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Species selection. For each of the functions displayed in Fig. S1, we ranked each species 

composition relative to the others in the experiment. Ranks were assigned such that the best 

performer is rank 1 and the worst performer is rank 0. For each of the possible subsets of four 

species, we added together the performance ranks for all monocultures, two-species polycultures, 

and the four-species polyculture (see Experimental design). We then selected the combination of 

four species (A, B, D, and F) that exhibited the highest total ranks (Table S1). It is important to 

note that this species selection method does not necessarily optimize the chances of detecting 

overyielding or other effects of diversity. Indeed, the mean performance rank for the four-species 

polyculture ABDF itself was 0.46. 

 

Supporting Information Fig. S1. Heatmap showing the performance rank of each species 

composition in previously published experiments (Hietala et al., 2017; Narwani, Lashaway, 



Godwin et al., Global Change Biology Bioenergy (Supporting Information) 2 

Hietala, Savage, & Cardinale, 2016). Species codes are A=Ankistrodesmus falcatus, B=Chlorella 

sorokiniana, C=Pediastrum duplex, D=Scenedesmus acuminatus, E=Scenedesmus ecornis, 

F=Selenastrum capricornutum.  

 

  

Supporting Information Fig. S2. The four-species combination ABDF ranked highest and was 

selected for the present experiment. Species codes are A=Ankistrodesmus falcatus, B=Chlorella 

sorokiniana, C=Pediastrum duplex, D=Scenedesmus acuminatus, E=Scenedesmus ecornis, 

F=Selenastrum capricornutum.  
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Supporting Information Fig. S3. Schematic diagram showing the spatial arrangement of the cattle 

tank ponds. Inset letter codes denote the inoculation treatments. Gray trapezoids represent air 

pumps (Pentair Aquatic Ecosystems, Pond Master AP-100) that supplied compressed air to 

groups of four ponds through vinyl tubing. Cattle tanks were 1.8 m in diameter, spaced 1 m apart 

within blocks, and blocks were separated by 3 m.    
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Supporting Information Fig. S4. Results of randomization tests comparing the multifunctionality 

of mono- versus polycultures. For each panel, we counted the number of functions performed 

above each threshold for mono- and polycultures, then compared the difference between those 

counts to the distribution of differences that resulted from randomizing the performance ranks. 

The horizontal axis displays the performance ranks and the vertical axis shows the proportion of 

iterations where the difference was equal to or greater than the observed difference (i.e. p-values). 

Red symbols are used to highlight observed differences that were greater than the 95th percentile 

of differences based on randomization (i.e. p<0.05). 

 

  



Godwin et al., Global Change Biology Bioenergy (Supporting Information) 5 

 Dissolved nutrients. We measured the concentrations of dissolved inorganic nutrients by 

centrifuging the cells and freezing the decanted supernatant at -20ºC. We measured soluble 

reactive phosphate using the ascorbic acid molybdenum method (American Public Health 

Association, 1995). We measured nitrate (nitrate + nitrite) using enzymatic conversion to nitrite 

(Nitrate Elimination Company, AtNAR-RPK), followed by the Naphthyl(ethylene)diamine 

dihydrochloride method (Ringuet, Sassano, & Johnson, 2011). Nitrate and phosphate 

measurements were referenced against a NIST-traceable standard (Hach Company). All water 

chemistry measurements were performed using a Biotek Synergy H1 plate reader.  

There was no significant effect of species richness or species composition on nitrate 

concentration at week 5, but at week 10 the monoculture of Selenastrum (F) and polycultures 

dominated by Selenastrum (e.g. AF) had significantly higher amounts of nitrate remaining than 

the other treatments (Fig. S6, Table S1). Drawdown of phosphate was proportionally less than 

for nitrate and there was no significant effect of species richness at either week 5 or week 10. 

 

Light attenuation. We measured attenuation of photosynthetically active radiation (PAR) by the 

cultures at weeks 5 and 10 using a spectrophotometric plate reader (Biotek Synergy H1). 

Samples and deionized water blanks were added to 48-well clear polystyrene microtiter plates 

and the absorbance was measured from 400 to 700 nm in 5 nm increments. For each wavelength, 

we used the water-corrected absorbance and the effective path length of 1.254 cm to estimate the 

extinction coefficient k (cm-1) following Wetzel and Likens (2000). Because the spectrophometer 

does not measure light that is scattered by particles, but this light is still available for 

photosynthesis within the water column (Wetzel, 2001), we performed in-situ spectral analyses 

at week 10 to validate the spectrophotometer-derived estimates of k.  
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During full direct sunlight, we used a submersible spectrometer (Ocean Optics Jaz) to 

measure light intensity spectra at 0, 2, 4, 8, 16, and 32 cm. For all wavelengths and depths where 

there was detectable intensity, we computed the extinction coefficient k as the absolute value of 

the slope of log intensity versus depth. Three of the ponds did not yield complete in situ PAR 

spectra below 2 cm and thus did not provide reliable estimates of k at all wavelengths. The two 

methods for estimating k showed good correspondence when averaged across the entire PAR 

spectrum (r2=0.88) or averaged across only the chlorophyll-a absorbance peaks at 430 to 450 nm 

(r2=0.81) and 670 to 690 nm (r2=0.82). 

The species compositions differed substantially in terms of PAR light attenuation 

(p<0.001, Fig. S5). Ponds inoculated with Selenastrum (F) as a monoculture had significantly 

higher extinction coefficients than the other monocultures, resulting in a >95% attenuation of 

PAR within the first two centimeters of the water surface.      
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Supporting Information Fig. S5. Box-whisker charts showing the dissolved nitrate (A), dissolved 

phosphate (B), and PAR extinction coefficient (C) for replicate cattle tanks in each inoculation 

treatment. Light shading represents the values at week 5 and darker shading represents the values 

at week 10. Horizontal dashed lines denote the original nitrate and phosphate concentrations in 

the Bold-3N culture medium.  
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Table S1. Results of general linear models for nitrate concentration, phosphate concentration, 

and light attenuation coefficient. Effects of species combination (Combo) were nested in species 

richness (SR). Subscripts are used to display the numerator and denominator degrees of freedom 

(e.g. Fi,j). b Denotes spatial block was included as a random effect in the minimum adequate 

model and p denotes pond identity was included as a repeated measures random effect in the 

minimum adequate model. 

Response 
variable 

SR SR|Combo Time SR*Time Combo*Time 

Nitrate p F2,75=0.64, 
p=0.53 

F8,75=0.87, 
p=0.55 

F1,43=690, 
p<1x10-15 

F2,43=2.94, 
p=0.06 

F8,43=4.8, 
p<0.001 

Phosphate F2,132=0.03, 
p=0.97 

F8,132=2.63, 
p<0.02 

F1,132=18.9, 
p<0.001 

F2,122=0.04, 
p=0.96 

F8,122=0.78, 
p=0.62 

PAR (k) b,p F2,61=0.35, 
p=0.71 

F8,61=4.11, 
p<0.001 

F1,61=9.97, 
p<0.01 

F2,61=0.72, 
p=0.49 

F10,61=2.54, 
p<0.02 
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Water temperature. Temperature recorders were deployed in one pond within each block for the 

duration of the experiment (Hobo, Onset Computer Corporation). Air temperatures were 

obtained from a weather station located 18 km of the reserve. Pond temperature varied less than 

air temperature and ponds were generally within ±1ºC of each other. Temperature variation over 

the course of the experiment is summarized in Fig. S6.  

 

Supporting Information Fig. S6. Summary of temperature measurements from the ponds. Mean 

temperature in blocks 1&2 and blocks 3&4 over the course of the experiment (a). Comparison of 

pond temperature and air temperature during a representative time period (b). Vertical gridlines 

are at 0:00 local time (midnight). Distribution of maximum temperature range observed among 

the ponds that contained temperature loggers (c). Proportion of days during the experiment that 

reached or exceeded maximum temperatures in blocks 1&2 and blocks 3&4 (d). 
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Growth rate estimates. The exponential growth rate for each pond was estimated from the 

increase in biomass between inoculation (~1 mg L-1) and the first two weeks of the experiment 

using the following equation: 

𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =
log 𝑏𝑖𝑜𝑚𝑎𝑠𝑠!!

𝑏𝑖𝑜𝑚𝑎𝑠𝑠!!
𝑡2− 𝑡1  

where biomasst1 represents biomass at time 1 (mg L-1), biomasst2 represents biomass at a 

subsequent time point (mg L-1), and t2 - t1 is the number of days between measurements. The 

maximum observed growth rates are displayed in Fig. S7. We tested for differences among 

species compositions using a mixed-effects linear model with species composition as a fixed 

effect and block as a random effect. This model identified significant differences in maximum 

growth rate among the species compositions (F10,63=5.58, p<10-4). Post-hoc tests showed two 

species compositions with poor growth rates: species composition A had significantly lower 

growth rates than F, AB, AF, and BF and species composition AD had significantly lower 

growth rate than B, F, AB, AF, BD, and BF. 
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Supporting Information Fig. S7. Box-whisker charts showing the maximum growth rate of each 

species composition, between the time of inoculation and week 2 of the experiment.  

Styling and species codes are described in Fig. 1. 
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