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The software program BAMM has been widely used to study rates of speciation, extinction, and phenotypic evolution on phyloge-

netic trees. The program implements a model-based clustering algorithm to identify clades that share common macroevolutionary

rate dynamics and to estimate parameters. A recent simulation study by Meyer and Wiens (M&W) argued that (1) a simple infer-

ence framework (MS) performs much better than BAMM, and (2) evolutionary rates inferred with BAMM are poorly correlated

with true rates. I address two statistical concerns with their assessment that affect the generality of their conclusions. These

considerations are not specific to BAMM and apply to other methods for estimating parameters from empirical data where the

true grouping structure of the data is unknown. M&W constrain roughly half of the parameters in their MS analyses to their true

values, but BAMM is given no such information and must estimate all parameters from the data. This information disparity results

in a substantial degrees of freedom advantage for the MS estimators. When both methods are given equivalent information,

BAMM outperforms the MS estimators.

Within ecology and evolution, there is great interest in model-

based methods for data partitioning. Such methods allow

researchers to infer hidden group structure from empirical data

and to estimate associated parameters of interest. For example,

model-based clustering is widely used to classify individuals into

subpopulations that differ in phenotypes, allele frequencies, and

other traits (e.g., STRUCTURE: Pritchard et al. 2000; BAPS:

Corander et al. 2008; Gaussian mixture modeling: Cadena et al.

2017). In phylogenetics, model-based partitioning is widely used

to identify and accommodate variation in the rate of molecular

evolution among sites and across the branches of phylogenetic

trees (Drummond and Suchard 2010; Heath et al. 2011; Lanfear

et al. 2014). Model-based data partitioning can reveal heterogene-

ity in the processes of diversification and trait evolution and has

thus been used extensively in macroevolutionary studies (Alfaro

et al. 2009; Eastman et al. 2011; Venditti et al. 2011; Uyeda

and Harmon 2014). Such analyses typically attempt to partition

phylogenetic trees into nonoverlapping subclades that differ in

parameters of interest related to either species diversification or

to the tempo and mode of trait evolution.

The software program BAMM (Rabosky 2014) is a Bayesian

framework for inferring heterogeneity in rates of species diversi-

fication and phenotypic evolution across phylogenetic trees. The

underlying parametric model in BAMM assumes that phyloge-

netic trees have been shaped by a collection of distinct macroevo-

lutionary rate regimes. The software implementation uses

reversible jump Markov chain Monte Carlo to simulate posterior

distributions of rate shift configurations that are consistent with

the observed data (Rabosky 2014). Although the mathematics and

implementation algorithms underlying BAMM are complex, the

method is essentially a cluster analysis that provides both param-

eter estimates and probabilistic measures of support for inferred

group structures. The BAMM algorithm, model assumptions, and

performance have been described in detail elsewhere (Rabosky

2014; Rabosky et al. 2014a; Mitchell and Rabosky 2016; Rabosky

et al. 2017).

A recent article in Evolution (Meyer and Wiens 2017;

hereafter, M&W) posed an important and timely problem in

macroevolutionary inference: given a phylogenetic tree and a set

of named higher taxa, how should we estimate diversification
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rates for those clades? M&W simulated phylogenetic datasets that

contained higher taxonomic categories and diversification rate

heterogeneity, and they assessed how well several methods for rate

estimation fared at recovering the true rates for each (simulated)

higher taxon. Specifically, they compared parameter estimates

from BAMM to those obtained from a much-simpler “method-

of-moments” estimator (Magallon and Sanderson 2001) and

found that these simple estimates (hereafter, MS) performed sub-

stantially better than BAMM. The MS estimators can be used to

compute the maximum likelihood estimate of a clade’s net diver-

sification rate under a constant rate birth–death process, given the

stem age and species richness for the clade. M&W concluded that

BAMM provides unreliable parameter estimates and should not

be used. This conclusion is at odds with those drawn from a more

extensive simulation study (Rabosky et al. 2017), which found

that diversification inferences from BAMM were both reliable and

consistent.

In this article, I demonstrate that the primary conclusions

of M&W are not justified due to several concerns in their ex-

perimental design that largely predetermine the outcome of their

assessment. One issue in M&W involves a comparison between

nonequivalent inference frameworks that differ substantially in the

amount of information they are given by the investigators. Specif-

ically, M&W provide the MS estimators with perfect information

about the locations of rate shifts across the tree and simply com-

pute the rate estimates for each true group in the dataset. BAMM is

provided with no information about the true locations of rate shifts

and must estimate group structure across the phylogeny prior

to parameter estimation. The MS analyses are performed after

M&W have set the values of many parameters to their true values;

BAMM is forced to estimate the same parameters from the data,

and the researchers do not account for this difference in parame-

ters. M&W thus perform an uncorrected comparison between two

modeling frameworks that differ substantially in their degrees of

freedom, and the outcome is clear even before the experiment is

performed.

A second concern regarding M&Ws experimental design is

more nuanced, but involves the conflation of hypothesis testing

and parameter estimation. Their analyses confound small effect

sizes across treatment groups with error in parameter estimates

and are thus unable to assess parameter reliability. In the extreme,

this latter issue allows treatment groups with small effect sizes

and/or highly unbalanced experimental designs to generate low

correlations between true and estimated parameter values, even

as absolute error in the parameter estimates approaches zero.

All methods for jointly inferring group structure and estimating

parameters are susceptible to these assessment concerns, includ-

ing nearly all model-based frameworks for data partitioning in

evolution, ecology, and systematics.

SCOPE OF THE PRESENT ARTICLE

M&W includes a large number of analyses, most of which are

affected by the two statistical issues I will describe. Hence, I

will only revisit a subset of their results and will not repeat the

same summaries across all combinations of parameters and sim-

ulation conditions. I will focus primarily on the comparison be-

tween net diversification rates (speciation minus extinction) as

estimated with BAMM and those obtained with MS estimators.

The MS results are available through Supporting Information ta-

bles that accompany M&W. I also repeated the BAMM analysis

exactly as described by M&W for the first dataset (tree “A”) in

their article and use these results below. The BAMM results I ob-

tained from my independent analysis yield nearly identical results

to those reported by M&W. The relationship between subclade

mean diversification rates obtained in my reanalysis versus those

provided by M&W (rows 1–10 in M&W Table S1) contain only

trivial numerical discrepancies (linear regression: slope = 1.015,

intercept = −0.002, r2 = 0.999). None of the analyses and re-

sults performed below relate to technical aspects of the BAMM

analyses, and M&W appear to have executed their BAMM analy-

ses in a manner consistent with developer recommendations. All

computer code and results from this article are available through

Dryad, doi: https://doi.org/10.5061/dryad.g52m65t.

EXPERIMENTAL DESIGN IN M&W

M&W compare the performance of BAMM and MS estimators

across a set of 20 simulated phylogenetic datasets. Each simulated

phylogeny was created by first generating a backbone tree of 10

tips. Each of these 10 tips was destined to represent a subclade

with a unique speciation–extinction parameterization. For each

of the 10 tips, M&W sampled speciation and relative extinction

parameters from a uniform distribution. Complete species-level

phylogenies were then simulated under the sampled parameters,

such that the simulated subtrees had a stem clade age that was

identical to the corresponding terminal branch length. M&W then

replaced each of the original 10 tips with a subtree generated under

a unique speciation–extinction parameterization. Each phylogeny

thus contains a backbone tree and exactly 10 “rate shifts,” and

each shift defines a subclade that contained between 10 and 1401

tips. For consistency of terminology, I refer to each clade with

distinct rate parameters as a “rate class” or “true group”; there are

exactly 10 true groups per tree that can be discovered by BAMM

or any other method.

For each simulated phylogeny, M&W then simulated

posterior distributions of macroevolutionary rate regimes using

BAMM. They summarized their BAMM analyses by computing

mean rates of speciation, extinction, and net diversification

for each of the 10 true groups using summary functions from

BAMMtools (Rabosky et al. 2014b). The mean rate for a

given true group is simply the mean of the marginal posterior
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distribution of rates for all branches that belong to the group. For

BAMM to accurately estimate distinct rates for each of the 10

groups, it would first be necessary for the program to correctly

infer the grouping structure in the data (e.g., the locations of all

10 true groups). If BAMM fails to infer any groups (e.g., finds

no shifts), then the rates estimated for all groups will be similar.

To determine whether the BAMM estimates are “good” or

“bad,” M&W perform a second analysis where they computed

the analytical MS estimates of diversification rate for each of the

10 true groups. That is, they cut the tree into the 10 groups to

which they have assigned distinct rate parameters, and estimate

rates separately for each group. The MS estimates are far less

complex than BAMM: for stem clades and with zero extinction,

the MS estimate of diversification rate is simply the logarithm of

species richness divided by time. To summarize results, M&W

compute the proportional error of the rate estimates for each of

the 10 true groups for each tree and express it as a percentage.

This is computed as (RE − RT)/RT, where RT are RE are the true

and estimated rates for the focal group. They find that the MS

estimators have lower error than the BAMM estimates (M&W:

Fig. 1). They also find that the slopes of the relationships between

true and estimated rates across all groups are more accurate for

the simple MS estimators than for BAMM (M&W: Table 1),

and that MS estimators are better able to detect true variation in

diversification rates (M&W: Fig. 5).

NONEQUIVALENCE OF INFERENCE MODELS IN M&W

The statistical comparisons between BAMM and MS made in this

fashion are not equivalent and strongly favor MS because the MS

estimators are informed of the precise number and location of the

true groups (e.g., rate shifts). Figure 1 summarizes the difference

between these comparisons as performed by M&W. Consider a

scenario in which a researcher is given a large set of body size

measurements and asked to estimate the number of true popula-

tions from which the measurements were drawn, along with the

means of those populations, in the absence of any other identi-

fying information. To address this problem, we might perform a

clustering and estimation analysis by modeling the distributions

of sizes as a mixture of distributions (e.g., Gaussian clustering).

Now, suppose that we are given additional information about each

observation in the dataset: specifically, information about the pre-

cise subpopulation from which each of the measurements was

drawn is now provided. We then perform a secondary analysis

where the original data are simply partitioned by true subpopula-

tion membership, and the sample means are computed for each

of the true groups.

If we somehow knew the true means of each population,

we would likely observe that the second approach—partitioning

the data with true grouping information in hand—would provide

greater accuracy than the mixture modeling approach, because

the mixture model approach must estimate group structure from

the data. This is precisely the comparison used by M&W: they

provide the MS estimators, but not BAMM, with the true group

structure of the data. For MS estimators, M&W compute aver-

ages after partitioning the data into subsets for each rate shift, and

they only know where the shifts have happened because M&W

created the simulation scenarios. It is unsurprising that MS esti-

mators outperform BAMM under such conditions, and the M&W

comparison is equivalent to comparing statistical models that dif-

fer by a large number of parameters without controlling for the

difference. Many statistical methods for partitioning data into

groups and estimating population parameters would likely appear

to perform poorly under such an assessment scenario.

Because true locations of rate shifts are generally unknown,

assessing the performance of MS estimators under simple sce-

narios where rate shift locations are known without error—as in

M&W—should provide a highly selective view of their perfor-

mance. There is presently little evidence that named higher taxa

(e.g., genera, families, phyla) are universally or even largely con-

cordant with macroevolutionary rate shifts (Smith et al. 2011), so

it is essential to understand how MS estimators perform relative to

BAMM when applied to clades that may or may not be associated

with rate shifts.

FAIR COMPARISONS BETWEEN MS AND BAMM

To determine the best method for estimating diversification rates

for higher taxa, there are several approaches M&W could have

used to perform more-or-less equivalent comparisons between MS

estimators and BAMM. An obvious control experiment, which

was not performed by M&W, is to repeat their analyses for clades

other than the precise set that they have seeded with rate shifts.

For empirical datasets, we typically have no knowledge of the

potential rate shift locations. Hence, it is important to know how

the M&W inference framework would fare if applied to clades

that are sampled at random with respect to their “true group”

assignment. To perform this comparison, I computed stem and

crown MS estimates for all clades with at least 10 taxa from the

first tree (tree “A”) from M&W (Fig. 2, top row). The threshold

of 10 taxa was chosen because M&W required their simulated

shift clades to also contain at least 10 extant taxa. Then, using the

results from a single BAMM analysis of the complete phylogeny

(e.g., including all clades), I summarized the BAMM estimates of

net diversification rate separately for all subclades exactly as in

M&W using the BAMMtools getCladeRates function (Rabosky

et al. 2014b). If BAMM found no evidence for rate variation at

the scale of the full tree, then the mean rates computed for each

subclade would be nearly identical. My results for this exercise

are thus those that M&W would have obtained if they applied

MS estimators to all clades, rather than selectively applying those

estimators only to those clades to which they had assigned rate
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a
b

c

Simulated tree with
three rate shifts (a, b, c)

Input given to MS estimators:
Tree partitioned by true shift group

Input given to BAMM:
Tree with no further information

Figure 1. Illustration of testing procedure used by M&W. Left: true phylogeny with three rate shifts (a, b, c), each with a distinct

speciation–extinction parameterization. Middle: MS estimators are applied to the set of clades with rate shifts and no others. Right:

BAMM is used to analyze the complete tree, but no information is provided about the number and location of rate shifts. Following

completion of the analysis, an a posteriori summary is performed where the mean rate is extracted for the three true shift clades. If

BAMM fails to identify significant differences in rates between true shift groups, as might occur in this example for clades (a) and (b),

the mean rates for each clade will be similar and nonindependent, because BAMM will assume that the clades were generated under a

shared diversification process.

shifts. For the first tree (tree “A”), there are a total of 548 clades

with at least 10 tips; by restricting their assessment to the 10

true groups, M&W tested estimation bias for a select set (2%) of

potential higher taxa.

When MS estimators are applied to this more general set of

clades, they perform far worse than BAMM (Fig. 2). The mean

absolute proportional error in BAMM estimates for such clades

is 12.2% versus 38.7% for MS stem estimators and 47.3% for

MS crown estimators. The reason for the poor performance of

the MS estimators, relative to BAMM, is that the MS estimators

are highly sensitive to stochastic variation in species richness due

to the diversification process itself. If clades are simulated under

a fixed speciation–extinction parameterization, one will observe

stochastic variation in richness, and the MS estimators will track

this variation closely. BAMM is more conservative because it uses

information from the full tree when determining whether a given

subclade is sufficiently distinct (e.g., significantly different) such

that it should be assigned its own rate parameters.

The preceding exercise is not offered as a serious com-

parison of BAMM and MS estimators: it merely highlights the

problems with comparing inference frameworks where one ap-

proach (MS) is given prior knowledge of true shift locations, but

where the other (BAMM) is given only the data that would typ-

ically be available to researchers in practice. Several additional

approaches could have been used to determine which method

performs better at estimating rates for higher taxa. First, M&W

could have used formal data partitioning methods to identify the

clades to which MS estimators should be applied. For exam-

ple, the MEDUSA method is, to some degree, a statistical ap-

proach for finding best-fit locations for applying MS estimators

across a phylogeny. I performed such a comparison in the orig-

inal BAMM description (Rabosky 2014), finding that BAMM

performed at least as well as MEDUSA for the set of simu-

lation scenarios considered. The eigengap method of Lewitus

and Morlon (2016) is conceptually distinct from MEDUSA and

BAMM, but nonetheless allows researchers to nonarbitrarily par-

tition trees into clades that differ in their underlying diversification

dynamics.

Second, M&W could have conditioned their BAMM anal-

yses on the number and location of the true shifts, just as they

have done for the MS estimators. In fact, this test is essentially

what M&W did when they analyzed each true group (rate class)

separately. Their results showed that BAMM performed very well

for this test (M&W: Fig. 2). The BAMM and MS models are still

nonequivalent, because they allowed BAMM to have multiple

shifts within each true rate class. However, this decision should

have made BAMM perform worse than the MS estimators, not

better, because it imposes additional and unnecessary complexity

on the BAMM model that is not present in the MS estimation

framework.
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a
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b

Simulated tree with
three rate shifts (a, b, c)

Input given to MS estimators:
Tree partitioned into clades, without 
selection bias for true shift groups

Input given to BAMM:
Tree with no further informationA
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Figure 2. Diversification rates estimated with BAMM are far more accurate than those obtained with MS estimators when applied to

clades that are selected without information about the presence or absence of rate shifts. M&W applied the MS estimators only to a small

number of clades that were known in advance to be associated with rate shifts (Fig. 1), even though this information would be unknown

for real datasets. (A) Illustration of revised testing procedure: MS estimates are computed for all clades, including those not associated

with rate shifts. BAMM is applied to the complete phylogeny, and mean rates are extracted for each corresponding subclade. (B, C, D)

Proportional error (top rows) and absolute proportional error (bottom rows) for three estimators of net diversification rate (columns): (B)

MS stem age estimator; (C) MS crown age estimator; (D) BAMM. Estimation error for BAMM is far lower than both the crown and stem

age MS estimators; gray polygons indicate 10 and 90% limits on the distribution of proportional error estimates. Interquartile range

in error for the BAMM estimates is (7.8%, 9.4%) versus (12.3%, 45.3%) for MS-stem and (11.7%, 58.0%) for MS-crown. Outliers with

absolute error percentages exceeding 200% are omitted from the bottom panels, but the MS estimators contain many more such outliers

than BAMM (MS-stem, nine outliers; MS-crown, 21 outliers; BAMM, one outlier). This analysis uses the first tree (tree “A”) from the M&W

dataset; relative extinction for MS estimators was 0.5.
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Table 1. Under equivalent comparison, BAMM estimates of diversification rate generally show lower bias and error than MS estimators;

results are taken directly from M&W Tables S1 and S2.

Method ε

Percentage of
taxa sampled Rank

Mean absolute
error (%) PE (bias, %)

BAMM Estimated 25 1 22.4 −0.3
BAMM Estimated 50 2 26.2 −7.4
MS-crown 0.9 - 3 26.3 −15.8
BAMM Estimated 100 4 27.8 −10.1
MS-stem 0.5 - 5 30.5 15.9
MS-stem 0.9 - 6 32.8 −32.8
MS-crown 0.5 - 7 47.1 44.1
MS-stem 0 - 8 50.2 44
MS-crown 0 - 9 59.2 57.9

Models are ranked from best-performing to worst-performing (best = 1), by absolute error. Sampling, percent taxon sampling; ε, relative extinction rate; PE

(bias, %), proportional error.

Using results from M&W Table S5, I compared the propor-

tional error in rate estimates from BAMM and from MS stem

and crown estimators. Remarkably, BAMM outperforms the

MS estimators under complete and incomplete taxon sampling

(Table 1), directly contradicting the primary conclusions of

M&W. The mean proportional error (bias) is lower for BAMM

than for all MS stem or crown estimators. Furthermore, the

mean absolute error is similar to or much better than all MS

estimators used by M&W. It is worth noting that this comparison

is irrelevant for empirical datasets because researchers cannot

condition on the location of the true shifts, which are unknown.

PRIOR SPECIFICATION: NOT THE SAME AS

CONDITIONING

M&W imply that they have made a fair comparison, noting: “ . . .

we set the expected number of shifts to 10, given that each tree

had 10 clades, each with random and independent diversification

rates. Thus, we seeded the BAMM analyses with a number close

to the actual number of rate regimes, even though this number

would be unknown in empirical analyses.” However, manipula-

tion of a general tree-wide prior is not equivalent to conditioning

the analysis on a specified number of shifts for two reasons. First

and most importantly, the posterior on the number of shifts is

largely independent of the prior (Mitchell and Rabosky 2016; Ra-

bosky et al. 2017) and specifying a prior is not seeding a tree with

a specific number of shifts. In fact, M&W note that their estimates

are largely independent of the prior, so they acknowledge that

they are not seeding the analyses with 10 rate shifts. The mean

number of shifts they found across each tree in their analyses

with complete sampling was only 2.35, which rejects the idea that

they are informing BAMM that there are 10 shifts in each dataset.

Second, even if M&W had conditioned their BAMM analy-

ses on containing exactly 10 rate shifts, the comparison would be

nonequivalent, because the MS estimators are given both the num-

ber of shifts and their precise locations. As an example, consider

the first tree (tree “A”) in the M&W dataset. This tree contains

5568 branches on which BAMM could place the 10 rate shifts.

If we condition the analysis on exactly 10 rate shifts, the prior

probability of a rate shift on any of the 10 true “shift branches”

ranges from 0.0006 to 0.007 (Supporting Information), and the

prior odds that BAMM will place shifts on all 10 of these branches

is the product of the 10 probabilities, or roughly 10−27. For the

MS estimators, these prior probabilities are 1, because the shifts

are fixed to their true locations. Hence, even if BAMM was seeded

with 10 shifts, the prior odds ratio favoring the MS estimators is

on the order of 1/10−27 � 1027.

HYPOTHESIS TESTING VERSUS PARAMETER

ESTIMATION

A seemingly obvious strategy for assessing the reliability of rates

estimated using BAMM and other methods is to compare the cor-

relation between the true evolutionary rates and the mean rates as

inferred with BAMM. This approach is used by both M&W and by

Moore et al. (2016) to assess the reliability of BAMM-estimated

rates. However, such an assessment strategy suffers from a largely

unappreciated weakness that results when hypothesis testing is

performed simultaneously with parameter estimation, as occurs

implicitly with BAMM through Bayesian model averaging. For

BAMM to obtain unconstrained parameter estimates for a partic-

ular subclade, the program must first sample a rate shift on the

branch leading to the focal clade; the frequency with which such

samples are obtained in the posterior is proportional to the evi-

dence favoring such a shift. If shifts are not sampled on branches

immediately ancestral to the focal clade, the corresponding rate

estimates will not be independent of those rates inferred for the

parent rate class. As the effect size among groups (e.g., clades or
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rate classes) decreases, the posterior estimates for specific shift

groups will increasingly be influenced by information from other

parts of the tree (e.g., the global mean rate). In Bayesian statistics,

this phenomenon is referred to as shrinkage, whereby estimates

for specific subgroups in a hierarchical model will “shrink back”

toward some overall central tendency (Kruschke and Vanpaemel

2015). BAMM is effectively a Bayesian shrinkage method that

uses a mixture model to determine the extent to which local es-

timates of rates (e.g., a specific subclade) should be informed by

global (tree-wide) information. It is clear that, when clades with

rate shifts are small, BAMM tends to overshrink: the method rou-

tinely fails to infer the presence of small rate classes and thus, the

resulting estimates for the specific clade are driven by the “global”

average. As Rabosky et al. (2017) noted, the weak correlations that

Moore et al. (2016) observed between true and BAMM-estimated

rates were largely driven by such overshrinking: most rate shifts

in the Moore et al. (2016) dataset led to clades with fewer than

five tips. BAMM generally failed to detect such rate shifts, such

that rates for any local portion of the tree (e.g., a specific branch)

largely reflected the tree-wide average rate.

For their main results (M&W Fig. 1 and Table 1), M&W

compare BAMM, which jointly infers the grouping structure

of the data and associated parameter values, to the MS esti-

mators, which simply estimate parameters for data partitions

that have been defined a priori. For the MS estimators, M&W

compute the values for each of the true groups, much as one might

compute the arithmetic mean of a set of body size observations

from a single true population. The noncomparability of these

approaches is easier to understand if we consider that each of the

true groups (rate classes) in the M&W phylogenies is essentially

a treatment group, and each treatment group has an effect size that

is a function of the corresponding phylogeny. For both BAMM

and MS estimators, M&W then test whether the estimated

group means are correlated with the true values for each of the

treatment groups. There are multiple conditions under which this

comparison will yield poor performance. If the effect sizes for

individual treatments are small, such that rates estimated with

BAMM shrink toward the tree-wide mean rate, then the program

effectively estimates the overall rate and not a treatment (true

group) mean. In the extreme, BAMM might recover no evidence

for rate variation, and the correlation between true rates and esti-

mated rates might equal zero even as rates are estimated with very

high accuracy (Fig. 3). In contrast, there is no hypothesis testing

associated with the MS estimators. The true groups are identified

in advance and assumed to be different, and this information is

only known because M&W created the simulation scenarios.

Another way of conceptualizing this issue is that M&W have

imposed an effect size filter on their BAMM analyses but not their

MS estimators. This means that issues of statistical power due

to low effect sizes will compromise the performance of BAMM,

but not the MS estimators. By implicitly performing hypothesis

testing during the process of parameter estimation, through

Bayesian model averaging, M&W induce strong noninde-

pendence across treatment groups. If BAMM fails to infer the

existence of a particular rate shift (e.g., the posterior probability of

a shift is low), the resulting rate estimates for the shift clade will be

correlated with or nearly identical to the rates inferred for the par-

ent rate class. The number of rate shifts detected with BAMM is

an approximation of the degrees of freedom (Rabosky and Huang

2015), and the mean number of shifts across all M&W full-tree

analyses is only 1.87, indicating strong nonindependence among

group means as computed by M&W. In the extreme, BAMM will

find no rate variation and all 10 true groups will have nearly identi-

cal rate estimates, meaning that M&W are essentially performing

regression analyses with a single observation of the dependent

variable. This is not a hypothetical scenario, because 12% of their

BAMM analyses reported no detectable rate shifts. For these

reasons, simple correlation analyses of true versus estimated rates

for the full-tree BAMM analyses are not appropriate (Fig. 3). We

have previously used correlation coefficients and regression slope

analyses to assess BAMM’s performance, but only with explicit

consideration of the effect size (e.g., theoretical information

content; sample size) of each true group (Rabosky et al. 2017).

There is a simple reason why researchers should be cautious

about applying estimators to groups without using either model-

based partitioning or an equivalent hypothesis-testing scheme.

Sampling error (e.g., variance) is expected to result in numerical

differences among groups even when the true (population) param-

eters are identical. As such, approaches that neglect this sampling

error are potentially subject to a high frequency of false positives

when characterizing rate variation among clades. In the analyses

that underlie M&W Fig. 5, the authors describe a statistical test

for identifying differences in diversification rates among clades.

They apply MS estimators to the small number of sister clade

pairs to which they have assigned different rates of diversifica-

tion, and they define success as any case where the numerical rate

estimates are higher for the clade with the faster true rate. Because

BAMM frequently returned similar or identical rate estimates for

sister clade pairs, the authors concluded that BAMM generally

failed to correctly identify rate heterogeneity when it is present

(M&W; Fig. 5).

However, M&W do not perform an important control analy-

sis, which is to test whether application of their framework will

fail when applied to sister clades that do not vary in diversification

rate. In fact, when sister clades have identical rates, the probability

of a Type I error given the M&W assessment framework is very

high: any stochastic difference in species richness between a pair

of sister clades will lead to faster numerical MS estimates for one

member of the pair, which they would interpret as a correct in-

ference of differential diversification rate. Figure 4 demonstrates

2 2 5 2 EVOLUTION OCTOBER 2018



FAIR TESTS OF MODEL-BASED PARTITIONING

True parameter value

E
st

im
at

ed
 v

al
ue

Small effect size:
Little variation in true group means

Estimated correlation = 0

n = 1000

n = 10

True parameter value

E
st

im
at

ed
 v

al
ue

Unbalanced design:
Unequal amounts of data across groups

Estimated correlation = 0

Figure 3. Two scenarios under which low effect sizes may compromise correlation-based assessments of BAMM and other clustering

methods. Identity line is shown for reference (dashed). Left: true groups (black, white) show little variation in parameter values, such that

the method assigns all groups to the same parameter class. The absolute error in this example may be low, but estimates can nonetheless

be uncorrelated with the true values. Right: true parameter values differ substantially between groups, but the effect size of one or

more groups is small due to highly unbalanced sampling. Even as parameter estimates are accurate across 99% of the combined data, the

correlation coefficient is zero, because the estimated rates are identical for all groups. Diversification studies are particularly susceptible

to unbalanced sampling across groups, because the amount of data within treatments (e.g., subclade size) will generally be correlated

with the corresponding diversification parameters.

that the M&W assessment framework yields extreme Type I error

rates when applied to sister clades with identical diversification

rates. In general, numerical differences in means between treat-

ment groups should not be used as a substitute for probabilistic

hypothesis testing.

MS ESTIMATORS CAN BE USEFUL

This article is not a critique of MS estimators. Such estimators

have proven extremely useful in the field and will continue to

be useful, provided the assumptions of the estimators are met

and/or the conditions under which they fail are adequately char-

acterized (Rabosky 2009a,b). MS and related estimators allow

researchers to extract valuable evolutionary insights from infor-

mation on clade ages and species richness, even when taxon sam-

pling in the underlying phylogenetic trees is limited (Raup 1985;

Magallon and Sanderson 2001; Nee 2006; Ricklefs 2007). Simple

methods frequently prove more robust than complex methods to

violations of their underlying assumptions. Moreover, there are

many groups of organisms for which species-level phylogenies

are not presently available.

However, there is no evidence that simple MS estimators

can outperform more complex models of diversification dynam-

ics when lineage-level phylogenies with at least 25% taxon sam-

pling are available. In practice, MS estimators might be expected

to perform somewhat worse than suggested by M&W, because

real phylogenies are likely to contain additional among-lineage

or temporal rate heterogeneity within the focal higher taxa. By

collapsing large phylogenies (average size: 2022 tips) to higher

level phylogenies of just 10 tips, the approach of M&W discards

data that can potentially provide greater insights into the nature of

rate variation through time and among clades. It is unclear what

useful information can be gained by ignoring within-taxon varia-

tion in diversification rates in any case where a suitable phylogeny

is available for estimating such variation.

PROPER MODEL COMPARISON IS ESSENTIAL

The study by M&W raises a number of important statistical is-

sues that are relevant to assessing any methods for clustering and

parameter estimation. There is no question that simple estima-

tors for population data, such as the MS estimators favored by

M&W, have utility in ecology and evolution. However, M&W

evaluate the performance of MS estimators by applying them

only to groups with known (investigator-defined) differences be-

tween them, and they interpret any differences between groups

as consistent with true variation in underlying parameters (e.g.,

M&W Fig. 5). Because M&W neglect the sampling error (e.g.,

stochastic noise) associated with real data, their recommended

approach performs poorly when applied to data when there are no

differences between groups (Figs. 2 and 4).

The approach used by M&W suffers from a second issue

that is not widely appreciated. By computing numerical estimates

of rates for individual clades, M&W implicitly assume that
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Figure 4. M&W testing scheme for determining whether diversification rates vary among sister clades is strongly affected by stochastic

variation in species richness and leads to high Type I error rates. (A) Probability of rejecting a true null hypothesis (no variation in rates

among sister clades) as a function of clade age under the testing scheme described by M&W. Blue line shows analytical probability that

one member of a sister-clade pair of a given age (x-axis) will have a higher numerical MS value than the other, given that both clades

have diversified under an identical net diversification rate. Red line shows Type I error rates under a more stringent threshold described

by M&W, which requires MS estimates for clades to differ by 0.01 units or more to conclude that diversification rate variation is present.

(B) MS-stem diversification estimates for 5000 replicates of an identical diversification process (rate = 0.12; stem age = 43.1), illustrating

extensive variation in the value of MS estimators that can arise due to stochasticity in the diversification process itself. The variation

illustrated in (B) is due to the inherent noisiness of the diversification process. For this parameterization, the 5 and 95% quantiles on the

distribution of species richness are 11 and 598, respectively.

phylogenies can be carved up into an arbitrary number of higher

taxa to serve as largely independent units (data points) for down-

stream analyses. If a phylogeny or parts thereof are generated by a

single underlying diversification process, the apparent numerical

differences in diversification rate between constituent subclades

are likely to reflect nothing more than sampling error due to the

inherent stochasticity of the diversification process (Fig. 4b).

In light of this observation, it is perhaps unsurprising that some

studies using MS estimators for higher taxa have obtained results

that cannot be distinguished from a random splatter of data across

the tips of the tree (see Rabosky and Adams 2012; Rabosky et al.

2012). BAMM, MEDUSA, and related methods (Morlon et al.

2011; Etienne and Haegeman 2012; Lewitus and Morlon 2016)

may provide imperfect solutions for quantifying group structure

across phylogenetic trees, but they do not suffer from the illusion

of independence that comes from partitioning phylogenetic trees

into subgroups that may have been generated under a common

diversification process.

IS BAMM OVERLY CONSERVATIVE?

M&W observed that BAMM had low power to infer rate variation

for some of their simulated datasets. As they discuss, one conse-

quence of this conservatism is that rate estimates for small clades

may essentially reflect a global average that need not be closely

correlated with the true rates of the focal clade. BAMM clearly

tends to underestimate the true number of rate shifts, and this con-

servatism has been discussed previously. Upon observing that cor-

relations between true and estimated rates were zero for some frac-

tion of datasets that were analyzed with BAMM, Rabosky (2014:

see corresponding Fig. 6) wrote, “ . . . branch specific estimates of

rates for a multiprocess model may be poor if model underfitting

has occurred. In the extreme case, a tree that is estimated to have

only a single process may have very similar rate estimates on each

branch; the correlation between these rates and the true rates will

necessarily be low if the true model includes multiple processes

and considerable rate heterogeneity across the tree.” There is con-

siderable scope to clarify the causes of this conservatism and/or

to determine whether BAMM is excessively conservative.

One way forward is to more explicitly assess BAMM’s

conservatism in light of the theoretical information content

associated with each shift regime. Rabosky et al. (2017) used

such an approach to demonstrate that many of the purportedly

rate-variable phylogenies simulated by Moore et al. (2016) were

statistically indistinguishable from a constant rate birth–death

process. However, the “rate-shift” subclades generated by M&W

are much larger than those in Moore et al. (2016); presumably, the

subclades in M&W contain more information. Whether BAMM

is overly conservative, relative to other methods that have been

or might be devised, remains an open question. At this point,

however, there is no evidence that BAMM’s rates are unreliable

(Rabosky et al. 2017): claims of unreliability in both M&W and

in Moore et al. (2016) are readily shown to result from BAMM’s

tendency to underestimate the true number of shifts (e.g., the

program is conservative). In the analyses by Moore et al. (2016),
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for example, the low correlation between true and estimated rates

results almost entirely from the fact that BAMM failed to infer

any rate shifts for most of their rate-variable datasets; in nearly

all of these cases, the BAMM-estimated rates are approximately

as good as the best tree-wide average rate that can be obtained

with other methods (see Rabosky et al., 2017: Figs. 11–13).

SUMMARY

In this article, I explain why the conclusions of Meyer and Wiens

(2017) are not justified. Most significantly, M&W compare in-

ference frameworks that differ substantially in the amount of

information they are given by the investigators. By specifying

the precise location of rate shifts for the MS calculations, M&W

provide those estimators with an advantage that could never be

present for real data, because the true location of rate shifts is

unknown. The valid comparison in M&W involves a scenario

where BAMM is constrained to the same (true) set of rate shifts

as the MS estimators; as shown by M&W (M&W: Table S2) and

presented here (Table 1), BAMM performed equivalently to or

better than both stem and crown MS estimators despite relying on

a more complex inference model.

The results of this article should not be construed to imply

that BAMM is inherently better at estimating diversification rates

for higher taxa. The simulation design used by M&W allows us

to compare BAMM and MS for a somewhat unusual scenario,

whereby each named higher taxon is uniquely associated with a

distinct speciation–extinction parameterization. However, there is

no necessary reason why rate variation in real datasets need be

associated with higher taxa. Despite the fact that BAMM outper-

forms MS when the locations of rate shifts are known (Table 1),

it is essential to recognize the limits of these testing scenarios. In

real empirical datasets, the nature and location of diversification

rate variation is unknown. If most variation in diversification rates

is partitioned among a set of higher taxa, then researchers should

estimate rates separately for each taxon of interest, rather than

perform a global BAMM analysis. However, if rate variation is

largely decoupled from taxonomic categories, then it is possible

that a global BAMM analysis will outperform taxon-specific rate

estimates. To fairly determine the relative performance of BAMM

and MS as applied to higher taxa, it is important to construct as-

sessment scenarios where the association between rate variation

and taxonomic groups is similar to the (largely unknown) rela-

tionship in real datasets.

Two additional caveats should be clearly stated. First, the

results presented in M&W are limited to a comparison between

MS estimators and BAMM. No other inference frameworks were

considered, so no conclusions can be drawn about other models

or software implementations that might have been used to an-

alyze the same data (e.g., FitzJohn 2012; Morlon et al. 2016).

Second, the results of this article pertain to the performance of

BAMM when species-level phylogenies, potentially with incom-

plete sampling, are analyzed with the program and mean rates are

then extracted for nested subclades. BAMM should generally not

be used to analyze phylogenies of higher taxa, as might occur if a

researcher applied BAMM to a phylogeny with single representa-

tives of all family-level clades in a particular group of organisms.

The BAMM likelihood function is not appropriate for such data

because it describes the likelihood of a particular branching pat-

tern given the diversification parameters and taxon sampling. The

more appropriate likelihood for terminally unresolved clades is

the MEDUSA likelihood (Alfaro et al., 2009), which is based

on the probability that a given diversification parameterization

will produce a clade of the same size as the focal clade. How-

ever, incomplete sampling per se is not necessarily problematic

for BAMM: as shown by M&W, BAMM performs well with low

(25%) taxon sampling (Table 1). FitzJohn et al. (2009) discuss

the distinction between skeletal trees with missing taxa (appro-

priate for BAMM) and trees with terminally unresolved clades

(not appropriate for BAMM).

This article is not intended to discourage independent per-

formance assessments of BAMM and other methods: such testing

should be strongly encouraged by the community. Major advances

in methods development are often driven by studies that character-

ize the conditions under which existing methods perform poorly.

However, studies that purport to test the relative performance

of two methods must ensure the equivalency of the frameworks

under consideration (Table 1) and also that adequate control ex-

periments have been performed (Figs. 2 and 4). In the case of

Meyer and Wiens (2017), these concerns are sufficient to both

overturn and reverse the conclusions presented in their article.
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