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Abstract 40 

The term Big Data has come to encompass a number of concepts and uses within medicine.  41 

This paper lays out the relevance and application of large collections of data in the radiation 42 

oncology community.  We describe the potential importance and uses in clinical practice.  The 43 

important concepts are then described and how they have been or could be implemented are 44 

discussed.  Impediments to progress in the collection and use of sufficient quantities of data are 45 

also described.  Finally, recommendations for how the community can move forward to achieve 46 

the potential of Big Data in radiation oncology are provided.   47 

 48 

Introduction 49 

To the clinician, it often seems that we have too much and too little data at the same time.  We 50 

spend more time than we would like at computer terminals entering or reading data.  Perhaps 51 

it would be better stated that we would like the data we input to be transformed into 52 
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information that we can use.  This is the aspect of Big Data that this manuscript addresses. 53 

Computerized data handling has been an integral part of our field since the introduction of 54 

computerized treatment planning and record and verify systems.   The question is, now that 55 

there are highly successful algorithms for using computerized data to make models for 56 

predictive purposes, can the radiation oncology community harness our data for our patients' 57 

benefit? 58 

Pan et al. have provided a very clear picture of the difficulties that we face in collecting and 59 

using data in the clinic [1].  The questions we must answer are: (a) is it worth making an effort 60 

to improve the situation, (b) what are the details of the clinical data environment that need to 61 

be addressed, and (c) how do we accomplish our goals?  An AAPM Science Council Focused 62 

Research Meeting (FOREM) meeting, jointly sponsored with vendors, was held in Ann Arbor in 63 

May of 2017, to address these questions. In this publication we provide an overview and 64 

summary of the answers that emerged.  65 

 66 

Motivation for embracing Big Data 67 

a. Need to learn from and adapt to emerging therapies such as genetics, immunotherapy 68 

It is now commonly understood that the explosion of data and knowledge that has resulted 69 

from genomics will have a great impact on all areas of cancer care, including radiation therapy.  70 

A patient's genetic profile may play an important role in how they will react to certain agents or 71 

in their ability to repair radiation damage [2].  The tumor's genetic profiles (since many tumors 72 

have a multitude of different mutations) is increasingly being used to determine the best 73 

therapy or combination of therapies [3].   74 

Immunotherapy is another area of increasing importance.  The ability to use different aspects 75 

of the immune system to target tumor cells is an area of great current interest [4]. 76 

Radiation oncology is not alone in the interest and need for better data on patieŶts’ geŶetiĐ 77 

profiles.  NIH has been working with a number of groups to establish a workable solution in 78 
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order to avoid the current problems such as laboratory-dependent formats, text-based storage, 79 

and lack of centralized storage in current electronic health records (EHR) [5].  80 

 81 

b. Cancer as chronic disease and multiple care givers 82 

As cancer therapy becomes more effective, more and more patients are living longer. As a 83 

result, the extent and complexity of information which needs to be tracked to improve 84 

understanding of outcomes is increasing.  For example, for patients who are essentially cancer 85 

free, monitoring risk for treatment-related complications when their long term home location 86 

based follow up is not at the treatment center is a challenge.  Parry et al. estimate that there 87 

will be 18 million cancer survivors by 2020 [6].  In addition, there are the increasing numbers of 88 

patients who survive longer than ever due to improvements in targeted therapies, better 89 

imaging and better methods for localizing dose [7].  These advances can lead to improved local 90 

control and better control of oligometastases.  The upshot is that as the number of patients 91 

who suffer cancer-related health consequences increases over time, the more likely it is that 92 

they will see a wider spectrum of specialists and in a larger number of clinical settings, 93 

interacting with a large variety of recording-keeping systems.   94 

Even just considering the electronic health records, there are no general standards for the 95 

selection and formatting of data to be recorded. Different vendors, different institutions, 96 

different departments and even different physicians have different methods which are often 97 

not compatible.  Finally, even within well-structured organizations, much of the data exist 98 

within text documents. Lack of standards for which data elements to gather, inconsistent 99 

processes for entry and variability among commercial systems for aggregation and reporting 100 

increase the likelihood that physicians and staff will miss information or have incorrect 101 

iŶfoƌŵatioŶ ƌegaƌdiŶg a patieŶt’s health aŶd/oƌ tƌeatŵeŶts that Đould poteŶtiallǇ affeĐt 102 

decisions.   103 

 104 

c. Comparative Effectiveness Research  105 
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In the last decade, comparative effectiveness research (CER) has come to be seen as an 106 

important and necessary adjunct to randomized clinical trials (RCT) [8].  In CER, two different 107 

theƌapies oƌ tests that aƌe alƌeadǇ aĐĐepted aƌe Đoŵpaƌed, ǁheƌeas RCT’s foĐus oŶ ĐoŵpaƌiŶg a 108 

new to a current therapy.  The Patient Centered Outcomes Research Institute cites CER as its 109 

primary method of research.  Given the relatively small numbers of cancer patients that are 110 

eŶƌolled iŶ RCT’s ;appƌoǆiŵatelǇ ϯ%Ϳ, the Ŷeed to use the iŶfoƌŵatioŶ that is aǀailaďle thƌough 111 

CER is understandable.  112 

Comparative effectiveness research can be tailored along a spectrum of methods ranging from 113 

essentially an RCT to a comparison of current clinical practice with an integrated practice 114 

beyond the current norm.  A recent paper by Fiore et al. looked at four different trials that 115 

sought to use only data in the current EHR’s [9].  Theiƌ ĐoŶĐlusioŶs iŶĐluded: ͞We find that EHR-116 

based clinical trials are feasible but pose limitations on the questions that can be addressed, the 117 

processes that can be implemented, and the outĐoŵes that ĐaŶ ďe assessed.͟   118 

Clearly, for progress to be made using CER practical methods for the easy and accurate 119 

collection of data and for the sharing of data must be available in clinics.   120 

d. Quality Improvement and Error Detection 121 

The past few years have seen an explosion in the use of data to reduce errors in radiation 122 

therapy.  ASTRO and AAPM have implemented the Radiation Oncology—Incident Learning 123 

System (RO-ILS) that relies on data submitted to it to develop a shared learning platform.   124 

While this system is not "big data" in the sense that it is in text format and is a relatively small 125 

amount of data, it does count in our definition of transforming data to information.  In 126 

particular, the system is set up to provide users with more knowledge about the sources of 127 

errors and how best to avoid them.  Another area is in artificial intelligence applications of error 128 

detection. For example, Kalet et al. successfully mined an OIS to develop a probabilistic model 129 

of the contributing factors to errors [10].  130 

e. Modeling in Radiation Oncology  131 
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Perhaps the most widespread use of data in radiation oncology is in modeling.  The examples 132 

are too numerous to list, but some of the most impactful models are the QUANTEC models, 133 

outcomes, tumor control probabilities, equivalent uniform dose, and biologically effective dose 134 

[11].  As construction of Big Data Analytics Resource Systems (BDARS) aggregating a wider 135 

range of health care information (e.g. labs, medications, genomics, demographics, patient 136 

reported outcomes (PROs) etc.) expands, more comprehensive models are progressing beyond 137 

dose metrics alone [12-14].  In addition, heuristic type models have been constructed for 138 

automating the objectives of inverse planning and library-based contouring.  A promising area 139 

for the more conventional use of big data is in machine learning for automated contouring.  In 140 

this application, images that have been segmented by experts are fed into a machine learning 141 

algorithm and image features that predict the true contours are selected to produce anatomical 142 

contour models.   143 

 144 

 145 

State of the Data 146 

One of the most important concepts is that Big Data, in most cases, implies more data than may 147 

be obtained by any single institution.  In order to use machine learning or any modeling 148 

techniques, there must be enough data to (a) build the model, (b) test the model, and (c) 149 

validate the model.  Optimally, validation (c) can be done with data from a different institution 150 

in order to account for hidden variables that may not be appreciated [15].  In addition, as our 151 

ability to differentiate patients improves, e.g. genomics and radiomics, the number of patients 152 

suitable for any given model decreases, thereby increasing our need for more comprehensive 153 

capture of intra-institutional data as well as for multi-institutional data.  This has critical 154 

implications for how organizations cooperate.  Whereas success in medical research in the past 155 

has favored very large single institutions that can develop a critical mass of knowledge and 156 

resources in close physical proximity, diffuse networks of institutions able to generate and 157 

share information will have an advantage in the future. 158 

 159 
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In addition to the need for broad (many patients) data sources, we also need deep 160 

(relationships among key data elements) sources. Systems promoted as big data sources may in 161 

fact be shallow, capturing only a few data elements for a large number of patients. For 162 

example, some data sources draw upon billing records or imaging records for a large number of 163 

patients, but lack depth needed to enable linkage to diagnosis, treatment, dosimetric or 164 

outcomes details. Another impediment to obtaining the "deep" type of data is that sources 165 

ofteŶ duŵp uŶstƌuĐtuƌed, ͞as is͟, data iŶto data lakes ǁheƌe keǇ data eleŵeŶts aŶd 166 

relationships can in principle be extracted, but in practice carry a high overhead for extraction. 167 

Challenges for ensuring depth in aggregation of key data elements needed for radiation 168 

oncology fall into four categories 169 

◦ Access – Staff possessing both domain knowledge of radiation oncology and of 170 

informatics need access to query data bases in source systems to construct 171 

functional big data repositories.  172 

◦ Data Integrity – Data elements that may not require accurate entry to enable 173 

treatment but are vital for correctly identifying specific patient groups in practice 174 

quality improvement (PQI) and research efforts require changes in clinical processes 175 

to assure validity. This often implies a cultural shift to prioritize recording data in 176 

recoverable formats. 177 

◦ Data Structure – The cost of free text is high. Lack of standardized structure for entry 178 

undermines ability to automate extraction of key data elements from text fields such 179 

as notes. To assure accurate, high volume, electronic extraction of key data 180 

elements standardized methods for encoding key data elements need to be defined 181 

and implemented in clinical processes.  182 

◦ Lack of integration among systems – Key data elements are entered and stored in a 183 

range of commercial systems that frequently do not maintain linkages needed to 184 

identify relationships between key data elements. There is no existing standard of 185 

practice to link departmental data sets with radiation oncology-specific content with 186 
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large commercial and governmental datasets such as the National Cancer Database 187 

Base.    188 

 189 

 190 

Process and system changes 191 

In reviewing current practices, a number of obstacles stand in the way of obtaining the amount 192 

and quality of data needed to make substantial progress.  The following outline provides a view 193 

that is geared towards identifying means of overcoming them. 194 

(1) Failure to collect necessary structured data 195 

(2) Lack of data standardization  196 

(3) Inability of different electronic data systems to communicate. 197 

Within each of these broad categories, it is useful to provide a finer-grained view of how 198 

different aspects of our clinical and electronic environments contribute to the overall difficulty 199 

in achieving the data collection and use that we seek. 200 

(1.a) Commercial System Databases 201 

Focus for development of commercial systems that store the range of data needed for clinical 202 

data repositories is often on the user interfaces rather than on the back-end databases. The 203 

situation is similar to a clinical focus on data required to tƌeat the daǇ’s patieŶts and support 204 

billing documentation with few resources devoted to standardizations and optimizations to 205 

increase big data extractions. Individual systems may use multiple loosely connected databases, 206 

complex compound keys, lack of indexing, poorly designed schema, lack reasonable security, or 207 

use non-standard database technologies. Vendors may also refuse to provide end-users access 208 

to extract their own data. Some commercial systems are much better than others, so end user 209 

experience is variable.  210 

(1.b) Diagnosis and staging 211 
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Correct usage and quantified entry of diagnosis and staging information is central to many PQI 212 

and research efforts. For example, incorrect entry of primary disease codes (e.g. prostate 185, 213 

C61) when treating subsequent bone (C79.51), brain (C79.31) or lung (C78.00) metastasis and 214 

failure to utilize functionality in radiation oncology information systems (ROIS) to connect 215 

primary and metastatic diagnosis undermine the ability to use these codes to correctly identify 216 

patient groups by codes. Failure to utilize functionality in ROIS connecting treatment courses to 217 

these codes undermines ability to connect treatment elements (e.g. DVH metrics) to patients. 218 

The cost of not taking a few seconds to select ICD-O (International Classification of Diseases for 219 

Oncology) values linked to ICD9 (International Classification of Disease, revision 9) and ICD10 220 

(International Classification of Disease revision 10) in the ROIS means that subsequent 221 

questions about disease site location become prohibitively expensive to answer because of the 222 

manual effort required to retrospectively revisit the chart. When survival information is 223 

obtained from EHRs, failure to utilize functionality in ROIS to enter staging information 224 

undermines ability to factor staging into survival, recurrence and other factors. Typically, EHRs 225 

do not have functionality for quantifying diagnosis and staging information according to 226 

guidelines (e.g. AJCC, FIGO) or to connect primary and metastatic disease. On the other hand, 227 

ROIS generally do, but frequently this functionality is not utilized fully as part of clinical practice.  228 

(1.c) Outcomes 229 

Patient outcomes such as toxicity and disease site status (e.g. recurrence) are frequently 230 

entered into electronic records as free text using unstandardized terminology. This renders 231 

them unavailable for automated electronic extraction. Lack of standardizations 1) for which 232 

toxicities are routinely measured, 2) how treatment site categorizations  are named (e.g. breast 233 

tangents , breast tangents plus supra-clavicular field, breast tangents plus supra-clavicular field 234 

plus internal mammary node field, etc) , 3) how categorizations for disease site status are 235 

named (e.g. no-evidence-of-disease, local recurrence) or 4) in use of  regular schemas for text 236 

representation  of these key data elements prevent this information from being used to its full 237 

value in routine characterization of outcomes for treated patients.  238 

(1.d) ͞As-Treated Plan Sums͟  239 
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To assess correlation of outcomes with dose volume histogram (DVH) metrics, it is necessary to 240 

first create treatment plan sums corresponding to the plans and number of fractions treated, 241 

reflecting boosts, plan revisions and incomplete treatments. When these ͞as treated͟ plan 242 

sums (ATPSs) are created as part of routine practice, then automated solutions for calculating 243 

dose-volume histograms metrics becomes possible. Unfortunately, often these are not created 244 

as part of routine practice, with the result that they must be constructed retrospectively, ad-245 

hoc, preventing systematic, automated aggregation. Currently no major commercial system, to 246 

our knowledge, has a standard means for reporting ATPSs. 247 

(2.a) Prescriptions 248 

Electronic prescription summaries that defined dose levels, target structures, number of 249 

treatments, fractionation groups (e.g first course, plan revision, boosts, etc) and connection to 250 

target structures, organs at risk, treated plans and DVH metrics have been developed by a few 251 

researchers [16,17].  These custom solutions were developed to fill the void left by commercial 252 

ROISs. Recently ASTRO has suggested a baseline set of guidelines for information that should be 253 

included in prescriptions to promote standardization [18]. Similar to ATPSs, commercial 254 

solutions and clinical processes often lack ability to retrospectively extract this key information.  255 

(2.b) Key Treatment Parameters 256 

Ensuring ability to identify which patients were treated with special technologies and details of 257 

those treatments is important to being able to prove their efficacy. Examples include breath 258 

hold technologies, radio frequency or radio-opaque fiducials used for positioning, 259 

immobilization devices, etc. However, commercial systems and clinical approaches to utilizing 260 

those systems are frequently inadequate for retrospectively gathering this data.  261 

(3.a) Integration of Treatment Planning System (TPS) with ROIS 262 

If systems do not use a common database for TPS and ROIS it is difficult to unambiguously 263 

move from the ROIS record of plans actually treated back to specific plans, plan sums and DVH 264 

curves in the TPS. Some vendors may even discard DICOM Unique Identifiers for plans from the 265 

TPS.  266 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

(3.b) Integration with EHR 267 

ROI“ aŶd TP“ sǇsteŵs tǇpiĐallǇ do Ŷot iŶtegƌate ǁith EHR’s. CoŶŶeĐtions may be made through 268 

medical record numbers and inferences around dates recorded in respective systems. This is an 269 

area where Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) could 270 

significantly improve integration.  271 

(3.c) Integration with specialty systems 272 

Treatment devices other than conventional linear accelerators (e.g. brachytherapy, particles, 273 

specialty accelerators, MR guided linacs) may provide minimal details back to the ROIS or may 274 

use specialty tables in the ROIS that do not integrate well with tables used to manage external 275 

beam therapies.  This limits the range of questions around treatment details for these specialty 276 

modalities that can be addressed at large scale for all patients treated.  277 

(3.d) Integration with institutional registry data 278 

Institutions with the American College of Surgeons Commission on Cancer and National 279 

Comprehensive Cancer Network (NCCN) designations are required to have medical registries 280 

that follow up on cancer patients.  Registries document demographics, diagnosis, staging, 281 

survival, cause of death and other factors.  Registry data is rarely linked to radiation oncology 282 

data repositories.  283 

(3.e) Integration with public databases 284 

Institutional registries supply data to state registries.  Published state analyses are, 285 

unfortunately, many years behind current practice. Although state registries have high volumes 286 

of patients, there is no simple means to connect back to patients to check on the validity of the 287 

data or to investigate impact of cofactors on outcomes tracked in the registries.  288 

 289 

Access and Extraction Issues 290 

As radiation oncology has developed, a number of structural issues have arisen that limit 291 

clinicians', caregivers' and researchers' access to the data that we do have.  Access requires 292 
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several key elements: knowledge of the format and schema of the stored data, software that 293 

can identify and extract the data, and permissions to view and extract the data.   294 

Figure 1 illustrates the level of detail that is needed regarding the treatment of rectal carcinoma 295 

patients under three RTOG studies.  To combine the data from these trials requires knowledge 296 

of how the problem is framed (which clinical data are needed, what are the key elements of 297 

those data), how the data are formatted (type of value, allowed values, units, standards if 298 

applicable), and the specific software needed to access the data (SQL, RDF triples, 299 

spreadsheets).   300 

The issue of framing the medical problem is difficult but rewards are high.  The DICOM standard 301 

(and its radiation therapy extension) has achieved such success in large part due to its 302 

structuring of what an imaging study (radiation treatment) is--what are its elements and how 303 

are they related [19].  Thus, regardless of the details of the implementation of a procedure, all 304 

partners in a communication exchange agree on the essential elements.  The definition of such 305 

standards in other areas of medicine is rapidly increasing.  For example, a relatively commonly 306 

used standard for data exchanges between EHR's is the standard Health Level 7 (HL7).  HL7 307 

version 2 standardized types of data and the allowed values and permitted organizations and 308 

vendors to develop software for the reliable interchange of certain data.  However, it was 309 

considered to be quite limited, and version 3 was built around the Reference Information 310 

Model which was a much more robust view of healthcare in general [20].  Even more recently, 311 

they have started developing HL7-FHIR which instantiates an even more up-to-date view of 312 

medical practice, but also highlights the importance of appropriate technology.  HL7-FHIR is 313 

built upon the REST specification that is the current industry standard for web-based 314 

applications [21]. Other data standards, such as the NCI thesaurus [22], provide additional 315 

resources that facilitate the development of software for access and extraction of data.  316 

With rare exception, major vendors of ROIS, TPS and EHR systems, store information in 317 

relational databases. A few types of large volume objects (e.g. DICOM images) are stored in files 318 

that are referenced in the relational databases. Custom extractions from databases are carried 319 

out using structured query language (SQL). SQL queries may have dialectical variation among 320 
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relational database systems (e.g. Oracle, Microsoft SQL). Ideally, relational databases are 321 

designed with categories of data grouped into tables and views (stored SQL query results) 322 

reflecting an overall view of the procedure itself. They also use normalization strategies to 323 

prevent redundant information, reduce complexity in SQL queries and increase performance in 324 

retrieving data. Secure data retrieval requires granting read access to specific authenticated 325 

network accounts. Access may be controlled at the level of the database, table or views. Skill 326 

with SQL is essential to any staff constructing or extracting data for a data repository. 327 

Application programming interfaces (APIs) are provided by vendors of many TPSs. These may be 328 

used to gather subsets of information stored in the ROIS database or elements only calculated 329 

at run time in the TPS (e.g. DVH curves for some systems). APIs allow custom software 330 

applications to be constructed by users that interface with the TPS. Access is controlled by end 331 

user system administrators, subject to constraints of the commercial system. Clinical staff 332 

members with coding skills are necessary for effeĐtiǀe use of API’s.  333 

Legacy issues with vendor changes to both database and API structures are an issue for groups 334 

automating extraction from electronic records systems. Effort to re-write queries and scripts 335 

when systems are upgraded can be substantial.  336 

Patient reported outcomes (PROs) are important outcome measures and their routine 337 

monitoring during cancer therapy has been demonstrated to improve survival [23]. However, 338 

use of paper based rather than electronic systems are more common. Electronic systems are 339 

significantly better for making the data accessible, but require substantial effort in setting up 340 

systems and arranging for staffing resources to assist patients with completing electronic 341 

surveys is required. In addition, lack of standardization in instruments to be used, redundant 342 

questions between surveys, excessive length diminishing patient willingness to participate, and 343 

question formats and logic that translate poorly to electronic systems already used in patient 344 

work flows are issues for generalized use of PROs.  345 

Diagnostic images are stored on Picture Archive and Communication Systems (PACS) in Digital 346 

Imaging and Communication in Medicine (DICOM) format and accessed with DICOM servers. 347 

Graphic user interfaces for clinical use are not well suited to large volume, batch access of sets 348 
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of patient images. The objective in utilizing these resources in connection with BDARS is not 349 

creation of a parallel PACS. Instead, when large sets of images are identified for utilization in a 350 

study, e.g. developing predictive radiomics measures for a disease type, downloading a large 351 

specific set of images for batch processing is needed. Negotiating access is the primary barrier.  352 

Finally, it is important to discuss the role that legal and commercial considerations play in 353 

limiting access to data.  The Health Insurance Portability and Accountability Act of 1996 354 

requires certain standards to be met when exchanging private health information.  The 355 

standards depend on the intended use of the data, for example, clinical decisions, insurance 356 

coverage, quality improvement and research.  They also depend on the entities exchanging the 357 

information.  These standards add time, effort and new procedures to any effort to obtain data 358 

access.  Intra-institutional exchange, for example between a departmental data repository and 359 

the hospital EHR, is in general easier than between institutions, but even that type of 360 

transaction usually requires some level of administrative oversight and/or procedure.  In 361 

addition, storing data in a clinical data repository for possible future research can be viewed as 362 

problematic under national ethics guidelines for human research [24].  Overall, it is difficult to 363 

make any broad statements or recommendations regarding these issues since they are, to 364 

some degree, institution- and use-specific.  In addition, how the regulations are interpreted is 365 

evolving, particularly in response to some of the national healthcare programmatic initiatives 366 

such as the Affordable Care Act. 367 

Selecting technologies 368 

The objective is to use the treatment data, rather than to utilize a novel database technology. 369 

Selecting database technologies which minimize investment overhead and risk while 370 

maximizing productivity and interoperability for addressing particular tasks requires careful 371 

consideration [25,26]. 372 

At a high level, four process steps can be considered and technology choices should be made 373 

fit-for-purpose for these steps.  374 

1. Capture of treatment data 375 
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The primary use for health care data is delivery of patient care. Health care database 376 

technology is often vendor dependent and under regulatory oversight. For structured data 377 

elements (e.g. record and verify, electronic health records, outcome) relational databases are 378 

the most common technologies. Images and related objects such as treatment plans and record 379 

are generally object stores (e.g. PACS) with a relational schema containing object pointers.  380 

2. Extraction 381 

Since the primary use sources have to be taken as-is, the extraction technologies providing 382 

connectors to these primary sources should be able to handle many different sources and 383 

formats including all common relational sources. They should be able to handle non-relational 384 

souƌĐes iŶĐludiŶg ͞dataďases͟ that ƌeseaƌĐheƌs aŶd phǇsiĐiaŶs ofteŶ use ;e.g. EǆĐel, “P““Ϳ aŶd 385 

include JSON and XML support as these are common export format for more technical users. 386 

Ideally, the technology can be extendible to support common medical standards (HL7v2, HL7v3, 387 

HL7 FHIR and DICOM) as needed.  388 

A wide range of programming languages and standard database import tools are frequently 389 

used. These have the advantage of hiding very little from the user. There are also commercial 390 

and open source software systems intended to reduce the technical skill requirements for users 391 

with the trade-off of obscuring details about the extraction, cleaning and loading processes. 392 

Since primary sources change and extraction tools generally expand and change over time, a 393 

crucial requirement is versioning. Users of technology should be able to store different versions 394 

of the extraction scripts and configurations so that subsequent users can re-use their solutions. 395 

3. Transformation, integration and storage 396 

For successful secondary use, the primary use sources need to be combined, integrated and 397 

common data elements mapped on each other. An example is the combination of ROIS/EHR 398 

data (diagnosis, comorbidities, prescriptions, treatments, follow-up), Record and Verify data 399 

(radiotherapy treatment) and DICOM data (imaging/plan). This transformation and integration 400 

is generally the most time consuming task of the process. Knowledge of the primary sources 401 

and of the secondary use data model is a requirement for staff using the tool. Again, versioning 402 

and manageability is crucial as sources change and sharing transformation scripts with others is 403 
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needed for work to not be duplicated. Defining distinctions between data element categories 404 

and relationships means mapping the raw values onto a schema. For example, a schema needs 405 

to be applied so that we can inform our analytics programs if an eǆtƌaĐted ǀalue ͞ϯϬ͟ 406 

corresponds to a dose, an age, a day of the month, etc. and how that value relates to other 407 

information e.g. toxicity, survival, PROs, treatment dates, etc. 408 

From a technology standpoint two main approaches exist. 409 

 Schema-On-Aggregate (aka schema-on-write): Upon extraction each data 410 

element from each source is considered more or less separately, transformed 411 

and mapped to the secondary use data model and then written in the secondary 412 

use data store. Schema-on-aggregate has as its main benefit that it often re-uses 413 

the knowledge contained in the primary use schema and forces one to decide up 414 

front how to map data items and think about transformation for each data 415 

element. The end-result is often a data store with a structured schema. 416 

Relational databases are widely used for this approach owing to their speed, 417 

ease of integration with other systems and large pool of talent for use. Non-418 

relational databases (e.g. object stores, graph databases and triple stores) have 419 

also been used in some research settings. 420 

 Schema-On-Query (aka schema-on-read):  The secondary use data model is 421 

applied when the secondary user requests, or queries, the data from the 422 

secondary source. In a schema-on-query system the data is stored from the 423 

pƌiŵaƌǇ souƌĐe ͞as-is͟ aŶd ďǇ ŶeĐessitǇ this is a ŶoŶ-relational store (e.g. a data 424 

lake). An example is Apache Hive which can be used for SQL-like schema-on-425 

query for Apache Hadoop. NoSQL databases, such as MongoDB or CouchDB, are 426 

another example. The main benefit of this approach is that the transformation 427 

and secondary use data model can be defined fit-for-purpose, and different for 428 

different use cases. Also all primary use data can be stored immediately for later 429 

secondary use. The main drawback is that knowledge of original schema is often 430 

not available by the time the data is used and that data is stored without de-431 
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identification. Variability in nomenclature for key data elements, relationships 432 

aŶd foƌŵats aŵoŶg the ǀaƌious ͞as-is͟ souƌĐes ƌeƋuiƌes ĐƌeatiŶg aŶd ŵaiŶtaiŶiŶg 433 

custom code for each to enable programmatic extraction. Care must be taken to 434 

ensure consistent meaning at the time of data entry so that contents of an 435 

element are internally consistent and stable.  436 

 437 

Note that many solutions allow a combination of the above approaches, with some data 438 

elements stored in a schema generation upoŶ aggƌegate aŶd soŵe stoƌed ͞as-is͟ foƌ sĐheŵa at 439 

a later time point. In that case, key data elements are often duplicated into the secondary use 440 

storage.  441 

 442 

Secondary use application  443 

Secondary use of subsets of data extracted from BDARS to address specific research or clinical 444 

questions is a common use case. The secondary user usually has defined their own data model, 445 

store and the application to analyze the data. The technology choices made by secondary users 446 

vary widely and limited influence exists especially if the secondary user is external to the 447 

primary use institution. The main job of technology here is to provide the secondary end-user 448 

with a dataset and format which he or she can use (often called a data mart). Typical requested 449 

formats include SQL database dumps, Microsoft Excel, comma (or tab) separated values (CSV), 450 

DICOM, HL7 FHIR, HL7v3, HL7v2, XML and JSON. Additionally, data visualization and allowing 451 

the end-user to navigate the data store established in the previous step increase the efficiency 452 

and effectiveness of secondary use. The tools mentioned above generally allow such export to a 453 

variety of data formats. Figure 1 illustrates one such use case, a semantic triple store database 454 

(a.k.a. Resource Description Framework) was applied for the purpose of combining datasets 455 

from several clinical trials. Semantic triples can be used to define a range of relationships 456 

ďetǁeeŶ oďjeĐts ;e.g. PTV → is a tǇpe of → taƌget stƌuĐtuƌeͿ.  457 

 458 
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Specific recommendations for work flows and standardizations  459 

1) Diagnosis and staging data should be entered into quantified fields in accessible, electronic 460 

systems that  461 

◦ have quantified fields for staging elements and overall staging, and staging guideline 462 

system used (e.g. American Joint Committee on Cancer (AJCC)) 463 

◦ ensure correct selection of staging from component elements 464 

◦ provide explicit linkage to treatment courses and plans used to treat  465 

◦ link metastatic diagnosis (e.g. C79.51, Secondary malignant neoplasm of bone) to 466 

diagnosis for originating sites (e.g. C34.1, Malignant neoplasm of upper lobe, 467 

bronchus or lung) 468 

 469 

        In the current vendor landscape, the ROIS is frequently the only system in the clinical 470 

process workflow meeting these objectives.   471 

 472 

2)   Nomenclature standardizations recommended by AAPM Task Group 263 should be adopted 473 

into routine practice. These define standardized nomenclature for structure, target and 474 

DVH metric naming to promote ability to automate aggregation [27].  475 

 476 

3)  Course cumulative as-treated plan sums should be constructed as part of routine practice. 477 

Since more than one image set may be used in the construction of the ATPS’s, and relative 478 

positioning of structures may vary between sets, using the image set providing the best 479 

representation for the clinical evaluation carried out for treatment is currently the most 480 

viable approach.  481 

 482 
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4)    Toxicities, recurrence and PRO outcomes need to be routinely collected as quantified fields 483 

(instead of free text fields) in accessible electronic systems. Standardizations for specific 484 

items and values are needed. This includes, for example, definition of recurrence 485 

nomenclature. Ability to automatically recover these values from the electronic record is 486 

important.  487 

 488 

5) Detailing of key data elements and relationships (i.e. an ontology) is needed for a broad 489 

range of practice quality improvement and translational research efforts. An initial set, drawn 490 

from experience in constructing BDARS, is presented as an appendix to this paper. Success in 491 

gathering this information requires that clinical systems should be utilized to ensure ability to 492 

accurately aggregate these elements and relationships from the electronic record (ROIS, TPS, 493 

EHR).  Ideally, professional societies such as ASTRO, AAPM, ESTRO and CARO would combine 494 

efforts to eventually take the role of maintaining standardized ontologies to promote 495 

interoperability among institutions and commercial systems. Combining the ontology presented 496 

in the appendix with related ontologies would be a valuable step toward a common standard 497 

[28,29]. 498 

 499 

6) In addition to demonstrating adherence to standard quality metrics, clinical entities will face 500 

increasing demands for demonstration of the value of the care they deliver as medicine in the 501 

transitions from fee for service to value based payments.  Success in the value based payment 502 

environment will require the ability to conduct on-demand analysis of patient and tumor 503 

characteristics, all aspects of treatment delivery, outcomes, and cost of care.  504 

 505 

We note that the task of creating ATPSs (item 3) needs to begin as soon as possible, guided by 506 

clinical judgment, in order to replace complete lack of data with reasonable data. In addition, 507 

further refinement is needed.  Collaborations between professional societies, vendors and 508 

clinical trials groups for defining standards for the end-of-treatment dose composite are 509 
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needed. Issues include means to quantify quality of the composite, identifying source images, 510 

identifying trade-off decisions in image registrations, uncertainties in structure dosimetric 511 

measures when multiple image sets are used, and realistic appraisal of the role of image 512 

deformation.  513 

Examples of Clinical Data Repositories  514 

Several groups have been actively engaged in construction of clinical data repositories (CDR), 515 

also known as data lakes and Big Data Analytic Resource Systems (BDARSs). These systems 516 

become important components for both research and clinical practice efforts in their clinics. 517 

Practical recommendations from this group have been grounded in the experience of 518 

constructing, using and sharing these systems. Brief summaries of several are highlighted to 519 

convey the scope and volume of these resources.  520 

 The University of Michigan Radiation Oncology Analytics Resource (M-ROAR) automates 521 

aggregation of electronic data from the Treatment Planning System (TPS), Radiation 522 

Oncology Information System (ROIS), Electronic Health Record (EHR) and other 523 

databases for all patients treated. Data types include demographics, treatment and 524 

dosimetric data, chemotherapy, toxicities, comorbidities, labs, medications, encounters 525 

and patient reported outcomes (PROs). The system contains records for over 20,000 526 

patients. Key data elements are extracted utilizing a combination of SQL queries, TPS 527 

application programming interface (API) based scripts and custom code to extract and 528 

process data from multiple source systems [25]. 529 

 The UCLA Clinical Informatics Management System (CIMS) consists of three major 530 

modules: a physician interaction module that interacts closely with EHR, a physics 531 

parameter module that handshakes with PACS systems, treatment planning and delivery 532 

stations for quantitative value collection and exchange, and a patient reported outcome 533 

management system (Patient Reported Outcomes Measurement Information System, 534 

PROMIS) with a web/mobile portal. The physician interaction module supports 535 

comprehensive query for collection and integration of radiotherapy relevant 536 

information from other departments. The patient reported outcome management 537 
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module consists of a front-end with site-specific patient-oriented Common Terminology 538 

Criteria for Adverse Events (CTCAE) questionnaires tailored to patients.  As of now, the 539 

registry contains records for 1790 definitive prostate treatment, 209 post-operative 540 

prostate treatment, 1950 breast, 663 lung, 531 brain metastasis, 484 GYN, 424 glioma, 541 

409 meningioma, 209 rectum, 151 metastatic bone, 164 trigeminal, 111 pancreas, and 542 

over 3000 general cases [30]. 543 

 The Ohio “tate UŶiǀeƌsitǇ RadiatioŶ OŶĐologǇ DepaƌtŵeŶt’s ͞QualitǇ Dataďase͟ has 544 

been designed to serve as a data aggregation platform to capture clinical, technical, and 545 

health outcome data on all patients who receive radiation treatments. All data are 546 

stored in a REDCap database.  Smart texts have been implemented in EHR to enable 547 

automated capture and extraction of discrete data elements such as adverse events 548 

from provider notes. The dosimetry data foƌ ƌadiatioŶ theƌapǇ aƌe eǆtƌaĐted ǀia TP“’s 549 

API. Demographics, diagnosis, tumor biomarkers, surgery, systemic therapy, radiation 550 

therapy, and adverse events constitute the collected data and provide means for 551 

determining effectiveness of treatment modality. The Quality Database currently 552 

contains 3385 patients and is being populated prospectively with new patient data. 553 

 Oncospace: Johns Hopkins University developed a comprehensive data collection and 554 

data repository system [31].  The system consists of a network of data collection 555 

systems (ROIS, clinic computer terminals, mobile devices, hospital EHR) that provides 556 

data that is transformed and loaded into a SQL database.  Using a federated database 557 

approach (including University of Washington, University of Virginia, Odette Cancer 558 

Center-Sunnybrook), each institution has implemented compatible schemas so 559 

federation-wide queries will succeed.  This approach has the advantages of 560 

"crowdsourcing" ideas and technology and allowing each institution to keep control of 561 

their data while still permitting individual flexibility.   562 

 The Veterans Health Administration (VHA) developed a pilot Radiation Oncology 563 

Practice Assessment (ROPA) program to assess the quality of radiotherapy across the 564 

entire VHA network with 40 institutions participating [32]. Data types include quality 565 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

metrics targeted at workup, diagnosis, treatment planning, delivery and follow-up. The 566 

gathered quality metrics were developed by the VHA in partnership with ASTRO for 567 

locally advanced non-small cell lung cancer, limited stage small cell lung cancer, and 568 

intermediate and high-risk prostate cancer. Data extraction for the initial pilot project 569 

will be completed in 2018. At that time ROPA is anticipated to contain 45,000 scores for 570 

49 metrics aggregated from approximately 2,000 patients.  571 

 572 

Large data sets from sources outside of radiation oncology are now available for 573 

analysis.  Waddle et al. recently published utilization data derived from insurance 574 

records from a commercial warehouse (Optum Labs) to examine treatment technologies 575 

used (proton, stereotactic body radiotherapy, IMRT, 3D, other) by diagnosis code used 576 

in billing records. The data base contains utilization data on a subset of 474,533 577 

radiation oncology patients from a larger database of over 100 million insured lives. 578 

However, connection of this data to clinical outcomes and other cofactors was pending 579 

at the time of that analysis [33]. 580 

 581 

 582 

 583 

 584 

 585 

Recommendations for next steps needed to improve data availability. 586 

Adopting national standards 587 

As discussed above, an important aspect of data exchange is employing a generally recognized 588 

view of the medical process.  HL7 FHIR is an emerging standard and one that has the crucial 589 

elements of (a) flexibility, (b) state-of-the-art technologically, and (c) widespread support [34]. 590 

As this standard is just not being formalized, this is an excellent time for the radiation oncology 591 

community to support efforts to develop radiation oncology-specific resources for this standard 592 

[35]. 593 
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Increasing multi-institutional collaborative efforts 594 

Real, effective standards emerge from being actively engaged in exchanging data with outside 595 

groups as part of more frequent collaborations. Professional and government grant support for 596 

research efforts that develop and proof these standards as by-products are important to their 597 

emergence.  598 

Included in this effort is need to facilitate information exchanges that support re-treatment. As 599 

patients are able to survive longer with cancer, likelihood of visiting more than one center for 600 

subsequent treatments increases.  Clinical process and data exchange standardizations needed 601 

to facilitate these exchanges also support collaborative efforts.  602 

 603 

Links to institutional registries 604 

Institutions which are members of the National Comprehensive Cancer Network (NCCN) are 605 

required to have access to a registry which carries out longitudinal follow-up on a few key data 606 

elements (e.g. survival, cause of death) for treated patients. EHR database records may be 607 

substantially different from registry database records. Providing electronic access registry 608 

databases provides opportunities to synchronize data sources in constructing big data analytics 609 

resource systems.  610 

 611 

Support for Public Data Sets 612 

The value of producing data sets that can be publicly shared (without compromising PHI) has 613 

been heralded by several authors. [36-38]. There is growing interest from funding agencies for 614 

publicly funded research to produce publically available datasets. Similarly, an increasing 615 

number of journals require publication of datasets accompanying findings. Recently Medical 616 

Physics has introduced a special publication category just for data sets. Principles for ensuring 617 

that data are findable, accessible, interoperable, and reusable (FAIR) for public access of data 618 

sets have been set out by Wilkinson et al. [39] and others [40]. 619 
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The National Cancer Institute has recently begun to implement a Cancer Research Data 620 

Commons which meet the standards of FAIR.  In their announcement, they echo a number of 621 

the themes that we have set forth in this article.  This is clearly a propitious time for radiation 622 

oncology to join with others in the oncology fields to make these sorts of community-wide 623 

efforts more productive [41]. 624 

Informatics Training 625 

Clinical staff bring great value to informatics efforts because of the depth of their clinical 626 

domain knowledge with respect to key data elements, their inter-relationships, clinical 627 

processes by which data is entered, end user expectations for meaning, etc. The set of clinical 628 

staff that take on expanding their informatics skills to include database, programming, 629 

statistical analysis and machine learning also improve ability to develop practical solutions 630 

bridging needs between the larger number of specialists entirely focused in either the clinical or 631 

informatics domains.  632 

Conclusions 633 

We have laid out an argument for why it is important for the radiation oncology community to 634 

improve the means by which we can collect, share and use the data that we encounter every 635 

day.  However, for various reasons, much of this data remains inaccessible to us in a format 636 

that makes it easy for us to transform data to knowledge.   637 

The technological challenges to implementing a community-wide system of data collection, 638 

sharing and usage are formidable but the tools have been or are currently being developed.  639 

More difficult is developing the collective will to make it happen.  Such a change in our clinical 640 

behavior and workflow requires buy-in from everyone, including clinic staff, physicians, and 641 

vendors.  It is our hope and expectation that this sea change has already started to occur as 642 

diffuse networks grow in size and analytic power.  It is necessary to do so if we are to continue 643 

to be at the forefront of harnessing technological advances to improve the treatments that we 644 

provide our patients. 645 

 646 
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Acronyms: 652 

AAPM: American Association of Physicists in Medicine 653 

AJCC: American Joint Committee on Cancer 654 

API: Application Programing Interface 655 

ASTP: As Treated Plan Sums 656 

ASTRO: American Society for Radiation Oncology 657 

BDAR: Big Data Analytic Resource Systems  658 

CARO: Canadian Association of Radiation Oncology 659 

CDR: Clinical Data Repository 660 

CER: Comparative Effectiveness Research 661 

CTCAE: Common Terminology Criteria for Adverse Events  662 

DB: Database 663 

DICOM: Digital Imaging and Communications in Medicine 664 

DVH: Dose Volume Histogram 665 

ESTRO: European Society for Therapeutic Radiation Oncology 666 

EHR: Electronic Health Record 667 

FAIR: Findable, Accessible, Interoperable, and Reusable   668 

FHIR: Fast Healthcare Interoperability Standards 669 
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FIGO: International Federation of Gynecology and Obstetrics 670 

HIPAA: Health Insurance Portability and Accountability Act 671 

HL7: Health Level 7 672 

ICD-O: International Classification of Diseases for Oncology 673 

ICD9: International Classification of Diseases, Ninth Revision 674 

ICD10: International Classification of Diseases, Tenth Revision 675 

JSON: JavaScript Object Notation 676 

NCCN:  National Comprehensive Cancer Network 677 

NIH: National Institutes of Health 678 

OIS: Oncology Information System  679 

PACS:  Picture Archive and Communication Systems 680 

PHI: Protected Health Information 681 

PQI: Patient Quality and Improvement 682 

PRO: Patient Reported Outcome 683 

PROMIS
 
 :Patient-Reported Outcomes Measurement Information System 684 

REDCap: Research Electronic Data Capture 685 

ROIS: Radiation Oncology Information System 686 

RCT: Randomized Controlled Trial 687 

ROILS: Radiation Oncology Incident Learning System 688 

RTOG: Radiation Therapy Oncology Group 689 

SQL: Structured Query Language 690 

TPS: Treatment Planning System 691 

XML: Extensible Markup Language 692 
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VHA: Veterans Health Administration 693 
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We have defined of a common set of key data elements and relationships important to a broad range of 793 

patient quality improvement and translational research efforts. Ranking treatment information for 794 

effectiveness requires a broad scope of information types: Radiation Treatments, Surgery, Outcomes, 795 

etc. While it is desirable to have all the data readily available, that is not a practical starting point. Our 796 

objective here is to define a minimal set of information needed to handle frequently encountered 797 

questions as a common use starting point.  With that, technical and procedural efforts attempting to 798 

automate electronic aggregation supporting Big Data efforts can use these recommendations as a guide.  799 

Optimally professional organizations (e.g. AAPM, ASTRO, ESTRO, CARO) would establish an official listing 800 

of key data elements and relationships. Our intention here is to provide a practical starting point from 801 

our experience in aggregations from multiple source systems.  802 

The listing of key data elements and relationships define an explicit conceptualization of a body of 803 

formally represented knowledge about Radiation Oncology, i.e. an ontology [42] The listing provided 804 

here was based on the ontology developed for M-ROAR [25] and expanded as an outgrowth of 805 

discussions at the Practical Big Data Workshop.  Incorporation of the ontology into a programmatic form 806 

using Ontology Web Language (OWL) is underway.  807 

Classes () of information, list key data elements (aka properties) denoted by one of three symbols ( ,  808 

,  ). Most elements () do not require special consideration for protection of patient health 809 

information (PHI). Elements that contain PHI (), are problematic for data sharing or storage in cloud 810 

based systems. Alternatives (), containing, reduced information, may be sufficient for a wide range of 811 

collaborative efforts or cloud based storage.  812 

For example, dates are a type of patient health information (PHI) that institutional review boards (IRB) 813 

will not allow for many applications. For a wide range of investigations, detailing temporal relationships 814 

ďetǁeeŶ eǀeŶts is iŵpoƌtaŶt. ReĐoƌdiŶg the patieŶt’s age at the eǀeŶt, ƌatheƌ thaŶ the date foƌ the 815 

eǀeŶt is aŶ alteƌŶatiǀe. Foƌ eǆaŵple, if the date of aŶ eǀeŶt is ϯ/Ϯ/ϮϬϭϯ, aŶd the patieŶt’s date of ďiƌth is 816 

8/ϭϳ/ϭ9ϲϳ, theŶ the patieŶt’s age at the tiŵe of the eǀeŶt, to thƌee deĐiŵal plaĐes ;DeĐiŵal FϯͿ, is 817 

45.541. This is sufficient resolution to differentiate day on a timeline and meets requirements for 818 

protecting PHI.  819 

Several key data elements typically are not present as distinct values in source data systems but have to 820 

be programmatically derived () from other elements. For example, the age of the patient at the time 821 
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of an event is derived from date of birth and date of the event. Starred (*) items indicate particular need 822 

for recommendations of standardized values recommendations from professional societies.  823 

When elements have only one instance they are indicated by the name of the class or element (e.g. 824 

DateOfBirth, Patient). When there may be more than one instance of an element, this is indicated by 825 

specifying a list of elements of this class (e.g. List<Course>).   826 

 Relationships among classes are categorized as Parent(), Child(), Sibling () or Property(). Parent-827 

Child are dependent relationships: a parent class object is referenced in each instance of a child class 828 

object. Sibling relationships are tracked if elements exist but do not imply dependence. Sibling 829 

relationships rather than parent-child relationships may be selected when the current state of the data 830 

will not practically support the dependent relationship. For example, Prescriptions are used in sibling 831 

relationships with respect to TreatedPlans because the current state of electronic data is inadequate to 832 

assure consistent mapping. Property relationships are used when class incorporates a set of elements 833 

grouped under a single concept.   834 

 Patient - 835 

 PatientMRN (String) -:Medical Record Number  836 

 PatientGUID (String): Generalized Universal Identifier that can be used in cloud 837 

based storage, when PatientMR is not.  838 

 DateOfBirth (Date) 839 

 YearOfBirth (Int?)  840 

 DateLastSurvivalCheck (Date?) 841 

 AgeAtLastSurvivalCheck (Decimal F3)  842 

 DateOfDeath (Date?) 843 

 AgeAtDateOfDeath (Decimal F3)  844 

 IsAlive (Bool) – Status at last at Last Survival Check Date 845 

 *CauseOfDeath (String)  – Need for standardized list  846 

 Gender (String) 847 

 Race (String) 848 

 Ethnicity (String) 849 

 850 

Child class relationships 851 
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 List<Radiation Therapy Course>  852 

 List<Prescription> 853 

 List<DiagnosisAndStaging> 854 

 List<TreatedPlan> 855 

 List<PatientTreatmentOutcome> 856 

 List<PatientReportedOutcome> 857 

 List<PlanningStructureSet> 858 

 List<HealthInformation>  859 

 List<Lab>  860 

 List<Medication>  861 

 List<Image>  862 

 List<Chemotherapy Course>  863 

 List<Surgical Procedure> 864 

 List <Pathology> 865 

 List <Charge> 866 

 867 

 868 

 RadiationTherapyCourse  – These are the treatment courses. A course Every patient has a list of 869 

courses 870 

 CourseName (String) 871 

 NTxSessionsInCourse (Int)  – Each treatment episode is a session, sessions used for 872 

imaging only are exclude from the count  873 

 DateFirstTreatment (Date) 874 

 AgeAtFirstTreatment (Decimal F3)  875 

 DateLastTreatment (Date) 876 

 AgeAtLastTreatment (Decimal F3)  877 

 878 

Sibling Class Relationships 879 

 List<Prescription> 880 

 List<Chemotherapy Course> 881 
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 List<Surgical Procedure> 882 

  883 

Child class relationships 884 

 List<TreatedPlan> 885 

 List<DiagnosisAndStaging> - Typically only one per Course 886 

 List<PatientTreatmentOutcome> - Typically only one per Course 887 

 List<Charge> 888 

 889 

Parent Class Relationships 890 

 Patient 891 

 892 

 Prescription : The prescription needs to fully convey the intent of the physician for the treatment 893 

plan. The Course contains a list of prescriptions 894 

 Name (String) 895 

 NTxSessions (Int)  896 

 NTxPerDay (Int)  897 

 DaysBetweenTxSessions (Decimal)  898 

 StartOnNthDayFromCourseStart (Int)  899 

 StartOnNthSessionInCourse (Int)  900 

 RxDoseUnits (String) – ͞ĐGǇ͟ oƌ ͞GǇ͟ oƌ ͞CGE͟ 901 

 IsCourseCummulativePrescription (Bool)  – Only one value of True per Course 902 

 903 

 904 

Class Property Relationships 905 

 List<PrescriptionDoseLevel> 906 

 List<PrescriptionDVHObjectives> 907 

 908 

Sibling Class Relationships 909 
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 List<TreatedPlan> 910 

 911 

Parent Class Relationships 912 

 DiagnosisAndStaging 913 

 Patient 914 

 Course 915 

 916 

 917 

 PrescriptionDoseLevel 918 

 RxDose (Decimal F3) 919 

 RxStructure (String)  – AAPM TG263 compliant name 920 

 RxPointName (String)  921 

 922 

Parent Class Relationships 923 

 Prescription 924 

 925 

 PrescriptionDVHObjectives 926 

 Structure (String)  – AAPM TG263 compliant name 927 

 DVHMetric (String) – AAPM TG263 compliant name e.g. Max[Gy], V20Gy[%] 928 

 Constraint (String)  - allowed values are =,<,ч,>, ш, ALARA 929 

 Value (Decimal F3) – null if constraint is ALARA 930 

 931 

Class Property  Relationships 932 

 Prescription 933 

 934 

 DiagnosisAndStaging 935 

 StagingSystem (String) - e.g. AJCC 7, FIGO 936 

 ICD9Or10 (String) 937 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

 ICD0 (String) – Defines location of disease 938 

 Laterality (String) – Left, Right, Bilateral 939 

 Overall Staging (String): e.g. IIa, X,  940 

 T (String) 941 

 N (String) 942 

 M (String) 943 

 P (String) 944 

 G (String) 945 

 OtherStagingComponents (String)-Staging components other than T,N,M,P,G 946 

 PrimaryOrMetastatic (String) – Eitheƌ ͞PƌiŵaƌǇ͟ oƌ ͞MetastatiĐ͟  947 

 948 

Child Class Relationships 949 

 PatientTreatmentOutcome 950 

 DiseaseSiteStatus 951 

 952 

Parent Class relationships 953 

 PrimaryICD9Or10? – If Metastatic, indicate Primary DiagnosisAndStaging element  954 

 Course  955 

 Patient 956 

 957 

 958 

 DiseaseSiteStatus 959 

 DateOfStatus (Date) 960 

 AgeAtDateOfStatus (Decimal F3)  961 

 *Status(String) – Need standardized list e.g. (No Evidence of Disease, Local Recurrence, 962 

Regional Recurrence, Distant Recurrence) 963 

 964 

 965 

 966 
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 TreatedPlan : Every course has a list of treated plan objects. One table for all types of plans defining 967 

key elements to track. This simplifies mixed modality tracking e.g. External + Brachy and handling of 968 

individual plans vs plan sums. Only plans actually treated are tracked. Details of actual vs number of 969 

fractions delivered are tracked.  970 

 PlanName (String): Corresponds to PlanID in ARIA 971 

 *TreatmentAreaClassifier (String) : e.g. Head and Neck, Lung_L, Breast_R+SC 972 

 TPSSourceSystem (String)   973 

 IsCourseCummulativePlan (Bool): The plan or plan sum(ATPS) represents all plans treated in 974 

the course 975 

 IsPlanSum (Bool): The dose associated with the plan is created by summing dose from other 976 

plans 977 

 978 

 DateOfFirstPlanTreatment (DateTime) 979 

 AgeAtFirstPlanTreatment  980 

 DateOfLastPlanTreatment (DateTime) 981 

 AgeAtLastPlanTreatment  982 

 983 

 PrimaryTxDeliveryFacility (String) – Facility where most of plan fractions were delivered 984 

 PrimaryTxDeliveryMachine (String) – Machine on which most of the plan fractions were 985 

delivered 986 

 NFractions_Planned (Int) 987 

 NFractions_Delivered (Int) 988 

 TotalDose_Planned (Decimal) – Dose  planed for highest dose structure e.g. PTV_High 989 

 TotalDose_Delivered (Decimal) – Dose  delivered for highest dose structure e.g. PTV_High 990 

 TotalDose_Units  (String) – Gy, cGy, CGE 991 

 992 

 UsedFiducials (Bool)  993 

 FiducialType (String) – Gold, Calypso, Carbon 994 

 UsedBreathMotionControl (Bool)  995 

 BreathMotionControlType (String): SDX, ABC, Compression 996 

 997 
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 MeanSessionTimeMinutes(Int)  998 

 MeanSessionBeamOnTimeMinutes (Int)  999 

 MeanSessionImagingTimeMinutes (Int)  1000 

 1001 

 NImages_MV (Int)  - Total number of MV images for all sessions treating this plan 1002 

 NImages_kV (Int)  - Total number of kV images  for all sessions treating this plan 1003 

 NImages_CBCT (Int)  :Total number of CBCT for all sessions treating this plan 1004 

 NImages_MR (Int) : Total number of MR images for all sessions treating this plan 1005 

 1006 

 List<SupplementalTreatmentDetail> 1007 

      1008 

Sibling Class Relationships 1009 

 Prescription 1010 

 List<Images> - Image Class Objects related to the TreatedPlan e.g. CBCT, kV 1011 

 1012 

Child Class Relationships 1013 

 PlanningStructureSet 1014 

 List<DVHCurve> 1015 

 List<DVHMetric> 1016 

 List<PatientPositioningDevice> 1017 

 TreatmentPlanDetails_XRT 1018 

 TreatmentPlanDetails_Brachy 1019 

 TreatmentPlanDetails_Particles 1020 

 PlanningStructureSet 1021 

 1022 

Parent Class Relationships 1023 

 Patient 1024 

 Course 1025 

 ComponentOfATPS (TreatedPlan) - Plans that are components of ATPS link back to the ATPS 1026 
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 1027 

 1028 

 PlanningStructureSet 1029 

 StructureSetName (String) 1030 

 ImageModality (String) : e.g. CT, MR 1031 

 DateOfImageAcquisition (Date) 1032 

 AgeAtImageAcquisition (Decimal F3) 1033 

 DICOMImage_UID (String) DICOM_UID of image use for the plan. In the Image list attached 1034 

to the patient. 1035 

 DICOMPlan_UID (String) 1036 

 DICOMStructure_UID (String) 1037 

 DICOMDose_UID (String) 1038 

 PatientPosition (String) 1039 

 1040 

Parent Class Relationships 1041 

 Patient 1042 

 TreatedPlan 1043 

 1044 

 PatientPositioningDevice 1045 

 *DeviceCategory (String) – Need standardized list 1046 

 DeviceName(String) 1047 

 SetupDetails (String) 1048 

 1049 

 1050 

 TreatmentPlanDetails_XRT 1051 

 List<EnergyModality> 1052 

 TotalPlanMU (Decimal) 1053 

 UsedIMRT (Bool)  1054 

 UsedVMAT (Bool)  1055 
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 UsedFIF (Bool)  1056 

 UsedWedges (Bool)  1057 

 UsedBolus (Bool)  1058 

 UsedNonCoplanarBeams (Bool)  1059 

 NBeams (Int)  1060 

 NFractionsPlanned (Int) 1061 

 NFractionsDelivered (Int)  1062 

 List<SupplementalTreatmentDetail> 1063 

       Parent Class Relationship 1064 

 TreatedPlan 1065 

 1066 

 1067 

 TreatmentPlanDetails_Brachy 1068 

 List<EnergyModality> 1069 

 NSourcesTotal (Int) 1070 

 TotalActivity (Decimal) 1071 

 *TotalActivityUnits (String)- Need standardized list e.g. MBq, Ci, mCi, GBq 1072 

 UsedRadiopharm (Bool) 1073 

 UsedApplicator (Bool) 1074 

 TotalHDRDwellTimeMin (Decimal) 1075 

 TotalPDRDwellTimeMin (Decimal) 1076 

 TotalLDRImplantTimeMin (Decimal) 1077 

 List<SupplementalTreatmentDetail> 1078 

 1079 

Child Class Relationships 1080 

 List<Applicator> 1081 

         1082 

       Parent Class Relationship 1083 

 TreatedPlan 1084 
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 1085 

 1086 

 Applicator 1087 

 *ApplicatorType (String) Need standardized list e.g. Needle, BrachyCath, TandemAndOvoid, 1088 

Cylinder, Mamosite, Savi 1089 

 NApplicatorsInserted (Int)  1090 

 NApplicatorsUsedInTx (Int)  1091 

 1092 

Parent Class Relationships 1093 

 TreatmentPlanDetails_Brachy 1094 

 TreatmentPlanDetails_Particles 1095 

 List<EnergyModality> 1096 

 UsedPassiveScattering (Bool) 1097 

 UsedSpotScanning (Bool) 1098 

 UsedEndOfRangeToSpareCriticalOAR (Bool) 1099 

 List<SupplementalTreatmentDetail?> 1100 

        Parent Class Relationships 1101 

 TreatedPlan 1102 

 1103 

 EnergyModality 1104 

 Energy (String) – Need standardized list e.g.  X06, X06FFF, X10, X10FFF, E06, E09, E12, E16, 1105 

E20, Ir192, I125, P70, C250 1106 

 *Modality (String) – Need standardized list e.g. XRT, HDR, LDR, Proton, CyberKnife, 1107 

GammaKnife 1108 

 1109 

        Parent Class Relationship 1110 

 TreatedPlanDetails_XRT 1111 

 TreatedPlanDetails_Brachy 1112 
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 TreatedPlanDetails_Particles 1113 

 1114 

 1115 

 SupplementalTreatmentDetail 1116 

 Name (String) 1117 

 Value (String) 1118 

 ValueType (String) 1119 

 1120 

Parent Class Relationships 1121 

 TreatedPlanDetails_XRT 1122 

 TreatedPlanDetails_Brachy 1123 

 TreatedPlanDetails_Particles 1124 

 TreatedPlan 1125 

 1126 

 1127 

 Image : Information about image objects relevant to patieŶt’s tƌeatŵeŶt 1128 

 ImageName (String) 1129 

 DICOM_UID (String) 1130 

 ImageModality (String)  e.g. CT, kV, CBCT, MR-T1w, MR-T2w,PET,etc 1131 

 SourceSystem (String)  Where to find the image and how to get it e.g. ARIA, Velocity, 1132 

Hospital PACS, etc 1133 

 AccessionNumber (String) 1134 

 StudySeries (String) 1135 

 BodySite (String) 1136 

 DateOfImageAcquisition (Date) 1137 

 AgeAtImageAcquisition (Decimal F3)  1138 

 RelevanceComment (String?) e.g. TumorResponse 1139 

 1140 

        Sibling Class Relationships 1141 
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 List<ImageDataFeature> 1142 

 TreatedPlan 1143 

 Course 1144 

 1145 

Parent Class Relationships 1146 

 Patient 1147 

 1148 

 DVHCurve : Store the DVH curve for as treated (i.e. number of fractions delivered) plans and plan 1149 

sums. Every Treated Plan has a list of DVH curves 1150 

 StructureName (String) – Use TG263 Standardization 1151 

 Volume[cc] (Decimal) 1152 

 Min[Gy] (Decimal) 1153 

 Max[Gy] (Decimal) 1154 

 Mean[Gy] (Decimal) 1155 

 Median[Gy] (Decimal) 1156 

 Stdev[Gy] (Decimal) 1157 

 DVHCurve (String)  – Dose, Volume tuples separated by semi colons. Dose is in units of Gy, 1158 

Volume is in units of percent of structure volume e.g. 0,100; 50,100;50.5,99.ϱ;…. 1159 

 1160 

Sibling Class Relationships 1161 

 List<DVHMetric>  1162 

 1163 

        Parent Class Relationships 1164 

 TreatedPlan 1165 

 1166 

 DVHMetric : Metrics provide quick look up of most important values. Sibling relationship to DVH 1167 

curves is maintained so that they can be reported separately if needed.  1168 

 StructureName (String) - Use standard nomenclature from TG263 1169 

 MetricName (String) - Use standard nomenclature from TG263 1170 
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 Value 1171 

 1172 

Sibling Class Relationships 1173 

 List<DVHCurve>  1174 

 1175 

      Parent Class Relationships 1176 

 TreatedPlan 1177 

 1178 

 ImageDataFeature : specific values associated with the image that e.g Radiomics values.  1179 

Every Image has a list of image data features 1180 

 *FeatureName(String) – Need for a standardized list of defined feature names and 1181 

acceptable values  1182 

 Data Type (String): text, number, datetime, bool 1183 

 Value (String) 1184 

 DateOfImageDataFeature (Date) 1185 

 AgeAtImageDataFeature (Decimal F3)  1186 

 1187 

 1188 

Parent Class Relationships 1189 

 Image 1190 

 Patient 1191 

 PatientTreatmentOutcome 1192 

 *DiseaseStatus (String) – Need standardized list e.g. Local Recurrence, NED, 1193 

BiochemicalFailure 1194 

 DateOfStatus (Date) 1195 

 AgeAtStatus (Decimal F3)  1196 

Class Property Relationship 1197 
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 DiagnosisAndStaging 1198 

 1199 

Parent Class Relationships 1200 

 Patient 1201 

 Course 1202 

 1203 

 PatientReportedOutcome 1204 

 *SurveyInstrumentName (String) – Need for standardized list 1205 

 *ElementName (String) – Need for standardized list 1206 

 DateOfPRO (Date) 1207 

 AgeAtPRO (Decimal F3)  1208 

 Value (String) 1209 

 ValueType (String) – e.g. Bool, Date, Number 1210 

Sibling Class Relationship 1211 

 Course 1212 

 1213 

Parent Class Relationship 1214 

 Patient 1215 

 1216 

 1217 

 ProviderReportedToxicity 1218 

 *ToxicityName – Use standard names from CTCAE or other standards 1219 

 ToxicityStandard (String) e.g. CTCAE 1220 

 DateOfReportedToxicty (Date) 1221 

 AgeAtReportedToxicity(Decimal F3)  1222 

 Value (String) 1223 

 ValueType (String) – e.g. Bool, Date, Number 1224 

 Attribution (String) 1225 
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Sibling Class Relationship 1226 

 Course 1227 

 1228 

Parent Class Relationship 1229 

 Patient 1230 

 1231 

 1232 

 HealthInformation: Used to record data elements relevant to patient status e.g. smoker, rock 1233 

climber, diabetes, etc.  1234 

 *HealthInformationItemName (String) –Need for standardized list  e.g. HasDiabetes, 1235 

IsCurrentSmoker, SmokingPackYears 1236 

 Date (Date) 1237 

 AgeDate (Decimal F3)  1238 

 Value (String) – e.g. True, 20 1239 

 ValueType (String) – Decimal, Bool, Date, String 1240 

               1241 

       Sibling Class Relationships 1242 

 List<Course> 1243 

 1244 

        Parent Class Relationships 1245 

 Patient 1246 

 1247 

 Lab  1248 

 LabName (String) 1249 

 LOINCShortName (String) 1250 

 LOINCCodeName (String) 1251 

 Date (Date) 1252 

 AgeAtDate (Decimal F3)  1253 
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 Value (String) 1254 

 Units (String) 1255 

 ValueType (String) – Decimal, Bool, Date, String 1256 

 1257 

        Sibling Class Relationships 1258 

 Course 1259 

 1260 

        Parent Class Relationships 1261 

 Patient 1262 

 1263 

 Medication  1264 

 MedicationType (String) 1265 

 MedicationName (String) 1266 

 DosageValue (Decimal) 1267 

 DosageUnit (String) 1268 

 Frequency (String) 1269 

 DateOfMedicationRecord 1270 

 AgeAtMedicationRecord (Decimal F3)  1271 

 1272 

        Sibling Class Relationships 1273 

 Course 1274 

 1275 

        Parent Class Relationships 1276 

 Patient 1277 

 1278 

 ChemotherapyCourse: Set of Chemotherapy administrations 1279 

 *Protocol (String) – Need standardized list 1280 

 Agent (String) 1281 
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 Facility (String) 1282 

 IsNeoAdjuvant (Bool) 1283 

 IsConcurrent (Bool) 1284 

 IsAdjuvant (Bool) 1285 

 DateFirstTreatment (Date) 1286 

 AgeAtFirstTreatment (Decimal F3)  1287 

 DateLastTreatment (Date) 1288 

 AgeAtLastTreatment (Decimal F3)  1289 

 1290 

       Sibling Class Relationships 1291 

 Radiation Therapy Course 1292 

 Surgical Procedure 1293 

 1294 

Child Class Relationships 1295 

 List<Chemotherapy Administration> 1296 

 1297 

        Parent Class Relationships 1298 

 Patient 1299 

 DiagnosisAndStaging 1300 

 1301 

 ChemotherapyAdministration 1302 

 Agent (String) 1303 

 Dosage (String) 1304 

 DateOfAdministration (Date) 1305 

 AgeAtAdministration (Decimal F3)  1306 

 1307 

 1308 

 SurgicalProcedure 1309 
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 Facility (String) 1310 

 *Purpose (String) – Need for standardized list 1311 

 *Margins (String) – Need for standardized values 1312 

 *BiopsyStatus (String) – Need for standardized values 1313 

 Is PreIrradiation (Bool) 1314 

 DateOfSurgery (Date) 1315 

 AgeAtSurgery (Decimal F3)  1316 

 1317 

        Sibling Class Relationships 1318 

 Radiation Therapy Course 1319 

 ChemoTherapy Course 1320 

 1321 

       Parent Class Relationships 1322 

 Patient  1323 

 DiagnosisAndStaging 1324 

 1325 

 Pathology 1326 

 *ElementName(String) – Need standardized list 1327 

 *ElementValue (String) 1328 

 *ElementType (String) 1329 

 DateOfPathology (Date) 1330 

 AgeAtPathology (Decimal F3)  1331 

 1332 

        Sibling Class Relationships 1333 

 DiagnosisAndStaging 1334 

 1335 

       Parent Class Relationships 1336 

 Patient  1337 
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 1338 

 1339 

 Charge 1340 

 CPTCode (String) 1341 

 NCodeInstances(Int) 1342 

 DateStartRange (Date) 1343 

 AgeAtStartRange (Decimal F3)  1344 

 DateEndRange (Date) 1345 

 AgeAtEndRange (Decimal F3)  1346 

 1347 

Parent Class Relationships 1348 

 Patient 1349 

 Course 1350 

 1351 

Figure Legend 1352 

Figure 1: The data from RTOG 0012, RTOG 0247, and RTOG 0822 were converted into Resource 1353 

Description Framework (RDF) specifications and were uploaded onto the NRG/IROC/ACR node 1354 

of the Varian learning portal. The mapping was performed according to the diagram shown 1355 

above. Distributed learning is enabled for contracted institutions. The distributed learning 1356 

between this node and another node on the Varian learning portal (MAASTRO Clinic, 1357 

Netherlands) was tested successfully.  1358 
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