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It is an exciting time for big data efforts in radiation oncology. The use of big data to help aid both
outcomes and decision-making research is becoming a reality. However, there are true challenges that
exist in the space of gathering and utilizing performance and outcomes data. Here, we summarize the
current state of big data in radiation oncology with respect to outcomes and discuss some of the
efforts and challenges in radiation oncology big data. © 2018 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.13136]
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1. INTRODUCTION

The promise and potential of “big data” in radiation oncology
cannot be overstated. There is tremendous excitement regard-
ing the ability to learn about the efficacy of treatment, dis-
cover new interactions, and overall being able to offer our
patients improved and tailored treatments based on the expe-
rience of many. There is also the hope of shared decision-
making between providers and patients using informed
trade-offs between cancer control and side-effects. However,
genuine challenges are to be faced before this can become a
reality and to meet those challenges, one must first examine
the nature of this “big data.” There is a tendency to use the
term “data mining” when thinking about informatics, when
in fact, data farming is a more accurate term, reflecting the
reality that the entire process, from planting the seeds of data
in organized rows, watering and tending the growth of data,
then harvesting it, is critical to understand and plan for.1

Our ability to provide patients with answers about their
best course of treatment relies on our a priori knowledge of
how patients with similar disease, demographics, preference,
and clinical characteristics were treated, and how they
responded to treatment including both tumor control and
treatment-induced toxicities. These data must be captured in
a useable way so that it can be extracted and analyzed, with
user-friendly predictive models created so that treatment can
be customized for each patient.

In radiation oncology, there are two critical general issues,
which must be addressed: (a) Since radiation oncology data
are different than medical/surgical oncology data, data plat-
forms which have been designed with this in mind (many of
which already exist) must be utilized. (b) Existing standards
where possible should be utilized to meet the big data needs
of the multiple stakeholders (current and future patients,
physicians, registries, insurance companies, the informatics
community, and many other groups) in radiation oncology in
order to avoid duplication of work. We herein summarize the
clinical aspects of big data collection in radiation oncology,
and highlight the challenges and future work needed so that
we can realize the potential of big data.

1.A. Radiation oncology big data is unique

An essential point that must be embraced for radiation
oncology big data to reach its potential is, as mentioned
under (a) above, that its format and nature is inherently differ-
ent from other disciplines. Fortunately, radiation oncology
has recognized this, leading to a number of existing special-
ized data structures in its arsenal, including DICOM-RT
structure and dose files. Archiving treatment images, struc-
tures, and doses in DICOM format is a relatively easy first
step toward ensuring that radiation oncology treatment data
are captured. It also provides a great step toward future qual-
ity assurance of that data. However, some features of treat-
ment are not captured in DICOM format, including, for
example, motion management and use of bolus (if not
included in the simulation). Recreating delivered dose

requires the integration of additional information (e.g.,
CBCT, log files from the treatment machine) in addition to
the treatment plan.

Standardizing nomenclature and definitions are crucial to
our efforts to believe and understand aggregated data.2 There
is a recognized, but currently unmet need in radiation oncol-
ogy to standardize naming and delineation procedures of nor-
mal structures as well as targets. Standardization includes not
only naming structures but consistency of anatomic borders
and instructions on the extent of normal organs to be con-
toured. For example, naming every esophagus “esophagus”
rather than “eso” or “esoph” and contouring it from the cri-
coid to the stomach is imperative if we hope to better under-
stand dose–volume response relationships. If every
“esophagus” in a big dataset must go through independent
quality assurance, then the effort will not get very far. This is
where planting the seeds correctly in the first place pays off.
Even with the best intentions, the complete OAR delineation
can be compromised by a treatment planning scan of limited
extent, so standard nomenclature, as suggested in TG263, of
partial structures is recommended for clarity.2 Another often
overlooked element in radiation oncology big data is encod-
ing of spatial information, especially with recurrence. It is
essential to know the spatial location of recurrence and its
relationship with the delivered dose, not just planned dose.
Furthermore, understanding why a marginal recurrence
occurred (e.g., variable patient positioning, inadequate GTV/
IGTV delineation, poor image registration, inadequate PTV
margin) requires analysis of information from many steps of
the process. These are examples of data rarely available out-
side a research study, but essential to determining tumor
dose–response relationships.

2. USE CASE EXAMPLES

Radiation oncology has a number of early adopters of the
big data paradigm that can help guide the field into best prac-
tices for successful capture of patient outcomes data. One
well-known example is the euroCAT infrastructure.3 Below
are several other examples that were presented or discussed as
part of a breakout session at the 2017 Practical Big Data Work-
shop. In each example, a successful workflow has been imple-
mented to capture outcomes and performance data. The
benefits and limitations of each use case are given below. It
should be noted that this is a list of examples and not an
exhaustive list of all of the excellent big data initiatives that are
ongoing in the radiotherapy community. Table I attempts to
summarize the use cases presented here for quick reference.

2.A. M-ROAR — University of Michigan

The University of Michigan has developed the Michigan
Radiation Oncology Analytics Resource (M-ROAR) to aid in
practice patterns and outcomes analyses in Radiation Oncol-
ogy. This effort involved a multifaceted strategy of requiring
the entry of critical elements as discrete data, building a
database platform, which pulls data from the oncology
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information systems (OIS) and electronic health records
(HER), and creating a self-service interface. On the data entry
size, everyone in the clinic made a commitment to entering
tumor staging, diagnosis code, pain scores, patient-reported
outcomes, and Common Terminology Criteria for Adverse
Events (CTCAE) scores so that this data would be available
for future analysis. Also, structure nomenclature was stan-
dardized. The MS SQL database aggregates data for >17,000
patients treated in the department since 2002, including infor-
mation from both the radiation oncology and hospital infor-
mation systems. The self-service interface allows users to
easily create and optimize reports for cohort discovery in
minutes rather than waiting to get to the top of a report-
writer’s queue with each request or iteration.

With implementation of this strategy, the M-ROAR data-
base can be used to answer innumerable clinical questions,
such as what factors predict patient risk of hospitalizations,
decline in patient function, and treatment-related complica-
tions, so that patient treatment protocols can be adjusted in
advance. As an example, for head and neck cancer, the asso-
ciation between radiation dose and toxicity can be stratified
based on HPV status. Information to optimize clinical opera-
tions can also be gathered, such as: How long does a certain
treatment plan take to deliver vs. another one so that therapy
time slots can be scheduled properly; and What patients are
at risk for dehydration so that nutrition consults can be
requested or outpatient hydration appointments scheduled in
advance? These are only a few examples of practice-changing

TABLE I. Examples of big data use cases in radiation oncology

Institution/entity Type of database/project Source of data/tools Magnitude Key features Key challenges

M-ROAR/
University of
Michigan

Tumor staging, diagnosis code,
pain scores, patient-reported
outcomes, and CTCAE scores

Oncology information
systems, treatment planning
system, and electronic health
record

>17,000 patients
since 2002

Microsoft SQL
database; self-service
report building
interface

Consistent/
standardized
physician and patient-
reported toxicities and
recurrence scoring

MDAnderson Creation of radiation oncology
site-specific templates for data
input

Electronic health record
(EPIC)

>40 specialty-
specific templates
in Radiation
Oncology with
expansion into
other departments

Specialty-specific
templates for
standardized note
generation

High level of
customization in each
site and department
limits standardization
in some elements

Pediatric proton
registry
consortium

Demographics, diagnosis and
staging, baseline health status,
chemotherapy and surgery,
radiation details, diagnostic
imaging, and follow-up

Oncology information
systems, treatment planning
systems, and electronic health
record

>1800 patients
from at least 13
centers

RedCap Tools;
Collection of DICOM
plan data

Funding; Data input
efficiency

Oncospace Treatment planning data, patient-
reported outcomes, clinician
assessments, disease response,
diagnosis, and lab data

Oncology information
systems, treatment planning
system, and electronic health
record

>5000 patients
from four centers

Tablet and web based
data capture;
Generation of notes
from structured data
entry;

Multi-institutional
data standardization;
Funding for
maintenance and
expansion

University of
Pennsylvania

Demographics, vital status,
disease stage and prognostic
indicators, genomic variants,
details of systemic therapy and
external-beam radiotherapy, and
physician-reported toxicities

Oncology information
systems, electronic health
record, treatment planning
system, cancer registry, and
center for personalized
diagnostics

>28,000 patients Structure, site-specific
templates; Only
capture clinically
symptomatic
toxicities; Strong
adoption by nurses

Physician adoption;
Gathering of detailed
progression
information; Accurate
identification of death
events

US veterans
health
administration
(VHA) radiation
oncology
practice
assessment

Clinical measures, treatment
planning information

Oncology information
systems, electronic health
record, treatment planning
system

Development is
being finalized

Novel tools to extra
data including note
processing; secure
environment where
data are housed
locally

Development of
custom tools to
minimize manual data
entry and support
heterogeneous data
sources

Mayo clinic
Florida

Institutional data, demographics,
tumor-specific data, outcomes
data, adverse events recorded in
the EMR, and nononcological
diagnosis data

Electronic health record,
administrative data, oncology
information system, tumor
registry, other disease-
specific registries

>3,000 patients Includes
administrative
component with
healthcare cost data
capture

Toxicity reporting and
data capture

The
Radiogenomics
Consortium

Genomic data, treatment data,
toxicity, and outcomes data

Electronic health record,
treatment planning systems

132 institutions;
>6000 prostate
patients and >4500
breast patients in
specific projects

Combined captured of
genomic and
treatment data

Data harmonization
across different
techniques and
reporting methods
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queries, which are currently possible. This database primarily
informs and guides quality improvement, with IRB approval
needed when used for research.

Challenges remaining in M-ROAR are consistent and stan-
dardized assessment of physician and patient-reported toxici-
ties, as well as recurrence scoring.

2.B. MD Anderson

A vision of optimizing electronic health record (EHR) uti-
lization is currently being investigated at MD Anderson Can-
cer Center in a multiphase process. Initiated within the
Radiation Oncology department, a thorough evaluation of
user performance and available toolsets within EPIC was per-
formed in order to determine suboptimal practices that were
limiting efficiency within the clinic workflow. A general con-
sensus of a need for standardized documentation and consis-
tent nomenclature for the purposes of improving quality and
safety measures, accurate staging and billing, and decreasing
duplication of data entry led to the development of over 40
specialty-specific templates for note generation. These tem-
plates “pull in” discrete data elements entered into EPIC by a
single person (such as a nurse, midlevel, or primary referral
service) so that the need for dictation/manual data entry by
other providers generating notes is minimized. The patient’s
existing medical conditions, cancer stage, performance status,
symptoms/ROS, laboratory values, and radiologic imaging
information are all structured fields which are now automati-
cally populated into specific locations within each template.
Furthermore, these templates utilize the Smartlist function in
EPIC, which are lists of customizable text that can also be
retrieved at a later date as structured data. Smartlists have
therefore been used to define specialty-specific treatment
options, protocol descriptions, and structured CTCAE grad-
ing systems. Another advantage of EPIC is the ability for
patient-related outcome (PRO) forms to be sent to the patient
electronically. When patients fill out these forms, the results
are then sent back and saved in EPIC as discrete data, which
is then incorporated into templates and allows for more rapid
documentation.

Overall, these templates offer additional advantages
including increased patient screening for protocol enrollment
and user-friendly, electronic functionality for various research
endeavors. By having the variables listed above as structured,
extractable data, every aspect of clinical research becomes
optimized. Patients can be quickly assessed and evaluated for
protocol eligibility, and once the patient is undergoing treat-
ment under protocol, the collection and reporting of clinical
response and toxicity become more automated. Protocol-spe-
cific templates have been created in order to ensure that all
required data collection per individual protocol is recorded in
a uniform manner. Since completing phases I and II of tem-
plate creation and implementation within the Radiation
Oncology department, there have been ongoing efforts to
expand standardized EHR documentation methods within
other departments, beginning with GI Medical Oncology and
GI Surgery. So far, these services are adapting the templates
to maintain a similar data entry structure while tailoring sec-
tions such as the impression and plan to suit their documenta-
tion needs. Our ultimate goal is to have the entire institution
adopt the use of standardized templates and structured data
entry to (a) improve the efficiency of documentation for pro-
viders and decrease the risk of provider burn-out, (b) improve
patient coordination within a multidisciplinary clinic setting,
and (c) create an institution-wide system of patient data col-
lection for research purposes and assessment of clinical out-
comes.

2.C. Pediatric proton Registry consortium

The Pediatric Proton Consortium Registry (PPCR) was
established in 2012 to expedite proton outcomes research in
children and to better define the role of proton radiotherapy
in the pediatric cancer population.4 Approximately 1800
pediatric patients have been enrolled in the PPCR across 13
participating pediatric proton centers. The PPCR is a con-
sented registry built upon the NIH supported free web-based
data collection/repository platform, REDCap and is currently
open to any U.S. proton center that would like to participate.
The PPCR collects information on demographics, diagnosis

TABLE II. Examples of key data elements for radiation oncology

Key data element category Diagnosis = breast cancer Diagnosis = lung cancer Diagnosis = bone met

ICD-10 code All, including laterality info All, including laterality info All, including location(s)

TNM staging TNM staging TNM staging N/A

Performance status KPS KPS KPS

Toxicity data elements with CTCAE grade Dermatitis Dermatitis Dermatitis

Pain Pain Pain

Esophagitis

Pneumonitis

Recurrence data elements Local recurrence Local recurrence Local recurrence

Regional recurrence Regional recurrence

Distant recurrence Distant recurrence Distant recurrence

Generic data element {name=___, description=___} Custom Custom Custom
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and staging, baseline health status, chemotherapy and sur-
gery, radiation details, diagnostic imaging, and follow-up.5

Radiation plans are centrally archived in the universal
DICOM-RT format. Due to funding issues and required man-
ual effort, there is limited participation and variable data
entry. Thus, there is an urgent need to improve efficiency of
data collection through automation.

The major challenges within the PPCR also present oppor-
tunities. Given that there are a limited number of OIS and
EHR platforms, there exists an opportunity to leverage the
data already contained within these platforms if appropriate
programming bridges can be constructed. An upfront invest-
ment of time and resources from technical personnel is
needed and standard interface should be created with stan-
dard basic information mapped from stable locations in each
OIS to minimize the need for additional customization at
multiple sites.

Another opportunity exists with the general EHR. Given
the critical mass of EPIC users in the PPCR, we may be able
to leverage collaboration to streamline data input and extrac-
tion. A start could be the sharing and use of electronic tem-
plates and automation of population of certain (standardized)
fields in the database. It is key that templates must be effi-
cient and user-friendly with minimal free text so that clini-
cians will use them routinely and must be convinced in the
overall mission or be given time savings in another area to
counter-balance the extra work of discrete data input.

The final component of PPCR is aggregation of plan infor-
mation, which is eventually used to help make the link
between radiation dose and treatment outcomes. To facilitate
this, a partnership has been put in place with MiM Software
(MiM Software Inc, Cleveland, OH, USA) to allow web-
based archival for each participating institution. The partner-
ship has led to the development of a faster anonymization
procedure and a script for automated nomenclature standard-
ization using TG263.2

In summary, the PPCR is an established and successful
registry that has met some hurdles along the way. As it has
grown out of its funding source, it requires that we look into
electronic efficiencies that will help PPCR and other Radia-
tion Oncology-related Big Data efforts. Sufficient funding is
critical for the success of data collection. Mild funding pres-
sure can spur technological advances that can improve effi-
ciencies, but these also need an upfront investment in order
to achieve them. Given the relatively few electronic radiation
charts and the few EHRs, we are better poised than ever to
start to realize the goal of automation in data entry.

2.D. Oncospace

The Oncospace program at Johns Hopkins began with the
design of a relational analytical database that housed the
treatment planning data in a form for fast query. The database
schema includes the full 3D dose for multiple radiation ther-
apy sessions as well as the 3D anatomy including relevant
structures.5 The system also houses features of the dose such
as the dose-volume histograms (DVHs) and shape

relationships in the overlap volume histograms (OVHs).6 In
the earlier work, the database was used for the development
of shape-based automated treatment planning where one
could rapidly query the OVHs to determine all prior treat-
ments with critical organ that were “harder” to plan and use it
to predict the best achievable dose metric from DVHs.7–10

This method is in use today for both plan quality evaluation
and automated planning.

For outcomes, the Oncospace philosophy was that
prospective structured data collection should be integrated
with the clinical workflow. Since 2007, a website enabling
tablet devices to be used in the clinic for data capture is avail-
able.11 Critical to the adoption is the ability to generate clini-
cal notes from the collected structured data and additional
patient-related information queried from the OIS. Using the
same technology, electronic patient-reported outcomes have
been successfully captured for more than 8 years. Currently,
there are >5000 patients (prostate, head and neck, thoracic,
breast, and pancreas) in the database with full treatment plan-
ning data, patient-reported outcomes, clinician assessments
on treatment and in follow-up, disease response as well as
diagnosis, and lab data interfaced from clinical systems. Data
are currently included from Johns Hopkins, the University of
Washington, the University of Virginia, and the University of
Toronto Sunnybrook.

The rapid access to the treatment data enables data science
models to be explored.12 The Oncospace group is now build-
ing predictive models for specific clinical decisions using
classification and regression tree models for weight loss and
xerostomia prediction in head and neck cancer and surgical
candidacy in pancreatic cancer. The challenge in clinical pre-
diction is to focus on the decision to be made and what infor-
mation truly informs it. For weight loss, the decision is
around the appropriate symptom management for improved
nutritional support such as feeding tube placement. In other
cases, modifications to the treatment plan may reduce risks if
it does not compromise on target coverage. Additionally, the
impact of the spatially distributed radiation dose beyond
DVHs to better understand how the patterns of dose may
impact the treatment-related toxicities could be explored.13

The continued data growth will allow continuous learning to
fulfill the concept of a learning health system in the future.14

2.E. University of Pennsylvania

The Penn Medicine Oncology Research and Quality
Improvement Datamart (ORQID) aggregates data from multi-
ple source information systems, including Penn’s enterprise
EHR, ROIS, TPS, Cancer Registry, and Center for Personal-
ized Diagnostics. ORQID focuses on organizing cancer
patients’ demographics, vital status, disease stage and prog-
nostic indicators, genomic variants, details of systemic ther-
apy and external-beam radiotherapy, and physician-reported
toxicities.

Outcomes have been among the most challenging data ele-
ments to capture. Penn implemented structured, site-specific
templates for documenting physician-reported toxicities
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within the EHR in 2011. The templates are based on the
CTCAE grading system, and clinical teams selected the toxi-
cities of focus for each disease site. To maximize opportuni-
ties for data capture by providers at all levels, only clinically
symptomatic toxicities (e.g., pain) not requiring diagnostic
interpretation (e.g., radiation pneumonitis) were included.
Nurses have embraced the effort and capture rates have been
as high as 95% for on-treatment visits, which they routinely
staff. Physician adoption has been more challenging, and for
follow-up visits (which have less nursing support) capture
rates have been below 50% of visits. Nevertheless, Penn has
amassed over 2 million toxicity observations on over 28,000
unique patients in the datamart. Efforts are currently under-
way to implement widespread patient-reported outcome col-
lection as routine standard of care to help augment and
complement the physician-reported toxicities.

For other outcomes, progression is tracked via the institu-
tional cancer registry, which only documents the timing and
nature of the first progression event after initial treatment.
Deaths are identified from the EHR, cancer registry, and
social security death masterfile, but remain a challenge, with
many deaths not documented or without accurate dates.

2.F. US veterans health administration radiation
oncology practice assessment

The National Radiation Oncology Program (NROP) office
of veterans health administration (VHA), with an oversight of
40 radiation therapy treatment centers treating over 15,000
patients annually has launched a pilot program initiative in
which patient-specific radiotherapy data are collected for
quality assurance assessment and comparative analysis of
many treatment modalities and other factors at their centers.15

The NROP office collaborated with the American Society of
Radiation Oncology (ASTRO) disease site expert committees
to define clinical measures. These clinical measures are based
on established clinical guidelines, patterns of care assessment
done by the American College of Radiology’s Quality
Research in Radiation Oncology program,16 and expert con-
sensus opinions. These measures have formed the basis for
assessing the quality of treatments and practice variations and
identification of the care gaps in the VHA. Although dosime-
try data were automatically abstracted from treatment plan-
ning systems (TPS), clinical data had to be manually
abstracted from the electronic health records (EHR) for the
pilot project.

The NROP office has embarked on a project to automati-
cally extract all data for ROPA from heterogeneous data
sources that include EHR, TPS and Treatment Management
Systems (TMS) for clinical practice assessment, outcomes,
and prospective decision support analytics. An integrated
data curation, storage, and analytics portal, titled as HINGE
(Health Information Gateway and Exchange), was built that
can extract and aggregate data from TPS and TMS, physician
clinical notes, and DICOM-RT files. HINGE integrates data
from these disparate sources coherently and standardizes it
for quality assessment and predictive analytics. The HINGE

database is based on well-defined quality measures defined
by radiation oncology disease site experts. HINGE has (a)
tools to aggregate data from physician note templates (b) a
built-in DICOM-RT parser to extract DVH based dose con-
straints, (c) a natural language processing (NLP) module to
extract relevant physician assessments from the clinician
notes, and (c) a decision support and genomics module to
provide supplementary insight to treatment predictions, treat-
ment outcomes, and research hypotheses. The HINGE appli-
cation would reside at each VHA radiation oncology
treatment site and transmit information to a centralized data-
base server thus making big data analytics possible. HINGE
is capable of seamlessly connecting to local IT/medical
infrastructure via network and performs data extraction and
aggregation. The built-in modules (TMS extraction, DICOM
parser, NLP) extract defined clinical data and are easily
extendable. The modules of decision support and genomics
provide preliminary insights into a patient’s treatment and
health profile. Automatic data abstraction with HINGE will
enable real-time assessment of clinical practices and deter-
mine care gaps.

2.G. Mayo Clinic Florida

The Mayo Clinic Florida Department of Radiation Oncol-
ogy has leveraged Mayo Clinic’s unique cost warehouse to
aggregate data on the cost of radiation therapy and other asso-
ciated healthcare costs in the first 2 years after radiotherapy
on approximately 3,000 patients over a 5-year period
incurred. The Mayo cost data warehouse is a unique resource
consisting of linked EMR data and administrative data from
Mayo Clinic’s hospital and clinics in Florida, Minnesota, and
Wisconsin.17 These costs were linked to other sources of
institutional data, such as departmental treatment records cap-
tured through its radiation oncology information system,
demographic, tumor-specific, and outcomes data obtained
through Mayo’s tumor registry, adverse events recorded in
the EMR, and other disease-specific registries containing
nononcological diagnosis data, such as psychiatric comor-
bidities. Waddle et al. have used this cost warehouse to
demonstrate that patients with co-existing psychiatric mor-
bidities utilize the emergency department and inpatient hospi-
talization at rates greater than patients without psychiatric
comorbidities at 6 months and 2 years after radiotherapy. 18

It should be noted that even with many successes, toxicity
capture remains challenging.

2.H. The radiogenomics consortium

The hypothesis that genetic/genomic alterations may func-
tion as surrogate biomarkers of disease response or normal
tissue toxicity represents the basis of the field of radio-
genomics.19 A principal goal of research in the field of radio-
genomics is to identify the genomic markers associated with
the development of adverse outcomes resulting from cancer
radiotherapy. However, in order to accomplish this goal and
definitively discover and validate the critical genomic
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markers, access to the radiotherapy treatment information and
long-term longitudinal follow-up data reporting details as to
adverse outcomes must be obtained for large numbers of
patients. In order to enable the creation of large cohorts of
patients who received radiotherapy, the Radiogenomics Con-
sortium (RGC) was created in 2009, which is a cancer epi-
demiology consortium through the Epidemiology and
Genomics Research Program of the NCI of the NIH.20 The
RGC now has 225 investigators at 132 institutions in 31 coun-
tries. Although the RGC has successfully assembled large
cohorts to perform adequately powered studies, data harmo-
nization remains a problem when multiple cohorts involve
patients treated with a variety of radiotherapy techniques and
evaluated using multiple grading systems. Nevertheless, a
number of large studies have been accomplished in which
substantial amounts of radiotherapy data have been gathered
for studies that typically comprise over a thousand patients.

Four large studies involving the use of Big Data are cur-
rently in progress whose main goal is to discover new SNPs
and validate previously identified genetic biomarkers predictive
of susceptibility for the development of adverse effects resulting
from radiotherapy. The first project involves roughly 6,000 men
treated for prostate cancer, which encompasses multiple cohorts
created by RGC investigators. DNA samples from all of these
men have been genotyped and detailed clinical data are avail-
able with a minimum of 2 years of follow-up.

The second large multicenter study developed by RGC
members is REQUITE (Validation of predictive models and
biomarkers of radiotherapy toxicity to reduce side-effects and
improve quality-of-life in cancer survivors).21 REQUITE
addresses the challenge of data heterogeneity that, as for
other big data projects, requires harmonization of the differ-
ent outcome measures and confounding variables used in
multiple cohorts. This study does not stipulate the radiother-
apy protocols to be used but involves standardized case report
forms across centers and countries to ensure data in identical
categories are collected. A key aspect of REQUITE is the
centralized database that includes pretreatment DICOM and
DVH files.

A third study involves three large cohorts comprising
roughly 4,500 breast cancer patients treated with radiotherapy
for which blood samples and detailed clinical information are
available. These samples and data are available from three
large groups of patients: (a) 1,500 patients treated under a ser-
ies of breast cancer clinical protocols performed at New York
University School of Medicine22–25; (b) ~2,000 breast cancer
patients enrolled though the REQUITE study, and (c) ~1,000
women who receive breast cancer treatment through partici-
pation in RTOG 1005.26

The fourth effort being made is to create a biorepository
with linked clinical data for patients treated with charged par-
ticle therapy (CPT). With the increasing use of CPT, there is
a need to establish cohorts for patients treated with these
advanced technology forms of radiotherapy. In recognition
that the formation of patient cohorts treated with CPT for
radiogenomic studies is a high priority, efforts are underway
to establish collaborations involving institutions treating

cancer patients with protons and/or carbon ions as well as
consortia, including the Proton Collaborative Group, the Par-
ticle Therapy Cooperative Group and the PPCR.

3. STATE OF THE DATA

As noted by the varied workflows highlighted in the use
cases, hospital-wide and radiation oncology-specific EHR
systems are not often designed to facilitate collection of key
data elements for subsequent extraction and use. Typically,
when a patient is referred to radiation oncology, the diagnosis
for that patient has been entered to the hospital EHR system.
Most radiation oncology-specific EHRs can link to the hospi-
tal EHR via HL7 FHIR 27 to sync the diagnosis information.
However, linking the specific diagnosis relevant to a given
treatment plan is often a manual process requiring physician
input. In addition, there is generally not a mechanism to input
the staging information into the radiation oncology EHR or
link metastatic sites to the original diagnosis, which are in
general of interest for outcome analyses. Thus, curation of
the diagnosis and staging information that comes into radia-
tion oncology can be cumbersome. Apart from simple diag-
nosis information, data elements from pathology, radiology,
surgery, internal medicine, and medical oncology that may be
relevant for radiation oncology outcomes are seldom entered
in discrete fields or even templated free-text formats, and are,
therefore, often inaccessible for automatic extraction and use.

As the patient goes through treatment, physicians typically
see the patient weekly for on-treatment visits. However, the
documentation of these visits, including routine toxicity
assessments relies on each individual institution creating their
own clinical practice, datasheets and custom tools for report-
ing. While many institutions are beginning to recognize the
importance of standardized toxicity assessments and PROs
and are putting mechanisms in place to track these data, there
is still inconsistency, which can lead to missing data. Further-
more, once institutions have these tools in place, it can be
challenging to share personalized templates across the vary-
ing platforms and clinical workflows that exist at different
institutions. Adding this to the lack of standardized key data
elements and time points to track for different treatment sites,
multi-institutional datasets are rarely comprehensive.

While some existing standards can be leveraged, it is
important to evaluate if these standards take into account the
needs of all stakeholders and if not, determine if new stan-
dards or perhaps simply minor amendments can be suggested
to minimize the need to start at the ground up. One must rec-
ognize that efforts to standardize common data elements is a
complex and time-consuming endeavor, but one that is ulti-
mately worthwhile. An excellent published discussion and
proposed set of standard patient-reported outcomes within
oncology shows the complexity of these issues.28

Once collected, Big Data will perform a crucial role by
providing accurate outcome data in order to build clinical
decision support systems (CDSS).29 Conversely, decision
models themselves can be used to guide the selection of data
elements to include. In a recent work, for example, a decision
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cost-model in the form of an influence diagram was con-
structed to model the choice between photons and protons for
the treatment of locally advanced nonsmall cell lung cancer.30

By including the monetary cost of managing acute toxicities,
it was possible to determine the ROC characteristics of a bio-
marker for radiosensitivity that a physician would need in
order to select patients for proton radiotherapy when their
total expected cost for protons is below that of photons. As
this cost-model example illustrates, models can guide data
farming efforts by establishing outcomes that are important
for clinical decision-making, and by placing requirements on
how accurately these outcomes need to be known. In this
case, the required sensitivity and specificity were established
for a novel test for radiosensitivity for the decision to lower
treatment costs. This use of models may be especially impor-
tant when resources (e.g., cost of human labor) for populating
databases are limited, allowing efforts to be directed toward
collecting the data that are most likely to lead to improved
clinical decision-making.

This in turn highlights an important issue in constructing
data standards for capturing outcome data, namely, the stan-
dards need to be easily expandable. As big data results are
applied in the clinic, used for clinical decision support, or new
interactions are discovered within the data, these efforts will
inevitably — and rapidly — call for the collection of different
types of data. Adaptability is emerging as a feature of data and
communication standards throughout healthcare, as recognition
grows that developing a standard which attempts to include
everything will fail to do so, and in the process will become
unwieldly. HL7 FHIR, for example, is a communication stan-
dard which follows an 80/20 directive, whereby 80% of the ele-
ments which are implemented are included in the specification
itself.31 These core elements are referred to as resources, and
the remaining elements, called profiles, are definable by indi-
vidual institutions or groups in order to alter or add properties
to resources. Single institution databases can attempt to cover a
greater proportion than 80%, although the principle remains.
By embedding adaptability within a database initially intended
to capture, for example, only traditional treatment planning
data, the database may later be populated with patient-reported
outcomes, “omics” data, or patient preferences in the form of
utilities, rendering it useful in significantly more applications.

4. COLLECTION AND CURATION

In order for the promise of big data to be realized in more
than just individual radiation oncology departments or net-
works of systems, standardized key data element lists and
input schemas are required. For example, the connection of
diagnosis information to treatment courses should be auto-
mated within vended systems and reviewed for quality on an
ongoing basis as part of a routine workflow, such as chart
rounds. In addition, the relevant staging, pathology, and his-
tology information should be automatically extracted from
the EHRs into appropriate fields within the radiation oncol-
ogy information system. Free-text searches or simple NLP
will be necessary for scanned outside hospital reports and for

other information not entered in discrete fields for easy
extraction, particularly for information not generated in radia-
tion oncology and thus beyond our immediate control.

Collection of standardized key data elements related to
toxicity, disease status, and patient-reported outcomes
requires the definition of standards, as discussed above. How-
ever, even with standard elements and data entry tools, there
must be a culture shift in the radiation oncology community
to recognize the importance of comprehensive entry of the
data as part of the standard care for each patient. It is our
responsibility to the field and future patients to make collec-
tion of key data elements related to outcomes a priority.

5. ACCESS AND EXTRACTION

Accessibility and extraction of the clinical data entered by
the physician and patients, in the case of patient-reported out-
comes, is essential. The data storage infrastructure must pro-
vide a mechanism for end users to extract the key data
elements and aggregate the data with other related data, such
as dosimetric information. The system should be designed
with accessible application programming interfaces enabling
user data extraction in the most suitable and meaningful way.
However, data extraction should not be performed on a pro-
ject-by-project basis. Rather, institutional information tech-
nology groups, especially those housed in radiation
oncology, should make it a priority and be proactive in sup-
porting the construction of big data analytics resource sys-
tems (BDARS). This may require a partnership between
radiation oncology users and the IT managers so that domain
knowledge can be shared and the BDARS designed in such a
way that the information is in a complete and usable format.
The development and use of a radiation oncology-specific
ontology will be a key development in ensuring that individ-
ual BDARS can be combined into true sets of big data.

6. SPECIFIC RECOMMENDATIONS FOR
STANDARDIZATIONS

While there is clear work ahead in the community to reach
a point where standard key data elements are recorded rou-
tinely for all patients in radiation oncology, there are first
steps that can be taken. Summarized in Table II are example
standard key data elements that could be collected and thus
should begin to be supported by vended systems. Note that
many such elements would be collected at various time points
including baseline, during treatment, end of treatment, and at
follow-up. Therefore, properly capturing dates and being con-
sistent with relative dates is essential.

While Table II serves as a starting point for standardiza-
tion of requested data elements, collection of the data
requires:

1. Creation of a standardized workflow that enables col-
lection of proper data, at the right time for the right
patient.
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2. Initiation of a working group to develop standards for
classifying recurrence in radiation oncology that
includes spatial and dose information.

7. RECOMMENDATIONS FOR NEXT STEPS
NEEDED TO IMPROVE DATA AVAILABILITY

The current climate is such that “big data” is becoming
a known term and fills one with the promise of solving
mysteries of care with a lot of data and a computer. There
is a focus on data mining, as if the data are sitting wait-
ing to be taken and analyzed. However, it is clear that the
data must be created and structured in a way to make it
possible to harvest and answer important and relevant clin-
ical questions. As more providers buy into the need to
standardize for the sake of quality and process improve-
ment, they will become more committed to inputting
essential common data elements related to outcomes. Ven-
dors must also allow the data to be accessed in a variety
of ways, maintaining HIPAA compliance but no longer
being a major barrier to quality assurance. Improved
automation in both capturing and accessing data within
vended systems is recommended to improve efficiency and
accuracy in capturing outcomes data. Engagement with all
stakeholders, including physicians, legislators, patients, and
patient advocates is essential to design modern approaches
to handling protected health information and drafting poli-
cies and legislation regarding how health-care data can be
used in a safe way so as to maximize health-care value
and efficiency while maintaining security.

a)Author to whom correspondence should be addressed. Electronic mail:
marthamm@med.umich.edu
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