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Key points: 

• Unexpectedly complex influx of ring material found in Saturn’s equatorial upper 
atmosphere, including organics, water and nanograins. 

• Ring influx leads to reduction in major ions (H+ and H3
+); heavier molecular ions 

dominate Saturn’s low-altitude equatorial ionosphere. 
• Major molecular ions at low-altitude still uncertain, but are likely to include H3O+ and 

HCO+, and the mean modeled ion mass is 11 Da. 
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Abstract 

We present new models of Saturn’s equatorial ionosphere based on the first in situ measurements 

of its upper atmosphere.  The neutral spectrum measured by Cassini’s Ion and Neutral Mass 

Spectrometer (INMS), which includes substantial methane, ammonia, and organics in addition to 

the anticipated molecular hydrogen, helium, and water, serves as input for unexpectedly complex 

ionospheric chemistry.  Heavy molecular ions are found to dominate Saturn’s equatorial low-

altitude ionosphere, with a mean ion mass of 11 Da.  Key molecular ions include H3O+ and 

HCO+; other abundant heavy ions depend upon the makeup of the mass 28 neutral species, which 

cannot be uniquely determined.  INMS neutral species lead to generally good agreement between 

modeled and observed plasma densities, though poor reproduction of measured H+ and H3
+ 

variability and an overabundance of modeled H3
+ potentially hint at missing physical processes 

in the model, including a loss process that affects H3
+ but not H+. 

Plain Language Summary 
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Cassini’s Grand Finale enabled the first-ever direct measurements of Saturn’s upper atmosphere.  

Here, we use Cassini’s unique measurements to construct new models of the plasma in this 

important boundary region that separates the dense lower atmosphere from space.  Based on the 

complex array of observed gases, we find that heavy molecular ions are dominant near Saturn’s 

equator.  This surprising result demonstrates that the chemistry in Saturn’s equatorial upper 

atmosphere is substantially more complex than anticipated.  The presence of these unexpected 

ions potentially represents a new method of monitoring Saturn’s ionosphere remotely.  

Furthermore, as other Cassini measurements indicate that the complex chemistry is likely driven 

by an influx of ring-derived material, such observations may even help to track the evolution of 

Saturn’s rings as they lose mass to its atmosphere. 

This article is protected by copyright. All rights reserved.



4 
 

1. Introduction 

Early theoretical models of Saturn’s ionosphere predicted peak electron densities, NMAX, 

of 105 cm-3 on the dayside (e.g., McElroy, 1973; Waite et al., 1979), significantly larger than the 

~104 cm-3 found from subsequent radio occultation measurements by the Pioneer 11 (Kliore et 

al., 1980) and Voyager spacecraft (Lindal et al., 1985).  The Cassini spacecraft obtained an 

additional 59 radio occultations of Saturn’s ionosphere, re-confirming the average NMAX value of 

~104 cm-3, as well as finding a dawn/dusk asymmetry (Nagy et al., 2006) and an unexpected 

latitudinal trend in NMAX (Kliore et al., 2009, 2014). Therefore, in order to reproduce 

observations by reducing modeled electron densities, modelers have long considered different 

methods for converting H+ – a dominant and long-lived atomic ion – into a short-lived molecular 

ion.  The most commonly considered pathways for chemical loss of H+ involved charge 

exchange with (1) vibrationally excited H2 (e.g., McElroy, 1973; Atreya et al., 1984), and (2) 

water products, likely introduced from Saturn’s rings and/or icy moons (Shimizu, 1980; Chen, 

1983; Connerney and Waite, 1984).  Uncertainties in the H+ + H2 reaction rate and the H2 

vibrational population have rendered the former process dependent upon estimates of poorly 

known sources and sinks of H2 vibrational levels (e.g., Cravens, 1987; Majeed et al., 1991).  

Constraints on the latter process, on the other hand, have evolved with an increasingly 

comprehensive set of observations and model comparisons (summarized in Moore et al., 2017), 

and have crystallized in Cassini’s measurements of an influx of ring material near Saturn’s 

equator (Hsu et al., 2018; Mitchell et al., 2018; Perry et al., 2018; Waite et al., 2018). 
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The first in situ measurements of Saturn’s upper atmosphere were obtained by the Cassini 

spacecraft during the proximal orbit segment (spanning April – September 2017) of the Grand 

Finale phase of its 13-year mission.  These data find evidence for a strong influence of Saturn’s 

rings on its equatorial upper atmosphere, manifesting as an influx of grains and related material.  

Observations of grains within Saturn’s upper atmosphere and exosphere are described by 

Mitchell et al. (2018) and Hsu et al. (2018).  An overview of two different methods by which the 

Radio and Plasma Wave Science (RPWS) instrument determines electron density (ne) along 

Cassini’s trajectory is given in Morooka et al. (2018) and Persoon et al. (2018).  Measurements 

of neutral and ion densities in Saturn’s upper atmosphere by the Ion and Neutral Mass 

Spectrometer (INMS), as well as initial ionospheric interpretations, are summarized by Waite et 

al. (2018) and Cravens et al. (2018).  Here, using the constraints provided by all of the preceding 

data, we present new models of Saturn’s equatorial ionosphere.   

 

2. An influx of external material: past evidence and ionospheric effect 

Interplanetary dust grains represent an important source of exogenous material for all of 

the giant planets.  Recently updated interplanetary dust fluxes in the outer Solar System (Poppe, 

2016), combined with a dust ablation model, are able to explain a wide range of observational 

constraints of stratospheric composition, though with a few notable exceptions (Moses and 

Poppe, 2017).  The most obvious exception is at Saturn, where the interplanetary dust grain flux 

is more than an order of magnitude too small to explain the observed stratospheric H2O, CO and 
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CO2 – a discrepancy easily explained, at least qualitatively, by Saturn’s vast ring system and its 

active cryovolcanic moon, Enceladus.  Nevertheless, despite ample evidence of external material 

being present in the Saturn system, constraining the source and spatial/temporal variability of 

any influxes into Saturn’s upper atmosphere has proven difficult. 

Analysis of early International Ultraviolet Explorer observations led to the suggestion of 

a possible external source of water or oxygen (Winkelstein et al., 1983).  This suggestion was 

later confirmed with the detection of stratospheric water by the Infrared Space Observatory  

(Feuchtgruber et al., 1997).  Circumstantial evidence also began to mount for a spatial 

variability to the implied oxygen influxes.  First, the latitudinal trends in ne obtained from 

Cassini radio occultation observations (Kliore et al., 2009, 2014) were best reproduced using an 

influx peaked at Saturn’s equator (Moore et al., 2010).  Second, there were indications of 

localized water enhancements at mid-latitudes.  In the UV, a 2σ-detection of water near 33oS 

was made using the Hubble Space Telescope (Prangé et al., 2006).  In the IR, ground-based 

observations of non-solar latitudinal variations in H3
+ emission, mirrored in conjugate 

hemispheres, were found to map along magnetic field lines to regions of expected water influx in 

Saturn’s ring plane (O’Donoghue et al., 2013, 2017), likely evidence for a ring-atmosphere 

interaction wherein charged ring particles “rain” down along magnetic field lines and alter local 

ionospheric chemistry (Connerney, 2013; Moore et al., 2015).  

Models of Saturn’s ionosphere have commonly employed a water influx to modify 

calculated electron densities via interactions with the major ions, H+ and H3
+ (e.g., Connerney 
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and Waite, 1984; Majeed and McConnell, 1991; Moses and Bass, 2000; Kim et al., 2014).  In the 

presence of water, H+ ions can be readily converted into short-lived molecular ions, e.g.: 

 H+ + H2O   H2O+ + H      (1) 

 H2O+ + H2   H3O+ + H      (2) 

The dissociative recombination rate of H3O+ with electrons is >105 times faster than the radiative 

recombination of H+, and therefore the modeled ne in such an ionosphere is smaller, provided the 

influx of water is sufficient.  There is, in addition, a secondary effect: as dissociative 

recombination with electrons is the primary loss for H3
+, an introduction of water will reduce the 

H3
+ loss rate, thereby increasing H3

+ density (Moore et al., 2015).  However, for extremely large 

influxes (>2x107 H2O molecules cm-2 s-1) this secondary effect is overwhelmed by loss of H3
+ 

via a charge-exchange reaction similar to (1).  

The facts that Saturn’s rings are mostly water ice (Cuzzi et al., 2010) and that the 

Enceladus plumes are mostly water vapor (Waite et al., 2006) made it natural to assume that the 

dominant influx into Saturn’s atmosphere was water in some form.  Nevertheless, the reduction 

in ne required for ionospheric models to reproduced observations can be achieved just as easily 

via H+ charge-exchange with methane and the other molecules detected by INMS (Waite et al., 

2018).    

 

3. Modeling approach 
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3.1. New constraints based on Cassini in situ data 

Cassini in situ measurements offer the first opportunity to simultaneously constrain 

neutral and plasma parameters in Saturn’s upper atmosphere, a significant advance for 

ionospheric models.  In addition, INMS measurements of H2
+ can be used to empirically 

determine the photoionization rate – a parameter that can be difficult to ascertain due to sparse 

solar EUV data at Saturn.  Under photochemical equilibrium (PCE), ion production and loss 

rates for each species s are locally equal (i.e., Ps = Ls), and ion densities can be calculated 

analytically (Schunk and Nagy, 2009).  For PCE to hold, the chemical lifetime of a species must 

be much shorter than the transport timescale.  This assumption holds for altitudes below     

~2500 km for conditions of Cassini’s closest approach during the proximal orbits (slightly higher 

than for Saturn’s mid-latitudes, as calculated by Moore et al., 2004).  For H2
+, production is 

given by 𝑃𝐻2+ = 𝑗 𝑛𝐻2, where j is the ionization frequency (s-1), which depends on the incident 

solar EUV flux and the photoionization cross-section of H2, and 𝑛𝐻2  is the H2 number density 

(cm-3).  The dominant loss for H2
+ ions, and source of H3

+ ions, is the rapid charge-exchange 

reaction 

 H2
+ + H2   H3

+ + H k3 = 2x10-9 cm3 s-1.   (3) 

The loss of H2
+ is therefore given by 𝐿𝐻2+ = 𝑘3  𝑛𝐻2𝑛𝐻2+; equating production and loss gives: 

  𝑗 = 𝑘3 𝑛𝐻2+         (4) 
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Reaction rate k3 is well-known (Anicich, 1993), and so the INMS-measured H2
+ densities at the 

top of the atmosphere (i.e., where optical depth is minimal) give a firm constraint on j.  For orbit 

P288, on 14 August 2017, where the peak H2
+ density is ~0.6 cm-3, j is ~1.2x10-9 s-1.   

 INMS was able to measure ion densities on four proximal orbits: two with a closest 

approach near 3000 km above the 1 bar pressure level (P283 and P287 on 12 July 2017 and 7 

August 2017, respectively), and two with a closest approach near 1700 km altitude (P288 and 

P292 on 14 August 2017 and 9 September 2017, respectively), between Saturn’s homopause and 

exobase.  Figure 1 shows Cassini results for P288 and P292, from which we can derive a 

number of constraints to guide the model comparisons.  First, the INMS ion densities detected 

(H+, H2
+, H3

+, and He+) are represented by gray, dark red, blue, and gold curves, and the sum of 

those light ions is given by the black dotted curve.  Ion densities in Figure 1a are adapted from 

those presented in Waite et al. (2018), and follow from the sensitivities discussed in Cravens et 

al. (2018).  Figure 1b presents the P292 densities using the same analysis.  Second, electron 

densities obtained from RPWS Langmuir Probe (LP) sweep data and from plasma wave analyses 

are shown by the orange and turquoise curves, respectively.  Uncertainties for these 

measurements are <20% (Morooka et al., 2018) and ~9-19% (Persoon et al., 2018).  Third, the 

response of the Magnetospheric IMaging Instrument’s Charge Energy Mass Spectrometer 

(MIMI/CHEMS) to dust grain impact is scaled by a constant factor, added to the total INMS ion 

density, and plotted in pink (Mitchell et al., 2018).  Finally, in order to give context to the plasma 

densities, panels (c) and (d) present a number of relevant INMS neutral densities over the same 
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region: H2, HD, He, and CH4 are represented by dark red, cyan, gold, and tan curves, 

respectively.  These densities follow from the approach discussed in Perry et al. (2018). 

Panels 1c and 1d provide in situ neutral density constraints for the ionospheric modeling 

described below.  In addition, they are used to guide extrapolation to altitudes above and below 

the Cassini trajectory, such that a self-consistent neutral background atmosphere can be used as a 

base for ionospheric calculations.  This extrapolation proceeds in a series of steps.  First, 

representative temperatures are derived by fitting an isothermal model to the measured H2 

densities.  This approach is described by Yelle et al. (2018), and we adopt 370 K based on their 

values: 368.8±1.1 K and 372.1±1.0 K for P288 and P292, respectively.  Second, densities for 

each neutral constituent are extrapolated in altitude based on scale heights appropriate for these 

exospheric temperatures.  The mixing ratios of methane and other heavy molecular species are 

found to be roughly constant in the region of the thermosphere sampled by Cassini (i.e., above 

the homopause; Waite et al., 2018), consistent with a topside influx of a minor species.  The H2 

scale height is therefore used for their density extrapolations.  Finally, H is also included by 

using a modeled mixing ratio at Cassini’s altitude (Müller-Wodarg et al., 2012), and then 

extrapolating it in altitude according to its mass-appropriate scale height. 
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Figure 1: Data comparisons from the INMS, RPWS and MIMI/CHEMS instruments for proximal 
orbits (a and c) 288, and (b and d) 292.  Cassini sampled the upper atmosphere near local solar 
noon at closest approach.  The minimum altitude and the ring plane crossing for each orbit are 
indicated by gray vertical lines.  Panel (a) is adapted from Waite et al. (2018). 

 

There are a number of points to highlight from the data presented in Figure 1.  In terms 

of magnitudes, the P288 and P292 structures are fairly similar.  However, there is clearly 

significant variability also present in Saturn’s equatorial ionosphere.  This variability is perhaps 
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most obvious in the ion densities, though there are also differences in the neutral structure for 

these two passes that sample a nearly identical range of altitudes, latitudes and local times.  Solar 

EUV irradiance would not give rise to the narrow fluctuations especially evident in the H+, H3
+ 

and ne densities.  Therefore, the observed variability might be a signature of the effect of dust 

and other ring material on Saturn’s ionosphere (e.g., Waite et al., 2018), or possibly a reflection 

of the narrow layers in electron density frequently observed by radio occultations (Kliore et al., 

2009).  The effects of the attenuation of sunlight by Saturn’s rings – “ring shadowing” – start to 

become a factor at latitudes below ~7o south (Moore et al., 2004), and the precipitous drop in H2
+ 

near -15o corresponds to the shadow of the optically-thick inner B ring.  Similar signatures of 

ring shadowing are present in H+, H3
+, and ne densities, though they are much less obvious due to 

the more complicated evolution of those species (Wahlund et al., 2017; Hadid et al., 2018; Waite 

et al., 2018). 

  There is a significant discrepancy between the measured electron density and the sum of 

the light ion densities, peaking near closest approach, with the former larger than the latter by 

factors up to ~8 (P288) and ~5 (P292), respectively.  If charge neutrality is assumed, then this 

discrepancy implies that the bulk of the ions in Saturn’s low-altitude (< ~2100 km) equatorial 

ionosphere are heavier than 7 Daltons, as the high speed of the Cassini spacecraft during the 

proximal orbits meant that INMS was only able sample ions with mass numbers <8 Da (and over 

that range only H+, H2
+, H3

+, and He+ were detected, as expected; Cravens et al., 2018).  

RPWS/LP measurements support this implication, finding a predominance of heavy ions near 
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closest approach (Wahlund et al., 2017).  The complex assortment of neutrals detected by INMS 

– including methane (CH4), water (H2O), carbon dioxide (CO2), ammonia (NH3), and an 

unknown combination of 28 Da species (Waite et al., 2018) – mean that there is abundant 

material to charge-exchange with the ambient H+ and H3
+ ions, leading to a mix of heavy ions.  

Such heavy ions could easily explain the gap between the total measured ion and electron 

densities near closest approach.  Furthermore, the good agreement between the electron density 

structure and the scaled MIMI/CHEMS structure along the Cassini trajectory is evidence for 

these processes being related, perhaps with the grains acting as a tracer of a more abundant 

influx or with the grain charge balance affecting the availability of free electrons (Morooka et 

al., 2018).  Taken together, the Cassini INMS, RPWS, and MIMI data indicate that Saturn’s 

equatorial ionosphere is being transformed by an influx of apparently ring-derived material.  

While previous models predicted the main ionospheric peak would be dominated by H+ and H3
+, 

it is clear from the Cassini proximal data that, at least in the equatorial region, Saturn’s 

ionosphere is instead dominated by some combination of heavy ions (Cravens et al., 2018). 

 

3.2. The Saturn Thermosphere Ionosphere Model (STIM): Cassini-derived inputs 

The Saturn Thermosphere Ionosphere Model (STIM) is a suite of 1-D, 2-D, and 3-D 

models of Saturn’s upper atmosphere.  STIM’s core is a 3-D global circulation model (GCM) 

that treats the global response of Saturn’s thermosphere and ionosphere to solar and magnetic 

forcing (Müller-Wodarg et al., 2012).  For more localized and/or unconstrained applications 
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where use of the GCM is computationally prohibitive, a 1-D ionospheric module that solves the 

ion continuity and momentum equations over a fixed neutral background is instead used (e.g., 

Moore et al., 2015 and references therein).  We use such an approach here, as it is well-suited for 

the current work, which consists of making model comparisons with Cassini ionospheric 

measurements where the neutral atmosphere is fixed by INMS data, and where the ionosphere 

near closest approach is in PCE (Cravens et al., 2018). 

Ion production rates in STIM follow from the attenuation of solar photons (Galand et al., 

2009), which are specified here using the EUV and soft X-ray spectrum from the Thermosphere 

Ionosphere Mesosphere Energetics and Dynamics Solar EUV Experiment (TIMED/SEE: Woods 

et al., 2005).  SEE solar spectra appropriate for P288 and P292 are selected and extrapolated to 

Saturn’s orbital distance based on the angular separation between the Earth and Saturn and the 

solar rotation rate.  This approach is imperfect, and inherently assumes that the solar activity has 

not changed significantly over the period of solar rotation, but it is the best solution when no in 

situ solar irradiance data are available.  In the present work, however, H2
+ densities from INMS 

can be used to constrain the solar ion production rate.  In order to reproduce the observed H2
+ 

densities at high altitude, the solar flux at Saturn derived from TIMED/SEE measurements had to 

be enhanced by 50% for P288 and 70% for P292.  This correction is likely representative of 

some combination of (a) the solar flux extrapolation, (b) the incomplete calibration of the post-

2012 degradation of the SEE instrument (Girazian and Withers, 2015; Huang et al., 2017), and 

possibly (c) missing ionization due to photoelectrons and associated secondary electrons.  
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Process (c) was excluded from the current calculations, as it is not expected to be important 

above ~1500 km (Galand et al., 2009; Moore et al., 2009), though future fully-coupled 

calculations should test this conclusion given the influx of ring material.  Regardless of the 

ultimate source of the ionization correction, the fact that it was needed emphasizes the 

considerable value of the in situ data in generating model comparisons.   

 

4. Results and Discussion 

4.1. Domination by heavy molecular ions 

Figure 1 demonstrates that light ions are a minority in Saturn’s low-altitude equatorial 

ionosphere.  In order to explain the relatively minor contribution of H+ and H3
+ ions in this 

regime, a high abundance (~10-4 mixing ratio) of heavy molecular species must also be present 

(Cravens et al., 2018).  INMS has measured a number of abundant neutral species that are 

consistent with this requirement, but there is uncertainty in their identification, particularly for 

the 28 Da species.  Therefore, there is also uncertainty in the corresponding ion composition.   

In order to provide bounds on the likely heavy molecular ions present, Figure 2 shows 

model ionospheres at 6oS that follow from the measured neutral densities.  For these calculations, 

we make the assumption that the 28 Da species is entirely (a) N2, (b) CO, or (c) C2H4.  As the 

mass 28 (non-H2, non-He) mixing ratio varies between <5% and 15% in Table 1 of Waite et al. 

(2018), we set its density to 40% of the maximum measured CH4 value (i.e., ~0.15/0.35, where 

0.35 is the suggested maximum fraction of CH4 among the non-H2, non-He constituents).  
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Densities for NH3 and CO2 are specified in a similar way, using 50% and 25% of the CH4 value, 

respectively.  Meanwhile, H2O is fixed near its minimum estimated value at 25% of the 

measured CH4; this helps more clearly isolate the impact of the unknown 28 Da species.  Figure 

2d presents the corresponding neutral density profiles used in the calculations, with the 

approximate altitude of the Cassini INMS measurement – indicated by a gray line – providing an 

anchor for extrapolation in altitude, as described above.  As much of Saturn’s low-altitude 

ionosphere is in PCE, the in situ neutral densities could in principle be used to calculate ion 

densities, avoiding any extrapolation in altitude.  However, inclusion of a representative 

background atmosphere allows for a more accurate calculation of the attenuation of solar 

photons with altitude, and therefore improved calculation of ion production at Saturn’s low-

altitudes.  This drop in ion production at low-altitudes is evident in the H2
+ profiles in Figure 2. 

Figure 2 illustrates that, due to the influx of ring material, Saturn’s ionospheric chemistry 

is much more complicated than expected above the homopause (e.g., Kim et al., 2014).  

Collectively, heavy molecular ions dominate below ~1800 km altitude, with H3O+ playing a 

major role in each case.  If CO is a major component of the 28 Da species, then HCO+ also 

becomes a major ion.  For the case where the 28 Da species is N2, N2H+ also begins to play a 

major role, joined by HCO2
+, CH3

+ and CH5
+.  Finally, if the 28 Da neutral is instead entirely 

C2H4, then the chemistry is noticeably more complex and the lower ionosphere populated by a 

number of hydrocarbon ions (e.g., C2H3
+, CH3

+, C2H5
+, and C3H5

+) as well as HCO+ and HCO2
+.   
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Figure 2: Model results at -6o latitude, local solar noon.  The density of the 28 Da neutral species 
is fixed at 40% of the measured methane density, and it is assumed to be entirely (a) N2, (b) CO, 
or (c) C2H4.  Panel (d) presents background neutral constituents used in the modeling. 
 

Modeled ne in each case is comparable owing to the similar dissociative recombination 

rates of the terminal ions.  Similarly, charge-exchange rates between H3
+ and the candidate 28 Da 

species are identical to within a factor of 1.6, so H3
+ densities are relatively insensitive to the    

28 Da neutral(s) and are instead more sensitive to the faster reaction with H2O.  As H+ doesn’t 

react with CO or N2, its density near closest approach appears to be controlled primarily by the 
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abundance of CH4 and H2O, with an additional reduction accompanying any C2H4.  In the 

presence of so many heavy molecules, the reaction of H+ with vibrationally excited H2 is very 

likely of minor importance: its effective rate here is set to 15% of the Moses and Bass (2000) 

value, following Moore et al. (2015).  Indeed, H+ in Saturn’s low-altitude equatorial ionosphere 

is so effectively controlled by the influx of ring-derived material that the historical situation is 

close to being reversed: there are now so many paths to H+ removal that it is more of a concern 

to ensure that H+ is maintained in the model at the observed ~100-1000 cm-3 level. 

 

4.2. Model comparisons along Cassini’s trajectory 

Model results, extracted from the altitudes, latitudes and local times sampled by Cassini 

during P288 and P292, are compared with Cassini INMS and RPWS data in Figure 3.  Based on 

analysis of ionization dissociation patterns in INMS high-altitude data, Perry et al. (2018) 

estimate that C2Η4 comprises 25-30% of the mass 28 measurement.  Therefore, for these 

simulations we fix C2H4 at 28% of the total 28 Da density, and divide the remainder evenly 

across N2 and CO (i.e., 36% each).  All other neutrals are specified as in 4.1.  While there is 

uncertainty regarding the exact makeup of the 28 Da species, and indeed, regarding the exact 

neutral and dust composition in Saturn’s ionosphere, these values are well-suited for 

demonstrating the effect of the exogenic material on the light ions.  Given the similar chemical 

lifetimes for the terminal heavy ions presented in Figure 2, further refinements to the constraints 
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on N2 and CO won’t significantly affect the relative heavy-to-light ion mix shown in Figure 3 

(though they will affect the relative proportions of individual heavy ions). 

 

 
Figure 3: Model (filled circles) comparisons with Cassini observations (solid lines) during (a) 
P288 and (b) P292, extracted along the spacecraft trajectory.  Ion densities come from INMS 
(Cravens et al., 2018; Waite et al., 2018); electron densities are RPWS results derived from the 
propagation characteristics of two plasma wave modes (Persoon et al., 2018).  Panels (c) and (d) 
present modeled plasma densities near closest approach for P288 and P292, respectively, as 
indicated by the gray boxes drawn in (a) and (b).  See text for description of model parameters. 
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 As described in 3.2, the solar flux specified in the model, extrapolated from Earth-based 

satellite measurements, was enhanced in order to reproduce the observed H2
+ density at high-

altitude.  Following that correction, the measured trend in H2
+, with a dip near closest approach 

due to attenuation of solar photons by Saturn’s upper atmosphere, is well captured in the model 

owing to the relatively simple chemistry associated with that ion.  Further, neutral densities from 

the lower end of the range outlined in Figure 1d are used for P292 calculations, in order to better 

match modeled electron and He+ densities.  This adjustment corresponded to a roughly 20% 

reduction in the non-H2, non-He background neutral densities, well within the given 

uncertainties.  Such He+ comparisons may represent an additional means of constraining external 

influxes, as its density is primarily controlled by reactions with CH4 and candidate mass 28 

constituents. 

In terms of magnitudes, modeled H+, H3
+, He+, and ne densities are generally close to 

observed values (typically within a factor of 2), however there are also a number of structures 

not reproduced by the model.  In particular, there is a prominent structure near 1oS that appears 

as a local maximum in ne, H+ and He+, and a local minimum in H3
+.  This could be the fly-by 

signature of a narrow electron density layer, frequently seen in radio occultation observations 

(Nagy et al., 2006), and perhaps caused by gravity waves (Barrow and Matcheva, 2013).  No 

physics that could produce such layers is included in these preliminary 1-D model calculations.  

The H3
+ model-data discrepancy between ~5oS and 1oN is more puzzling.  Clearly, modeled H3

+ 

densities are too large.  However, the most effective method of removing H3
+ in this region of 
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the ionosphere is by charge-exchange with molecules such as H2O and CH4, and these densities 

are constrained by INMS neutral measurements.  Moreover, even if they were increased above 

the INMS values, they would also further reduce the modeled H+ densities, worsening the model-

data agreement for that ion.  This requirement – that modeled H3
+ densities be reduced without 

affecting H+ densities – can be achieved if there is an abundant species present that reacts with 

H3
+, but not H+ or He+.  The required mixing ratio for such a species is several times larger than 

the ~10-4 CH4 mixing ratio and peaks near the equatorial plane (Cravens et al., 2018).  None of 

the measured constituents are known to fit this requirement.  It is possible additional chemical 

pathways may be missing from the model calculations, or that there are additional grain and/or 

dust-related impacts on H3
+ densities (e.g., Mitchell et al., 2018; Morooka et al., 2018; Wahlund 

et al., 2018). 

Based on model comparisons to Cassini in situ plasma data, heavy ions (>8 Da) 

collectively dominate over light ions.  Mean ion mass at closest approach for 3a and 3b is 

calculated to be ~11 Da, within the range derived from RPWS data (Wahlund et al., 2017; 

Morooka et al., 2018).   

 

5. Summary 

The first in situ observations of Saturn’s upper atmosphere revealed a transformative 

contribution from an unexpectedly large and complex composition of in-falling material 
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originating in its rings.  The impact of that material – which appears to be dominated by organics 

rather than water as anticipated – on Saturn’s ionosphere will take more time to fully understand, 

but model comparisons with plasma measurements demonstrate that: 

- The lower than expected light ion (H+, H2
+, H3

+, He+) densities are still broadly consistent 

with the makeup of the neutral species measured by INMS. 

- Molecular ions dominate Saturn’s low altitude equatorial ionosphere, with a mean ion 

mass at closest approach of 11 Da.  H3O+ plays an important role, even for reduced levels 

of water influx.  Other dominant heavy ions depend on the unknown makeup of the mass 

28 neutral species, but potentially include HCO+, N2H+, CH3
+, CH5

+, and C2H3
+.  

Remaining mysteries include the explanations behind the 50-70% solar EUV enhancement 

required to reproduce observed H2
+ densities, the observed variability in H+ and H3

+, and the 

modeled overabundance in low-altitude H3
+.   The two latter points require additional processes 

that reduce H3
+ without simultaneous H+ reduction.  
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