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1  | INTRODUC TION

Ultrasound measurements collected in pregnancy are the best 
available tool for diagnosing growth restriction prior to delivery and 

have proven useful for research studies investigating mechanisms 
of foetal growth restriction and risk factors. Longitudinal measure-
ments allow for investigation of rates of change in growth, identi-
fication of tangential points when growth becomes perturbed, and 
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Abstract
Background: Ultrasound measures are valuable for epidemiologic studies of risk fac-
tors for growth restriction. Longitudinal measurements enable investigation of rates 
of change and identification of windows where growth is impacted more acutely. 
However, missing data can be problematic in these studies, limiting sample size, abil-
ity to characterise windows of vulnerability, and in some instances creating bias. We 
sought to compare a parametric linear mixed model (LMM) approach to multiple im-
putation in this setting with multiple imputation by chained equation (MICE) 
methodology.
Methods: Ultrasound scans performed for clinical purposes were abstracted from 
women in the LIFECODES birth cohort (n = 1003) if they were close in time to three 
study visits (median 18, 26, and 35 weeks’ gestation). We created imputed datasets 
using LMM and MICE and calculated associations between demographic factors and 
ultrasound parameters cross-sectionally and longitudinally. Results were compared 
with a complete-case analysis.
Results: Most participants had ultrasounds at 18 weeks’ gestation, and ~50% had 
measurements at 26 and 35 weeks; 100% had birthweight. Associations between 
demographic factors and ultrasound measures were similar in magnitude, but more 
precise, when either imputed datasets were used, compared with a complete-case 
analysis, in both the cross-sectional or longitudinal analyses.
Conclusions: MICE, though ignoring the non-linear features of the trajectory and 
within subject correlation, is able to provide reasonable imputation of foetal growth 
data when compared to LMM. Because it simultaneously imputes missing covariate 
data and does not require specification of variance structure as in LMM, MICE may 
be preferable for imputation in this setting.
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the examination of multiple parameterisations of growth (eg, head 
size in addition to weight). These facets add significant understand-
ing beyond what was capable with the examination of birthweight 
alone.

Numerous pregnancy cohorts incorporate longitudinal ultra-
sound information in order to assess research questions pertaining 
to foetal growth.1-4 A common problem in these studies is miss-
ingness in ultrasound measurements at one or more time points. 
Complete case analyses will have reduced precision and may incur 
bias if the missing data mechanism depends on the missing growth 
features themselves. Thus, imputation is particularly valuable under 
this context.

One approach to model this data is to create linear mixed 
effects models (LMM) with polynomial or spline terms for ges-
tational age that capture non-linearity in the growth trajectory 
and to then extract predicted values for individuals from these 
models, either at all time points or at missing time points. This 
is common for parametric analysis of the growth curve, although 
less commonly used as a tool for imputation. While appropriate 
for use in this setting, LMM can be computationally intensive and 

require careful specification of the mean and variance structure. 
In addition, LMM cannot simultaneously handle imputation of 
missing covariate data.

An alternative approach may exist in the Multiple Imputation 
by Chained Equation (MICE) methodology. MICE imputes miss-
ing values in a dataset under conditionally specified models using 
a Bayesian sampling framework, and can be implemented easily 
using the R package mice.5,6 MICE has the advantage of imputing 
both covariate and foetal growth data during the imputation pro-
cess, with a sequential conditional imputation strategy cycling it-
eratively through univariate imputation models. MICE is applied to 
impute a variety of types of missing data but, to our knowledge, 
has not been examined in the context of missing foetal growth 
measurements. Presumably, this is due to the perception that the 
methods developed for creating foetal growth curves more accu-
rately predict missing growth measurements as a trajectory over 
time compared to algorithms implemented in MICE, which does not 
utilise temporal information in an explicit way. However, the com-
parative performance of these two different methods has not been 
examined quantitatively.

TABLE  1 Gestational age and foetal growth measurements by visit in the original (N = 1003), LMM imputed (N = 897), and MICE imputed 
(N = 1003) study populations

N missing (%) Original mean (SD) LMM mean (SD) MICE mean (SD)

Visit 1

Gestational age (wk) 86 (8.6) 10.6 (2.1) 10.6 (2.1)

Crown-rump length (mm) 86 (8.6) 41.2 (21.0) 41.1 (21.0)

Visit 2

Gestational age (wk) 111 (11.1) 18.1 (1.1) 18.1 (1.1) 18.1 (1.1)

Abdominal circumference (mm) 112 (11.2) 126.7 (14.7) 126.5 (14.4) 126.4 (14.5)

Head circumference (mm) 111 (11.1) 148.5 (14.7) 148.3 (14.3) 148.3 (14.5)

Femur length (mm) 111 (11.1) 26.5 (3.7) 26.5 (3.6) 26.5 (3.7)

Estimated foetal weight (grams) 112 (11.2) 254.5 (60.2) 253.6 (58.9) 253.2 (59.0)

Visit 3

Gestational age (wk) 560 (55.8) 26.4 (1.9) 26.4 (1.9) 26.3 (1.9)

Abdominal circumference (mm) 560 (55.8) 221.6 (23.7) 222.1 (23.5) 220.6 (22.7)

Head circumference (mm) 560 (55.8) 246.9 (22.8) 247.2 (21.7) 246.5 (21.6)

Femur length (mm) 560 (55.8) 49.4 (5.4) 49.5 (5.2) 49.2 (5.3)

Estimated foetal weight (grams) 601 (59.9) 1049.8 (266.0) 1056.6 (293.0) 995.0 (273.9)

Visit 4

Gestational age (wk) 417 (41.6) 35.2 (1.7) 35.2 (1.7) 35.1 (1.8)

Abdominal circumference (mm) 417 (41.6) 317.5 (25.2) 317.5 (23.7) 318.0 (24.8)

Head circumference (mm) 428 (42.7) 316.5 (13.8) 316.5 (13.0) 316.5 (13.8)

Femur length (mm) 417 (41.6) 67.8 (4.2) 67.7 (4.0) 67.5 (4.6)

Estimated foetal weight (grams) 417 (41.6) 2684.5 (524.8) 2619.3 (508.8) 2684.3 (517.8)

Delivery

Final gestational age (wk) 1 (0.1) 38.5 (2.3) 38.6 (2.3) 38.5 (2.3)

Birthweight (grams) 0 (0) 3233.6 (631.6) 3241.9 (623.1) 3233.6 (631.6)

The sample size reduces because for LMM method we only used patients who have complete covariates and at least one gestational age observed 
whereas MICE imputes the growth parameters and covariates sequentially.
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2  | METHODS

LIFECODES is a prospective birth cohort conducted at Brigham and 
Women’s Hospital (BWH) in Boston, Massachusetts, USA. Women 
are eligible if they are at least 18 years of age, are recruited prior to 
15 weeks’ gestation, and plan to deliver at BWH.7 The present analy-
sis includes data on pregnancies from singleton livebirths delivered 
2006-2008 (n = 1003).

Gestational age at delivery is calculated by combining self-
reported date of last menstrual period with early first trimester ul-
trasound dating.7 All pregnancies at BWH receive a second trimester 
(~18 weeks) ultrasound scan for assessment of anthropometry, in-
cluding abdominal and head circumference, femur length, and esti-
mated foetal weight (EFW; calculated from the formula of Hadlock).8 
In addition, many pregnancies have additional ultrasounds per-
formed outside of the standard window. For the present analysis, 
ultrasound scans were abstracted if they were close in time to three 
study visits (Visits 2-4; median 18, 26, and 35 weeks’ gestation). 
Birthweight was recorded at delivery for all pregnancies. All foetal 
growth measurements were imputed and modeled in their raw form 
(ie, not z-scored).

First, we fitted LMM for each anthropometric parameter using 
the lme function in the nlme package9 in R with model selection 
based on the Akaike Information Criterion (AIC; additional details 

in Data S1). We created 50 datasets with imputations for missing 
measurements based on the fitted model parameters. Gestational 
age for the missing measurement was randomly drawn from a nor-
mal distribution.

Second, we created another set of 50 imputed datasets using the 
mice package in R (Data S2).5,6 Foetal growth variables used in the 
imputation procedure for our dataset along with their missing per-
centages are listed in Table 1. Additionally, missing covariates were 
imputed including: health insurance provider (n = 30); body mass 
index (BMI, n = 14); alcohol use in pregnancy (n = 20); and infant sex 
(n = 1). Other covariates without missingness were included as well, 
consistent with those used in LMM.

We compared the imputation methods by examining empir-
ical associations between growth measurements and factors 
known to be associated with foetal growth,7 including: maternal 
age, BMI, infant sex, smoking, and preeclampsia. For the cross-
sectional analysis, we examined all factors in one model in re-
lation to each foetal growth measurement (eg, EFW) separately 
using linear regression. For the longitudinal analysis, we utilised 
the same growth curve models that were fitted for the LMM im-
putation approach as our analysis model. Finally, we examined 
rate of change in growth by day of gestation by including an inter-
action term between gestational age and each co-factor in LMM. 
We performed these analyses using the original data (un-imputed, 

F IGURE  1 Observed versus imputed 
measurements for A, LMM compared 
to B, MICE imputed measurements of 
estimated foetal weight
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complete-case analysis), LMM-imputed data, and MICE-imputed 
data for comparison. Methods for pooling estimates from im-
puted datasets are described in Data S3 and were the same for 
LMM and MICE.

3  | RESULTS

Characteristics of the study population have been presented previ-
ously.7 Only ~10% of participants were missing measurements from 
Visit 2 and ~56% and 40% from Visits 3 and 4, respectively (Table 1). 
All participants had birthweight recorded at delivery.

Following imputation, mean and standard deviation of growth 
measurements by either approach were similar to those observed 
in the original data (Table 1, Figures S1 and S2 in Data S4), except 
for EFW, where imputed LMM data were generally greater in magni-
tude than observed measurements from Visit 3 and were more var-
ied (Figure 1). Differences in imputed measurements were generally 
normally distributed and similar across the duration of pregnancy 
(Figure S3 in Data S4).

Table 2 shows a condensed set of associations between ma-
ternal and pregnancy factors and EFW by imputation method for: 
1) Cross-sectional analyses (Visit 3 only); 2) Repeated measures 
analysis; and 3) Rate of change analysis. Expanded results with 

additional visits (cross-sectional) and other ultrasound parame-
ters (all methods) are presented in Tables S1-S4 in Data S4. We 
expected to see similar effect estimates with more precision in 
both imputed models, and this was largely the case. For Visit 3, 
confidence intervals for almost all associations were narrowed in 
LMM- or MICE-imputed models compared to those observed in 
the original data, with tighter intervals observed in LMM-imputed 
models. In longitudinal models, precision was generally, but not al-
ways, improved in LMM- and MICE-imputed models. In models of 
weight, precision was best in MICE-imputed models. Finally, in rate 
of change analyses, we observed very similar interaction terms 
and precision in the original data as compared to LMM- and MICE-
imputed data (Table 2).

4  | COMMENT

Ultrasound measures of foetal growth during gestation have 
the potential to shed light on the mechanisms and causes of 
growth restriction and overgrowth. These data are more pre-
cise, can capture individual anthropometric measurements (eg, 
head circumference), and allow for calculation of rates of change 
in pregnancy or specific windows of vulnerability.10-13 While 
some studies have utilised imputation for ultrasound data, most 

TABLE  2 Adjusteda associations between pregnancy factors and estimated foetal weight capturing cross-sectional associations at visit 3 
(median 26 wk gestation), longitudinal associations across pregnancy, and rate of change in growth by pregnancy factors per day

Original data 
β (95% confidence interval)

LMM Imputed 
β (95% confidence interval)

MICE Imputed 
β (95% confidence interval)

Cross-sectional

Maternal age (y) 1.9 (−0.7, 4.5) 1.8 (−0.3, 3.8) 1.2 (−0.6, 3.1)

Maternal BMI (kg/m2) 4.7 (2.5, 6.8) 6.1 (4.3, 7.9) 4.0 (2.4, 5.6)

Infant sex −2.5 (−27.3, 22.2) −41.1 (−60.3, −21.9) −9.2 (−27.4, 8.9)

Maternal smoking −9.8 (−61.5, 41.9) −45.0 (−88.8, −1.2) 5.9 (−35.1, 46.8)

Preeclampsia 3.1 (−38.3, 44.6) −22.3 (−59.6, 15.0) −6.0 (−37.7, 25.8)

Longitudinal

Maternal age (y) 0.6 (−2.1, 3.3) 0.5 (−2.1, 3.0) 1.2 (−1.1, 3.4)

Maternal BMI (kg/m2) 5.4 (3.1, 7.7) 4.1 (1.8, 6.4) 5.1 (3.1, 7.1)

Infant sex −42.7 (−67.8, −17.5) −40.9 (−65.1, −16.7) −40.7 (−62.0, −19.4)

Maternal smoking −43.7 (−100, 12.9) −34.5 (−89.7, 20.7) −26.2 (−74.2, 21.8)

Preeclampsia −9.9 (−57.7, 38.0) −8.2 (−55.2, 38.8) −13.1 (−54.5, 28.2)

Rate of change by dayb

Maternal Age × GA 0.4 (0.23, 0.58) 0.4 (0.2, 0.5) 0.3 (0.2, 0.5)

Maternal BMI × GA 0.6 (0.39, 0.75) 0.5 (0.4, 0.7) 0.5 (0.3, 0.7)

Infant gender × GA −5.5 (−7.4, −3.5) −5.3 (−7.0, −3.6) −4.9 (−6.8, −3.0)

Maternal smoking × GA −6.8 (−11.2, −2.4) −6.9 (−10.9, −3.0) −4.9 (−9.3, −0.6)

Preeclampsia × GA −1.1 (−5.1, 3.0) −0.5 (−4.0, 3.0) −0.4 (−4.2, 3.4)

aAll models additionally adjusted for maternal race, health insurance provider.
bA separate model with covariate by time interaction was fitted for each covariate of interest. In particular, the model for the growth parameter Yij is 
specified as Yij=β0+β1tij+β2tij

2
+β3Xi+β4Xi ⋅ tij+γCi+b0i+b1itij+εij, where tij denotes gestational age of i-th subject at j-th visit, Xi denotes the co-

variate of interest (eg, maternal age), Ci denotes the rest of the covariates of i-th subject.
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perform complete-case analyses or methods that handle drop-
outs when they are missing at random.3,14,15 This often limits our 
power to characterise windows of susceptibility. Acknowledging 
that MICE is a suitable approach in this setting could extend its 
use and the knowledge to be gained from analyses using ultra-
sound data.

The choice to impute over using complete case-analyses or 
missing outcome data also depends on the amount of missingness 
in the dataset and whether missingness is dependent on the ob-
served variables (missing at random) or unobserved outcome (not 
missing at random). Our improved precision rarely identified asso-
ciations that would have gone unnoticed in complete-case results, 
which may be a result of low proportions of missing data. We can-
not comment on the bias incurred under each approach without a 
gold-standard. However, both imputation methods can handle data 
that are missing at random. We posit that using an imputed dataset 
may be less biased in this particular setting (ie, when ultrasounds 
are collected for clinical rather than research purposes) because 
some measurements may be collected specifically because the 
clinician anticipates undergrowth of the foetus. Finally, it should 
be clear that while imputation is appropriate for epidemiologic re-
search for exploring associations, it is not designed to be used for 
individual-level prediction.

5  | CONCLUSION

In a comparison of two approaches for imputing missing ul-
trasound measurements of foetal growth, we found the MICE 
method performed as well as the LMM approach, with results 
from both imputed datasets showing improved precision com-
pared to complete-case analyses. Because of the relative ease 
of implementing MICE, since it does not require specification 
of non-linear terms to capture the growth trajectory or speci-
fication of the variance-covariance structure, and because it 
can simultaneously handle imputation of missing covariate data, 
MICE can be applied in future work utilising ultrasound data of 
foetal growth with missing measurements. Future longitudinal 
studies of foetal growth may consider MICE as an imputation 
approach, although caution should be taken with extension to 
other populations.
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