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Abstract The variations of plasma sheet proton properties duringmagnetospheric substorms at Earth and
Mercury are comparatively studied. This study utilizes kappa distributions to interpret proton properties at
both planets. Proton number densities are found to be around an order of magnitude higher, temperatures
several times smaller, and κ values broader at Mercury than at Earth. Protons become denser and cooler
during the growth phase, and are depleted and heated after the dipolarizations in both magnetospheres.
The changes of κ at Earth are generally small (<20%), indicating that spectrum-preserving processes, like
adiabatic betatron acceleration, play an important role there, while variations of κ at Mercury are large
(>60%), indicating the importance of spectrum-altering processes there, such as acceleration due to
nonadiabatic cross-tail particle motions and wave-particle interactions. This comparative study reveals
important intrinsic properties on the energization of protons in both magnetospheres.

Plain Language Summary Earth and Mercury are the only two planets possessing global intrinsic
magnetic fields among the four inner planets, which are Mercury, Venus, Earth, and Mars, within the solar
system. The interactions between the intrinsic magnetic fields and the continual flow of high-speed solar
wind from the Sun form similar magnetospheres at the two planets, although the scale of themagnetosphere
is much smaller at Mercury than at Earth. Magnetospheric substorms, a result of solar wind–magnetosphere
coupling, occur in both magnetospheres. Comparative study of a similar process between different
planets is meaningful as it can help us in understanding the specific process further as well as help us in
understanding the intrinsic properties of the magnetospheres. This research paper characterizes the proton
properties of magnetospheric substorms of both planets, revealing that different mechanisms control the
behavior of protons during the magnetospheric substorms of the two planets.

1. Introduction

Earth and Mercury are the two planets characterized by existing global intrinsic magnetic fields among the
four inner planets within the solar system. Therefore, their magnetospheres form in the interaction between
the solar wind and the global intrinsic magnetic fields and are expected to behave similarly. The Earth’s
magnetosphere has been extensively sampled and investigated since the 1960s (e.g., Ness, 1965), while
Mercury’s magnetosphere was visited only by Mariner 10 (e.g., Ness et al., 1974) and MESSENGER (e.g.,
Solomon et al., 2007). Observations have revealed that Mercury’s magnetosphere does share similar processes
and structures with the Earth’s magnetosphere (e.g., Slavin et al., 2010; Sun, Slavin, Fu, Raines, Sundberg, et al.,
2015; Sun, Slavin, Fu, Raines, Zong, et al., 2015; Sun et al., 2016). Meanwhile, Mercury’s magnetosphere has
displayed many distinct properties (e.g., Gershman et al., 2014; Raines et al., 2015; Slavin et al., 2007, 2014).

The magnetospheric substorm is the fundamental response in both Mercury’s and Earth’s magnetospheres
to solar wind driving. It is a process accompanied with global magnetospheric reconfiguration, including
plasma sheet thinning and thickening, plasmoid ejections, and dipolarizations, and was observed to be
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similar at the two planets (e.g., Baker et al., 1996; Hones, 1977; Slavin et al., 2010; Sun, Slavin, Fu, Raines,
Sundberg, et al., 2015). But because the size of Mercury’s magnetosphere is much smaller than the Earth’s
magnetosphere (e.g., Ness et al., 1974; Winslow et al., 2013), and the dayside magnetopause reconnection
rate at Mercury is several times that at Earth (DiBraccio et al., 2013; Slavin et al., 2009), the duration of a
magnetospheric substorm at Mercury (~2 to 3 min) is found to be tens of times shorter than at Earth (~2
to 3 hr; e.g., Imber & Slavin, 2017; Rostoker et al., 1980; Sun, Slavin, Fu, Raines, Zong, et al., 2015).

In the studies of plasmas sheet ion variations during the substorm at Earth, the energization and heating of
ions during the dipolarizations were well observed, which were proposed to be due to the betatron and
Fermi accelerations as well as processes related to induce electric fields (e.g., Huang et al., 1992; Williams
et al., 1990). However, ion variations during the substorm growth phase have different results, including den-
sity and temperature increased (Williams et al., 1990); density increased but temperature constant (Kistler
et al., 2006; Nagai et al., 1997); density increased but temperature decreased (Artemyev et al., 2016; Sun,
Fu, et al., 2017). The ion variations in the Earth’s plasma sheet during the growth phase are not well under-
stood and require further investigation.

Recently, MESSENGER observations have revealed the energization and heating of protons during Mercury’s
substorm dipolarizations (Dewey et al., 2017; Sun, Raines, et al., 2017). Since the time scale of substorm dipo-
larizations (~5 to 10 s) is comparable with the gyroperiod of protons in Mercury’s magnetotail, the energiza-
tion of protons is expected to be nonadiabatic (e.g., Delcourt et al., 2007, 2010; Ip, 1987; Sun, Raines, et al.,
2017). However, systematic research on the variations of protons during magnetospheric substorms at
Mercury remains lacking.

This study carries out a comparative study on the proton variations by employing kappa distribution to inter-
pret the spectra duringmagnetospheric substorms at Mercury and Earth. Since magnetospheric substorms at
the two planets not only share many similarities but also exhibit differences, it would be meaningful to
comparatively study the plasma properties at the two planets during substorms. This comparative study
on the proton variations reveals important intrinsic properties for the magnetospheres of both planets.

2. Observations
2.1. Instrumentations and Data Sources

This study focuses on events in the near planet tail regions, which are from �1.2 RM to �1.8 RM (1
RM~2,440 km, a Mercury radius) at Mercury and from �7.5 RE to �12 RE (1 RE~6,371 km, an Earth radius) at
Earth. The regions of the two planets overlap considering a scaling factor of ~7–8 between the two planets
(e.g., Siscoe et al., 1975). Observations at Mercury and Earth are provided by MESSENGER and THEMIS (from
THD and THE; Angelopoulos, 2008), respectively. We utilize the measurements from the Magnetometer
(MAG; Anderson et al., 2007) and the Fast Imaging Plasma Spectrometer (FIPS; Andrews et al., 2007) onboard
MESSENGER, and the Fluxgate Magnetometer (FGM; Auster et al., 2008), the Electrostatic Analyzer (ESA;
McFadden et al., 2008), and the Solid State Telescope (SST) onboard THEMIS. The MAG provides magnetic
field measurements at a time resolution of 20 vectors per second. FIPS has an energy range from ~46 eV/q
to 13.3 keV/q with an effective field of view of ~1.15 π sr, and a scan time of ~10 s. FIPS can distinguish dif-
ferent ion species through time-of-flight measurements. The FGM can provide magnetic field measurements
with a time resolution of ~128 vectors per second, while the combined ion data from ESA and SST cover an
energy range from ~5 eV to ~6 MeV over the full sky (4 π sr) and at spin-resolution (3 s). However, ESA and SST
cannot distinguish the different ion species.

All quantities related to the Earth’s magnetosphere are presented in geocentric solar magnetospheric (GSM)
coordinates, where the x axis points toward the Sun, the z axis is the projection of the Earth’s magnetic dipole
axis (positive north) onto the plane perpendicular to the x axis, and the y axis completes the right-hand sys-
tem. In Mercury’s magnetosphere, we use the Mercury Solar Magnetospheric (MSM) coordinates (Anderson
et al., 2011), which is defined similarly to the GSM.

2.2. Case Study at Mercury

On 26 September 2011 between 12:15 and 12:19 UT, MESSENGER observed a magnetospheric substorm. In
this example, MESSENGER was located in the plasma sheet, as evidenced by the number of protons with
energy greater than 1 keV shown in the proton spectrum (Figure 1a). The first vertical black dashed line
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marks the beginning of the substorm growth phase (~12:16:13 UT) when Bz started to decrease notably
(Figure 1d). The Bz decrease is a natural consequence of plasma sheet thinning. Bx was weak (~0 nT)
starting at ~12:16:13 UT, but became more negative and deviated from the dashed red line (Bx in the
preceding no substorm plasma sheet crossing) near the second vertical dashed line (Figure 1b).
Meanwhile, the magnetic field elevation angle (θ) decreased (Figure 1f). Both imply the stretch of
magnetic field lines. These magnetic field variations are typical features for the substorm growth phase.
This substorm growth phase ended at the time marked by the second vertical dashed line (~12:17:50 UT),
when MESSENGER detected sharp increase in Bz (Figure 1d), that is, the dipolarization, followed by Bx
decrease (Figure 1b) and By fluctuations (Figure 1c), which are the signatures of plasma sheet thickening
and field-aligned current.

The averaged proton phase space densities (PSDs) before the substorm growth phase (Figure 1g; T1), during
the substorm growth phase (Figure 1h; T2), and after the substorm dipolarization (Figure 1i; T3) are fitted with
kappa distributions. Kappa distribution is constituted from a Maxwellian in low-energy portion and a power
law in high-energy portion. The formula is a simple generalization of Maxwellian (e.g., Vasyliunas, 1968),

f κp vð Þ ¼ np

2π κω2
κp

� �3=2 Γ κ þ 1ð Þ
Γ κ � 1=2ð ÞΓ 3=2ð Þ 1þ v2

κω2
κp

 !�κ�1

where v is the velocity of particles (proton in this study), np is the proton number density, Γ is the Gamma
function, ωκp is the thermal velocity, and the generalized temperature is

kBTp ¼ ω2
κpκmp

2κ� 3

Figure 1. MESSENGER observations of a magnetospheric substorm at Mercury. (a) Energy spectrum for protons, in log10
(keV sr s cm2)�1. (b) Magnetic field X component, Bx. Dashed red line represents the Bx of the preceding plasma sheet
crossing with no substorm signature. (c) By. (d) Bz. (e) Bt. (f) Magnetic elevation angle, θ = atan (Bz/Bx). (g) Averaged proton
phase space density (PSD) from 12:15:00 to 12:16:00, prior to the substorm growth phase (T1: before). (h) Averaged
proton PSD from 12:16:30 to 12:17:40, during the substorm growth phase (T2: during). (i) Averaged proton PSD from
12:18:00 to 12:19:00, after the substorm dipolarization (T3: after). Black lines in Figures 1g–1i are the kappa fitting results for
the PSDs. The magenta marks above (a) indicate the durations for T1, T2, and T3, respectively.
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where mp is the proton mass and kB is the Boltzmann constant. When κ → ∞, this formula becomes the
Maxwellian distribution. Kappa distributions provide np, Tp, and κ. The index κ describes the slope of
suprathermal particle tail (>1 keV, in this study) in the distribution. In T1 (Figure 1g), the kappa distribution
gives np~2.93 ± 0.33 cm�3, Tp~2.34 ± 0.27 keV, and κ~23.4 ± 2.67. The uncertainties were estimated in the
least squares curve fit on the data. In T2 (Figure 1h), the distribution gives np~4.99 ± 0.44 cm�3,
Tp~1.44 ± 0.13 keV, and κ~3.58 ± 0.31. Protons show clear density increase by ~70%, temperature decrease
by ~ �38%, and κ decrease by ~ �85% from T1 to T2. In T3 (Figure 1i), the distribution gives
np~3.61 ± 0.49 cm�3, Tp~3.48 ± 0.47 keV, and κ~2.15 ± 0.29. Protons show number density decrease
(~ �28%), temperature increase (~142%), and κ further decrease (~ �40%) from T2 to T3.

2.3. Case Study at Earth

On 24 February 2009 between ~06:00 and ~09:00 UT, THD observed a magnetospheric substorm at Earth in
the near-tail plasma sheet (~11 RE). The start of the growth phase was at ~06:00 UT, when a clear IMF south-
ward turning was observed (Figure 2a, the first vertical dashed line). The second and third vertical dashed
lines indicate two dipolarizations (Figures 2c–2g) corresponding to AE increase (Figure 2b). A smooth Bz
decrease was observed in the growth phase (Figure 2g, between the first and second lines), indicating a
plasma sheet thinning process. Ion density (ni; Figure 2f) and temperature (Ti; Figure 2d) derived from
onboard moments show an increase from ~0.2 to ~0.55 cm�3 and a decrease from ~4.5 to ~2 keV, respec-
tively. Decreases in ni and increases in Ti were observed after the two dipolarizations.

Ion distributions in the Earth’s plasma sheet usually contain more than one component, with the main com-
ponent being described by a kappa distribution (e.g., Christon et al., 1991; Haaland et al., 2010; Wing et al.,
2005). The main component should be mostly composed of protons (e.g., Kistler et al., 2006) in the plasma

Figure 2. THD observations of a magnetospheric substorm at Earth. (a) IMF Bz from OMNI. (b) Auroral ejection index (AE).
(c) Ion energy spectrum in differential energy flux. (d) Ion temperature. (e) Ion bulk velocity. (f) Ion density. (g) Bx (blue), By
(green), and Bz (red). (h) Averaged ion PSD from 06:00 to 06:05 UT, at the beginning of substorm growth phase (T1). (i)
Averaged ion PSD from 07:20 to 07:25 UT, near the end of substorm growth phase (T2). (j) Averaged ion PSD from 07:50 to
07:55 UT, after the substorm dipolarization (T3). Blue lines in Figures 2h–2j are the kappa fitting results for the main com-
ponent PSDs shown in blue. The magenta marks above (a) indicate the durations for T1, T2, and T3, respectively.

10.1029/2018GL079181Geophysical Research Letters

SUN ET AL. 7936



sheet. Figures 2h–2j show three averaged ion PSDs, which are taken at the beginning of substorm growth
phase (Figure 2h; T1), prior to the first dipolarization (Figure 2i; T2), and after the second dipolarization
(Figure 2j; T3). We fit the main components in the three distributions with kappa distribution. In T1, the kappa
fitting gives ni~0.17 ± 0.01 cm�3, Ti~7.84 ± 0.52 keV, and κ~9.46 ± 0.63. In T2, the values are
ni~0.23 ± 0.03 cm�3, Ti~4.63 ± 0.56 keV, and κ~8.6 ± 1.04. From T1 to T2, ions show clear density increase
(~35%) and temperature decrease (~ �41%). The κ parameter shows a small decrease (~ �9%), but the
decrease is comparable with the uncertainties arising in the fitting (~6.6% for T1, ~12.1% for T2). In T3
(Figure 2j), the fitting gives ni~0.09 ± 0.01 cm�3, Ti~10.98 ± 1.6 keV, and κ~8.06 ± 1.18. Compared with the
values in T2, ions show clear number density decrease (~ �61%), temperature increase (~137%), and a small
decrease in κ (~ �6%).

The above two cases have revealed that plasma sheet protons became denser and cooler during the sub-
storm growth phase, and were depleted and heated after the substorm dipolarizations at both planets.
The κ decreases were observed during the whole substorm periods, but with the relative changes of κ at
Mercury (�85 and �40%) much larger than that at Earth (�9 and �6%).

2.4. Statistical Results and Comparative Study

This section performs a statistical study focusing on the proton variations during magnetospheric substorms
at both planets. At Mercury, the magnetospheric substorm cases were selected based on the criteria from
Sun, Slavin, Fu, Raines, Zong, et al. (2015). The cases should contain clear substorm growth and expansion
phases features; that is, MESSENGER first observed a decrease in Bz and an almost constant or increased Bx
ended by a sharp increase in Bz and followed by a decrease in Bx and fluctuations in By. Additionally,
MESSENGER was required to be located in the plasma sheet. These selection criteria give 31 satisfied cases.
The proton PSDs from FIPS were averaged over ~1 min in T1, T2, and T3 for each case. In the fitting, we only
select energy channels containing more than six counts, and at least ten channels meet this constraint, which
ensures that each used energy channel contains enough counts and PSDs contain enough channels. This
step is necessary since uncertainties in the plasma moments are reduced as the total counts became larger
(Gershman et al., 2013). We obtain 14 qualified proton PSDs for T1, 16 for T2, and 8 for T3. At Earth, the selec-
tion criteria are similar to that of Sun, Fu, et al. (2017). The substorm growth phase started with a southward
turning of IMF and ended with a substorm dipolarization in the near-Earth tail. Spacecraft should be located
in the central plasma sheet during the period. We obtain 20 qualified substorm cases from THD and THE in
2008 and 2009.

The fitting results for T1, T2, and T3 at both planets are shown in Figure 3. The np (Figures 3a and 3b) in
Mercury’s plasma sheet are ~3–10 cm�3, which are around an order of magnitude higher than the values
in Earth’s plasma sheet (~0.1–0.6 cm�3). The Tp (Figures 3c and 3d) are generally several times lower at
Mercury (~1–5 keV) than at Earth (~3–10 keV). The κ (Figures 3e and 3f) at Earth range mainly from ~5 to
~20, while it has a broader range of values at Mercury, which is from ~2 to ~60. The value 60 is the upper limit
in our kappa fitting. At this limit the kappa distribution is nearly indistinguishable from a Maxwellian distribu-
tion (e.g., Pierrard & Lazar, 2010).

In Earth’s plasma sheet, np increases from T1 to T2 (Figure 3a) in the majority of cases (18/20), while decreases
(10/20) in half and increases (10/20) in the other half from T2 to T3 (Figure 3b). In Mercury’s plasma sheet, np
typically increases from T1 to T2 (13/14; Figure 3a) and decreases from T2 to T3 (6/8; Figure 3b). The average
increase ratio of np (Δnp/np) from T1 to T2 at Mercury is 0.41 ± 0.091, which is comparable to the 0.22 ± 0.038
at Earth. At Earth, the decrease in Tp from T1 to T2 is observed in all the cases (Figure 3c), and the increase in
Tp from T2 to T3 is observed in most of the cases (17/20; Figure 3d). At Mercury from T1 to T2, Tp decreases in
about half of the cases (8/14) and increases in the others, while Tp increases in all the cases (8/8) from T2 to T3.
The average increase ratio of Tp from T2 to T3 at Mercury is 0.36 ± 0.21, which is also comparable to the
0.14 ± 0.047 at Earth. However, changes in κ (Figures 3e and 3f) are less systematic. At Earth, κ remains similar
from T1 to T2 and again from T2 to T3 (i.e., clustering around the dashed lines). At Mercury, κ often changes
substantially (i.e., further away from the dashed lines) with changes that can be positive or negative from T1
to T2 but typically negative from T2 to T3.

Figure 4 shows the histograms of Δκ/κ, where Δκ are the κ changes from T1 to T2 (Figure 4a) or T2 to T3
(Figure 4b), and κ are the values in T1 (Figure 4a) or T2 (Figure 4b). In Figure 4a, blue bars (Earth cases) are
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distributed near ~0 with a mean value of 0.07 ± 0.071, while the red bars (Mercury cases) distribute mostly
away from ~0, with the mean value of only negative bars of �0.67 ± 0.102. In Figure 4b, blue and red bars
distribute in a similar way to Figure 4a with the mean values of blue bars being �0.04 ± 0.048 and red
bars �0.61 ± 0.054. These statistical results on κ changes confirm the results in our case studies. The
relative changes of κ of protons during the substorm at Mercury are larger than that at Earth.

3. Conclusion and Discussion

The variations of protons during magnetospheric substorms at Earth and Mercury are comparatively studied
with the measurements from MESSENGER and THEMIS. This study utilizes kappa distributions to interpret

Figure 3. Distributions of proton densities (np), temperatures (Tp), and kappa values (κ) during the magnetospheric sub-
storms at both earth (blue) and mercury (red). (a) np at T1 and T2. (b) np at T2 and T3. (c) Tp at T1 and T2. (d) Tp at T2
and T3. (e) κ at T1 and T2. (f) κ at T2 and T3.
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plasma sheet proton properties. It is found that np is about an order of
magnitude higher in Mercury’s plasma sheet (~3–10 cm�3) than in
Earth’s (~0.1–0.6 cm�3). The Tp is generally several times lower at
Mercury (~1–5 keV) than at Earth (~3–10 keV). The κ at Earth mainly
concentrates from ~5 to ~20, while it has a broader range of values
(from ~2 to ~60) at Mercury. In most cases, plasma sheet protons
become denser and cooler during the substorm growth phase and
are depleted and heated after the substorm dipolarizations at both pla-
nets. The changes of κ during the substorms at Earth are small (<20%),
but are much larger at Mercury (>60%).

The small variations of κ during the magnetospheric substorm in
Earth’s plasma sheet indicate that spectrum-preserving processes, like
betatron acceleration under the conservation of magnetic moment
(ΔW⊥ = W⊥ΔB/B, where W is the particle energy and B is the strength
of magnetic field), play an important role. Charged particles at all ener-
gies would maintain relatively the same proportional energy and
would not change the shape of high-energy tail under betatron accel-
eration (e.g., Christon et al., 1991). During the growth phase, Bz in the
magnetic equatorial plane would decrease as a natural consequence
of plasma sheet thinning, which suggested that protons would experi-
ence adiabatic betatron cooling and, therefore, result in Tp decrease.
During the substorm dipolarization, the sharp Bz increase would cause
strong betatron heating (Tp increase) for the protons.

At Mercury, the large variations of κ during the magnetospheric sub-
storm indicate the importance of spectrum-altering processes, that is,
energy-dependent energy increments. We propose two possible candi-
dates for the spectrum-altering processes. One is the acceleration due
to nonadiabatic cross-tail particle motion associated with thin current
sheets (e.g., Ashour-Abdalla et al., 1990; Lyons & Speiser, 1982;
Speiser, 1965). In Mercury’s magnetotail, the field line radius of curva-
ture in the equatorial plane is ~200 km on average (Rong et al., 2018).
The 0.1-keV protons gyrating in a magnetic field of 10 nT would have
a gyroradius of ~160 km comparable to the average radius of curvature.

On the other hand, the 1-keV protons could have a gyroradius of ~500 km comparable to the mean thickness
of Mercury’s tail current sheet (~800 km; Poh et al., 2017a). Thus, protons would predominantly move in the
way of nonadiabatic cross-tail particle motion in Mercury’s magnetotail. Lyons and Speiser (1982) showed
that this cross-tail acceleration is sensitive to the ratio of the dawn-to-dusk electric field (Ey) to the vertical
Bz. The high Ey due to relatively high cross-tail potential (DiBraccio et al., 2015; Jasinski et al., 2017; Slavin
et al., 2009, 2010) would result in strong cross-tail acceleration for protons at Mercury. The other possible can-
didate is wave-particle interactions (e.g., Catapano et al., 2017; Hasegawa et al., 1985; Shizgal, 2007). For the
case in Figure 1, we do observe intense plasma waves with frequencies around the proton gyrofrequency,
especially after the dipolarization in the wavelet spectrum of MAG data (see supporting information). This
could be electromagnetic ion cyclotron (EMIC) waves, which were often observed in the Mercury’s plasma
sheet (Schriver et al., 2011). The accumulated pitch angle-energy distribution for protons shows loss cone fea-
ture suggesting possible mechanism for EMIC (see supporting information). Therefore, wave-particle interac-
tions might also contribute to the changes of κ during the substorm at Mercury. It needs to note that this
paragraph discusses two straightforward possibilities for the spectrum altering processes at Mercury. Other
mechanisms could still play a role in the process.

There are several cases at Earth showing |Δκ/κ| > 0.4 (Figure 4), indicating that spectrum-altering processes
also exist in Earth’s plasma sheet during magnetospheric substorms as proposed by previous studies (e.g.,
Christon et al., 1991; Huang et al., 1992). The magnetospheric substorm case at Earth shown in Figure 2
did contain plasma waves with frequency around the proton gyrofrequency during the dipolarization (see

Figure 4. The distributions of the relative κ changes (Δκ/κ). (a) The distribution
of Δκ/κ from T1 to T2 and (b) from T2 to T3.
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supporting information). Since most of the cases at Mercury show |Δκ/κ| > 0.4, the spectrum-altering
processes during the magnetospheric substorm at Earth might not be as intense as that at Mercury. This
reveals that, during the magnetospheric substorms, protons could be well described by adiabatic betatron
acceleration at Earth, while spectrum-altering acceleration processes dominate the behavior of protons at
Mercury. We suggest that this different character of protons could closely relate to the distinct properties
of the two magnetospheres. Most importantly, the scale of Mercury’s magnetosphere is much smaller than
that of Earth’s magnetosphere (e.g., Siscoe et al., 1975; Winslow et al., 2013). The relatively thin plasma
sheet and small radius of curvature of the magnetic field lines in Mercury’s magnetotail (e.g., Poh et al.,
2017a, 2017b; Rong et al., 2018) would make spectrum-altering processes important.
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