚. Here we will use the 

codes recommendation API RP-2N (1995) (Bjerkås et al., 2010) and obtained the 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =

8.1(𝐷𝐷ℎ)−0.5  Mpa= 6.6𝑀𝑀𝑀𝑀𝑀𝑀. Thus we apply the maximum ice force as 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 9.9𝑒𝑒6 𝑁𝑁 . The 
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comparison of the results using closed form solution and the Fourier series will be analyzed with 

the numerical simulation results by Kärnä et al. (2010). 

 

Table 4.1 Eigenfrequencies and related parameters (Kärnä et al., 2010) 
  

 
 

modes  
Description 1 4 

𝒇𝒇𝒏𝒏 (Hz) Modal Frequency 0.37 1.77 
𝑴𝑴𝒏𝒏(Kg) Modal mass 20500 7000 
𝝃𝝃𝒏𝒏𝒕𝒕𝒕𝒕𝒕𝒕 (%) Total damping 

ratio 
1.6 2 

𝝃𝝃𝒏𝒏𝒄𝒄𝒄𝒄𝒄𝒄 (%) Critical damping 
ratio 

8.1 99 

𝑲𝑲𝟏𝟏 (N/m) Modal stiffness 
𝑲𝑲𝟏𝟏 = 𝟒𝟒𝝅𝝅𝟐𝟐𝒇𝒇𝒏𝒏𝟐𝟐𝑴𝑴𝒏𝒏 

1.11e7 8.67e5 

𝑲𝑲𝟐𝟐 (N/m) Ice Stiffness   

𝒘𝒘𝒏𝒏 �
𝒓𝒓𝒓𝒓𝒓𝒓
𝒔𝒔
�

= 𝟐𝟐𝟐𝟐𝒇𝒇𝒏𝒏 

Modal angular 
velocity 

2.32 11.12 

𝑻𝑻𝒏𝒏 = 𝟏𝟏
𝒇𝒇𝒏𝒏

 
(s) 

Modal periodicity 2.70 0.56 

 

Table 4.2 Matlock's ice-structure interaction parameter conversions 
𝒚𝒚� structural 

deflection under 
quasi-static 
maximum ice force  

𝒚𝒚�

=
𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎
𝑲𝑲𝟏𝟏

 

 
 

 
 

Parameters Description value Non-
dimensional 
parameter 
conversion 

 Expression Mode 1 Mode 
4 

u (m/s) Ice in-action 
velocity 

0.1  𝑈𝑈 𝑈𝑈 =
𝑢𝑢
𝒚𝒚�

 
 

 

h (m) Ice thickness 0.3 𝑝𝑝 𝑝𝑝 =
𝑃𝑃
𝒚𝒚�

 
 

 

𝑷𝑷 (m) ice pitch 0.3 𝑻𝑻 𝑇𝑇 =
𝑁𝑁𝑁𝑁
𝑢𝑢

  3N 3N 

w (m) Cylindrical 
structural width 

5 𝜏𝜏 𝜏𝜏 = 𝜔𝜔𝑛𝑛𝑡𝑡 2.32t 11.12t 

Fm (MN) Mean value of the 
ice action on an 
individual structure 

50 
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Another calculation example from the experiment measurement we propose to use is by 

Yue et al. (2009). Yue et al. (2009) discussed the dynamic ice force measured from the field test 

monopod structure of oil tankers of JZ9-3 in the north part of Bohai Bay, with maximum design 

thickness of 0.5m and an average ice in-action velocity reaching 1m/s. The field set up and the 

sketch of the level ice-crushing event is shown in Figure 9a and 9b.  Further decomposition of the 

physical parameters will be carried out for a comparison of the result using the Matlock’s ice 

structure interaction prediction model. It would be beneficial if the lock-in phenomenon observed 

in the vibration process can be properly predicted using the Matlock’s Fourier analysis model. 

 
 (a)                   (b) 

Figure 4.9 (a) Test system on the JZ9-3 mooring platform (b) sketch of physical mechanism of ice induced steady 
state vibration and ice specimen (Yue et al., 2009) 
 

4.5 Conclusions 

 
In this non-linear ice-structure dynamic simulation using Matlock’s model, we expand the 

equations of motion in Fourier series, and set up the relationships among the system parameters to 

evaluate the responses for specific steady-state periodicity. Our approach establishes the non-linear 

dynamic equations through Fourier analysis with respect to the number of tooth-breakages 𝑁𝑁 per 

cycle. This method allows rapid estimation for the range of motion and the evaluation of structural 
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contact forces. The amplitudes predicted by our Fourier analysis solution correspond well to the 

simulation results obtained from closed-form solutions with random initial condition selections.  

Furthermore, the time ratios of breakage are accurately predicted thus the cyclic behavior can be 

analyzed accordingly. Also, with the calculated structural periodic responses, the mean value and 

the magnitude of the oscillating contact forces can be obtained. These output parameters are key 

factors for strength and fatigue life assessment. The previously un-detected periodic response of a 

P-4 is found through our Fourier solution. Further effort should be given to validate the basin of 

attractions given a representative system and more specific evaluation of the error range in the 

velocity predictions due to the Gibbs effect. 
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Stiffened Plate Analysis by Treating Stiffeners as Discrete Energy Components 

Using Double Fourier Series Formulation 

 

5.1 Introduction 
 

Researchers have multiple mathematical formulation following various simplified 

assumptions to analyze the stiffened plates. Green (1944) analyzed the double Fourier series results 

compared to classical orthotropic theory. He found that the double Fourier series is of satisfying 

accuracy in calculation of the bending moment with little algebraic manipulation. Eagle and Sewall 

(1968) utilized the Rayleigh-Ritz method with the allowance of coupling between both axial and 

circumferential modes for the displacement functions. A sine series solution has been extended to 

apply to the free vibration of orthotropic plates by Dickinson (1969). It was observed that the 

determinants for plates with all edges supported converge rapidly and the sine series solution can 

also be applied to systems built up from rectangular plates.  

Xiang et al (1994) found an analytical model using Ritz method in the form of complete 

algebraic polynomials, which greatly reduced the computational effort compared to the previous 

FEA analyses. However, the polynomial formulation requires higher order of modes to include 

torsional effects. Srinivas and Rao (1970) argued that a three-dimensional displacement field for 

the composite plate is necessary and the solution is set up in the form of a double trigonometric 
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series. Meleshko (1997) reviewed the purely mathematical formulations for clamped plates and 

presented three different bi-harmonic solutions with infinite systems linear algebraic equations. It 

is argued that the superposition method is recommended for fast convergence for rectangular 

plates, and discussed the dominance effect of simply supported plate edges when the ratio of 

clamped edges is smaller than 0.5. 

In a similar approach, Bhaskar and Kaushik (2004) etc. presented an exact solution 

methodology for orthotropic laminated plate based on superposition of double sine series solution 

derived from the principle of virtual work. This analysis was presented for arbitrarily loaded cross-

ply plates with any combination of simply-supported and clamped edges. Qing et al. (2006) 

developed a novel mathematical model for the finite element on the basis of state-vector equation 

theory with excellent predictive capability for static and free-vibration of stiffened plates by 

separate consideration of plate and stiffeners. In the methods presented in this paper, Navier’s 

double Fourier series formulation is utilized to approximate the transverse and in-plane 

displacement field at the mid-plane of the stiffened plate as an extended application of the plate 

solution summarized by previous researchers. 

In this chapter, two models of the stiffened plates are developed. The first model referred 

to as a discrete energy method (DEM I) treats the effective centroids of the stiffened plate to be at 

the geometric centroids of the cross-sections. This model assumes zero in-plane displacement and 

strains from plate bending at the effective centroids. The effective centroids are calculated in both 

directions which are parallel to the edges of the rectangular plate. The second model (DEM II) 

formulates the displacement fields in double Fourier series for transverse and both in-plane 

directions that satisfy the boundary conditions of pinned edges along the mid-plane of the plate. 

This model achieves high accuracy in estimation of the structural responses comparable to 
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sophisticated FEA results, while eliminating the necessity of calculating either the effective 

centroids or the effective breadth of the representative sections. 

 

5.2 Discrete Energy Method 

 

5.2.1 Discrete Energy Method I (DEM I) 

 

The plate stiffeners are aligned parallel to the x-axis or y-axis direction. Each of the 

stiffeners along one direction has the same constant structural properties. In the example analysis, 

the plate is stiffened with 3 horizontal stiffeners (x-stiffeners) as is shown in Fig. 5.1a. A double 

Fourier series formulation is applied for the displacement field 𝑤𝑤(𝑥𝑥, 𝑦𝑦) to satisfy simply supported 

boundary conditions. The displacement field is assumed to be identical over the depth of the plate, 

i.e., the transverse displacement field is independent of the z-coordinate. Let 𝑚𝑚 =1..𝑀𝑀, 𝑛𝑛 =1..𝑁𝑁, 

where 𝑀𝑀 is the order of coefficient terms to be retained along the 𝑥𝑥-direction, and 𝑁𝑁 is the order 

of terms be retained over the 𝑦𝑦-direction:    

1 1
( , ) sin( )sin( )

M N

mn
m n

m x n yw x y W
a b
π π

= =

= ∑∑           (5.1) 

The variable pressure acting on the plate is prescribed using Fourier series as: 

1 1
( , ) sin( )sin( )

M N

mn
m n

m x n yp x y P
a b
π π

= =

= ∑∑                         (5.2) 

𝑊𝑊𝑚𝑚𝑚𝑚  and 𝑃𝑃𝑚𝑚𝑚𝑚  are the Fourier coefficients for the displacement and pressure formulation 

accordingly. The position of the centroidal plane in either the x or y direction is found by assuming 

fully effective plating for the averaged cross-sections. Here, 𝑡𝑡𝑥𝑥  denotes the spacing of the x-

stiffener as is shown in Fig. 5.2. As is common for orthotropic plates, the kinematic assumption is 



 72 

that in-plane displacement fields 𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) are zero at the centroidal plane in their 

respective coordinate direction. Thus, the in-plane displacements 𝑢𝑢 and 𝑣𝑣 are calculated using the 

rotational angle determined from the transverse displacement 𝑤𝑤(𝑥𝑥,𝑦𝑦). The in-plane coordinate z 

is measured from the mid-plane of the plate using the relations  𝑧𝑧𝑥𝑥 = 𝑧𝑧 − 𝑐𝑐𝑥𝑥  and 𝑧𝑧𝑦𝑦 = 𝑧𝑧 − 𝑐𝑐𝑦𝑦, 

where 𝑐𝑐𝑥𝑥 and 𝑐𝑐𝑦𝑦 are the z-coordinates of the effective centroid position in either x-stiffener or y-

stiffener aligned direction. The in-plane displacements are expressed as: 

( , ) ( )x
wu x y z c
x

∂
= − −

∂
; ( , ) ( )y

wv x y z c
y

∂
= − −

∂
    (5.3) 

The total strain energy of the plate is calculated through the integration of stress and strain 

products over the entire plate (excluding the stiffener), which yields the following: 

/2 2 2 2
2 /2

[ 2 2(1 ) ]
2(1 )

p

p

h

P xx xx yy yy xyh
R

EU dzdxdyε υε ε ε υ ε
υ −

= + + + −
− ∫∫ ∫        (5.4) 

Introducing the coefficient 3 2/ 12(1 )pD Eh υ= − , and decomposing the strain energy of the 

plate 𝑈𝑈𝑝𝑝 into bending strain energy 𝑈𝑈𝑝𝑝𝑝𝑝and membrane strain energy 𝑈𝑈𝑝𝑝𝑝𝑝, the total strain energy 

of the plate is calculated as: 

2 2 2 2 2
2 2 2

2 2 2 2

2 2 2

[( ) ( ) 2 2(1 )( ) ]
2

1[( ) ( ) 2 ( ) ]
2 2

p pb pm

A

s s s s s s

A

U U U

D dA
x y x y y x

C u v u v u v dA
x y x y y x

ω ω ω ω ωυ υ

υυ

= + =

∂ ∂ ∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ − ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂

∫∫

∫∫

                     (5.5) 

Here, 𝑢𝑢𝑠𝑠  and 𝑣𝑣𝑠𝑠  are the in-plane displacement at the mid-plane of the plate, and 

2/ (1 )pC Eh υ= − . Rewriting Eqn. (5.5) by introducing the traditional plate rigidity coefficients 𝐷𝐷𝑥𝑥, 

𝐷𝐷𝑦𝑦 , 𝐷𝐷𝑥𝑥𝑥𝑥  and 𝐷𝐷𝑠𝑠  as 𝐷𝐷𝑥𝑥 = 𝐷𝐷 + 𝐶𝐶𝑐𝑐𝑥𝑥2 , 𝐷𝐷𝑦𝑦 = 𝐷𝐷 + 𝐶𝐶𝑐𝑐𝑦𝑦2 , 𝐷𝐷𝑥𝑥𝑥𝑥 = 2𝜈𝜈(𝐷𝐷 + 𝐶𝐶𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦), 𝐷𝐷𝑠𝑠 = (1 − 𝜈𝜈)[2𝐷𝐷 +

�𝐶𝐶𝑥𝑥 + 𝐶𝐶𝑦𝑦�
2

/2, and substituting the in-plane displacement fields 𝑢𝑢𝑠𝑠, 𝑣𝑣𝑠𝑠 in terms of 𝑤𝑤(𝑥𝑥,𝑦𝑦): 
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2 2 21 [ , , , , , ]
2p x xx y yy xy xx yy s xy

A

U D w D w D w w D w dA= + + +∫∫              (5.6) 

The stiffeners’ strain energy 𝑈𝑈𝑠𝑠 is composed of the beam axial strain energy, beam bending 

strain energy and the beam torsional strain energy. It is assumed that the warping torsional strain 

energy is negligible. The strain energy for x-stiffeners 𝑈𝑈𝑠𝑠−𝑥𝑥 is expressed as: 

2 2
2 2

2
0 0

1 1( ) | ( ) |
2 2s s

s

a a

s x ey y y x y y
y

U EI dx GJ dx
x x y
ω ω

− = =

 ∂ ∂
= + ∂ ∂ ∂ 
∑ ∫ ∫                   (5.7) 

For y-stiffeners the strain energy 𝑈𝑈𝑠𝑠−𝑦𝑦 is calculated by the following expression: 

2 2
2 2

2
0 0

1 1( ) | ( ) |
2 2s s

s

b b

s y ex x x y x x
x

U EI dy GJ dx
y x y
ω ω

− = =

 ∂ ∂
= + ∂ ∂ ∂ 
∑ ∫ ∫                    (5.8) 

In the above two expressions, the exI  and eyI are the moment of inertia of the stiffener with 

respect to the effective centroid of the cross-section along x and y axis respectively (Fig. 5.2). 

Additionally, 𝐽𝐽𝑥𝑥 and 𝐽𝐽𝑦𝑦 are the torsional constants of the x-stiffener and y-stiffener respectively.  

Expanding the stiffeners’ strain energy found from Eqn. (5.7) and (5.8) in terms of the 

displacement field yield: 
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3 2
1 1 1

4 4 2 4

3 2
1

sin( )sin( ) cos( ) cos
4 4

sin( )sin( ) cos( ) cos( )
4 4

s

M N N
ex s s x s s

s mn mj mn mj
y m n j

N
ey ys s s s

mn in mn in
i n

m I E ny jy m njGJ ny jyU W W W W
a b b ab b b

n I E n miGJm x i x m x i xW W W W
b a a a b a a

π π π π π π

π ππ π π π

= = =

=

  = +  
  

 
+ + 

  

∑∑∑∑

∑
1 1s

M M

x m= =
∑∑∑

 

(5.9) 

The external potential energy 𝑉𝑉 is written as a function of the displacement and pressure 

terms integrated over the entire plate as: 

1 1
( , ) ( , )

4

M N
mn mn

m n

abW PV w x y p x y d
ν

ν
= =

= = ∑∑∫∫∫                              (5.10) 
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Applying the principle of stationary total potential energy (𝜕𝜕𝑈𝑈𝑠𝑠 + 𝜕𝜕𝑈𝑈𝑝𝑝)/𝜕𝜕𝑊𝑊𝑚𝑚𝑚𝑚  −

𝜕𝜕𝑉𝑉/𝜕𝜕𝑊𝑊𝑚𝑚𝑚𝑚  = 0, the deformation coefficients are thus calculated from the Fourier pressure terms. 

The resulting system of equations (M x N) is used to solve for 𝑊𝑊𝑚𝑚𝑚𝑚 in terms of 𝑃𝑃𝑚𝑚𝑚𝑚. Taking the 

derivative of external strain energy 𝑉𝑉 in Eqn. (10) with respect to the displacement coefficients 

𝑊𝑊𝑚𝑚𝑚𝑚 yields: 

4 mn
mn

V ab P
W
∂

=
∂

                                                (5.11) 

Additionally, taking the derivative of the total strain energy of the stiffened panel 𝑈𝑈 with 

respect to the displacement coefficients 𝑊𝑊𝑚𝑚𝑚𝑚 yields the following 𝑀𝑀 by 𝑁𝑁 equations:  
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      (5.12) 

Analyzing Eqn. (11) and (12) and re-writing the expression in the form of linear matrices 

operations yield: 

 [ ]{ } [ ] { } [ ] { } [ ]{ }
mn mn mn mn

s s

o mn o s mn o s mn o mn
y x

A W B W C W E P+ + =∑ ∑                      (5.13) 

Here [𝐴𝐴𝑜𝑜𝑚𝑚𝑚𝑚], [𝐵𝐵𝑜𝑜𝑚𝑚𝑚𝑚], [𝐶𝐶𝑜𝑜𝑚𝑚𝑚𝑚] and [𝐸𝐸𝑜𝑜𝑚𝑚𝑚𝑚] are (M × N) by (M × N) coefficient matrices obtained 

from Eqn. (12), and {𝑊𝑊𝑚𝑚𝑚𝑚} is the the (M × N) by 1 column matrix for Fourier coefficients of the 

displacement field for 𝑚𝑚 = 1. .𝑀𝑀, 𝑛𝑛 = 1. .𝑁𝑁: 

{𝑊𝑊𝑚𝑚𝑚𝑚} = [𝑊𝑊11 𝑊𝑊12 . .𝑊𝑊1𝑁𝑁 𝑊𝑊21. .𝑊𝑊2𝑁𝑁 …𝑊𝑊𝑀𝑀1. .𝑊𝑊𝑀𝑀𝑀𝑀]𝑇𝑇                      (5.14) 

Thus, the expression for calculation of the displacement Fourier coefficient terms {𝑊𝑊𝑚𝑚𝑚𝑚} 

is: 
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   [ ]{ } [ ]{ }
mnmn mn o mnCOE W E P=     (5.15) 

Here [𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚] = �𝐴𝐴𝑜𝑜𝑚𝑚𝑚𝑚� + ∑�𝐵𝐵𝑜𝑜𝑚𝑚𝑚𝑚�𝑠𝑠 + ∑�𝐶𝐶𝑜𝑜𝑚𝑚𝑚𝑚�𝑠𝑠 and [𝐸𝐸𝑜𝑜𝑚𝑚𝑚𝑚] can be written via Eqn. (5.12) as 

coefficient matrices. Finally, the Fourier coefficient terms of the displacement are found through 

the linear algebra operation: 

{ } [ ][ ]{ }
mnmn mn o mnW inv COE E P=             (5.16) 

 

 
(a)                             (b) 

Figure 5.1: Simply supported plate with single-directional (a) or orthogonal stiffeners (b) 
 

 
Figure 5.2: X-stiffened cross-section and the effective centroid location of the neutral plane (y-direction edge) 
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5.2.2 Discrete Energy Method II (DEM II) 

 

For the DEM II formulation, the same boundary condition of simple support along the four 

edges of the plate are used. The transverse displacement field and the pressure field are expressed 

in Eqn. (5.1) and Eqn. (5.2). Introducing the in-plane displacement function 𝑢𝑢0(𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0) and 

𝑣𝑣0(𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0) at the mid-plane of the plate in addition to the transverse displacement is found 

here: 
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a b
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= ∑∑       (5.17) 

0( , ) sin( )sin( )mn
m n
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= ∑∑       (5.18) 

Thus, the linear strain of the plate is expressed as a function of the in-plane displacement 

fields 𝑢𝑢0, 𝑣𝑣0 and the transverse displacement field 𝑤𝑤 as follows: 
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Here 𝑧𝑧 is again measured from the mid-plane of the plate. Substituting the total strain energy with 

the displacement field expressed in Eqn. (5.17), (5.18) and Eqn. (5.1), the strain energy of the plate 

𝑈𝑈𝑝𝑝 without stiffeners is: 
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The stiffeners’ strain energy 𝑈𝑈𝑠𝑠 is expressed as the sum of the bending strain energy, axial 

strain energy and torsional strain energy. For the general stiffening scenario, x-stiffeners are evenly 

distributed over locations of 𝑦𝑦 = 𝑦𝑦𝑠𝑠, while y-stiffeners are distributed over the locations of 𝑥𝑥 =

𝑥𝑥𝑠𝑠. Here 𝑠𝑠 = 1,2,3 … is the number of the ribs in either the x or y direction. Summing the strain 

energy at 𝑦𝑦 = 𝑦𝑦𝑠𝑠 as 𝑈𝑈𝑠𝑠𝑠𝑠, and at 𝑥𝑥 = 𝑥𝑥𝑠𝑠 as 𝑈𝑈𝑠𝑠𝑠𝑠 using the displacement fields expressed in Fourier 

series, the relationship of stiffeners’ strain energy is obtained as: 

3 22 2

2 2 2

4 4 2 4

3 2

2 2

( )
{ sin( )sin( ) sin( )sin( )

4 ( )

[ sin( )sin( ) cos( ) cos( )] }
4 4

{
4

s

sx p sxs s s s
sx mn mj mn ij

m n j m n i js
y

ex s s x s s
mn mj

m n j

h h EA min y j y n y j ym EA A A A W
U a b b a i m b b

m I E n y j y m njGJ n y j y W W
a b b ab b b

n E
b

ππ π π ππ

π π π π π π

π

+
+

= −

+ +

+

∑∑∑ ∑∑∑∑∑

∑∑∑

3 2

2 2 2

4 4 2 4

3 2

( )
sin( )sin( ) sin( )sin( )

( )

[ sin( )sin( ) cos( ) cos( )] }
4 4

s

sy p sys s s s
sy mn in mn ij

m n i m n i j
x

ey ys s s s
mn in

m n i

h h EA njm x i x m x i xA B B B W
a a b j n a a

n I E n miGJm x i x m x i x W W
b a a a b a a

ππ π π π

π ππ π π π

+
+

−

+ +

∑∑∑ ∑∑∑∑∑

∑∑∑

  

(5.22) 

In Eqn. (5.22) 𝐴𝐴𝑠𝑠𝑠𝑠  and 𝐴𝐴𝑠𝑠𝑠𝑠  are the area of the cross section of the x-stiffener and y-stiffener 

respectively. ℎ𝑠𝑠𝑠𝑠  and ℎ𝑠𝑠𝑠𝑠  are the height of the x-stiffener or y-stiffener respectively, ℎ𝑝𝑝  is the 

thickness of the plate. 𝐼𝐼𝑒𝑒𝑒𝑒 and 𝐼𝐼𝑒𝑒𝑒𝑒 are the moment of inertia of the x-stiffener or y-stiffener with 

respect to the mid-plane of the plate. 

The external potential energy 𝑉𝑉 is written as a function of the displacements and pressure 

terms integrated over the entire plate in Eqn. (5.10). Applying the principle of stationary total 

potential energy, 3 sets of M by N equations with unknown coefficients 𝑊𝑊𝑚𝑚𝑚𝑚, 𝐴𝐴𝑚𝑚𝑚𝑚 and 𝐵𝐵𝑚𝑚𝑚𝑚 are 

obtained as functions of the calculated pressure coefficients 𝑃𝑃𝑚𝑚𝑚𝑚 . Taking the stationary total 

potential energy with respect to 𝑊𝑊𝑚𝑚𝑚𝑚 , the first set of 𝑀𝑀 × 𝑁𝑁 equations for unknown coefficient 

variables are calculated as: 
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Then taking the derivative of the total potential energy with respect to 𝐴𝐴𝑚𝑚𝑚𝑚, the second set of 𝑀𝑀 ×

𝑁𝑁 equations are calculated as: 
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Finally taking the derivative of the potential energy with respect to 𝐵𝐵𝑚𝑚𝑚𝑚, the third set of 

𝑀𝑀 × 𝑁𝑁 equations are calculated as: 
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Re-writing the expressions of Eqn. (5.23) to Eqn. (5.25) in the form of linear operations: 
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1 2 3 4[ ]{ } [ ]{ } ([ ] { } [ ] { }) { }
mn mn mn mn

s

mn mn s mn s mn
y

CX A CX B CX A CX W+ + + =∑ 0              (5.27) 

1 2 3 4[ ]{ } [ ]{ } ([ ] { } [ ] { }) { }
mn mn mn mn

s

mn mn s mn s mn
x

CY B CY A CY B CY W+ + + =∑ 0           (5.28) 

Here {𝑊𝑊𝑚𝑚𝑚𝑚} , {𝐴𝐴𝑚𝑚𝑚𝑚}  and {𝐵𝐵𝑚𝑚𝑚𝑚}  are the (𝑀𝑀 × 𝑁𝑁) 𝑏𝑏𝑏𝑏 1  vector for Fourier coefficients of the 

displacement field for 𝑚𝑚 = 1. .𝑀𝑀, 𝑛𝑛 = 1. .𝑁𝑁, as the following: 

{𝑊𝑊𝑚𝑚𝑚𝑚} = [𝑊𝑊11 𝑊𝑊12 . .𝑊𝑊1𝑁𝑁 𝑊𝑊21. .𝑊𝑊2𝑁𝑁 …𝑊𝑊𝑀𝑀1. .𝑊𝑊𝑀𝑀𝑀𝑀]𝑇𝑇                      (5.29) 

{𝐴𝐴𝑚𝑚𝑚𝑚} = [𝐴𝐴11 𝐴𝐴12 . .𝐴𝐴1𝑁𝑁 𝐴𝐴21. .𝐴𝐴2𝑁𝑁 …𝐴𝐴𝑀𝑀1. .𝐴𝐴𝑀𝑀𝑀𝑀]𝑇𝑇                      (5.30) 

{𝐵𝐵𝑚𝑚𝑚𝑚} = [𝐵𝐵11 𝐵𝐵12 . .𝐵𝐵1𝑁𝑁 𝐵𝐵21. .𝐵𝐵2𝑁𝑁 …𝐵𝐵𝑀𝑀1. .𝐵𝐵𝑀𝑀𝑀𝑀]𝑇𝑇                      (5.31) 

�𝐸𝐸1𝑚𝑚𝑚𝑚�, �𝐸𝐸2𝑚𝑚𝑚𝑚�𝑠𝑠, �𝐸𝐸3𝑚𝑚𝑚𝑚�𝑠𝑠, �𝐸𝐸4𝑚𝑚𝑚𝑚�𝑠𝑠 and �𝐸𝐸5𝑚𝑚𝑚𝑚�𝑠𝑠 are the (𝑀𝑀 × 𝑁𝑁) by (𝑀𝑀 × 𝑁𝑁) coefficient 

matrices that are derived from the minimum total potential energy of the whole plate with respect 

to the coefficient vector {𝑊𝑊𝑚𝑚𝑚𝑚}. Also, �𝐶𝐶𝐶𝐶1𝑚𝑚𝑚𝑚� through �𝐶𝐶𝐶𝐶4𝑚𝑚𝑚𝑚� are the (𝑀𝑀 × 𝑁𝑁) by (𝑀𝑀 × 𝑁𝑁) 

coefficient matrices that are derived from the minimum total potential energy of the entire plate 

with respect to the coefficient vector {𝐴𝐴𝑚𝑚𝑚𝑚}, while �𝐶𝐶𝐶𝐶1𝑚𝑚𝑚𝑚� through �𝐶𝐶𝐶𝐶4𝑚𝑚𝑚𝑚� are the coefficient 

matrices that are derived with respect to the coefficient vector {𝐵𝐵𝑚𝑚𝑚𝑚}. The detailed expression for 

the coefficient matrices are provided in the appendices. The results are discussed in the following 

section with comparison to the FEA model. 

 

5.3 Sample Calculation Results 

 

5.3.1 DEM I vs Numerical Results 

 

To evaluate the accuracy and efficiency of the DEM methods, the structural response is 

analyzed for two simply supported stiffened panels (Fig. 5.1a). Three horizontal stiffeners are 
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distributed evenly over the plate, spanning across the x-direction with thickness of 12 mm and 

height of 140 mm. For the second model, one additional orthogonal stiffener is added along the 

middle of the plate (Fig. 5.1b). The dimension of the plate is 2000 mm by 2000 mm with thickness 

of 20 mm. Four edges are simply supported at the calculated effective centroids, i.e., simply 

supported along the mid-plane of the plate for the x-direction edges, and simply supported at 𝑧𝑧𝑥𝑥 =

21.5 𝑚𝑚𝑚𝑚 for the y-direction edges (Fig. 5.2). The geometry is selected with respect to a commonly 

observed thickness-to-length ratio of 1/100 for stiffened thin plates in offshore or naval structures 

(Mouritz et al., 2001). The assigned pressure is 0.1MPa to be within the range of elastic 

deformation for the sample stiffened steel plate analysis. The ‘incompatible’ modes for 3D solid 

elements C3D8I are applied for FEA analysis, with four element layers over the thickness of the 

plate to accurately capture the bending effect while eliminating the shear locking phenomena. The 

‘incompatible’ modes for the quadrilateral and hexahedral elements are elements fully integrated 

with internal degrees of freedom added. Additionally, the FEA model avoids artificial stiffening 

due to Poisson’s effect in bending deformation. The plate with three horizontal stiffeners is first 

evaluated using DEM I.  

The transverse displacement field w(x,y) calculated by DEM I is shown contoured in Fig. 

5.3 with satisfying agreement with the FEA model of pinned ends at the effective centroids. The 

transverse and in-plane displacements calculated by DEM I at the mid-plane of the plate along 

x=1000 mm or along y=1250 mm are compared with the FEA results (Fig. 5.4a-5.4d). It is 

observed that DEM I gives good approximation of the transverse displacement fields both along 

the mid-line of the plate or in between stiffeners at an approximate accuracy of 90% (Fig. 5.4a and 

Fig. 5.4b). However, DEM I assumes the plane cross-sections remain plane and calculates the in-

plane displacement fields from the rotation from the bending effect with respect to the neutral 
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planes. Fig. 5.4c represents an averaged x-direction displacement 𝑢𝑢(𝑥𝑥,𝑦𝑦) calculated from the 

rotation of the plate about the y-axis. The displacement field 𝑣𝑣(𝑥𝑥,𝑦𝑦) is calculated as zero at the 

mid-plane of the plate as is shown in Fig. 5.4d. DEM I cannot capture the v-component in-plane 

displacement at the mid-plane which is actually non-zero because of the Poisson’s effect from the 

bending of the plate about the y-axis. 

Calculated stresses and strains are shown in Fig. 5.5 and Fig. 5.6. The calculated horizontal 

strains 𝜀𝜀𝑥𝑥𝑥𝑥 have smeared values of the plate and stiffeners as shown in Fig. 5.5a. The calculated 

stresses 𝜏𝜏𝑥𝑥𝑥𝑥 match well the results from FEA, particularly capturing the curvatures at the stiffeners 

(Fig. 5.5b). The in-plane strains 𝜀𝜀𝑦𝑦𝑦𝑦 calculated by DEM I agree well with the FEA results for the 

wavy deformation over stiffeners on top and bottom of the plate. However, the strains in the middle 

of the plate with no y-direction stiffeners yield zero strain value as is shown in Fig. 5.6a. Similarly, 

the stresses 𝜏𝜏𝑦𝑦𝑦𝑦 calculated by DEM I give satisfying approximation for top and bottom of the plate 

with a minimum accuracy of about 85% (Fig. 5.6b).  

To evaluate the maximum stress over the stiffeners as one of the key issues for design and 

strength analysis, the horizontal stresses 𝜏𝜏𝑥𝑥𝑥𝑥 calculated are plotted with what is obtained from the 

FEA model (Fig. 5.7). The DEM I model gives close approximation for the stresses for both the 

top of the plate and the bottom of the stiffener, while the stress at the effective centroids by DEM 

I goes to zero. Note that the stress for the plate is calculated from displacement derivatives using 

the effective Young’s modulus based on plane strain assumption, while the stress at the bottom of 

the stiffener is calculated using beam theory and steel’s Young’s modulus.  
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Figure 5.3: Transverse displacement field w(x,y) calculated from DEM I at order of M=N=11 

 

 
(a)         (b) 

 
(c)         (d) 

Figure 5.4: (a) Displacement w(x,y,z=0) at x=1000 mm, (b) w(x,y,z=0) at y=1250 mm, (c) u(x,y,z=0) at x=500 mm, 
(d) v(x,y,z=0) at x=1000 mm by DEM I 
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(a)          (b) 

Figure 5.5: (a) Strain εxx and (b) stress τxx at x=1000 mm at top, middle and bottom of plate by DEM I compared to 
FEA results 

 

 
(a)                (b) 

Figure 5.6: (a) Strain ϵyy and (b) stress τyy at x=1000 mm at top, middle and bottom of the plate by DEM I compared 
to FEA results 
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Figure 5.7: Stress τxx in the middle stiffener of the plate (at y=1000 mm) by DEM I compared to FEA results 
 

5.3.2 DEM II vs Numerical Results 

 

The FEA model for comparison with DEM II results has the same geometry as the model 

for DEM I, and the loading pressure is again 0.1 MPa over the entire plate. The boundary 

conditions for the FEA model are updated as pinned edges along the mid-plane at its four edges. 

This boundary condition allows a direct comparison of FEA model to the DEM II.  

The transverse displacement contour from DEM II is plotted in Fig. 5.8. The maximum 

transverse displacement predicted by DEM II is improved compared to DEM I, with the 

displacement closely capturing the FEA results from the boundary edges to the middle part of the 

plate (Fig. 5.9a and Fig. 5.9b). The highlight using DEM II lies in its capability to accurately 

formulate the in-plane displacement to capture the in-plane shear and Poisson’s effects. The 

displacements 𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0) and 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0) are plotted in Fig. 5.9c and Fig. 5.9d in solid lines 

agreeing well with the dashed lines obtained from the FEA results at an accuracy of over 90%.  

The horizontal strains 𝜀𝜀𝑥𝑥𝑥𝑥 and stresses 𝜏𝜏𝑥𝑥𝑥𝑥 predicted by DEM II overcome the deficiency 

of zero v-component strain value predicted at the neutral plane by DEM I. Both strains and stresses 
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calculated by DEM II match very well the FEA results as are shown in Fig. 5.10a and Fig. 5.10b. 

The maximum horizontal strains 𝜀𝜀𝑥𝑥𝑥𝑥  and stresses 𝜏𝜏𝑥𝑥𝑥𝑥  achieve an accuracy of over 95% 

approximated by DEM II, while there is approximate 85% accuracy using DEM I. Additionally, 

the strains 𝜀𝜀𝑦𝑦𝑦𝑦  and stresses 𝜏𝜏𝑦𝑦𝑦𝑦  achieve substantial improvement of accuracy calculated using 

DEM II (Fig. 5.11a and Fig. 5.11b). The DEM II well reflects the in-plane displacements at the 

middle of the plate thus resolving the smearing effect issue observed in the DEM I method.  

Finally, the stresses 𝜏𝜏𝑥𝑥𝑥𝑥 calculated by DEM II are evaluated against the results obtained by 

FEA shown in Fig. 5.12. The stress at the top of the plate predicted by DEM II matches nicely 

with that analyzed in FEA. Excellent agreement of the maximum stress predicted by DEM II at 

the bottom of the stiffener is achieved compared to the stress obtained from the corresponding 

FEA model. The DEM II method shows accurate approximations for both the stress over the plate 

and the maximum stress at the tip of the stiffener. It is found that that the DEM II captures the 

structural response and the stress components with improved accuracy for the stiffened structures.  

 

 
Figure 5.8: Transverse displacement field w(x,y,z=0) calculated by DEM II at order of M=N=11 
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           (a)          (b) 

 
           (c)          (d) 
Figure 5.9: (a) Displacement w(x,y,z=0) at x=1000 mm; (b) w(x,y,z=0) at y=1250 mm; (c) u(x,y,z=0) at x=500 mm; 
(d) v(x,y,z=0) at x=1000 mm by DEM II 

 

 
(a)          (b) 

Figure 5.10: (a) Strain εxx and; (b) stress τxx at x=1000 mm the at top, middle and bottom of plate by DEM II 
compared to FEA results 
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(a)          (b) 

Figure 5.11: (a) Strain εyy and (b) stress τyy at x=1000 mm at top, middle and bottom of plate by DEM II compared 
to FEA results 

 

 
Figure 5.12: Stress τ_xx in the middle stiffener of the plate (at y=1000 mm) by DEM II compared to FEA results 
 

5.3.3 Orthogonally Stiffened Plate using DEM I and DEM II vs FEA results 

 

The geometry of the orthogonally stiffened plate is sketched in Fig. 5.1b. This orthogonally 

stiffened panel is evaluated again using both DEM I and DEM II to compare with the FEA results 

in terms of the structural response. The transverse and in-plane displacements calculated by DEM 

I match with FEA’s results to approximately 75% to 86% as are shown in Fig. 5.13b-5.13f. The 



 88 

transverse displacement caused by the dominant bending effect agree well with the FEA model 

compared to the in-plane displacement calculated by DEM I (Fig. 5.13b-f). It is observed that the 

plate with only three horizontal stiffeners predict better the displacement fields compared to the 

orthogonally stiffened plate as the Poisson’s effect is less dominant in uniformly-stiffened 

direction (Fig. 5.4 and Fig. 5.13). Further evaluation of the stresses 𝜏𝜏𝑥𝑥𝑥𝑥 and 𝜏𝜏𝑦𝑦𝑦𝑦 over the plate 

calculated by DEM I for the orthogonal plate are compared with the FEA results (Fig 5.14). The 

stress approximation by DEM I gives a smearing effect over the aligned stiffeners as shown in Fig. 

5.14. Note that DEM I gives good approximation of maximum stress 𝜏𝜏𝑥𝑥𝑥𝑥  along the tip of the 

stiffener (Fig. 5.15) at similar accuracy as the uniformly stiffened panel approximately 90%.  

Compared to DEM I, DEM II presents a marked improvement in the calculation of 

displacement fields and the stress analysis as depicted in Fig.5.16-5.18. The in-plane 

displacements calculated by DEM II satisfyingly describe the variation of the displacements 

between stiffeners (Fig. 5.16). The accurate prediction of displacement contributes to a more 

accurate calculation of in-plane stress over the plate as is shown in Fig. 5.17. It is also worth noting 

that the maximum stresses calculated by DEM II over the tip of the stiffener very accurately agree 

with that analyzed by more elaborate FEA model compared to DEM I method (Fig. 5.18 and Fig. 

5.15). This highlights the advantage of DEM II method in formulating the 𝑢𝑢0(𝑥𝑥,𝑦𝑦) and 𝑣𝑣0(𝑥𝑥,𝑦𝑦) 

at the mid-plane of the plate to capture the in-plane effects of various stiffened structure which is 

neglected by DEM I.  
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(a)               (b) 

 
(c)               (d) 

 
(e)               (f) 

Figure 5.13: (a) Transverse displacement w(x,y,z) contour by FEA; (b) w(x,y,z=0) contour calculated by DEM I at 
order of M=N=11; (c) Displacement w(x,y,z=0) at x=1000 mm; (d) w(x,y,z=0) at y=1250 mm; (e) u(x,y,z=0) at x=500 
mm; (f) v(x,y,z=0) at x=1000 mm by DEM I 
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(a)                                                                                            (b) 

Figure 5.14: Stress τxx (a) and τyy (b) comparison using DEM I vs FEA results for orthogonally stiffened plate 

 
Figure 5.15: Horizontal stress τxx by DEM I vs FEA results for orthogonally stiffened plate at y=1000 mm 

 

 
(a)                       (b) 

Figure 5.16: Stress 𝜏𝜏𝑥𝑥𝑥𝑥  (a) and 𝜏𝜏𝑦𝑦𝑦𝑦 (b) comparison using DEM II vs FEA results for orthogonally stiffened plate 
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(a)               (b) 

 
(c)               (d) 

 
(e)               (f) 

 Figure 5.17: (a) Transverse displacement w(x,y,z) contour by FEA; (b) w(x,y,z=0) contour calculated by DEM II at 
order of M=N=11; (c) Displacement w(x,y,z=0) at x=1000 mm; (d) w(x,y,z=0) at y=1250 mm; (e) u(x,y,z=0) at x=500 
mm; (f) v(x,y,z=0) at x=1000 mm by DEM II 
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Figure 5.18: Horizontal stress τxx  by DEM II vs FEA results for orthogonally stiffened plate at y=1000 mm 

 

5.4 Conclusions 

 
Two sub-models DEMI and DEM II are developed to predict the response of various 

stiffened plates applying the discrete energy component method using Fourier series formulation 

with two different assumptions of the neutral planes. DEM I presumes that the reference planes 

having zero in-plane displacements at the effective centroids calculated from the cross-section 

intervals for either x-direction or y-direction aligned stiffeners. DEM II formulates non-zero in-

plane displacement fields at the mid-plane of the plate, thus saving the calculation effort for 

effective centroids and the effective breadths. The plate described above is simply supported on 

all four edges at the effective centroids for DEM I model, and at the mid-plane of the plate for 

DEM II model. This simply supported boundary condition is assumed as practical for efficient 

ship structural and stiffened plate design in general. 

DEM I is valid and efficient assuming the dominance of bending effect for plate with 

pinned ends. It is found that DEM I approximate approximately 90% of the maximum stress over 
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the stiffener compared for different stiffening patterns, indicating the dominance of the bending 

effect for the stiffened plate in the middle section of the structure.  

DEM II formulates the in-plane displacement field 𝑢𝑢0(𝑥𝑥, 𝑦𝑦) and 𝑣𝑣0(𝑥𝑥, y) at the mid-plane 

of the plate, thus more accurately considering the in-plane shearing Poisson’s effects compared to 

the DEM I method. Additionally, DEM II eliminates the need to calculate the effective centroids 

for the stiffened cross section to achieve great calculation efficiency with the improvement of 

accuracy for stress and strain evaluation over the entire panel. It is observed that DEM II also 

improves the accuracy in prediction of the transverse displacement field 𝑤𝑤(𝑥𝑥,𝑦𝑦) compared to 

DEM I. Additionally, DEM II catches the displacement variation between stiffeners while the 

stiffness is smeared using DEM I. The capture of these deformation variations between stiffeners 

is critical to understand the maximum stress and strength for the plate analysis for design purposes. 

Finally, DEM II presents notable accuracy in prediction in either uni-directionally or 

orthogonally stiffened plate for its stress evaluation. The advantage of formulating the in-plane 

displacement highlights the accuracy and cost-saving efficiency of DEM II in terms of design 

evaluation compared to traditional computationally expensive FEA model analysis and less 

accurate conventional orthotropic plate theory. 
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Conclusion 

 

 

6.1 Conclusions 

 

In this thesis, motivated to further study the ice-structure interaction process and to more 

efficiently predict peak ice loading during multiple ice failure modes coupled with other 

environmental and undetermined factors, I developed multiple inverse ice loading prediction 

algorithms for stiffened plates. The inverse ice load prediction models incorporated the field 

measured data to record the peak ice loading in the Great Lakes area in Lake Superior through year 

2014 to 2015. Extended effort is given to predict the peak motion of amplitude for the dynamic 

ice-structure interaction modeled by Matlocks’s model of ice-teeth indentation against a spring-

mass-dashpot system using Fourier series analysis to simulate the continuous ice crushing. As an 

improvement on the structural analysis part incorporated in the inverse ice-load prediction 

algorithm, a novel analytical model using discrete energy method is established for structural 

analysis of stiffened plate with substantial efficiency and accuracy. 

The inverse of the horizontal SBT is beneficial as an initial estimation of the averaged ice 

forcing when the number of structural inputs is extremely limited; the inverse of the vertical SBT 



 
 

 

95 

provides a close estimation for contact ice-forcing between the ribs given the availability of vertical 

strain measurements. The OPIT I is always recommended for its accuracy to extract the variable 

ice-forcing when several strain measurements are available and the ice thickness measurement is 

not available. The OPIT II is notably efficient in approximating the amplitude of contact ice 

forcing, if the ice thickness measurement for the span of the ice-contact area is available. Finally, 

the combination of both OPIT I and OPIT II is encouraged: first to get an evaluation of the 

distribution of the ice forcing over the entire plate, then to obtain more acute contact ice force 

amplitudes if the ice thickness measurements are available. 

The variable loading caused by the coupled effect of ice, wind and thermal forcing has 

been analyzed using the strain measurements recorded by the IFMS instrumentation through the 

winter season 2013-2014. Maximum pressure forcing of 3.54 MPa is observed on May 01 by OPIT 

II calculation, while a peak average pressure about 0.90 MPa to 1.30 MPa were found based on 

the strain measurements on April 17 and March 18, 2014.  

In the non-linear ice-structure dynamic simulation using Matlock’s model, the presented 

approach establishes the non-linear dynamic equations through Fourier analysis with respect to the 

number of tooth-breakages 𝑁𝑁 per cycle. This method allows rapid estimation for the range of 

motion and the evaluation of structural contact forces. Furthermore, the time ratios of breakage are 

accurately predicted given a representative ice-structure interaction system applying first modal 

analysis, thus the cyclic behavior is analyzed accordingly.  

As for the stiffened plate analysis, DEM II presents a marked improvement in the 

calculation of displacement fields and the stress analysis compared to DEM I. The accurate 

prediction of displacement contributes to a more accurate calculation of in-plane stress over the 
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plate by DEM II incorporating the shear effect at the mid-plane of the plate. Another highlight of 

the advantages of DEM II method lie in its formulation of the 𝑢𝑢0(𝑥𝑥,𝑦𝑦) and 𝑣𝑣0(𝑥𝑥,𝑦𝑦) at the mid-

plane of the plate to capture the in-plane effects of various stiffened structure which is neglected 

by DEM I. 

 

6.2 Future Research Directions 

6.2.1 Inverse Ice Load Prediction 

 

Further experimental research can be proposed to use the existing hardware from the DoE 

project of the ice force measurement panel and extend its usage in the Lake St. Clair, Detroit River 

system. The core aspect of the presented dissertation is the mechanical modeling of the ice-

structure interaction.  

• The field experimentation can focus on collecting strain gage data both at low and 

high strain rates to validate the inverse ice-load prediction algorithm and record the 

peak floe ice loads at various ice failure conditions incorporating the recorded 

weather conditions as the input parameters for ice condition description. 

• The calculated peak ice loads compare to the loads calculated using the existing 

design codes and follow a similar fashion as Sabodash’s (2015) calculation on the 

ice loads on the Sakhalin offshore structure using a statistical modeling for level 

ice fields.  

• The key factor of impact ice load can thus be recorded and the results can be 

compared with existing ice-impact load. The relationship of the ice thickness, ice-
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indentation speed and the temperature with respect to the peak ice loads calculated 

using the inverse ice prediction method can be recorded and compared to the design 

loads (Kim and Amdahl, 2016; Jiang et al, 2016). 

• The inverse algorithm can be improved using DEM I or DEM II method for the 

forward formulation of structural response of stiffened plate, while the optimized 

order can be studied, thus new installation of strain gages can be recommended 

before field installation to maximize the accuracy under limited input. 

• The TSVE can also be improved using other widely applied optimization methods 

to realize the automation of reduced order inverse load prediction at in-situ dynamic 

condition (Ward et al., 2018) 

6.2.2 Proposed Validation of Matlock’s Model for Ice-crushing Analysis 

 

Unlike the forward mathematical solution, the kinematic initial conditions and the response 

amplitude of the wind turbine structure can be predicted at targeted periodicity using the Matlock’s 

model via the Fourier analysis. Given a representative offshore wind tower system: 

• The first mode shape of the physical system is calculated as input for the ice-

structure interaction model (Huang and Song, 2007; Ziemer and Evers, 2016) 

• The results can be compared with other validly established ice-structure interaction 

model with existing experimental records (Kärnä and Turunen, 1989; Sodhi, 2001; 

Huang and Liu, 2009;  Ji and Oterkus, 2016) 
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• Further effort should be given to validate the basin of attractions given a 

representative system and more specific evaluation of the error range in the velocity 

predictions due to the Gibbs effects (Hewitt and Hewitt, 1979; Jerri, 2013) 

6.2.3 Stiffened Plate Analysis 

 

The stiffened plate analysis can be developed into a design package and extended 

applications to better understand the structural behavior of stiffened plate: 

• The stiffened plate analysis using DEM I and DEM II can be well developed into 

students’ ship design tool for stiffened plate scantling without the knowledge of 

FEA for model set-up.  

• The FEA modeling for swaged panel analysis as equivalent composite plate is to 

be further studied as an extended understanding for stiffened plate analysis in 

marine structures (Karr and Ashcroft, 2015). Similar approaches of the DEM 

methods might as well to be applied to model the swaged panel as stiffened plates 

to increase the accuracy and efficiency of structural design. 
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Appendix A Coefficient Matrix for DEM I and DEM II 
 

DEM I – Coefficient Matrice Operation 

[𝐴𝐴𝑜𝑜𝑚𝑚𝑚𝑚] are (𝑀𝑀 × 𝑁𝑁) by (𝑀𝑀 × 𝑁𝑁) diagonal coefficient matrice at the 𝑚𝑚𝑡𝑡ℎ and 𝑛𝑛𝑡𝑡ℎ order as 

the following: 
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�𝐵𝐵𝑜𝑜𝑚𝑚𝑚𝑚�𝑠𝑠 are (𝑀𝑀 × 𝑁𝑁) by (𝑀𝑀 × 𝑁𝑁) matrices with coupled terms at the 𝑚𝑚𝑡𝑡ℎ and 𝑛𝑛𝑡𝑡ℎ order as 

an effect of x-stiffeners evenly distributed at 𝑦𝑦 = 𝑦𝑦𝑠𝑠s over depth of the plate: 
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Note that �𝐶𝐶𝑜𝑜𝑚𝑚𝑚𝑚�𝑠𝑠 are 𝑀𝑀 × 𝑁𝑁 by 𝑀𝑀 × 𝑁𝑁 matrices as an effect of evenly distributed y-stiffeners at 

𝑥𝑥 = 𝑥𝑥𝑠𝑠s over the plate: 
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Where 𝐾𝐾𝑗𝑗 = ∑ [cos (2𝜋𝜋𝑦𝑦𝑠𝑠𝑗𝑗
𝑏𝑏

) − 1]𝑁𝑁
𝑗𝑗=1 , and 𝐿𝐿𝑗𝑗 = ∑ 𝑗𝑗 ∙ sin (2𝑗𝑗𝑗𝑗𝑦𝑦𝑠𝑠

𝑏𝑏
)𝑁𝑁

𝑗𝑗=1  are constants calculated 

from the summation of the 𝑗𝑗𝑡𝑡ℎ terms over the y-direction, i.e., the width of the plate. 

�𝐸𝐸1𝑚𝑚𝑚𝑚� is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 diagonal coefficient matrix: 
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Here 𝐸𝐸1𝑚𝑚𝑚𝑚 is the coefficient term for 𝑊𝑊𝑚𝑚𝑚𝑚 at the 𝑚𝑚𝑡𝑡ℎ and 𝑛𝑛𝑡𝑡ℎ order:  
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�𝐸𝐸2𝑚𝑚𝑚𝑚�𝑠𝑠 is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix along 𝑦𝑦 = 𝑦𝑦𝑠𝑠: 

11_1 11_ 11_

1 _1 1 _ 1 _

1 _1 1 _ 1 _

1_1 1_ 1_

_1 _ _

_1 _ _

1_1 1_ 1_

_1 _ _

_1 _ _

2 2 2

2 2 2

2 2 2

2 2 2

2 2 22

2 2 2

2 2 2

2 2 2

2 2 2

[ ]

j N

n n j n N

N N j N N

m m j m N

mn mn j mn Nmn

mN mN n mN N

M M j M N

Mn Mn j Mn N

MN MN j MN N

s

E E E

E E E

E E E

E E E

E E EE
E E E

E E E

E E E

E E E

 
 
 
 
 
 
 
 =
 
 
 
 
 


 s




        (A.6) 

_

4 4 2 4

2 3 2sin( )sin( ) cos( )cos( )
2 2mn j

s s s s
s ex x

m ny jy m nj n y j yE EI GJ
a b b ab b b
π π π π π π

= +
         (A.7) 



 
 

 

102 

�𝐸𝐸3𝑚𝑚𝑚𝑚�𝑠𝑠 is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix along 𝑥𝑥 = 𝑥𝑥𝑠𝑠: 
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�𝐸𝐸4𝑚𝑚𝑚𝑚�𝑠𝑠 is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix along 𝑦𝑦 = 𝑦𝑦𝑠𝑠: 
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�𝐸𝐸5𝑚𝑚𝑚𝑚�𝑠𝑠 is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix along 𝑥𝑥 = 𝑥𝑥𝑠𝑠: 
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Coefficient matrix
 
[𝐶𝐶𝑋𝑋1𝑚𝑚𝑚𝑚] , [𝐶𝐶𝑋𝑋2𝑚𝑚𝑚𝑚] , [𝐶𝐶𝑋𝑋3𝑚𝑚𝑚𝑚]𝑠𝑠 ,  [𝐶𝐶𝑋𝑋4𝑚𝑚𝑚𝑚]𝑠𝑠   are in the followings 

expressions.
 
�𝐶𝐶𝐶𝐶1𝑚𝑚𝑚𝑚� is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 diagonal coefficient matrix:
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where 𝐶𝐶𝐶𝐶1𝑚𝑚𝑚𝑚 is the coefficient term for 𝐴𝐴𝑚𝑚𝑚𝑚 at the 𝑚𝑚𝑡𝑡ℎ and 𝑛𝑛𝑡𝑡ℎ order:  
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�𝐶𝐶𝐶𝐶2𝑚𝑚𝑚𝑚� is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix: 
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�𝐶𝐶𝐶𝐶4𝑚𝑚𝑚𝑚�𝑠𝑠 is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix along 𝑦𝑦 = 𝑦𝑦𝑠𝑠: 
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Coefficient matrix
 
[𝐶𝐶𝑌𝑌1𝑚𝑚𝑚𝑚] , [𝐶𝐶𝑌𝑌2𝑚𝑚𝑚𝑚] , [𝐶𝐶𝑌𝑌3𝑚𝑚𝑚𝑚]𝑠𝑠 ,  [𝐶𝐶𝑌𝑌4𝑚𝑚𝑚𝑚]𝑠𝑠   are in the followings 

expressions.
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where 𝐶𝐶𝐶𝐶1𝑚𝑚𝑚𝑚 is the coefficient term for 𝐵𝐵𝑚𝑚𝑚𝑚 at the 𝑚𝑚𝑡𝑡ℎ and 𝑛𝑛𝑡𝑡ℎ order:  

2 2 2 2

1
(1 )[ ]

4 8mn

Cn a C m bCY
b a
π ν π−

= +                                                          (A.23) 

�𝐶𝐶𝐶𝐶2𝑚𝑚𝑚𝑚� is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix: 
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�𝐶𝐶𝐶𝐶4𝑚𝑚𝑚𝑚�𝑠𝑠 is an 𝑀𝑀𝑀𝑀 by 𝑀𝑀𝑀𝑀 coefficient matrix along 𝑥𝑥 = 𝑥𝑥𝑠𝑠: 



 
 

 

107 

11_11 11_1 11_ 1 11_ 11_ 1 11_

1 _11 1 _1 1 _ 1 1 _ 1 _ 1 1 _

1_11 1_1 1_ 1 1_ 1_ 1 1_

4 4 4 4 4 4

4 4 4 4 4 4

4 4 4 4 4 4

4

.. .. ..

.. .. .. .. .. .. .. .. ..
.. .. ..

.. .. ..
[ ] .. .. .. .. .. .

N m mN M MN

N N N N m N mN N M N MN

m m N m m m mN m M m MN

mn s

CY CY CY CY CY CY

CY CY CY CY CY CY

CY CY CY CY CY CY
CY =

_11 _

_11 _1 _ 1 _ _ 1 _

4 4

4 4 4 4 4 4

. .. .. ..
.. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. ..
.. .. ..

mN mN MN

MN MN N MN m MN mN MN M MN MN

CY CY

CY CY CY CY CY CY

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              (A.28) 

_

3 2

4 2 2 2( ) sin( )sin( )
( )mn ij

s s
s sy p sy

nj m x i xCX h h EA
b j n a a

π π π
= +

−
     (A.29) 

  



 
 

 

108 

Appendix B IFMS Post-alibration Test Records 
 

Calibration List  

B1. Test:  DAQ sanity check 

Purpose:  demonstrate ability to acquire data and archive it in a readily accessible place 

(eg. CTools or Google Drive). 

Materials:  DOE-Ice laptop and power cord; DataTaker DAQ system, including wall wart; 

USB disk and/or external hard drive. 

Personnel:  Yuxi Zhang and Roger De Roo 

Location:  1124 SRB (current location of DataTaker DAQ). 

Task:  connect laptop to DAQ system, command DAQ system from laptop, download data.  

Set the DAQ RTC to within TBD seconds of real-time. 

Success criteria:  data appropriate for open circuit connections downloaded and interpreted. 

 

B2. Task:  DAQ connected to IFMS 

Purpose:  connect the DAQ system to the IFMS. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart; 

IFMS; . 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 
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Task: Bring DAQ to MHL, connect DAQ to IFMS, connect laptop to DAQ system, 

command DAQ system from laptop, download data. 

Success criteria:  data appropriate for no-load IFMS conditions downloaded and 

interpreted.  DAQ RTC keeping time to within TBD seconds of real-time. 

 

B3. Test:  IFMS data acquisition; DAQ sheltered. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with DAQ system in 

thermally controlled environment and IFMS experiencing diurnal variations. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart; 

IFMS; . 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  connect DAQ to IFMS, with DAQ located indoors.  Run DAQ for at least 72 hours 

to capture at least 3 diurnal cycles.   

Success criteria:  archival of data, including weather conditions. 

 

B4. Test:  IFMS data acquisition; DAQ unsheltered. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with both DAQ system 

and IFMS experiencing diurnal variations. 
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Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; . 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  connect DAQ to IFMS, with DAQ located outdoors but protected from the elements 

with USCG enclosure.  Run DAQ for at least 72 hours to capture at least 3 diurnal cycles.   

Success criteria:  archival of data, including weather conditions. 

 

B5. Test:  IFMS data acquisition; shielded cable flexed. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with the shielded 

(outdoor component at lighthouse) cables flexed in the middle of the cable. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  capture data at a relatively rapid rate, flexing the shielded cables one by one (first 

left , then middle, last right) at a location distant from other system features (such as connectors).  

Carefully record activities including real-time of events. 

Success criteria:  archival of data, including notes. 
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B6. Test:  IFMS data acquisition; DAQ cable flexed. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with the cables b/t 

connectors and DAQ system flexed in the middle of the cable. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  capture data at a relatively rapid rate, flexing the cables one by one (first left , then 

middle, last right) at a location distant from other system features (such as connectors).  Carefully 

record activities including real-time of events. 

Success criteria:  archival of data, including notes. 

 

B7. Test:  IFMS data acquisition; circular connectors strained mechanically. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with the military 

connectors between the DAQ and IFMS mechanically stressed. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 
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Task:  capture data at a relatively rapid rate, flexing the cables one by one (first left , then 

middle, last right) at the circular connectors.  Carefully record activities including real-time of 

events. 

Success criteria:  archival of data, including notes. 

 

B8. Test:  IFMS data acquisition; circular connectors strained thermally. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with the military 

connectors between the DAQ and IFMS thermally stressed. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock; compressed air canister. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  capture data at a relatively rapid rate, spraying compressed air on the cable circular 

connectors one by one (first left , then middle, last right).  Carefully record activities including 

real-time of events. 

Success criteria:  archival of data, including notes. 

 

B9. Test:  IFMS data acquisition; DAQ strained thermally. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with the connectors at 

the DAQ and the DAQ itself thermally stressed. 
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Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock; compressed air canister. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  capture data at a relatively rapid rate, spraying compressed air on the connections at 

the DAQ system.  Carefully record activities including real-time of events. 

Success criteria:  archival of data, including notes. 

 

B10. Test:  IFMS data acquisition; circular connectors moistened. 

Purpose:  obtain baseline data of IFMS under no-load conditions, with the military circular 

connectors moistened. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock; water spray bottle. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  capture data at a relatively rapid rate, spraying water on the connections at the DAQ 

system.  Carefully record activities including real-time of events. 

Success criteria:  archival of data, including notes. 

 

B11. Test:  IFMS data acquisition; DAQ moistened. 
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Purpose:  obtain baseline data of IFMS under no-load conditions, with the connectors at 

the DAQ and the DAQ itself moistened. 

Materials:  DOE-Ice laptop and power cord;  DataTaker DAQ system, including wall wart 

and USCG enclosures; IFMS; accurate clock; water spray bottle. 

Personnel:  Yuxi Zhang, Roger De Roo, and MHL personnel?. 

Location:  Marine Hydrodynamic Lab (current location of IFMS). 

Task:  capture data at a relatively rapid rate, spraying water on the connections at the DAQ 

system.  Carefully record activities including real-time of events. 

Success criteria:  archival of data, including notes. 

 

B12. Task:  cable moving in and out; check the cable inlet with mirror and flash lights. 

Purpose: evaluate the effect zero strain gauge located on the upper bracket of the L-metal; 

give a first estimation of the condition of the cables from the inlet of the upper plate. 

Materials:  IFMS plate, cables, gloves and mirror and flash lights. 

Personnel:  Yuxi Zhang, RdR. 

Location:  MHL 

Task:  move cables in and out wtr to the inlet of the cables on the IFMS plate, check the 

appearance of incoming cables by the mirror with a flash light. 

Success criteria:  zero strain gauge reading is not affected much compared to its regular 

variations in calm state; good condition of observation of the cable inside. 
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