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Running title

 40 

: Migrant-resident monarch interactions  39 

ABSTRACT 41 

Environmental change induces some wildlife populations to shift from migratory to resident 42 

behaviours. Newly formed resident populations could influence the health and behaviour of 43 

remaining migrants. We investigated migrant-resident interactions among monarch butterflies 44 

and consequences for life history and parasitism. Eastern North American monarchs migrate 45 

annually to Mexico, but some now breed year-round on exotic milkweed in the southern U.S. 46 

and experience high infection prevalence of protozoan parasites. Using stable isotopes (δ2H, 47 

δ13

 54 

C) and cardenolide profiles to estimate natal origins, we show that migrant and resident 48 

monarchs overlap during fall and spring migration. Migrants at sites with residents were 13 times 49 

more likely to have infections and three times more likely to be reproductive (outside normal 50 

breeding season) compared to other migrants. Exotic milkweed might either induce these states 51 

or attract migrants that are already infected or reproductive. Increased migrant-resident 52 

interactions could affect monarch parasitism, migratory success, and long-term conservation. 53 
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Wildlife  populations that engage in partial migration include both migrant and resident 65 

individuals, with migrants moving between habitats seasonally and residents remaining in the 66 

same area throughout the year (Newton 2008; Chapman et al. 2011a, b). Migrants and residents 67 

often differ in reproductive behaviour, body size, predation risk, and in some cases, pathogen 68 

infection (Adriaensen & Dhondt 1990; Hendry 2004; Hebblewhite & Merrill 2009; Altizer et al. 69 

2011). Seasonal migrants and residents can interact and share habitat for part of the year, as 70 

reported for Canada Geese (Branta canadensis), wildebeest (Connochaetes taurinus), and other 71 

species (Caccamise et al. 2000; Estes 2014; Chapman et al. 2012), and such interactions are 72 

likely widespread across taxa, given the high incidence of partial migration in wildlife 73 

populations (Chapman et al. 2011a). However, the ecological implications of migrant-resident 74 

interactions represent a critical knowledge gap in migration biology (Chapman et al. 2011a, b; 75 

Brodersen et al. 2008). Migratory animals that share habitat with residents could encounter 76 

additional resources or mates, but they might also experience greater exposure to natural enemies 77 

or factors that alter their behaviour and movement.  78 

Examining the ecological consequences of migrant-resident relationships is important for 79 

the conservation of migratory species (Chapman et al. 2011a), many of which are now 80 

threatened (Wilcove & Wikelski 2008). Residency is becoming more common in some 81 

populations (Berthold 1999; Griswold et al. 2011), as birds, ungulates, and other animals 82 

establish or expand resident sub-populations due to habitat alteration, climate change, or 83 

supplemental feeding (Sutherland 1998; Fiedler 2003; Partecke & Gwinner 2007; Jones et al. 84 

2014). For instance, a partially migratory population of Great Bustards (Otis tarda) in Europe 85 

has increasingly shown resident behaviours, a change linked to high mortality of migrants on 86 

power lines (Palacín et al. 2016). Bats, storks, waterfowl, and numerous other species are 87 

showing similar increases in residency (Baskin 1993; Tortosa et al. 1995, 2002; Van Der Ree et 88 

al. 2006). Quantifying the extent to which migrants overlap with and respond to growing resident 89 

sub-populations could help improve population projections and inform whether interactions with 90 

residents require mitigation.  91 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

 One critical question is whether residents increase pathogen infection risk for migrants 92 

that encounter them. Theoretical models and empirical studies have demonstrated greater 93 

infection prevalence for residents compared to migrants in some cases (Cross et al. 2010; Akbar 94 

et al. 2012; Poulin et al. 2012; Qviller et al. 2013; Hall et al. 2014). Seasonal migration can 95 

reduce pathogen transmission through several mechanisms, including by periodically enabling 96 

migrants to escape parasite-contaminated habitat (migratory escape; Folstad et al. 1991; Loehle 97 

1995) and by causing disproportionate mortality or loss of infected individuals during strenuous 98 

journeys (migratory culling; Bartel et al. 2011). In contrast, resident populations would not 99 

experience these processes and, as a result, can suffer higher parasite burdens – with the potential 100 

for transmission to migrants (Hines et al. 2007; Cross et al. 2010; Hill  et al. 2012).  101 

 Another important question is whether resident animals and their habitats also alter 102 

migrant behaviour, particularly movement. This might occur if resident areas induce migrants to 103 

curtail their journeys or modulate the physiological states that facilitate migration. For instance, 104 

changes in climate and food have enabled some bird populations to shorten their migrations by 105 

using new wintering sites closer to breeding grounds (Elmberg et al. 2014; Teitelbaum et al. 106 

2016). Sites with year-round residents (providing mates and breeding habitat) might similarly 107 

allow shortened migrations. Further, resources at resident sites could modify the physiological 108 

states that help animals undertake and survive strenuous journeys (e.g., atrophy of non-essential 109 

organs; Dingle 2014). Past work suggested that many migrants initially ignore environmental 110 

stimuli that could interrupt migration (Kennedy 1985; Dingle 2014), but this remains 111 

understudied and may be distinctly different for males (Gatehouse 1997). Moreover, persistent 112 

exposure to attractive resources and heightened risks of migratory journeys might modify this.  113 

 Here, we focus on the widely recognized monarch butterfly (Danaus plexippus), whose 114 

annual migration has been well studied (Figure S1), to investigate whether migrants in Texas 115 

encounter residents en route, and to ask whether differences in infection status or reproductive 116 

behaviour are associated with these interactions. To conserve energy for migration, most 117 

(although not all) monarchs postpone reproduction during fall and enter a hormonally-induced 118 

state called reproductive diapause (Herman 1973; Brower et al. 1977) as they travel to 119 

overwintering sites in central Mexico (Urquhart & Urquhart 1978). In spring, these same 120 

monarchs break reproductive diapause, mate, and return to the southern U.S. to lay eggs on 121 

milkweed; their progeny and grand-progeny continue northward to recolonize the breeding range 122 
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(Malcolm et al. 1993; Miller et al. 2012; Flockhart et al. 2013). Past work indicated that this 123 

annual journey reduces monarchs’ infection prevalence from the specialist protozoan 124 

Ophryocystis elektroscirrha (OE), through migratory culling and migratory escape (Bartel et al. 125 

2011; Altizer et al. 2015; Flockhart et al. 2017). However, some monarchs no longer migrate and 126 

now breed year-round in the southern U.S. (Howard et al. 2010; Batalden & Oberhauser 2015). 127 

Surveys of volunteers indicate monarch winter-breeding occurs almost exclusively on exotic 128 

tropical milkweed (Asclepias curassavica; Satterfield et al. 2016), which is often planted in 129 

gardens, does not senesce during fall like most native milkweeds, and can provide food year-130 

round for larval monarchs in warm climates (Batalden & Oberhauser 2015; Satterfield et al. 131 

2015, 2016). Reports from citizen scientists (Howard et al. 2010) and a survey of historical 132 

documents (Satterfield et al. 2015 Supplementary Material) suggest that the planting of tropical 133 

milkweed and year-round monarch breeding has become more common in recent decades, 134 

potentially linked to warmer winters. Previously, we found that resident monarchs in the 135 

southern coastal U.S. experience significantly higher OE infection prevalence compared to 136 

migrants, likely because of loss of the migratory mechanisms that typically control disease 137 

(Satterfield et al. 2015, 2016). The impacts of resident monarchs on the infection risk and 138 

movement behaviour of migrants have not previously been investigated.  139 

 We conducted field sampling and chemical analyses of wild butterflies to ask: (1) Do 140 

migrant and resident monarchs share habitat during fall and spring migrations? (2) Are fall 141 

migrants that encounter sites with resident monarchs more likely to harbour parasite infections? 142 

(3) Are fall migrants at resident sites more likely to be reproductively active (typically associated 143 

with non-migratory behaviour), and do they show evidence of abandoning migration to remain at 144 

these locations? We assigned resident and migrant status based on analyses of stable isotope 145 

composition to estimate natal origins (using isoscapes based on Malcolm et al. 1993; Hobson et 146 

al. 1999; Dockx et al. 2004; Flockhart et al. 2013) and cardenolide fingerprints (milkweed 147 

secondary compounds) to infer natal host plant species (Malcolm et al. 1989). We also collected 148 

data on OE infection status, morphometrics, and reproductive behaviour. We hypothesized that if 149 

migratory monarchs pass through resident sites en route to and from overwintering locations, 150 

migrants could acquire parasites from residents; migrants that are reproductively active 151 

(primarily in spring but also sometimes in fall) could also lay eggs on parasite-laden tropical 152 

milkweed, leading to high infection risk for offspring. Further, encounters with resident 153 
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monarchs or tropical milkweed might prompt fall migrants in diapause to become reproductive 154 

and halt their journeys (Batalden & Oberhauser 2015).  155 

MATERIAL AND METHODS 156 

Parasite biology 157 

Transmission of OE in monarchs occurs from adults to caterpillars, when infected butterflies 158 

(covered with millions of dormant spores on the outside of their bodies) scatter parasites onto 159 

eggs or milkweed leaves (McLaughlin & Myers 1970). Caterpillars ingest the spores, and 160 

parasites replicate internally. Infected adults can transfer dormant spores to other adults (e.g., 161 

during mating), although spores must be consumed by a larva to initiate infection. Infections can 162 

lower pupal survival and reduce adult lifespan, body size, mating success, and flight performance 163 

(de Roode et al. 2009; Bradley & Altizer 2005; de Roode et al. 2007). 164 

 165 

Field collections and capture-mark-recapture study   166 

To investigate migrant-resident interactions, we sampled a total of 508 adult monarchs and 56 167 

larval monarchs in Texas across 9 sites (Figure 1; Figure S1), exhibiting either: (a) seasonal 168 

monarch activity, where migrants stop to refuel but where monarch breeding does not occur 169 

during Dec-Feb (hereafter called seasonal stopover sites), or (b) year-round monarch activity, 170 

where residents are known to breed during winter on tropical milkweed (hereafter called year-171 

round breeding sites). Monarchs inhabit year-round breeding sites throughout the year, but not 172 

always continuously if food depletion or hard freezes cause local extinction-recolonization 173 

cycles. Both site types provide flowering nectar plants as stop-over resources for migrants, which 174 

travel primarily either along the central flyway (extending from the Midwest through central 175 

Texas) or the coastal flyway (extending from the Atlantic and Gulf coasts through coastal 176 

Texas), where resident monarchs reside (Calvert & Wagner 1999; Howard & Davis 2008). In 177 

fall, we collected 345 adult monarchs across four seasonal stopover sites (N=200; average of 178 

50/site) and three year-round breeding sites (N=145; average of 48/site) during Oct-Dec 2014.  179 

We also tagged and released an additional 113 adults in a capture-mark-recapture study at three 180 

year-round breeding sites (Oct 14-Dec. 5) to observe whether migrants halted migration. Adults 181 

were tagged before, during, and after peak migration period to estimate monarchs’ duration of 182 

stay, changes in mass, and site fidelity (Supporting Information B). During spring migration 183 

(April 2015), we collected 50 adult monarchs and 56 immature stages from two seasonal 184 
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stopover sites (N=12 adults from one site; N=29 larvae/singly-laid eggs from A. viridis or A. 185 

asperula from two sites) and three year-round breeding sites (N=38 adults; N=27 pupae or larvae 186 

from A. curassavica across three sites). Monarchs collected as eggs/larvae were reared in 187 

individual containers and fed greenhouse-grown, parasite-free A. incarnata (after consuming 188 

their natal leaves). Forty eggs/larvae (of 56) survived to adulthood. As detailed below, we 189 

assessed captured-and-released butterflies (N=113) for infection status, sex, and forewing length. 190 

We assessed collected monarchs (N=395) for infection status, sex, forewing length, natal origin, 191 

and reproductive status (for fall butterflies), except where noted in Supporting Information A.  192 

 193 

Infection status 194 

We examined all adult monarchs non-destructively for OE infection by pressing clear adhesive 195 

tape (1.5cm) against the abdomen (as in Altizer et al. 2000). We viewed samples at 60X to 196 

observe parasite spores. Based on prior laboratory work, samples with ≥100 spores were 197 

classified as infected, indicating infections acquired as larvae. Samples with <100 spores were 198 

classified as uninfected, and most likely resulted from adults acquiring dormant spores from 199 

other infected adults during mating or other contact (as opposed to monarchs that ingested spores 200 

as larvae, which develop much higher infection loads; Altizer et al. 2004; de Roode et al. 2009). 201 

We assessed immature monarchs for infection at adulthood.  202 

 203 

Reproductive status 204 

We evaluated reproductive status for a subset of fall-collected monarchs (N=300 of 345 fall 205 

monarchs). We expected that most fall monarchs would be in reproductive diapause, but that a 206 

small fraction would exhibit reproductive activity, as shown previously (Calvert 1999; Zalucki & 207 

Rochester 1999; Goehring & Oberhauser 2002; Borland, et al. 2004); these individuals could be 208 

older summer-breeding monarchs, or migrants (bound for the southern U.S. or Mexico) in a 209 

reproductive state. We examined reproductive activity across both site types, allowing us to 210 

compare the background level of reproductive activity for monarchs sampled at seasonal 211 

stopover sites to those at year-round breeding sites. Within 5 days of capture, wild-caught 212 

females were dissected (N=106 across seven sites) to observe the presence or absence of mature 213 

eggs in ovaries (Oberhauser & Hampton 1995). Wild-caught males were placed in mesh cages 214 

either outdoors (N=163) or in incubators set to outdoor photoperiod and temperatures (N=31) to 215 
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observe mating with lab-reared females over 8-10 days, or until monarchs experienced seven 216 

days at >21.1ºC. We categorized females with mature eggs and males that mated as 217 

reproductively active (Supporting Information C).  218 

 219 

Natal origins: Stable isotope and cardenolide analyses 220 

We used chemical markers to assign wild butterflies (N=390, of 395 total adults collected in fall 221 

and spring) as “migrant” or “resident” and to obtain natal origin information (Figure 2). Stable 222 

hydrogen (δ2H) and carbon (δ13C) isotope composition from wing chitin has been used to 223 

estimate geographic regions of natal origin (Wassenaar & Hobson 1998; Miller et al. 2012; 224 

Flockhart et al. 2013; Altizer et al. 2015). Mean δ2H patterns in precipitation (δ2Hp; amount-225 

weighted mean growing season values) decrease with increasing latitude; these patterns are 226 

integrated into the plant tissue eaten by larvae and retained in monarch wing membranes 227 

(Hobson et al. 1999). Monarchs from northern latitudes have more depleted (negative) values of 228 

δ2H. Mean δ13C values vary longitudinally in milkweeds, and δ13C measurements enhance 229 

geospatial natal assignment maps (Wassenaar & Hobson 1998; Hobson et al. 1999). Wings were 230 

stored at -20°C and prepared (as in Flockhart et al. 2013) by washing right hindwings with 2:1 231 

chloroform-methanol and weighing and loading wing pieces into capsules. We used an elemental 232 

analyser coupled with a continuous-flow isotope ratio mass spectrometer to obtain wing δ2H and 233 

δ13

Next, we examined cardenolide profiles in wings to determine whether natal host plants 235 

were native or tropical milkweed (A. curassavica, which feed resident monarchs). In North 236 

America, monarch larvae can feed on dozens of milkweed species with varying toxic 237 

cardenolides (cardiac glycosides) that are retained in wing tissue (Zalucki et al. 2001; Agrawal et 238 

al. 2012); thus, chromatography can determine natal host plant species and inform resident and 239 

migrant classifications (Malcolm et al. 1993; Dockx 2012). A. curassavica has high 240 

concentrations of diverse cardenolides compared to native milkweeds, such as A. incarnata or A. 241 

syriaca, which support the vast majority of migrants (Seiber et al. 1986). To obtain cardenolide 242 

profiles, we pulverized right forewings, extracted cardenolides in methanol, dried samples, and 243 

re-suspended extracts in methanol with a known cardenolide standard (digitoxin). We then used 244 

Acquity ultra-performance liquid chromatography (UPLC; Waters Corp, Milford, MA, USA) 245 

with a Luna C(18) column (Phenomenex, Torrance, CA, USA) and a photodiode array detector 246 

C following calibration with laboratory standards (Supporting Information D).  234 
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to assess cardenolide concentration, non-polarity (retention time per peak), and diversity 247 

(Supporting Information E). We used non-metric multidimensional scaling (NMDS) to represent 248 

each cardenolide profile with two Cartesian coordinates. Monarchs with cardenolide 249 

concentrations of zero were automatically assigned as migrants (and excluded from NMDS 250 

analyses), as these butterflies could not have originated from A. curassavica.  251 

 252 

Resident and migrant classifications 253 

Based on δ2H and cardenolide profiles (N=390), we classified monarchs as residents or migrants 254 

with two approaches: (1) decision rules developed from previous knowledge about monarch 255 

biology and chemical patterns; and (2) a discriminant analysis developed from known resident 256 

and migrant monarchs, using δ2

In the decision-rules method, we classified monarchs using the following assumptions:  261 

H values, cardenolides, and wing length. This dual approach 257 

allowed us to assess monarchs based on previously established findings as well as recent data 258 

from wild-caught individuals. In subsequent analyses, we only included individuals for which 259 

both classification methods agreed (96.7% of samples; N=377 of 390).  260 

(i) Monarchs were assigned as migrants if they originated from northern latitudes, defined here 262 

as corresponding to wing δ2H <-111‰. This value was informed by previously described 263 

monarch δ2H isoscapes (Hobson et al. 1999) and is three standard deviations below the mean 264 

δ2H value for a set of known resident monarchs (N=25 individuals collected from Texan year-265 

round-breeding sites as late-instar larvae/pupae, with average δ2H=-91‰; range:  -76‰ to -266 

104‰; Figure S5). (ii ) Of the remaining (southern) individuals, monarchs with cardenolide 267 

profiles matching A. curassavica were residents. To meet this criterion, a butterfly’s NMDS 268 

cardenolide coordinates fell within a defined “A. curassavica polygon,” previously constructed 269 

from a separate set of lab-raised and field-collected monarchs known to be fed A. curassavica 270 

(N=134 monarchs; Figure S6). (iii) Monarchs with cardenolide NMDS coordinates falling 271 

outside the A. curassavica polygon (>3 SD’s from the cluster means) were considered migrants, 272 

as they likely originated from native milkweed. This assumption was tested previously with 273 

additional lab-raised and field-collected monarchs from known milkweed species (N=214 274 

monarchs; Figure S6). (iv) Any remaining wild monarchs (N=11) were deemed unclassifiable 275 

and removed from further analyses.  276 
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 For the discriminant analysis approach, we used 25 known residents (described above) 277 

and 84 known migrants (collected at Mexican overwintering sites in Feb 2013 and for which we 278 

had previously attained δ2H values; A. Fritzsche McKay and S.A. Altizer, unpublished) as 279 

training data to build discriminant functions including total cardenolide concentration, 280 

cardenolide NMDS coordinates, δ2H values, and forewing length (using the MASS package in R 281 

3.2.3). Values of δ13C were not available for known migrants. Results indicated that cardenolide 282 

concentration was the strongest predictor of resident versus migrant status (Wilk’s lambda=0.52, 283 

F1,107=262.5, p<0.001). Wing δ2H was informative although not significant (Wilk’s 284 

lambda=0.15, F1,107=2.00, p=0.16, NS). Cardenolide NMDS coordinates and forewing length 285 

were not significant predictors of migratory status. Next, to classify wild monarchs, we pre-286 

grouped individuals as residents if cardenolide NMDS values fell within the A. curassavica 287 

polygon and δ2

Geospatial natal assignment maps 293 

H values indicated southern origins (>-111‰; see above). We used the 288 

discriminant functions to classify remaining butterflies, placing monarchs into groups with high 289 

posterior probabilities (>0.9). One monarch with a posterior probability <0.7 was unclassifiable. 290 

We proceeded with the 377 monarchs (of 390) for which assignments agreed using both 291 

methods. 292 

We created geospatial natal origin maps using both δ2H and δ13C values (Figure 2). We used a 294 

multivariate normal probability assignment to calculate posterior probability densities of natal 295 

origin for geographically indexed cells across eastern North America (described in Flockhart et 296 

al. 2013); expected values were based on previously developed δ2H and δ13

 301 

C isoscapes for 297 

monarchs (Hobson et al. 1999). We then reclassified the probability surface to a binary surface 298 

(pixels assigned 1 or 0) for each individual, using a 2:1 odds ratio whereby the upper third of the 299 

probability surface was deemed the region of natal origin.  300 

Data analysis  302 

We used logistic regression to examine how migratory status (migrant vs. resident) varied by site 303 

type (seasonal stopover vs. year-round breeding) and time period during fall (divided into five 304 

14-day intervals). Next, we examined differences in reproductive and infection status between 305 

migrants and residents. We used a generalized linear mixed model (GLMM) with binomial error 306 

distribution to test effects of migratory status, sex, and a migratory-status-by-sex interaction on 307 
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reproductive state during the fall (reproductive or in diapause), with site as a random variable 308 

(for N=286 fall monarchs for which all needed data were available). A second GLMM with the 309 

same model structure examined predictors of binary infection status (N=329). Sample sizes for 310 

analyses are described in Supporting Information A.  311 

We next focused only on monarchs assigned as migrants, to ask whether fall migrants 312 

were more likely to be reproductive or parasitized at year-round breeding sites compared to 313 

stopover sites. We assessed predictors of reproductive status using a third GLMM with binomial 314 

error and fixed factors for site type, sex, and their interaction (N=237). We also included δ2

For monarchs in the capture-mark-recapture study, we recorded duration of stay and used 319 

Bayesian hierarchical Cormack-Jolly-Seber models to estimate site fidelity of presumed migrants 320 

versus residents at year-round breeding sites (Supporting Information B). We conducted 321 

statistical analyses in R 3.2.3. 322 

H (a 315 

proxy for latitude) as a continuous variable to observe from which regions reproductive migrants 316 

originated. Site was a random variable. Infection status of fall migrants was analysed using a 317 

fourth GLMM with the same model structure (N=273). Non-significant terms were eliminated. 318 

 323 

 324 

RESULTS 325 

Co-occurrence of residents and migrants  326 

Across all sites and sampling periods, we detected 290 migrant and 87 resident monarchs (total 327 

N=377). During fall, the proportion of migrants vs. residents differed significantly by site type 328 

(χ2=46.19, df=1, p<0.0001) and changed nonlinearly with time (χ2

Small sample sizes collected during spring (when monarchs disperse and are more 334 

difficult to capture) again showed that migrants and residents shared habitat (Figure 1C). At 335 

year-round breeding sites in April, we assigned 24% of sampled monarchs as migrants and 76% 336 

as residents (N=38). At the single seasonal stopover site sampled for adults in spring, we 337 

detected eight migrants and two residents.   338 

=37.35, df=4, p<0.0001). At 329 

seasonal stopover sites, we detected only migrants (N=198, Figure 1A), and at year-round 330 

breeding sites, we assigned 57% of sampled monarchs as migrants and 43% as residents (N=131; 331 

Figure 1A). The proportion of migrants at year-round breeding sites increased from Oct through 332 

mid-Nov, before sharply declining (Figure 1B).  333 
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Reproductive activity  339 

Resident monarchs were more likely to be classified as reproductive (47%; N=49) than were 340 

migrants (18%; N=237; χ2=6.08, df=1, p=0.01; Figure 3A) during fall. Across all samples, males 341 

were more likely to be reproductive than were females (χ2=7.55, df=1, p=0.006). Sex differences 342 

in reproductive status were especially strong among migrants, with 4% of females and 26% of 343 

males being reproductive. Sex differences were present but less pronounced among residents 344 

(migratory-status-sex interaction: χ2

Fall migrants sampled at year-round breeding sites were nearly three times more likely to 346 

be reproductively active (35%; N=69) than migrants at seasonal stopover sites (11%; N=169; 347 

χ

=4.63, df=1, p=0.03).  345 

2=5.06, df=1, p=0.02; Figure 3A). Male reproductive activity was again significantly higher 348 

compared to females (χ2

 353 

=9.98, df=1, p=0.002; Figure 4). Migrants sampled at year-round 349 

breeding sites were predominantly male (unlike at seasonal stopover sites), but the interaction 350 

term between site type and sex was not a significant predictor of reproductive status. Hydrogen 351 

isotope values (correlated with natal origin latitude) did not predict reproductive status.  352 

Infection risk 354 

During fall, 95% of resident monarchs (N=56) and 9% of migrants (N=273) were infected with 355 

OE. Thus, migratory status was the strongest predictor of infection in fall (χ2=21.51, df=1, 356 

p<<0.001; Figure 3B). Infection status did not differ by sex. Importantly, migrants were 13 times 357 

more likely to be infected at year-round breeding sites (27%; N=75) than at seasonal stopover 358 

sites (2%; N=198; χ2=14.03, df=1, p=0.0002; Figure 3B), and infected migrants were more likely 359 

to originate from southern latitudes (less negative δH2; χ2

 In spring, resident monarchs continued to show high infection prevalence (71%; N=31) 364 

relative to migrants (24%; N=17). For larvae sampled during spring, infection prevalence was 365 

higher at year-round breeding sites (41%; N=27) compared to sites with seasonal milkweed only 366 

(0%; N=13). 367 

=16.12, df=1, p<0.001). As fall 360 

progressed, the total proportion of butterflies infected at year-round breeding sites initially 361 

decreased, as healthy migratory monarchs arrived and “diluted” site prevalence, and later 362 

increased, as migrants departed and infected residents remained (Figure 1D).  363 

 368 

Monarch movement behaviour at year-round breeding locations  369 
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The capture-mark-release study included 113 monarchs not used in natal origin assignments. 370 

Because most of these monarchs were not recaptured, migratory status could not be confirmed, 371 

and we proceeded with capture-mark-recapture analyses (Supporting Information B) by 372 

assuming that infected monarchs were likely residents (N=100) and uninfected monarchs were 373 

likely migrants (N=37), based on infection patterns noted earlier. We recaptured 40% of 374 

‘presumed residents’ and 8% of ‘presumed migrants’ at least once. This limited dataset suggests 375 

that most migrants continued migrating, but a small fraction halted their journeys.   376 

An additional 24 individuals were marked, recaptured, collected, and later used in natal 377 

origin analyses (described above); we assigned 12 as migrants, nine as residents, and three as 378 

unclassifiable. Of the 12 migrants, 11 stayed at the same year-round breeding site for seven days 379 

or more (five remained >20 days) and had presumably terminated migration. Migrants that 380 

stayed at year-round breeding sites were all male; they also tended to be reproductively active (6 381 

out of 9 assessed), infected with OE (10 of 12), and originated from more southern latitudes 382 

(mean δ2

 384 

H=-95‰, range=-126 to -80‰). 383 

DISCUSSION 385 

Migratory monarchs sampled in Texas during both spring and fall shared habitat with resident 386 

monarchs, which breed year-round and harbour high protozoan infection prevalence. Although 387 

most migrants were non-reproductive and free of infections (conditions that support successful 388 

migration), migratory monarchs captured at year-round breeding sites showed a 3-fold higher 389 

propensity for reproduction and a 13-fold higher probability for infection, compared to migrants 390 

sampled at seasonal stopover sites (with no resident monarchs). Most migrants that visited year-391 

round breeding sites (with resident monarchs) continued to migrate; however, a small fraction 392 

remained in these gardens for days or weeks. In spring, monarchs migrating northward to lay 393 

eggs shared breeding habitat with residents, both at seasonal sites with native milkweed and at 394 

year-round breeding sites with exotic milkweed, where infection risk for larval monarchs is high.  395 

 Two possibilities could explain why migrants sampled at year-round breeding locations 396 

were more likely to show reproductive activity. First, exposure to tropical milkweed in the fall 397 

might induce monarchs to break reproductive diapause (Batalden & Oberhauser 2015), which is 398 

thought to be induced and maintained by decreasing day length and temperatures combined with 399 

exposure to aging milkweed (Goehring & Oberhauser 2002). Unlike the vast majority of native 400 
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milkweeds that senesce during fall, tropical milkweed continues to grow during winter in some 401 

areas. It is unclear whether exposure to actively growing milkweed over a matter of days could 402 

induce a physiological change as strong as reproductive development (Batalden & Oberhauser 403 

2015), although adult monarchs can break diapause quickly following exposure to warm 404 

temperatures and longer photoperiods (Herman 1981). A second explanation could be that these 405 

sites attract the small proportion of migrants that are not in diapause and already reproductively 406 

active (Herman 1981; Brower 1985; Goehring & Oberhauser 2002; Borland, et al. 2004). 407 

Habitats with warm temperatures and viable host plants might recruit these reproductive 408 

migrants to join resident populations. Our results cannot distinguish between these explanations. 409 

The higher infection probability among migratory monarchs sampled at year-round 410 

breeding sites (compared to seasonal stopover sites) could result from butterflies acquiring 411 

parasite spores, possibly from heavily infected residents attempting to mate with them (which 412 

can, in some cases, cause moderate spore loads, as shown in captive experiments; de Roode et al. 413 

2009) or from contact with contaminated milkweeds. We observed, for instance, eight confirmed 414 

migrants nectaring or landing on tropical milkweeds, which are often covered in parasites at 415 

year-round breeding locations (Altizer et al. 2004). Alternatively, higher infection prevalence 416 

among migrants at year-round breeding sites could occur if tropical milkweed gardens 417 

disproportionately attract migrants that are already infected. Past work showed that infected 418 

females preferentially oviposit on tropical milkweeds, which offer highly toxic cardenolides that 419 

reduce parasite load in larval offspring (Lefèvre et al. 2010). Moreover, infected monarchs 420 

cannot fly as well as healthy monarchs (Bradley & Altizer 2005) and are less likely to migrate 421 

successfully to Mexico (Bartel et al. 2011; Altizer et al. 2015), and thus, might possibly abandon 422 

migration when given opportunities for immediate reproduction. 423 

Of particular concern is whether spring migratory monarchs returning from Mexico lay 424 

eggs on milkweeds contaminated with parasites from infected residents. This could increase 425 

infection risk for migrants’ offspring. Our results suggest that shared habitat use creates the 426 

potential for pathogen spillover from resident to migrant butterflies. At year-round breeding 427 

sites, where infection risk is extremely high (Satterfield et al. 2015), we observed six resident 428 

and four migrant females (chemically confirmed) ovipositing on A. curassavica. Additional data 429 

are needed to assess movements of infected residents in spring, when monarchs are more 430 

dispersed and thus the frequency of resident-migrant interactions likely changes. Some spring 431 
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residents appear to visit seasonal sites with native milkweeds (Figure 1C), on which they may 432 

deposit eggs and potentially parasites; we observed one confirmed resident ovipositing on A. 433 

asperula. If migrants and residents share breeding habitat frequently, infection levels could rise 434 

among the first generation of spring monarchs, most of which are produced along the Gulf coast 435 

before traveling north to recolonize the breeding range (Malcolm et al. 1993; Miller et al. 2012).  436 

Migratory monarchs have undergone an 84% decline in eastern North America (1996-437 

2015), thought to be caused by multiple factors, including habitat loss, throughout their annual 438 

migratory cycle (Semmens et al. 2016; Thogmartin et al. 2017; Vidal & Rendon-Salinas 2014; 439 

Flockhart et al. 2015; Brower et al. 2012; Akbar et al. 2012; Marini & Zalucki 2017). Threats for 440 

monarchs during fall migration are particularly difficult to measure but could be significant (Ries 441 

et al. 2015; Inamine et al. 2016). Understanding the types of habitats through which migratory 442 

monarchs travel, and how these influence their health, behaviour, and migratory success, could 443 

inform conservation actions. Results here indicate potential consequences for migratory 444 

monarchs that share habitat with residents, and represent the first quantification of migrant-445 

resident interactions within the monarchs’ core migratory range. Previous work showed that fall 446 

migrant monarchs can enter areas with resident monarchs in Cuba and South Florida, but these 447 

locations are peripheral to the major flyways, and monarchs from these locations are unlikely to 448 

interact with migrants that reach Mexico 

While we concentrated on monarchs, th

(Dockx et al. 2004; Dockx 2012; Knight & Brower 449 

2009). Our study presents evidence that either (A) year-round breeding sites with tropical 450 

milkweed disproportionately attract infected and reproductively active migrants, in which case 451 

migrants’ offspring produced at these sites will face high infection risk, or alternatively, (B) 452 

year-round breeding sites induce migrants to break reproductive diapause, which could interrupt 453 

migration or lower its success. In either case, these findings and other studies (Satterfield et al. 454 

2015; Batalden & Oberhauser 2015) collectively provide evidence that native, seasonal 455 

milkweeds – rather than exotic, year-round milkweeds – could best support monarch migration. 456 

We recommend that future efforts in eastern North America to restore pollinator habitat focus on 457 

native species and, when possible, avoid further planting of tropical milkweed. In locations 458 

where tropical milkweed is already present, it should be cut back monthly throughout fall and 459 

winter to limit monarch winter-breeding and its associated parasite transmission risk.   460 

e co-occurrence of resident and migrant 461 

conspecifics is likely common in wildlife populations across taxa. Further, as many migratory 462 
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species shift towards shorter migrations or non-migratory behaviours in response to human 463 

activities (Satterfield et al. 2018), migrant-resident interactions may become more frequent in the 464 

future. This study addresses an imperative question in light of these changes: What are the 465 

consequences of expanding resident populations for migratory animals already facing multiple 466 

stressors? Our work suggests that, for some populations, the health and migratory success of 467 

migrants might be influenced by interactions with conspecific residents. Our findings underscore 468 

growing scientific support for prioritizing the preservation 
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 718 

FIGURE CAPTIONS 719 

Figure 1. Map of sampling locations in Texas, USA from (A) fall 2014 and (C) spring 2015, 720 

with the proportion of sampled adult monarchs that were assigned migrant status (black) or 721 

resident status (blue) at year-round breeding sites (blue points) and seasonal stopover sites (pink 722 

points). (B) Temporal changes in the proportion of migrants vs. residents at year-round breeding 723 

sites during the fall. (D) Temporal changes in infection prevalence of adult monarchs at year-724 

round breeding sites during the fall. 725 

 726 

Figure 2. Assigned natal origins based on δ2H and δ13C values for (A) monarchs classified as 727 

migrants in our analyses (N=273), captured in Texas during fall 2014; (B) monarch #933, an 728 

individual classified as a migrant and shown here as an example of a migrant that departed a 729 

northern area and was sampled at a year-round breeding location; (C) monarchs classified as 730 

residents in our analyses (N=56), captured in Texas during fall 2014; and (D) monarch #746, an 731 

individual classified as a resident and shown here as an example. 732 
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 733 

Figure 3. (A) Reproductive activity and (B) infection prevalence among fall migrants and 734 

residents sampled at seasonal stopover sites and year-round breeding sites. Resident monarchs 735 

were more likely to be reproductive and to be infected than were migrants; residents were only 736 

observed at year-round breeding sites during fall, and no residents were observed at seasonal 737 

stopover sites. Migratory monarchs sampled at year-round breeding sites were significantly more 738 

likely to show reproductive activity and OE infections than were migrants sampled at seasonal 739 

stopover sites.  740 

 741 

Figure 4.  Proportion of fall migrant monarchs that were reproductively active by sex and site 742 

type. Migrants were more likely to be reproductive at year-round breeding locations with tropical 743 

milkweed as compared to seasonal stopover locations. Males were significantly more likely to be 744 

reproductive, regardless of site type. 745 
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