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ABSTRACO

T! software program BAMM has been widely used to study rates of speciation,

extinctionind Hwnotypic evolution on phylogenetic trees. The program implements a model-

based clusSgorithm to identify clades that share common macroevolutionary rate
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dynamics and to estimate parameters. A recent simulation study by Meyer and Wiens (M&W)
argued that (i) a simple inference framework ("MS") performs much better than BAMM, and (ii)
evolutim inferred with BAMM are poorly correlated with true rates. I address two
statistical € @ § with their assessment that affect the generality of their conclusions. These
consid dFa tIGASIEFEE not specific to BAMM and apply to other methods for estimating parameters
from empiha where the true grouping structure of the data is unknown. M&W constrain

roughly half of the/parameters in their MS analyses to their true values, but BAMM is given no

*

such inforgfat nd must estimate all parameters from the data. This information disparity

S

results in a substantial degrees-of-freedom advantage for the MS estimators. When both

methods are givesequivalent information, BAMM outperforms the MS estimators.

11U

INTRODU

\W% ogy and evolution, there is great interest in model-based methods for data

a

partiti ethods allow researchers to infer hidden group structure from empirical

data and to e associated parameters of interest. For example, model-based clustering is

W

widely used to classify individuals into subpopulations that differ in phenotypes, allele

frequencid§, and other traits (e.g, STRUCTURE: Pritchard et al. 2000; BAPS: Corander et al.

[

2008; Gau xture modeling: Cadena et al. 2017). In phylogenetics, model-based

O

partitionin ely used to identify and accommodate variation in the rate of molecular

evolution @mong sites and across the branches of phylogenetic trees (Drummond and Suchard

g

2010; Heagh et al32011; Lanfear et al. 2014). Model-based data partitioning can reveal

{

heterogen e processes of diversification and trait evolution and has thus been used

U

extensivel roevolutionary studies (Alfaro et al. 2009; Eastman et al. 2011; Venditti et al.

2011; d Harmon 2014). Such analyses typically attempt to partition phylogenetic trees

A
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into non-overlapping subclades that differ in parameters of interest related to either species
diversification or to the tempo and mode of trait evolution.

Mre program BAMM (Rabosky 2014) is a Bayesian framework for inferring
heterogen m Ates of species diversification and phenotypic evolution across phylogenetic
trees. Te WAAEERANg parametric model in BAMM assumes that phylogenetic trees have been
shaped byhion of distinct macroevolutionary rate regimes. The software implementation

uses rever§ible juinp Markov chain Monte Carlo to simulate posterior distributions of rate shift

C

configura are consistent with the observed data (Rabosky, 2014). Although the

S

mathematics and implementation algorithms underlying BAMM are complex, the method is

essentially a cl analysis that provides both parameter estimates and probabilistic measures

U

of suppor red group structures. The BAMM algorithm, model assumptions, and

n

performa been described in detail elsewhere (Rabosky 2014; Rabosky et al. 2014a;

d

Mitchell agd Rabosky 2016; Rabosky et al. 2017).
icle in Evolution (Meyer and Wiens 2017; hereafter, M&W) posed an

important a ly problem in macroevolutionary inference: given a phylogenetic tree and a

W

set of named higher taxa, how should we estimate diversification rates for those clades? M&W

generated@imulated phylogenetic datasets that contained both higher taxonomic categories and

[

diversifica heterogeneity, and they assessed how well several methods for rate

O

estimation recovering the true rates for each (simulated) higher taxon. Specifically, they
compared!arameter estimates from BAMM to those obtained from a much-simpler "method-of-
moments"istimg)r (Magallon and Sanderson 2001) and found that these simple estimates

(hereafter:erformed substantially better than BAMM. The MS estimators can be used to

compute t mum likelihood estimate of a clade's net diversification rate under a constant-

@ process, given the stem age and species richness for the clade. M&W concluded

that BAMM provides unreliable parameter estimates and should not be used. This conclusion is
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at odds with those drawn from a more extensive simulation study (Rabosky et al., 2017), which
found that diversification inferences from BAMM were both reliable and consistent.
mm, [ demonstrate that the primary conclusions of M&W are not justified, due
to several @ § in their experimental design that largely predetermine the outcome of their
assessrien@@A@Ssue in M&W involves a comparison between non-equivalent inference
frameworhffer substantially in the amount of information they are given by the

investigat@ks. Spe@ifically, M&W provide the MS estimators with perfect information about the

C

locations ifts across the tree and simply compute the rate estimates for each true

S

group in the dataset. BAMM is provided with no information about the true locations of rate

3

shifts and m imate group structure across the phylogeny prior to parameter estimation.

The MS a e performed after M&W have set the values of many parameters to their true

N

values; BA rced to estimate the same parameters from the data, and the researchers do

not account f difference in parameters. M&W thus perform an uncorrected comparison

d

betwe ling frameworks that differ substantially in their degrees of freedom, and the

outcome is en before the experiment is performed.

\

A second concern regarding M&Ws experimental design is more nuanced, but involves

the conflafion of hypothesis testing and parameter estimation. Their analyses confound small

£

effect sizes treatment groups with error in parameter estimates and are thus unable to

O

assess par eliability. In the extreme, this latter issue allows treatment groups with small

effect sizegland/or highly-unbalanced experimental designs to generate low correlations

g

between tgue andgestimated parameter values, even as absolute error in the parameter

;

estimates es zero. All methods for jointly inferring group structure and estimating

U

paramete sceptible to these assessment concerns, including nearly all model-based

frame data partitioning in evolution, ecology, and systematics.

A

This article is protected by copyright. All rights reserved.



SCOPE OF THE PRESENT ARTICLE

M&W includes a large number of analyses, most of which are affected by the two
statisticMwill describe. Hence, I will only revisit a subset of their results and will not
repeat the @ mmaries across all combinations of parameters and simulation conditions. |
will foclls pHaRER; on the comparison between net diversification rates (speciation minus
extinction*nated with BAMM and those obtained with MS estimators. The results
obtained bglow available through supplementary tables that accompany M&W. I also

repeated t analysis exactly as described by M&W for the first dataset (tree "A") in their

SC

article and use these results below. The BAMM results I obtained from my independent analysis

yield nearly i al results to those reported by M&W. The relationship between subclade

3

mean dive n rates obtained in my re-analysis versus those provided by M&W (rows 1-

1

10 in Tabl tain only trivial numerical discrepancies (linear regression: slope = 1.015,

intercept §i-0 r2 = 0.999). None of the analyses and results performed below relate to

d

techni f the BAMM analyses, and M&W appear to have executed their BAMM

analyses in er consistent with developer recommendations. All computer code and

M

results from this article are available through Dryad, doi: ######).

[

EXPERIM ESIGN IN M&W
are the performance of BAMM and MS estimators across a set of 20

simulated phylogenetic datasets. Each simulated phylogeny was created by first generating a

L

backbone firee of 80 tips. Each of these 10 tips was destined to represent a subclade with a

t

unique sp:extinction parameterization. For each of the 10 tips, M&W sampled

speciation ative extinction parameters from a uniform distribution. Complete species-

es were then simulated under the sampled parameters, such that the simulated

subtrees had a st clade age that was identical to the corresponding terminal branch length.
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M&W then replaced each of the original 10 tips with a subtree generated under a unique
speciation-extinction parameterization. Each phylogeny thus contains a backbone tree and
exactly Msifts", and each shift defines a subclade that contained between 10 and 1401
tips. For c@ @ of terminology, I refer to each clade with distinct rate parameters as a "rate
class" O "tFUE@EEOUD"; there are exactly 10 true groups per tree that can be discovered by

BAMM or M method.

FoReach gimulated phylogeny, M&W then simulated posterior distributions of

macroevol@iti rate regimes using BAMM. They summarized their BAMM analyses by

SC

computing mean rates of speciation, extinction, and net diversification for each of the 10 true

groups usin ary functions from BAMMtools (Rabosky et al. 2014b). The mean rate for a
given true simply the mean of the marginal posterior distribution of rates for all
branches g to the group. For BAMM to accurately estimate distinct rates for each of

the 10 gromuld first be necessary for the program to correctly infer the grouping

structu a (e.g., the locations of all 10 true groups). If BAMM fails to infer any groups
(e.g., finds ), then the rates estimated for all groups will be similar.

To determine whether the BAMM estimates are "good" or "bad", M&W perform a second
analysis W!ere they computed the analytical MS estimates of diversification rate for each of the
10 true gr at is, they cut the tree into the 10 groups to which they have assigned distinct
rate param nd estimate rates separately for each group. The MS estimates are far less
compleﬁM: for stem clades and with zero extinction, the MS estimate of
diversification rage is simply the logarithm of species richness divided by time. To summarize

H ply g p y

results, M ute the proportional error of the rate estimates for each of the 10 true

groups fo ee and express it as a percentage. This is computed as (Rg - Rr) / Rt, where Ry
are Rg {ueand estimated rates for the focal group. They find that the MS estimators
have lower error than the BAMM estimates (M&W: Figure 1). They also find that the slopes of
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the relationships between true and estimated rates across all groups are more accurate for the
simple MS estimators than for BAMM (M&W: Table 1), and that MS estimators are better able to

detect tru*arlation in diversification rates (M&W: Fig. 5).

NONEQUIVAFENEE OF INFERENCE MODELS IN M&W
Th cal comparisons between BAMM and MS made in this fashion are not

equivalentfand stongly favor MS because the MS estimators are informed of the precise number

cr

and locatimtrue groups (e.g., rate shifts). Figure 1 summarizes the difference between
these com}farisons as performed by M&W. Consider a scenario in which a researcher is given a

large set of e measurements and asked to estimate the number of true populations from

which thegments were drawn, along with the means of those populations, in the

absence o er identifying information. To address this problem, we might perform a
clustering@nation analysis by modeling the distributions of sizes as a mixture of
distribugi Gaussian clustering). Now, suppose that we are given additional information
about each tion in the dataset: specifically, information about the precise subpopulation

from which each of the measurements was drawn is now provided. We then perform a
secondary!nalysis where the original data is simply partitioned by true subpopulation
membershj he sample means are computed for each of the true groups.

If how knew the true means of each population, we would likely observe that
the sec@ch - partitioning the data with true grouping information in hand - would
provide greater agruracy than the mixture modeling approach, because the mixture model
approach mate group structure from the data. This is precisely the comparison used by

M&W: the e the MS estimators, but not BAMM, with the true group structure of the data.
For MS rs, M&W compute averages after partitioning the data into subsets for each rate
shift, and they only know where the shifts have happened because M&W created the simulation
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scenarios. It is unsurprising that MS estimators outperform BAMM under such conditions, and
the M&W comparison is equivalent to comparing statistical models that differ by a large number
of paraHMmut controlling for the difference. Many statistical methods for partitioning
data into ggo d estimating population parameters would likely appear to perform poorly
under JlclFERIES8€ssment scenario.

Beh‘le locations of rate shifts are generally unknown, assessing the performance
of MS estin@nder simple scenarios where rate shift locations are known without error -
as in M&W s provide a highly selective view of their performance. There is presently
little evidence that named higher taxa (e.g., genera, families, phyla) are universally or even
largely cor@ with macroevolutionary rate shifts (Smith et al. 2011) so it is essential to
understan S estimators perform relative to BAMM when applied to clades that may or

may notb ted with rate shifts.

©

FAIR C NS BETWEEN MS AND BAMM
To ne the best method for estimating diversification rates for higher taxa, there

are several approaches M&W could have used to perform more-or-less equivalent comparisons
between I\s estimators and BAMM. An obvious control experiment, which was not performed
by M&W, i at their analyses for clades other than the precise set that they have seeded
with rate sQr empirical datasets, we typically have no knowledge of the potential rate
shift loﬁlce, it is important to know how the M&W inference framework would fare if
applied toglades ghat are sampled at random with respect to their "true group" assignment. To

perform t arison, I computed stem and crown MS estimates for all clades with at least

10 taxa fr rst tree (tree "A") from M&W (Fig. 2, top row). The threshold of 10 taxa was
chosen M&W required their simulated shift clades to also contain at least 10 extant
taxa. Then, using the results from a single BAMM analysis of the complete phylogeny (e.g.,
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including all clades), | summarized the BAMM estimates of net diversification rate separately for
all subclades exactly as in M&W using the BAMMtools getCladeRates function (Rabosky et al.
2014b)Mound no evidence for rate variation at the scale of the full tree, then the mean
rates comp @ each subclade would be nearly identical. My results for this exercise are thus
those tHat VMW ould have obtained if they applied MS estimators to all clades, rather than
selectively%g those estimators only to those clades to which they had assigned rate shifts.
For the fir@ree "A"), there are a total of 548 clades with at least 10 tips; by restricting
their assew the 10 true groups, M&W tested estimation bias for a select set (2%) of
potential higher taxa.

When MS@stimators are applied to this more general set of clades, they perform far
worse tha (Fig. 2). The mean absolute proportional error in BAMM estimates for such
clades is 12.2%, Versus 38.7% for MS stem estimators and 47.3% for MS crown estimators. The
reason forfthe ‘m performance of the MS estimators, relative to BAMM, is that the MS

estima ly sensitive to stochastic variation in species richness due to the

diversificati ess itself. If clades are simulated under a fixed speciation-extinction
parameterization, one will observe stochastic variation in richness, and the MS estimators will
track this Sriation closely. BAMM is more conservative because it uses information from the

full tree wDrmining whether a given subclade is sufficiently distinct (e.g., significantly

different)

T:! preceding exercise is not offered as a serious comparison of BAMM and MS

estimatori it me'ly highlights the problems with comparing inference frameworks where one

tit should be assigned its own rate parameters.

approach given prior knowledge of true shift locations, but where the other (BAMM) is

given only
additio{oafhes could have used to determine which method performs better at
estimating rates Tor higher taxa. First, M&W could have used formal data partitioning methods

This article is protected by copyright. All rights reserved.
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to identify the clades to which MS estimators should be applied. For example, the MEDUSA
method is, to some degree, a statistical approach for finding best-fit locations for applying MS
estimatm phylogeny. I performed such a comparison in the original BAMM description
(Rabosky % @ ding that BAMM performed at least as well as MEDUSA for the set of
simulati n¥S@&AaEos considered. The eigengap method of Lewitus and Morlon (2016) is
conceptua&ct from MEDUSA and BAMM, but nonetheless allows researchers to non-

arbitrarih@\ trees into clades that differ in their underlying diversification dynamics.

Seww could have conditioned their BAMM analyses on the number and location
of the true shifts, just as they have done for the MS estimators. In fact, this test is essentially
what M&W di n they analyzed each true group (rate class) separately. Their results
showed t performed very well for this test (M&W: figure 2). The BAMM and MS
models ar -equivalent, because they allowed BAMM to have multiple shifts within each
true rate @veven this decision should have made BAMM perform worse than the MS
estima ter, because it imposes additional and unnecessary complexity on the BAMM
model that i resent in the MS estimation framework.

Using results from M&W Table S5, I compared the proportional error in rate estimates
from BAM! and from MS stem and crown estimators. Remarkably, BAMM outperforms the MS

estimatorsDomplete and incomplete taxon sampling (Table 1), directly contradicting the

primary co ns of M&W. The mean proportional error (bias) is lower for BAMM than for all
MS stem o!crown estimators. Furthermore, the mean absolute error is similar to or much
better tha' all M%stimators used by M&W. It is worth noting that this comparison is irrelevant

for empiri ets, because researchers cannot condition on the location of the true shifts,

which are n.

<
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PRIOR SPECIFICATION: NOT THE SAME AS CONDITIONING

Mply that they have made a fair comparison, noting: "...we set the expected
number of @ b 10, given that each tree had 10 clades, each with random and independent
diversifitafigfiFates. Thus, we seeded the BAMM analyses with a number close to the actual
number o(ﬁimes, even though this number would be unknown in empirical analyses."
However, faani tion of a general tree-wide prior is not equivalent to conditioning the

analysis o ied number of shifts, for two reasons. First and most importantly, the

SC

posterior on the number of shifts is largely independent of the prior (Mitchell and Rabosky
2016; Rabosk 1. 2017) and specifying a prior is not seeding a tree with a specific number of

shifts. In fa6f note that their estimates are largely independent of the prior, so they

't

acknowle hey are not seeding the analyses with 10 rate shifts. The mean number of

shifts theyffo ross each tree in their analyses with complete sampling was only 2.35, which

a

rejects t they are informing BAMM that there are 10 shifts in each dataset.

Seco n if M&W had conditioned their BAMM analyses on containing exactly 10

)

rate shifts, the comparison would be nonequivalent, because the MS estimators are given both

the numbd§ of shifts and their precise locations. As an example, consider the first tree (tree "A")

[

in the M& t. This tree contains 5568 branches on which BAMM could place the 10 rate

O

shifts. If w ion the analysis on exactly 10 rate shifts, the prior probability of a rate shift

on any of thie 10 true "shift branches" ranges from 0.0006 to 0.007 (Supporting information),

h

and the prior oddsithat BAMM will place shifts on all 10 of these branches is the product of the

{

10 probab roughly 10-27. For the MS estimators, these prior probabilities are 1, because

U

the shifts to their true locations. Hence, even if BAMM was seeded with 10 shifts, the

prior og p favoring the MS estimators is on the order of 1 / 10-27 = 1027.

A
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HYPOTHESIS TESTING VERSUS PARAMETER ESTIMATION

A seemingly obvious strategy for assessing the reliability of rates estimated using BAMM
and othm is to compare the correlation between the true evolutionary rates and the
mean rate @ red with BAMM. This approach is used by both M&W and by Moore et al.
(2016) o 388E8EH e reliability of BAMM-estimated rates. However, such an assessment strategy
suffers fro&ely-unappreciated weakness that results when hypothesis testing is
performe@neously with parameter estimation, as occurs implicitly with BAMM through
Bayesian meraging. For BAMM to obtain unconstrained parameter estimates for a
particular subclade, the program must first sample a rate shift on the branch leading to the focal
clade; the frEy with which such samples are obtained in the posterior is proportional to

the evidemg such a shift. If shifts are not sampled on branches immediately ancestral

to the foca e corresponding rate estimates will not be independent of those rates

inferred f@ent rate class. As the effect size among groups (e.g., clades or rate classes)
decrea erior estimates for specific shift groups will increasingly be influenced by
informEther parts of the tree (e.g. the global mean rate). In Bayesian statistics, this
phenomenon is referred to as shrinkage, whereby estimates for specific subgroups in a
hierarchic! model will "shrink back" towards some overall central tendency (Kruschke and
Vanpaeme BAMM is effectively a Bayesian shrinkage method that uses a mixture model
to deteertent to which local estimates of rates (e.g., a specific subclade) should be
informed£g]otml (tree-wide) information. It is clear that, when clades with rate shifts are
small, BA tends§ to overshrink: the method routinely fails to infer the presence of small rate

classes an e resulting estimates for the specific clade are driven by the "global" average

“(2017) noted, the weak correlations that Moore et al (2016) observed between
-estimated rates were largely driven by such overshrinking: most rate shifts in

the Moore et al (2016) dataset led to clades with fewer than five tips. BAMM generally failed to
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detect such rate shifts, such that rates for any local portion of the tree (e.g., a specific branch)
largely reflected the tree-wide average rate.

Mnain results (M&W Figure 1 and Table 1), M&W compare BAMM, which jointly
infers the ‘,@A; structure of the data and associated parameter values, to the MS estimators,
which §iin pl#&SEfate parameters for data partitions that have been defined a priori. For the
MS estima . W compute the values for each of the true groups, much as one might
compute t@wtic mean of a set of body size observations from a single true population.
The non-c ility of these approaches is easier to understand if we consider that each of
the true groups (rate classes) in the M&W phylogenies is essentially a treatment group, and
each treatmen up has an effect size that is a function of the corresponding phylogeny. For
both BAMm estimators, M&W then test whether the estimated group means are

correlated true values for each of the treatment groups. There are multiple conditions

under whi@mparison will yield poor performance. If the effect sizes for individual
treatm 1, such that rates estimated with BAMM shrink towards the tree-wide mean
rate, then t am effectively estimates the overall rate and not a treatment (true group)
mean. In the extreme, BAMM might recover no evidence for rate variation, and the correlation
between tie rates and estimated rates might equal zero even as rates are estimated with very
high accur ig. 3). In contrast, there is no hypothesis testing associated with the MS
estimators! e groups are identified in advance and assumed to be different, and this

informatii is only known because M&W created the simulation scenarios.

Aﬁlther Wy of conceptualizing this issue is that M&W have imposed an effect size filter

on their B lyses but not their MS estimators. This means that issues of statistical power
due to lo izes will compromise the performance of BAMM, but not the MS estimators.
By impli rforming hypothesis testing during the process of parameter estimation,

through Bayesiai™model averaging, M&W induce strong non-independence across treatment
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groups. If BAMM fails to infer the existence of a particular rate shift (e.g, the posterior
probability of a shift is low), the resulting rate estimates for the shift clade will be correlated
with ormmcal to the rates inferred for the parent rate class. The number of rate shifts
detected W @ M is an approximation of the degrees of freedom (Rabosky and Huang 2015),
and thelin &A@ ber of shifts across all M&W full-tree analyses is only 1.87, indicating strong
non—indeph among group means as computed by M&W. In the extreme, BAMM will find
no rate vaflation ahd all 10 true groups will have nearly identical rate estimates, meaning that

M&W are ly performing regression analyses with a single observation of the dependent

SC

variable. This is not a hypothetical scenario, because 12% of their BAMM analyses reported no

detectable r ts. For these reasons, simple correlation analyses of true versus estimated
rates for t e BAMM analyses are not appropriate (Fig. 3). We have previously used
correlatio ents and regression slope analyses to assess BAMM's performance, but only
with expli€it eration of the effect size (e.g., theoretical information content; sample size)
of each (Rabosky et al. 2017).

Thered imple reason why researchers should be cautious about applying estimators

to groups without using either model-based partitioning or an equivalent hypothesis-testing
scheme. Sgpling error (e.g., variance) is expected to result in numerical differences among
groups eve the true (population) parameters are identical. As such, approaches that
neglect thi ng error are potentially subject to a high frequency of false positives when
charact£grate variation among clades. In the analyses that underlie M&W Figure 5, the
authors dicribe 'statistical test for identifying differences in diversification rates among
clades. ThmMS estimators to the small number of sister clade pairs to which they have

assigned d rates of diversification, and they define success as any case where the

estimates are higher for the clade with the faster true rate. Because BAMM

frequently retur similar or identical rate estimates for sister clade pairs, the authors
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concluded that BAMM generally failed to correctly identify rate heterogeneity when it is present
(M&W Fig. 5).

m&w do not perform an important control analysis, which is to test whether
applicatio framework will fail when applied to sister clades that do not vary in
diversifita€ioEaee. [n fact, when sister clades have identical rates, the probability of a Type I
error givehw assessment framework is very high: any stochastic difference in species
richness b@ pair of sister clades will lead to faster numerical MS estimates for one
member om, which they would interpret as a correct inference of differential
diversification rate. Figure 4 demonstrates that the M&W assessment framework yields extreme

Type ] errENhen applied to sister clades with identical diversification rates. In general,

numericallages in means between treatment groups should not be used as a substitute

for proba pothesis testing.
MS ES AN BE USEFUL
This aghi€le is not a critique of MS estimators. Such estimators have proven extremely

useful in the field and will continue to be useful, provided the assumptions of the estimators are
met and/df{ the conditions under which they fail are adequately characterized (Rabosky 20093,
b). MS and Destimators allow researchers to extract valuable evolutionary insights from

informatio de ages and species richness, even when taxon sampling in the underlying

phylogenic trees is limited (Raup 1985; Magallon and Sanderson 2001; Nee 2006; Ricklefs

2007). Simiple meghods frequently prove more robust than complex methods to violations of

their undgsumptions. Moreover, there are many groups of organisms for which species-

level phyl are not presently available.

ver, there is no evidence that simple MS estimators can outperform more complex

models of diversification dynamics when lineage level phylogenies with at least 25% taxon
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sampling are available. In practice, MS estimators might be expected to perform somewhat
worse than suggested by M&W, because real phylogenies are likely to contain additional among-
lineage or km poral rate heterogeneity within the focal higher taxa. By collapsing large

phylogenié gage size: 2022 tips) to higher level phylogenies of just 10 tips, the approach of

M&W dig cBFdsidath that can potentially provide greater insights into the nature of rate variation
through tihmong clades. It is unclear what useful information can be gained by ignoring

within-tax@n varijation in diversification rates in any case where a suitable phylogeny is

€

available fi ting such variation.

S

PROPER MOD OMPARISON IS ESSENTIAL

J

T y M&W raises a number of important statistical issues that are relevant to

N

assessing ods for clustering and parameter estimation. There is no question that

simple estlina or population data, such as the MS estimators favored by M&W, have utility

d

in ecol ution. However, M&W evaluate the performance of MS estimators by

applying th to groups with known (investigator-defined) differences between them, and

Vi

they interpret any differences between groups as consistent with true variation in underlying
parametex! (e.g., M&W Figure 5). Because M&W neglect the sampling error (e.g., stochastic

noise) ass ith real data, their recommended approach performs poorly when applied to

o,

data when e no differences between groups (Fig. 2, Fig. 4).

Thg approach used by M&W suffers from a second issue that is not widely appreciated.

I

By computing numerical estimates of rates for individual clades, M&W implicitly assume that

:

phylogeni carved up into an arbitrary number of higher taxa to serve as largely-

U

independ (data points) for downstream analyses. If a phylogeny or parts thereof are

single underlying diversification process, the apparent numerical differences in

diversification rdte between constituent subclades are likely to reflect nothing more than
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sampling error due to the inherent stochasticity of the diversification process (Fig. 4b). In light
of this observation, it is perhaps unsurprising that some studies using MS estimators for higher
taxa ham results that cannot be distinguished from a random splatter of data across
the tips of @ see Rabosky and Adams 2012; Rabosky et al. 2012). BAMM, MEDUSA, and
relatedh dEA@@8 @M orlon et al. 2011; Etienne and Haegeman 2012; Lewitus and Morlon 2016)
may provihfect solutions for quantifying group structure across phylogenetic trees, but
they do no@suffegifrom the illusion of independence that comes from partitioning phylogenetic

trees into s that may have been generated under a common diversification process.

EISC

IS BAMM OVE CONSERVATIVE?

M ved that BAMM had low power to infer rate variation for some of their

N

simulated . As they discuss, one consequence of this conservatism is that rate estimates

for small dlad y essentially reflect a global average that need not be closely correlated with

d

the tru focal clade. BAMM clearly tends to underestimate the true number of rate
shifts, and thj ervatism has been discussed previously. Upon observing that correlations
between true and estimated rates were zero for some fraction of datasets that were analyzed
with BAM!i Rabosky (2014; see corresponding Figure 6) wrote: "... branch specific estimates of
rates for a ocess model may be poor if model underfitting has occurred. In the extreme
case, a trertimated to have only a single process may have very similar rate estimates
on each b!nch; the correlation between these rates and the true rates will necessarily be low if
the true m@del ingludes multiple processes and considerable rate heterogeneity across the

tree." The iderable scope to clarify the causes of this conservatism and/or to determine

whether B excessively conservative.
{fojward is to more explicitly assess BAMM's conservatism in light of the
theoretical inforffation content associated with each shift regime. Rabosky et al. (2017) used
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such an approach to demonstrate that many of the purportedly rate-variable phylogenies
simulated by Moore et al. (2016) were statistically indistinguishable from a constant-rate birth-
death pMever, the "rate-shift" subclades generated by M&W are much larger than
those in @ al. (2016); presumably, the subclades in M&W contain more information.
WhethdF BAVIVEBIoverly conservative, relative to other methods that have been or might be
devised, r*n open question. At this point, however, there is no evidence that BAMM's
rates are ulireliable (Rabosky et al. 2017): claims of unreliability in both M&W and in Moore et

al (2016) wly shown to result from BAMM's tendency to underestimate the true number

of shifts (e.f., the irogram is conservative). In the analyses by Moore et al (2016), for example,

the low correl between true and estimated rates results almost entirely from the fact that
BAMM fai r any rate shifts for most of their rate-variable datasets; in nearly all of these
cases, the -Estimated rates are approximately as good as the best tree-wide average rate

that can b@d with other methods (see Rabosky et al., 2017: Figures 11 - 13).

SUMMARY E

In this article, I explain why the conclusions of Meyer and Wiens (2017) are not justified.
Most signi!cantly, M&W compare inference frameworks that differ substantially in the amount
of informati are given by the investigators. By specifying the precise location of rate
shifts for t lculations, M&W provide those estimators with an advantage that could
never b£entf0r real data, because the true location of rate shifts is unknown. The valid
comparisa in M’N involves a scenario where BAMM is constrained to the same (true) set of
rate shifts S estimators; as shown by M&W (M&W: supplementary table S5) and

presented able 1), BAMM performed equivalently to or better than both stem and crown

MS esti@pite relying on a more complex inference model.
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The results of this article should not be construed to imply that BAMM is inherently
better at estimating diversification rates for higher taxa. The simulation design used by M&W
allows Mm BAMM and MS for a somewhat unusual scenario, whereby each named
higher tax® @ gquely associated with a distinct speciation-extinction parameterization.
HowevE&t, #i@FeNsho necessary reason why rate variation in real datasets need be associated

with highe&espite the fact that BAMM outperforms MS when the locations of rate shifts

€

are known{Table¥l), it is essential to recognize the limits of these testing scenarios. In real

empirical the nature and location of diversification rate variation is unknown. If most

S

variation in diversification rates is partitioned among a set of higher taxa, then researchers

J

should estim es separately for each taxon of interest, rather than perform a global BAMM

analysis. ) if rate variation is largely decoupled from taxonomic categories, then it is

1

possible t al BAMM analysis will outperform taxon-specific rate estimates. To fairly
determinive performance of BAMM and MS as applied to higher taxa, it is important to
constr nt scenarios where the association between rate variation and taxonomic
groups is simi the (largely unknown) relationship in real datasets.

Two additional caveats should be clearly stated. First, the results presented in M&W are
limited to !comparison between MS estimators and BAMM. No other inference frameworks
were consi o no conclusions can be drawn about other models or software
implemen at might have been used to analyze the same data (e.g., FitzJohn 2012;
Morlon £2016). Second, the results of this article pertain to the performance of BAMM when
species-le*l Hhx'genies, potentially with incomplete sampling, are analyzed with the program
and mean then extracted for nested subclades. BAMM should generally not be used to

analyze p es of higher taxa, as might occur if a researcher applied BAMM to a phylogeny

with sig esentatives of all family-level clades in a particular group of organisms. The

BAMM likelihood"unction is not appropriate for such data because it describes the likelihood of
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a particular branching pattern given the diversification parameters and taxon sampling. The
more appropriate likelihood for terminally unresolved clades is the MEDUSA likelihood (Alfaro
etal, Z(M is based on the probability that a given diversification parameterization will
produce a @ he same size as the focal clade. However, incomplete sampling per se is not
necessd¥i| jJpEeBIematic for BAMM: as shown by M&W, BAMM performs well with low (25%)
taxon sam ble 1). FitzJohn et al. (2009) discuss the distinction between skeletal trees

with missiig taxadfappropriate for BAMM) and trees with terminally-unresolved clades (not

appropriamMM).
This article is not intended to discourage independent performance assessments of

BAMM and oth ethods: such testing should be strongly encouraged by the community. Major

J

advances i ds development are often driven by studies that characterize the conditions

n

under whi g methods perform poorly. However, studies that purport to test the relative

performane methods must ensure the equivalency of the frameworks under

d

consid le 1) and also that adequate control experiments have been performed (Fig.

2, Fig. 4).In e of Meyer and Wiens (2017), these concerns are sufficient to both overturn

W

and reverse the conclusions presented in their article.
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Figure legends

Figure 1. [llustration of testing procedure used by M&W. Left: true phylogeny with three rate
shifts (m with a distinct speciation-extinction parameterization. Middle: MS
estimators @ ied to the set of clades with rate shifts and no others. Right: BAMM is used to
analyzédith Bi@@mplete tree, but no information is provided about the number and location of rate
shifts. Foll mpletion of the analysis, an a posteriori summary is performed where the
mean rate\s extra€ted for the three true shift clades. If BAMM fails to identify significant
difference between true shift groups, as might occur in this example for clades (a) and
(b), the mean rates for each clade will be similar and non-independent, because BAMM will

assume that th des were generated under a shared diversification process.

Simulated tree with Input given to MS estimators: Input given to BAMM:
three rate shifts (a, b, c) Tree partitioned by true shift group Tree with no further information

) .-
®
—
—
©

Figure 2. ation rates estimated with BAMM are far more accurate than those obtained
with MSi; when applied to clades that are selected without information about the
presen e of rate shifts. M&W applied the MS estimators only to a small number of

clades that'were known in advance to be associated with rate shifts (Fig. 1), even though this

i 43

information Wo;:s be unknown for real datasets. (A) Illustration of revised testing procedure:
MS estima computed for all clades, including those not associated with rate shifts. BAMM
is applied mplete phylogeny, and mean rates are extracted for each corresponding

subclade. (B, C, D) Proportional error (top rows) and absolute proportional error (bottom rows)
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for three estimators of net diversification rate (columns): (B) MS stem age estimator; (C) MS
crown age estimator; (D) BAMM. Estimation error for BAMM is far lower than both the crown
and steMstimators; gray polygons indicate 10% and 90% limits on the distribution of
proportio @ estimates. Interquartile range in error for the BAMM estimates is (7.8%,
9.4%), WerSUSNEIB %, 45.3%) for MS-stem and (11.7%, 58.0%) for MS-crown. Outliers with
absolute e entages exceeding 200% are omitted from the bottom panels, but the MS
estimatorsicontajf many more such outliers than BAMM (MS-stem, 9 outliers; MS-crown, 21
outliers; B , Woutlier). This analysis uses the first tree (tree "A") from the M&W dataset;
relative extinction for MS estimators was 0.5.

A . Simuediree wn o T given 0 1S estmators: Input ghven to EAMM:

thre= rat= shifts (a, b <) partitioned Into clades, without Tree with no furter Information
s.elEdj:n bias for true shift groups
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Figure 3. Two scenarios under which low effect sizes may compromise correlation-based
assessments of BAMM and other clustering methods. Identity line is shown for reference
(dashedﬁ:true groups (black, white) show little variation in parameter values, such that the
method a roups to the same parameter class. The absolute error in this example may
be low,lBu@SEi@ates can nonetheless be uncorrelated with the true values. Right: true
parameterhiffer substantially between groups, but the effect size of one or more groups
is small d@ly unbalanced sampling. Even as parameter estimates are accurate across
99% of th ed data, the correlation coefficient is zero, because the estimated rates are
identical for all groups. Diversification studies are particularly susceptible to unbalanced

sampling acr ups, because the amount of data within treatments (e.g., subclade size) will

generally Eated with the corresponding diversification parameters.

Small effect size: Unbalanced design:
Little variation in true group means Unequal amounts of data across groups
— Estimated correlation = 0 — Estimated correlation = 0

Q Q O o
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@ n=1000
I

True parameter value True parameter value

Figure 4. M&W tSting scheme for determining whether diversification rates vary among sister
clades is stro ffected by stochastic variation in species richness and leads to high Type I
error ra Probability of rejecting a true null hypothesis (no variation in rates among sister

clades) as a function of clade age, under the testing scheme described by M&W. Blue line shows
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analytical probability that one member of a sister-clade pair of a given age (x-axis) will have a
higher numerical MS value than the other, given that both clades have diversified under an
identicMification rate. Red line shows Type I error rates under a more stringent
threshold @ d by M&W, which requires MS estimates for clades to differ by 0.01 units or
more iMoo @EMEEEo nclude that diversification rate variation is present. (B) MS-stem
diversificahmates for 5000 replicates of an identical diversification process (rate = 0.12;
stem age =¢3.1), Austrating extensive variation in the value of MS estimators that can arise due

to stochas he diversification process itself. The variation illustrated in (B) is due to the

S

inherent noisiness of the diversification process. For this parameterization, the 5% and 95%

quantiles on th tribution of species richness are 11 and 598, respectively.
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Table 1. Under equivalent comparison, BAMM estimates of diversification rate generally show
lower bias and error than MS estimators; results are taken directly from M&W Tables S1 and S5.

Models ar!ran!ed from best-performing to worst-performing (best = 1), by absolute error.

Sampling, ‘@ axon sampling; g, relative extinction rate; PE (bias, %), proportional error.

| Method™ s % taxa rank Mean PE (bias, %)
L sampled absolute error
(%)

BAMM imated 25% 1 22.4 -0.3
timated 50% 2 26.2 -7.4
- 3 26.3 -15.8
estimated 100% 4 27.8 -10.1

- 5 30.5 15.9
- 6 32.8 -32.8

- 7 47.1 44.1

- 8 50.2 44
- 9 59.2 57.9
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