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ABSTRACT 

 The software program BAMM has been widely used to study rates of speciation, 

extinction, and phenotypic evolution on phylogenetic trees. The program implements a model-

based clustering algorithm to identify clades that share common macroevolutionary rate 
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dynamics and to estimate parameters. A recent simulation study by Meyer and Wiens (M&W) 

argued that (i) a simple inference framework ("MS") performs much better than BAMM, and (ii) 

evolutionary rates inferred with BAMM are poorly correlated with true rates. I address two 

statistical concerns with their assessment that affect the generality of their conclusions. These 

considerations are not specific to BAMM and apply to other methods for estimating parameters 

from empirical data where the true grouping structure of the data is unknown. M&W constrain 

roughly half of the parameters in their MS analyses to their true values, but BAMM is given no 

such information and must estimate all parameters from the data. This information disparity 

results in a substantial degrees-of-freedom advantage for the MS estimators. When both 

methods are given equivalent information, BAMM outperforms the MS estimators.  

 

INTRODUCTION 

 Within ecology and evolution, there is great interest in model-based methods for data 

partitioning. Such methods allow researchers to infer hidden group structure from empirical 

data and to estimate associated parameters of interest. For example, model-based clustering is 

widely used to classify individuals into subpopulations that differ in phenotypes, allele 

frequencies, and other traits (e.g., STRUCTURE: Pritchard et al. 2000; BAPS: Corander et al. 

2008; Gaussian mixture modeling: Cadena et al. 2017). In phylogenetics, model-based 

partitioning is widely used to identify and accommodate variation in the rate of molecular 

evolution among sites and across the branches of phylogenetic trees (Drummond and Suchard 

2010; Heath et al. 2011; Lanfear et al. 2014). Model-based data partitioning can reveal 

heterogeneity in the processes of diversification and trait evolution and has thus been used 

extensively in macroevolutionary studies (Alfaro et al. 2009; Eastman et al. 2011; Venditti et al. 

2011; Uyeda and Harmon 2014). Such analyses typically attempt to partition phylogenetic trees 
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into non-overlapping subclades that differ in parameters of interest related to either species 

diversification or to the tempo and mode of trait evolution.    

 The software program BAMM (Rabosky 2014) is a Bayesian framework for inferring 

heterogeneity in rates of species diversification and phenotypic evolution across phylogenetic 

trees. The underlying parametric model in BAMM assumes that phylogenetic trees have been 

shaped by a collection of distinct macroevolutionary rate regimes. The software implementation 

uses reversible jump Markov chain Monte Carlo to simulate posterior distributions of rate shift 

configurations that are consistent with the observed data (Rabosky, 2014). Although the 

mathematics and implementation algorithms underlying BAMM are complex, the method is 

essentially a cluster analysis that provides both parameter estimates and probabilistic measures 

of support for inferred group structures. The BAMM algorithm, model assumptions, and 

performance have been described in detail elsewhere (Rabosky 2014; Rabosky et al. 2014a; 

Mitchell and Rabosky 2016; Rabosky et al. 2017).  

 A recent article in Evolution (Meyer and Wiens 2017; hereafter, M&W) posed an 

important and timely problem in macroevolutionary inference: given a phylogenetic tree and a 

set of named higher taxa, how should we estimate diversification rates for those clades? M&W 

generated simulated phylogenetic datasets that contained both higher taxonomic categories and 

diversification rate heterogeneity, and they assessed how well several methods for rate 

estimation fared at recovering the true rates for each (simulated) higher taxon. Specifically, they 

compared parameter estimates from BAMM to those obtained from a much-simpler "method-of-

moments" estimator (Magallon and Sanderson 2001) and found that these simple estimates 

(hereafter, "MS") performed substantially better than BAMM. The MS estimators can be used to 

compute the maximum likelihood estimate of a clade's net diversification rate under a constant-

rate birth-death process, given the stem age and species richness for the clade. M&W concluded 

that BAMM provides unreliable parameter estimates and should not be used. This conclusion is 
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at odds with those drawn from a more extensive simulation study (Rabosky et al., 2017), which 

found that diversification inferences from BAMM were both reliable and consistent. 

 In this article, I demonstrate that the primary conclusions of M&W are not justified, due 

to several concerns in their experimental design that largely predetermine the outcome of their 

assessment. One issue in M&W involves a comparison between non-equivalent inference 

frameworks that differ substantially in the amount of information they are given by the 

investigators. Specifically, M&W provide the MS estimators with perfect information about the 

locations of rate shifts across the tree and simply compute the rate estimates for each true 

group in the dataset. BAMM is provided with no information about the true locations of rate 

shifts and must estimate group structure across the phylogeny prior to parameter estimation. 

The MS analyses are performed after M&W have set the values of many parameters to their true 

values; BAMM is forced to estimate the same parameters from the data, and the researchers do 

not account for this difference in parameters. M&W thus perform an uncorrected comparison 

between two modeling frameworks that differ substantially in their degrees of freedom, and the 

outcome is clear even before the experiment is performed.   

 A second concern regarding M&Ws experimental design is more nuanced, but involves 

the conflation of hypothesis testing and parameter estimation. Their analyses confound small 

effect sizes across treatment groups with error in parameter estimates and are thus unable to 

assess parameter reliability. In the extreme, this latter issue allows treatment groups with small 

effect sizes and/or highly-unbalanced experimental designs to generate low correlations 

between true and estimated parameter values, even as absolute error in the parameter 

estimates approaches zero. All methods for jointly inferring group structure and estimating 

parameters are susceptible to these assessment concerns, including nearly all model-based 

frameworks for data partitioning in evolution, ecology, and systematics.  
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SCOPE OF THE PRESENT ARTICLE 

 M&W includes a large number of analyses, most of which are affected by the two 

statistical issues I will describe. Hence, I will only revisit a subset of their results and will not 

repeat the same summaries across all combinations of parameters and simulation conditions. I 

will focus primarily on the comparison between net diversification rates (speciation minus 

extinction) as estimated with BAMM and those obtained with MS estimators. The results 

obtained below are available through supplementary tables that accompany M&W. I also 

repeated the BAMM analysis exactly as described by M&W for the first dataset (tree "A") in their 

article and use these results below. The BAMM results I obtained from my independent analysis 

yield nearly identical results to those reported by M&W. The relationship between subclade 

mean diversification rates obtained in my re-analysis versus those provided by M&W (rows 1- 

10 in Table S1) contain only trivial numerical discrepancies (linear regression: slope = 1.015, 

intercept = -0.002, r2 = 0.999). None of the analyses and results performed below relate to 

technical aspects of the BAMM analyses, and M&W appear to have executed their BAMM 

analyses in a manner consistent with developer recommendations. All computer code and 

results from this article are available through Dryad, doi: ######).  

 

EXPERIMENTAL DESIGN IN M&W 

 M&W compare the performance of BAMM and MS estimators across a set of 20 

simulated phylogenetic datasets. Each simulated phylogeny was created by first generating a 

backbone tree of 10 tips. Each of these 10 tips was destined to represent a subclade with a 

unique speciation-extinction parameterization. For each of the 10 tips, M&W sampled 

speciation and relative extinction parameters from a uniform distribution. Complete species-

level phylogenies were then simulated under the sampled parameters, such that the simulated 

subtrees had a stem clade age that was identical to the corresponding terminal branch length. 
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M&W then replaced each of the original 10 tips with a subtree generated under a unique 

speciation-extinction parameterization. Each phylogeny thus contains a backbone tree and 

exactly 10 "rate shifts", and each shift defines a subclade that contained between 10 and 1401 

tips. For consistency of terminology, I refer to each clade with distinct rate parameters as a "rate 

class" or "true group"; there are exactly 10 true groups per tree that can be discovered by 

BAMM or any other method. 

 For each simulated phylogeny, M&W then simulated posterior distributions of 

macroevolutionary rate regimes using BAMM. They summarized their BAMM analyses by 

computing mean rates of speciation, extinction, and net diversification for each of the 10 true 

groups using summary functions from BAMMtools (Rabosky et al. 2014b). The mean rate for a 

given true group is simply the mean of the marginal posterior distribution of rates for all 

branches that belong to the group. For BAMM to accurately estimate distinct rates for each of 

the 10 groups, it would first be necessary for the program to correctly infer the grouping 

structure in the data (e.g., the locations of all 10 true groups). If BAMM fails to infer any groups 

(e.g., finds no shifts), then the rates estimated for all groups will be similar.  

 To determine whether the BAMM estimates are "good" or "bad", M&W perform a second 

analysis where they computed the analytical MS estimates of diversification rate for each of the 

10 true groups. That is, they cut the tree into the 10 groups to which they have assigned distinct 

rate parameters, and estimate rates separately for each group. The MS estimates are far less 

complex than BAMM: for stem clades and with zero extinction, the MS estimate of 

diversification rate is simply the logarithm of species richness divided by time. To summarize 

results, M&W compute the proportional error of the rate estimates for each of the 10 true 

groups for each tree and express it as a percentage. This is computed as (RE - RT) / RT, where RT 

are RE are the true and estimated rates for the focal group. They find that the MS estimators 

have lower error than the BAMM estimates (M&W: Figure 1). They also find that the slopes of 
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the relationships between true and estimated rates across all groups are more accurate for the 

simple MS estimators than for BAMM (M&W: Table 1), and that MS estimators are better able to 

detect true variation in diversification rates (M&W: Fig. 5). 

 

NONEQUIVALENCE OF INFERENCE MODELS IN M&W 

 The statistical comparisons between BAMM and MS made in this fashion are not 

equivalent and strongly favor MS because the MS estimators are informed of the precise number 

and location of the true groups (e.g., rate shifts). Figure 1 summarizes the difference between 

these comparisons as performed by M&W. Consider a scenario in which a researcher is given a 

large set of body size measurements and asked to estimate the number of true populations from 

which the measurements were drawn, along with the means of those populations, in the 

absence of any other identifying information. To address this problem, we might perform a 

clustering and estimation analysis by modeling the distributions of sizes as a mixture of 

distributions (e.g., Gaussian clustering). Now, suppose that we are given additional information 

about each observation in the dataset: specifically, information about the precise subpopulation 

from which each of the measurements was drawn is now provided. We then perform a 

secondary analysis where the original data is simply partitioned by true subpopulation 

membership, and the sample means are computed for each of the true groups.    

 If we somehow knew the true means of each population, we would likely observe that 

the second approach – partitioning the data with true grouping information in hand – would 

provide greater accuracy than the mixture modeling approach, because the mixture model 

approach must estimate group structure from the data. This is precisely the comparison used by 

M&W: they provide the MS estimators, but not BAMM, with the true group structure of the data. 

For MS estimators, M&W compute averages after partitioning the data into subsets for each rate 

shift, and they only know where the shifts have happened because M&W created the simulation 
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scenarios. It is unsurprising that MS estimators outperform BAMM under such conditions, and 

the M&W comparison is equivalent to comparing statistical models that differ by a large number 

of parameters without controlling for the difference. Many statistical methods for partitioning 

data into groups and estimating population parameters would likely appear to perform poorly 

under such an assessment scenario.  

 Because true locations of rate shifts are generally unknown, assessing the performance 

of MS estimators under simple scenarios where rate shift locations are known without error – 

as in M&W – should provide a highly selective view of their performance. There is presently 

little evidence that named higher taxa (e.g., genera, families, phyla) are universally or even 

largely concordant with macroevolutionary rate shifts (Smith et al. 2011) so it is essential to 

understand how MS estimators perform relative to BAMM when applied to clades that may or 

may not be associated with rate shifts.  

 

FAIR COMPARISONS BETWEEN MS AND BAMM 

 To determine the best method for estimating diversification rates for higher taxa, there 

are several approaches M&W could have used to perform more-or-less equivalent comparisons 

between MS estimators and BAMM. An obvious control experiment, which was not performed 

by M&W, is to repeat their analyses for clades other than the precise set that they have seeded 

with rate shifts. For empirical datasets, we typically have no knowledge of the potential rate 

shift locations. Hence, it is important to know how the M&W inference framework would fare if 

applied to clades that are sampled at random with respect to their "true group" assignment. To 

perform this comparison, I computed stem and crown MS estimates for all clades with at least 

10 taxa from the first tree (tree "A") from M&W (Fig. 2, top row). The threshold of 10 taxa was 

chosen because M&W required their simulated shift clades to also contain at least 10 extant 

taxa. Then, using the results from a single BAMM analysis of the complete phylogeny (e.g., 
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including all clades), I summarized the BAMM estimates of net diversification rate separately for 

all subclades exactly as in M&W using the BAMMtools getCladeRates function (Rabosky et al. 

2014b). If BAMM found no evidence for rate variation at the scale of the full tree, then the mean 

rates computed for each subclade would be nearly identical. My results for this exercise are thus 

those that M&W would have obtained if they applied MS estimators to all clades, rather than 

selectively applying those estimators only to those clades to which they had assigned rate shifts. 

For the first tree (tree "A"), there are a total of 548 clades with at least 10 tips; by restricting 

their assessment to the 10 true groups, M&W tested estimation bias for a select set (2%) of 

potential higher taxa.  

 When MS estimators are applied to this more general set of clades, they perform far 

worse than BAMM (Fig. 2). The mean absolute proportional error in BAMM estimates for such 

clades is 12.2%, versus 38.7% for MS stem estimators and 47.3% for MS crown estimators. The 

reason for the poor performance of the MS estimators, relative to BAMM, is that the MS 

estimators are highly sensitive to stochastic variation in species richness due to the 

diversification process itself. If clades are simulated under a fixed speciation-extinction 

parameterization, one will observe stochastic variation in richness, and the MS estimators will 

track this variation closely. BAMM is more conservative because it uses information from the 

full tree when determining whether a given subclade is sufficiently distinct (e.g., significantly 

different) such that it should be assigned its own rate parameters.   

 The preceding exercise is not offered as a serious comparison of BAMM and MS 

estimators: it merely highlights the problems with comparing inference frameworks where one 

approach (MS) is given prior knowledge of true shift locations, but where the other (BAMM) is 

given only the data that would typically be available to researchers in practice. Several 

additional approaches could have used to determine which method performs better at 

estimating rates for higher taxa. First, M&W could have used formal data partitioning methods 
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to identify the clades to which MS estimators should be applied. For example, the MEDUSA 

method is, to some degree, a statistical approach for finding best-fit locations for applying MS 

estimators across a phylogeny. I performed such a comparison in the original BAMM description 

(Rabosky 2014), finding that BAMM performed at least as well as MEDUSA for the set of 

simulation scenarios considered. The eigengap method of Lewitus and Morlon (2016) is 

conceptually distinct from MEDUSA and BAMM, but nonetheless allows researchers to non-

arbitrarily partition trees into clades that differ in their underlying diversification dynamics. 

 Second, M&W could have conditioned their BAMM analyses on the number and location 

of the true shifts, just as they have done for the MS estimators. In fact, this test is essentially 

what M&W did when they analyzed each true group (rate class) separately. Their results 

showed that BAMM performed very well for this test (M&W: figure 2). The BAMM and MS 

models are still non-equivalent, because they allowed BAMM to have multiple shifts within each 

true rate class. However, this decision should have made BAMM perform worse than the MS 

estimators, not better, because it imposes additional and unnecessary complexity on the BAMM 

model that is not present in the MS estimation framework.  

 Using results from M&W Table S5, I compared the proportional error in rate estimates 

from BAMM and from MS stem and crown estimators. Remarkably, BAMM outperforms the MS 

estimators under complete and incomplete taxon sampling (Table 1), directly contradicting the 

primary conclusions of M&W. The mean proportional error (bias) is lower for BAMM than for all 

MS stem or crown estimators. Furthermore, the mean absolute error is similar to or much 

better than all MS estimators used by M&W. It is worth noting that this comparison is irrelevant 

for empirical datasets, because researchers cannot condition on the location of the true shifts, 

which are unknown. 

 

 



 

 

 

This article is protected by copyright. All rights reserved. 

 

PRIOR SPECIFICATION: NOT THE SAME AS CONDITIONING 

 

 M&W imply that they have made a fair comparison, noting: "...we set the expected 

number of shifts to 10, given that each tree had 10 clades, each with random and independent 

diversification rates. Thus, we seeded the BAMM analyses with a number close to the actual 

number of rate regimes, even though this number would be unknown in empirical analyses." 

However, manipulation of a general tree-wide prior is not equivalent to conditioning the 

analysis on a specified number of shifts, for two reasons. First and most importantly, the 

posterior on the number of shifts is largely independent of the prior (Mitchell and Rabosky 

2016; Rabosky et al. 2017) and specifying a prior is not seeding a tree with a specific number of 

shifts. In fact, M&W note that their estimates are largely independent of the prior, so they 

acknowledge that they are not seeding the analyses with 10 rate shifts. The mean number of 

shifts they found across each tree in their analyses with complete sampling was only 2.35, which 

rejects the idea that they are informing BAMM that there are 10 shifts in each dataset.  

 Second, even if M&W had conditioned their BAMM analyses on containing exactly 10 

rate shifts, the comparison would be nonequivalent, because the MS estimators are given both 

the number of shifts and their precise locations. As an example, consider the first tree (tree "A") 

in the M&W dataset. This tree contains 5568 branches on which BAMM could place the 10 rate 

shifts. If we condition the analysis on exactly 10 rate shifts, the prior probability of a rate shift 

on any of the 10 true "shift branches" ranges from 0.0006 to 0.007 (Supporting information), 

and the prior odds that BAMM will place shifts on all 10 of these branches is the product of the 

10 probabilities, or roughly 10-27.  For the MS estimators, these prior probabilities are 1, because 

the shifts are fixed to their true locations. Hence, even if BAMM was seeded with 10 shifts, the 

prior odds ratio favoring the MS estimators is on the order of 1 / 10-27  1027.     
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HYPOTHESIS TESTING VERSUS PARAMETER ESTIMATION 

 A seemingly obvious strategy for assessing the reliability of rates estimated using BAMM 

and other methods is to compare the correlation between the true evolutionary rates and the 

mean rates as inferred with BAMM. This approach is used by both M&W and by Moore et al. 

(2016) to assess the reliability of BAMM-estimated rates. However, such an assessment strategy 

suffers from a largely-unappreciated weakness that results when hypothesis testing is 

performed simultaneously with parameter estimation, as occurs implicitly with BAMM through 

Bayesian model averaging. For BAMM to obtain unconstrained parameter estimates for a 

particular subclade, the program must first sample a rate shift on the branch leading to the focal 

clade; the frequency with which such samples are obtained in the posterior is proportional to 

the evidence favoring such a shift. If shifts are not sampled on branches immediately ancestral 

to the focal clade, the corresponding rate estimates will not be independent of those rates 

inferred for the parent rate class. As the effect size among groups (e.g., clades or rate classes) 

decreases, the posterior estimates for specific shift groups will increasingly be influenced by 

information from other parts of the tree (e.g., the global mean rate). In Bayesian statistics, this 

phenomenon is referred to as shrinkage, whereby estimates for specific subgroups in a 

hierarchical model will "shrink back" towards some overall central tendency (Kruschke and 

Vanpaemel 2015). BAMM is effectively a Bayesian shrinkage method that uses a mixture model 

to determine the extent to which local estimates of rates (e.g., a specific subclade) should be 

informed by global (tree-wide) information. It is clear that, when clades with rate shifts are 

small, BAMM tends to overshrink: the method routinely fails to infer the presence of small rate 

classes and thus, the resulting estimates for the specific clade are driven by the "global" average  

As Rabosky et al. (2017) noted, the weak correlations that Moore et al (2016) observed between 

true and BAMM-estimated rates were largely driven by such overshrinking: most rate shifts in 

the Moore et al (2016) dataset led to clades with fewer than five tips. BAMM generally failed to 
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detect such rate shifts, such that rates for any local portion of the tree (e.g., a specific branch) 

largely reflected the tree-wide average rate.  

 For their main results (M&W Figure 1 and Table 1), M&W compare BAMM, which jointly 

infers the grouping structure of the data and associated parameter values, to the MS estimators, 

which simply estimate parameters for data partitions that have been defined a priori. For the 

MS estimators, M&W compute the values for each of the true groups, much as one might 

compute the arithmetic mean of a set of body size observations from a single true population. 

The non-comparability of these approaches is easier to understand if we consider that each of 

the true groups (rate classes) in the M&W phylogenies is essentially a treatment group, and 

each treatment group has an effect size that is a function of the corresponding phylogeny. For 

both BAMM and MS estimators, M&W then test whether the estimated group means are 

correlated with the true values for each of the treatment groups. There are multiple conditions 

under which this comparison will yield poor performance. If the effect sizes for individual 

treatments are small, such that rates estimated with BAMM shrink towards the tree-wide mean 

rate, then the program effectively estimates the overall rate and not a treatment (true group) 

mean. In the extreme, BAMM might recover no evidence for rate variation, and the correlation 

between true rates and estimated rates might equal zero even as rates are estimated with very 

high accuracy (Fig. 3). In contrast, there is no hypothesis testing associated with the MS 

estimators. The true groups are identified in advance and assumed to be different, and this 

information is only known because M&W created the simulation scenarios.  

 Another way of conceptualizing this issue is that M&W have imposed an effect size filter 

on their BAMM analyses but not their MS estimators. This means that issues of statistical power 

due to low effect sizes will compromise the performance of BAMM, but not the MS estimators. 

By implicitly performing hypothesis testing during the process of parameter estimation, 

through Bayesian model averaging, M&W induce strong non-independence across treatment 
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groups. If BAMM fails to infer the existence of a particular rate shift (e.g, the posterior 

probability of a shift is low), the resulting rate estimates for the shift clade will be correlated 

with or nearly identical to the rates inferred for the parent rate class. The number of rate shifts 

detected with BAMM is an approximation of the degrees of freedom (Rabosky and Huang 2015), 

and the mean number of shifts across all M&W full-tree analyses is only 1.87, indicating strong 

non-independence among group means as computed by M&W. In the extreme, BAMM will find 

no rate variation and all 10 true groups will have nearly identical rate estimates, meaning that 

M&W are essentially performing regression analyses with a single observation of the dependent 

variable. This is not a hypothetical scenario, because 12% of their BAMM analyses reported no 

detectable rate shifts. For these reasons, simple correlation analyses of true versus estimated 

rates for the full-tree BAMM analyses are not appropriate (Fig. 3). We have previously used 

correlation coefficients and regression slope analyses to assess BAMM's performance, but only 

with explicit consideration of the effect size (e.g., theoretical information content; sample size) 

of each true group (Rabosky et al. 2017).  

 There is a simple reason why researchers should be cautious about applying estimators 

to groups without using either model-based partitioning or an equivalent hypothesis-testing 

scheme. Sampling error (e.g., variance) is expected to result in numerical differences among 

groups even when the true (population) parameters are identical. As such, approaches that 

neglect this sampling error are potentially subject to a high frequency of false positives when 

characterizing rate variation among clades. In the analyses that underlie M&W Figure 5, the 

authors describe a statistical test for identifying differences in diversification rates among 

clades. They apply MS estimators to the small number of sister clade pairs to which they have 

assigned different rates of diversification, and they define success as any case where the 

numerical rate estimates are higher for the clade with the faster true rate. Because BAMM 

frequently returned similar or identical rate estimates for sister clade pairs, the authors 
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concluded that BAMM generally failed to correctly identify rate heterogeneity when it is present 

(M&W Fig. 5).  

 However, M&W do not perform an important control analysis, which is to test whether 

application of their framework will fail when applied to sister clades that do not vary in 

diversification rate. In fact, when sister clades have identical rates, the probability of a Type I 

error given the M&W assessment framework is very high: any stochastic difference in species 

richness between a pair of sister clades will lead to faster numerical MS estimates for one 

member of the pair, which they would interpret as a correct inference of differential 

diversification rate. Figure 4 demonstrates that the M&W assessment framework yields extreme 

Type I error rates when applied to sister clades with identical diversification rates. In general, 

numerical differences in means between treatment groups should not be used as a substitute 

for probabilistic hypothesis testing.  

 

MS ESTIMATORS CAN BE USEFUL 

 This article is not a critique of MS estimators. Such estimators have proven extremely 

useful in the field and will continue to be useful, provided the assumptions of the estimators are 

met and/or the conditions under which they fail are adequately characterized (Rabosky 2009a, 

b). MS and related estimators allow researchers to extract valuable evolutionary insights from 

information on clade ages and species richness, even when taxon sampling in the underlying 

phylogenetic trees is limited (Raup 1985; Magallon and Sanderson 2001; Nee 2006; Ricklefs 

2007). Simple methods frequently prove more robust than complex methods to violations of 

their underlying assumptions. Moreover, there are many groups of organisms for which species-

level phylogenies are not presently available.  

 However, there is no evidence that simple MS estimators can outperform more complex 

models of diversification dynamics when lineage level phylogenies with at least 25% taxon 
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sampling are available. In practice, MS estimators might be expected to perform somewhat 

worse than suggested by M&W, because real phylogenies are likely to contain additional among-

lineage or temporal rate heterogeneity within the focal higher taxa. By collapsing large 

phylogenies (average size: 2022 tips) to higher level phylogenies of just 10 tips, the approach of 

M&W discards data that can potentially provide greater insights into the nature of rate variation 

through time and among clades. It is unclear what useful information can be gained by ignoring 

within-taxon variation in diversification rates in any case where a suitable phylogeny is 

available for estimating such variation.      

 

PROPER MODEL COMPARISON IS ESSENTIAL 

 The study by M&W raises a number of important statistical issues that are relevant to 

assessing any methods for clustering and parameter estimation. There is no question that 

simple estimators for population data, such as the MS estimators favored by M&W, have utility 

in ecology and evolution. However, M&W evaluate the performance of MS estimators by 

applying them only to groups with known (investigator-defined) differences between them, and 

they interpret any differences between groups as consistent with true variation in underlying 

parameters (e.g., M&W Figure 5). Because M&W neglect the sampling error (e.g., stochastic 

noise) associated with real data, their recommended approach performs poorly when applied to 

data when there are no differences between groups (Fig. 2, Fig. 4).  

  The approach used by M&W suffers from a second issue that is not widely appreciated. 

By computing numerical estimates of rates for individual clades, M&W implicitly assume that 

phylogenies can be carved up into an arbitrary number of higher taxa to serve as largely-

independent units (data points) for downstream analyses. If a phylogeny or parts thereof are 

generated by a single underlying diversification process, the apparent numerical differences in 

diversification rate between constituent subclades are likely to reflect nothing more than 
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sampling error due to the inherent stochasticity of the diversification process (Fig. 4b). In light 

of this observation, it is perhaps unsurprising that some studies using MS estimators for higher 

taxa have obtained results that cannot be distinguished from a random splatter of data across 

the tips of the tree (see Rabosky and Adams 2012; Rabosky et al. 2012). BAMM, MEDUSA, and 

related methods (Morlon et al. 2011; Etienne and Haegeman 2012; Lewitus and Morlon 2016) 

may provide imperfect solutions for quantifying group structure across phylogenetic trees, but 

they do not suffer from the illusion of independence that comes from partitioning phylogenetic 

trees into subgroups that may have been generated under a common diversification process.  

 

IS BAMM OVERLY CONSERVATIVE? 

 M&W observed that BAMM had low power to infer rate variation for some of their 

simulated datasets. As they discuss, one consequence of this conservatism is that rate estimates 

for small clades may essentially reflect a global average that need not be closely correlated with 

the true rates of the focal clade. BAMM clearly tends to underestimate the true number of rate 

shifts, and this conservatism has been discussed previously. Upon observing that correlations 

between true and estimated rates were zero for some fraction of datasets that were analyzed 

with BAMM, Rabosky (2014; see corresponding Figure 6) wrote:  "... branch specific estimates of 

rates for a multiprocess model may be poor if model underfitting has occurred. In the extreme 

case, a tree that is estimated to have only a single process may have very similar rate estimates 

on each branch; the correlation between these rates and the true rates will necessarily be low if 

the true model includes multiple processes and considerable rate heterogeneity across the 

tree." There is considerable scope to clarify the causes of this conservatism and/or to determine 

whether BAMM is excessively conservative. 

 One way forward is to more explicitly assess BAMM's conservatism in light of the 

theoretical information content associated with each shift regime. Rabosky et al. (2017) used 
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such an approach to demonstrate that many of the purportedly rate-variable phylogenies 

simulated by Moore et al. (2016) were statistically indistinguishable from a constant-rate birth-

death process. However, the "rate-shift" subclades generated by M&W are much larger than 

those in Moore et al. (2016); presumably, the subclades in M&W contain more information. 

Whether BAMM is overly conservative, relative to other methods that have been or might be 

devised, remains an open question. At this point, however, there is no evidence that BAMM's 

rates are unreliable (Rabosky et al. 2017): claims of unreliability in both M&W and in Moore et 

al (2016) are readily shown to result from BAMM's tendency to underestimate the true number 

of shifts (e.g., the program is conservative). In the analyses by Moore et al (2016), for example, 

the low correlation between true and estimated rates results almost entirely from the fact that 

BAMM failed to infer any rate shifts for most of their rate-variable datasets; in nearly all of these 

cases, the BAMM-estimated rates are approximately as good as the best tree-wide average rate 

that can be obtained with other methods (see Rabosky et al., 2017: Figures 11 - 13). 

 

SUMMARY 

 In this article, I explain why the conclusions of Meyer and Wiens (2017) are not justified.  

Most significantly, M&W compare inference frameworks that differ substantially in the amount 

of information they are given by the investigators. By specifying the precise location of rate 

shifts for the MS calculations, M&W provide those estimators with an advantage that could 

never be present for real data, because the true location of rate shifts is unknown. The valid 

comparison in M&W involves a scenario where BAMM is constrained to the same (true) set of 

rate shifts as the MS estimators; as shown by M&W (M&W: supplementary table S5) and 

presented here (Table 1), BAMM performed equivalently to or better than both stem and crown 

MS estimators despite relying on a more complex inference model.  
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 The results of this article should not be construed to imply that BAMM is inherently 

better at estimating diversification rates for higher taxa. The simulation design used by M&W 

allows us to compare BAMM and MS for a somewhat unusual scenario, whereby each named 

higher taxon is uniquely associated with a distinct speciation-extinction parameterization. 

However, there is no necessary reason why rate variation in real datasets need be associated 

with higher taxa. Despite the fact that BAMM outperforms MS when the locations of rate shifts 

are known (Table 1), it is essential to recognize the limits of these testing scenarios. In real 

empirical datasets, the nature and location of diversification rate variation is unknown. If most 

variation in diversification rates is partitioned among a set of higher taxa, then researchers 

should estimate rates separately for each taxon of interest, rather than perform a global BAMM 

analysis. However, if rate variation is largely decoupled from taxonomic categories, then it is 

possible that a global BAMM analysis will outperform taxon-specific rate estimates. To fairly 

determine the relative performance of BAMM and MS as applied to higher taxa, it is important to 

construct assessment scenarios where the association between rate variation and taxonomic 

groups is similar to the (largely unknown) relationship in real datasets.   

 Two additional caveats should be clearly stated. First, the results presented in M&W are 

limited to a comparison between MS estimators and BAMM. No other inference frameworks 

were considered, so no conclusions can be drawn about other models or software 

implementations that might have been used to analyze the same data (e.g., FitzJohn 2012; 

Morlon et al. 2016). Second, the results of this article pertain to the performance of BAMM when 

species-level phylogenies, potentially with incomplete sampling, are analyzed with the program 

and mean rates are then extracted for nested subclades. BAMM should generally not be used to 

analyze phylogenies of higher taxa, as might occur if a researcher applied BAMM to a phylogeny 

with single representatives of all family-level clades in a particular group of organisms. The 

BAMM likelihood function is not appropriate for such data because it describes the likelihood of 
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a particular branching pattern given the diversification parameters and taxon sampling. The 

more appropriate likelihood for terminally unresolved clades is the MEDUSA likelihood (Alfaro 

et al., 2009), which is based on the probability that a given diversification parameterization will 

produce a clade of the same size as the focal clade. However, incomplete sampling per se is not 

necessarily problematic for BAMM: as shown by M&W, BAMM performs well with low (25%) 

taxon sampling (Table 1). FitzJohn et al. (2009) discuss the distinction between skeletal trees 

with missing taxa (appropriate for BAMM) and trees with terminally-unresolved clades (not 

appropriate for BAMM).   

 This article is not intended to discourage independent performance assessments of 

BAMM and other methods: such testing should be strongly encouraged by the community. Major 

advances in methods development are often driven by studies that characterize the conditions 

under which existing methods perform poorly. However, studies that purport to test the relative 

performance of two methods must ensure the equivalency of the frameworks under 

consideration (Table 1) and also that adequate control experiments have been performed (Fig. 

2, Fig. 4). In the case of Meyer and Wiens (2017), these concerns are sufficient to both overturn 

and reverse the conclusions presented in their article.   
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Figure legends 

Figure 1. Illustration of testing procedure used by M&W. Left: true phylogeny with three rate 

shifts (a, b, c), each with a distinct speciation-extinction parameterization. Middle: MS 

estimators are applied to the set of clades with rate shifts and no others. Right: BAMM is used to 

analyze the complete tree, but no information is provided about the number and location of rate 

shifts. Following completion of the analysis, an a posteriori summary is performed where the 

mean rate is extracted for the three true shift clades. If BAMM fails to identify significant 

differences in rates between true shift groups, as might occur in this example for clades (a) and 

(b), the mean rates for each clade will be similar and non-independent, because BAMM will 

assume that the clades were generated under a shared diversification process. 

 

Figure 2. Diversification rates estimated with BAMM are far more accurate than those obtained 

with MS estimators when applied to clades that are selected without information about the 

presence or absence of rate shifts. M&W applied the MS estimators only to a small number of 

clades that were known in advance to be associated with rate shifts (Fig. 1), even though this 

information would be unknown for real datasets. (A) Illustration of revised testing procedure: 

MS estimates are computed for all clades, including those not associated with rate shifts. BAMM 

is applied to the complete phylogeny, and mean rates are extracted for each corresponding 

subclade. (B, C, D) Proportional error (top rows) and absolute proportional error (bottom rows) 
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for three estimators of net diversification rate (columns): (B) MS stem age estimator; (C) MS 

crown age estimator; (D) BAMM. Estimation error for BAMM is far lower than both the crown 

and stem age MS estimators; gray polygons indicate 10% and 90% limits on the distribution of 

proportional error estimates. Interquartile range in error for the BAMM estimates is (7.8%, 

9.4%), versus (12.3%, 45.3%) for MS-stem and (11.7%, 58.0%) for MS-crown. Outliers with 

absolute error percentages exceeding 200% are omitted from the bottom panels, but the MS 

estimators contain many more such outliers than BAMM (MS-stem, 9 outliers; MS-crown, 21 

outliers; BAMM, 1 outlier). This analysis uses the first tree (tree "A") from the M&W dataset; 

relative extinction for MS estimators was 0.5. 
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Figure 3. Two scenarios under which low effect sizes may compromise correlation-based 

assessments of BAMM and other clustering methods. Identity line is shown for reference 

(dashed). Left: true groups (black, white) show little variation in parameter values, such that the 

method assigns all groups to the same parameter class. The absolute error in this example may 

be low, but estimates can nonetheless be uncorrelated with the true values. Right: true 

parameter values differ substantially between groups, but the effect size of one or more groups 

is small due to highly unbalanced sampling. Even as parameter estimates are accurate across 

99% of the combined data, the correlation coefficient is zero, because the estimated rates are 

identical for all groups. Diversification studies are particularly susceptible to unbalanced 

sampling across groups, because the amount of data within treatments (e.g., subclade size) will 

generally be correlated with the corresponding diversification parameters.  

 

Figure 4. M&W testing scheme for determining whether diversification rates vary among sister 

clades is strongly affected by stochastic variation in species richness and leads to high Type I 

error rates. (A) Probability of rejecting a true null hypothesis (no variation in rates among sister 

clades) as a function of clade age, under the testing scheme described by M&W. Blue line shows 
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analytical probability that one member of a sister-clade pair of a given age (x-axis) will have a 

higher numerical MS value than the other, given that both clades have diversified under an 

identical net diversification rate. Red line shows Type I error rates under a more stringent 

threshold described by M&W, which requires MS estimates for clades to differ by 0.01 units or 

more in order to conclude that diversification rate variation is present. (B) MS-stem 

diversification estimates for 5000 replicates of an identical diversification process (rate = 0.12; 

stem age = 43.1), illustrating extensive variation in the value of MS estimators that can arise due 

to stochasticity in the diversification process itself. The variation illustrated in (B) is due to the 

inherent noisiness of the diversification process. For this parameterization, the 5% and 95% 

quantiles on the distribution of species richness are 11 and 598, respectively. 
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Table 1. Under equivalent comparison, BAMM estimates of diversification rate generally show 

lower bias and error than MS estimators; results are taken directly from M&W Tables S1 and S5. 

Models are ranked from best-performing to worst-performing (best = 1), by absolute error. 

Sampling, percent taxon sampling; , relative extinction rate; PE (bias, %), proportional error.  

Method  % taxa 

sampled 

rank Mean 

absolute error 

(%) 

PE (bias, %) 

BAMM estimated 25% 1 22.4 -0.3 

BAMM estimated 50% 2 26.2 -7.4 

MS-crown 0.9 - 3 26.3 -15.8 

BAMM estimated 100% 4 27.8 -10.1 

MS-stem 0.5 - 5 30.5 15.9 

MS-stem 0.9 - 6 32.8 -32.8 

MS-crown 0.5 - 7 47.1 44.1 

MS-stem 0 - 8 50.2 44 

MS-crown 0 - 9 59.2 57.9 

 

 


