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Summary: A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that

determine that next treatment based on each individual’s own available characteristics and treatment history up to

that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization

problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular,

at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification

error. Based on this classification perspective, we propose a powerful and flexible C-learning algorithm to learn the

optimal dynamic treatment regimes backward sequentially from the last stage until the first stage. C-learning is a direct

optimization method that directly targets optimizing decision rules by exploiting powerful optimization/classification

techniques and it allows incorporation of patient’s characteristics and treatment history to improve performance,

hence enjoying advantages of both the traditional outcome regression based methods (Q-and A-learning) and the

more recent direct optimization methods. The superior performance and flexibility of the proposed methods are

illustrated through extensive simulation studies.

Key words: Augmented Inverse Probability Weighted Estimator; A-learning; CART; Dynamic treatment regime;

Precision medicine; Q-learning.
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1. Introduction

Treatment of patients may involve a series of decisions and it is important that decisions

are adaptive with time-dependent information on patients over time. A dynamic treatment

regime is a sequence of decision rules that determine the next treatment for a patient based

on his/her own available information up to that time (Murphy, 2003; Robins, 2004) and has

received much attention lately (Moodie et al., 2007; Song et al., 2011; Zhang et al., 2012ab,

2013; Zhao et al., 2012 and 2015; Geng et al., 2015; Wallace and Moodie, 2015). It explicitly

takes into account patient heterogeneity and the evolving nature of a disease. The goal is to

identify the optimal set of decision rules that, if followed by the entire patient population,

would yield the most favorable outcome on average.

Two common approaches to estimate the optimal dynamic treatment regime are Q- and A-

learning (Watkins and Dayan, 1992; Murphy, 2003; Robins, 2004). Both approaches involve

modeling the outcome and then the optimal treatment regime is identified by inverting

the relationship between outcome, patient information and treatment. Q- and A-learning

work well under good regression models for outcomes. However, if the regression models

are misspecified the estimated regime may far from optimal. This is due to that there is a

mismatch between the target of outcome regression based methods and the goal of learning

the optimal treatment regime, as firstly pointed out by Murphy (2005). Outcome regression

based methods target good models for the outcome instead of optimizing decision rules to

yield the maximum expected potential outcomes.

More recent efforts have been made to mitigate the concern of outcome model misspecifi-

cation and several approaches have been proposed to directly optimize population expected

outcomes across regimes. The advantage of direct optimization has been discussed in detail

in literature mentioned below; see also Kang et al. (2014) and discussion papers. The direct

optimization approach includes the work of Zhang et al. (2012a and 2013), outcome weighted
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2 Biometrics, December 2008

learning of Zhao et al. (2012 and 2015), and residual weighted learning of Zhou et al. (2015).

These methods essentially directly estimate population mean outcome under a regime using

doubly robust augmented inverse probability weighted estimators (AIPWE) or simple inverse

probability weighted estimator (IPWE). One other relevant work is Tian et al. (2014), which

proposes a robust method for estimating interactions of treatment and a large number of

covariates, with applications in estimating the optimal treatment regimes.

For the single decision point setting, Zhang et al. (2012b) proposed a general framework

within which identifying the optimal treatment regime is equivalent to minimizing a weighted

misclassification error, weighted by the contrast in outcome regression between treatments.

It allows one to take advantage of existing powerful classification techniques. Equally impor-

tantly, this framework allows the optimization step for optimizing decision rules decoupled

from modeling outcomes, alleviating the mismatch issue pointed out by Murphy (2005).

We propose to extend the classification framework to the multiple decision point setting,

which requires important methodological developments. The proposed method is a direct

optimization method, where the optimization can be viewed as a classification problem. In

addition, it allows for incorporating information from outcome regression models to improve

efficiency, hence enjoying advantages of both types of approaches.

2. Notation and Dynamic Treatment Regimes

Consider a multistage decision problem where decisions are made at K decision points. We

denote the decision at stage k as ak, with ak ∈ {0, 1}, the treatment actually received at

stage k as Ak, and the covariate information observed between decision k − 1 and k as Xk.

Treatment history up to and including the kth decision is denoted as āk = (a1, . . . , ak), and

similarly we can define the observed treatment history Āk and the observed covariate history

X̄k. The overall outcome of interest is Y ∈ R, which can be a function of intermediate
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information collected across all K decisions or a measurement ascertained after the Kth

decision. Without loss of generality suppose a larger value of outcome is preferred.

A dynamic treatment regime is a sequence of decision rules, g = (g1, . . . , gK), that de-

termine how to treat a patient over time. The kth decision rule gk(x̄k, āk−1), denoted as

gk ∈ Gk, assigns a treatment for a subject based on his/her covariate and treatment history

up to decision k. The potential outcome associated with any regime g is denoted as Y ∗(g),

i.e., the outcome that would result if the subject followed g. The optimal treatment regime

gopt = (gopt1 , . . . , goptK ) ∈ G is the one that would yield the maximum expected outcome

if were followed by all patients in the population. That is, gopt satisfies E{Y ∗(gopt)} >

E{Y ∗(g)} for all g ∈ G. We make some standard assumptions that make gopt identifiable

from the observed data (Schulte et al., 2014). That is, we assume the consistency assumption,

the stable unit treatment value assumption and the no unmeasured confounders assump-

tion. Under these assumptions, gopt can be expressed in terms of the observed data via

backward induction. Defining QK(x̄K , āK) = E(Y |X̄K = x̄K , ĀK = āK), referred to as

Q-functions with “Q” for “quality,” the optimal decision rule at the K-th decision point

satisfies goptK (x̄K , āK−1) = argmaxaK∈{0,1} QK(x̄K , āK−1, aK). Recursively we can define the

value function (V-function) as Vk(x̄k, āk−1) = maxak∈{0,1} Qk(x̄k, āk−1, ak) for k = K, . . . , 2,

with ā0 being null, and Q-functions as Qk(x̄k, āk) = E{Vk+1(x̄k, Xk+1, āk)|X̄k = x̄k, Āk = āk}

for k = K − 1, . . . , 1. The optimal decision rule at the k-th point satisfies goptk (x̄k, āk−1) =

argmaxak∈{0,1} Qk(x̄k, āk−1, ak). Supplementary Material A provides more background.

3. C-learning

3.1 Main Results

To provide some intuition first consider the single decision point setting (K = 1), for which

Zhang et al. (2012b) proposed a general framework for estimating the optimal regime from a
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classification perspective. We omit the subscript denoting stage below. Recall the Q-function

is defined as Q(x, a) = E(Y |X = x,A = a) and define a contrast function C(x) = Q(x, 1)−

Q(x, 0), which is the difference in expected potential outcomes for a subject with covariate

x were she/he to receive treatment 1 versus 0. Zhang et al. (2012b) show that gopt minimizes

an expected weighted misclassification error; that is,

gopt = argmin
g∈G

E[|C(X)|I{g(X) 6= Z}], where Z = I{C(X) > 0}. (1)

This allows one to recast the problem of estimating the optimal treatment regime as a

weighted classification problem. Consider viewing each subject as belonging to one of the

two (latent) classes defined by Z = I{C(X) > 0}, where class Z = a compose those subjects

who would benefit from treatment a and therefore should be treated with treatment a. If

g(X) = I{C(X) > 0}, a correct treatment decision is made and there is no loss incurred.

However, if g(X) 6= I{C(X) > 0}, the decision is not optimal and the corresponding loss is

W = |C(X)|; that is, the larger the difference in expected potential outcomes between two

treatment options, the larger the loss. As it only involves patient characteristics (covariates)

and the true treatment contrast but not the observed treatment assignment, (1) can be

viewed as an alternative definition of the optimal treatment regime.

In this article, we provide an alternative definition of the optimal dynamic treatment regime

in the multiple decision point setting from the classification perspective and, based on this

perspective, propose a new and powerful statistical learning method. We term our approach

as C-learning, where “C” stands for classification. As in the single decision point setting, we

define a contrast function for each decision point; i.e., for stage k, k = 1, . . . , K, the contrast

function is defined as Ck(x̄k, āk−1) = Qk(x̄k, āk−1, ak = 1) − Qk(x̄k, āk−1, ak = 0), where

Qk(x̄k, āk) are defined recursively in Section 2. The contrast function at stage k represents

the difference in expected potential outcomes between treatment option 1 and 0 at stage

k assuming that optimal decisions are made in the future. To simplify notation, we define
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Lk ≡ (X̄k, Āk−1), which is the covariate and treatment history available at decision point k.

We discuss how one can embed the classification approach in backward induction to find the

optimal dynamic treatment regime. The key lies in the following Theorem 1 and Proposition

1, proofs of which are given in Web Supplementary Materials B and C.

Theorem 1. Let g∗ = (g∗1, . . . , g
∗
K), be a treatment regime that satisfies

g∗k(Lk) = arg min
gk∈Gk

E[|Ck(Lk)|I{gk(Lk) 6= Zk}], where Zk = I{Ck(Lk) > 0}

k = K, . . . , 1, then g∗ is the optimal dynamic treatment regime.

Theorem 1 states that the optimal treatment decision rule at each stage minimizes an

objective function that can be interpreted as a weighted misclassification error, where the

goal of classification is to classify subjects at each stage to one of two latent classes, denoted

by Zk = I{Ck(Lk) > 0}, for whom the optimal decision at the stage is 0 and 1 respectively.

That is, class Zk = 1 include subjects for whom treatment ak = 1 leads to a larger expected

potential outcome than decision 0, given that optimal decisions are made in the future.

If gk(Lk) is not the optimal decision at stage k, i.e., gk(Lk) 6= Zk, then the loss incurred is

|Ck(Lk)|; otherwise, the loss is zero. Theorem 1 is a general result that recasts the problem of

identifying the optimal dynamic treatment regime into a meaningful sequential classification

problem. We note that classification technique is used in the backward outcome weighted

learning (BOWL) of Zhao et al. (2015) to sequentially estimate the optimal treatment regime.

Our result differs from that in two important ways. First, BOWL is based on the particular

IPWE estimator of E{Y ∗(g)} and the use of classification techniques is possible because

of the form of the IPWE estimator, whereas the classification perspective of Theorem

1 is a general result that holds regardless how one estimates E{Y ∗(g)} or Ck(Lk). For

simplicity taking K = 1, BOWL essentially estimates E{Y ∗(g)} by the IPWE estimator,

∑n

i=1[YiI{g(Xi) = Ai}/π(Ai, Xi)], where π(a,X) = Pr(A = a|X), and then maximizes it

across a class of regimes, which is equivalent to minimizing
∑n

i=1[YiI{g(Xi) 6= Ai}/π(Ai, Xi)].
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6 Biometrics, December 2008

Because of the particular form of IPWE, where a term I{g(X) 6= A} is involved, I{g(X) 6=

A} can be viewed as a zero-one loss in a classification problem to classify patients to A = 0

or 1, and Y/π(A,X) can be viewed as the weight if Y is positive. The classification idea of

BOWL cannot easily generalize to other estimator of E{Y ∗(g)}, whereas based on Theorem

1 one can transform the problem into a weighted classification problem using any estimators

of E{Y ∗(g)} (or equivalently Ck(Lk)), say IPWE, AIPWE, regression estimator (see Zhang

et al., 2012b for discussion in the K = 1 setting). Second, the interpretation of classification

is different, which has important implications on the performance of the resulting learning

method as demonstrated by simulation studies. In BOWL as well as other OWL-based

methods, if g(Xi) = Ai then no loss is incurred and a misclassification loss is incurred if

g(Xi) 6= Ai; that is, this classification aims to classify patients to classes that are defined

by the actually received treatment A. Due to this classification perspective, the estimated

classifier (treatment regime) tries to minimize the weighted misclassification error by keeping

treatment assignments that subjects actually received, which is an issue of OWL-based

methods as pointed out by Zhou et al. (2015). In our classification perspective, a loss is

incurred if g(X) 6= I{C(X) > 0}; that is, the classifier aims to classify patients to classes

corresponding to the optimal treatment decisions. The interpretation of this classification

corresponds exactly to the intuitive meaning of optimizing individual treatment decisions

and the resulting method does not suffer from the same issue as BOWL. In Supplementary

Material D, we provide a more comprehensive discussion on these issues.

Proposition 1. The value functions defined recursively in Section 2 satisfy the following

condition:

E[Vk+1(Lk+1) + {Qk(Lk, 1)−Qk(Lk, 0)}{g
opt
k (Lk)− Ak}|Lk] = Vk(Lk),

k = K, . . . , 1, VK+1 ≡ Y , where goptk is the optimal decision rule at stage k.

Page 7 of 27 Biometrics
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7

3.2 Estimation Procedure

Based on Theorem 1 and Proposition 1, we propose a flexible and powerful new learning

method using backward induction. We start at the last decision point K. Then covariate and

treatment history (X̄K , ĀK−1) ≡ LK before stage K can be regarded as baseline covariate

vector and data can be rewritten as (Y, LK , AK). As in the single decision point setting, by

separating the contrast function into two parts, with one part representing the magnitude

and the other representing the sign, we show in the proof of Theorem 1 that equivalently

the optimal treatment rule at K minimizes a weighted misclassification error; that is

goptK = arg min
gK∈GK

E[|CK(LK)|I{gK(LK) 6= ZK}]. (2)

Therefore, goptK can be estimated by

ĝoptC,K = arg min
gK∈GK

n∑

i=1

[ŴKiI{gK(LKi) 6= ẐKi}],

where ẐKi = I{ĈK(LKi) > 0}, ŴKi = |ĈK(LKi)| and ĈK(LKi) is an estimator of CK(LKi).

The contrast function can be estimated using various ways as discussed in Zhang et al.

(2012b) and the doubly-robust AIPWE method has superior performance relative to other

methods. Therefore, we recommend estimating CK(LKi) by the AIPWE estimator

ĈK(LKi) =
AKi

π̂K(LKi)
Yi −

AKi − π̂K(LKi)

π̂K(LKi)
Q̂K(LKi, 1)

− {
1− AKi

1− π̂K(LKi)
Yi +

AKi − π̂K(LKi)

1− π̂K(LKi)
Q̂K(LKi, 0)}, (3)

where π̂K(LKi) is the estimated probability (propensity score) of receiving treatment AK = 1

at stage K conditional on covariate and treatment history LK using, for example, a logistic

regression model; and Q̂K(LKi, AK = aK), aK = 0, 1, are estimates based on parametric

or nonparametric models for E(Y |LK), further discussed in Section 4. From the proof for

Theorem 1 and discussion in Zhang et al. (2012b), essentially this is equivalent to firstly

estimating E{Y ∗(ĀK−1, gK)} by the AIPWE estimator and then optimizing AIPWE across

a class of regimes. We acknowledge that other estimators of contrast functions can also be

Page 8 of 27Biometrics
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8 Biometrics, December 2008

used within this framework; for example, one can directly estimate CK(LKi) by the difference

in Q-functions. The minimization can be viewed as a typical classification problem with ẐK

as the binary “response,” LK the “predictor,” ŴK the “weight,” and gK the “classification

rule.” In simulation studies in Section 4, we show various ways to implement this optimization

step. We denote the estimated regime as ĝoptC,K .

After obtaining ĝoptC,K , C-learning moves backward sequentially until the first stage to

estimate the optimal decision rule at stage k, k = K − 1, . . . , 1. By Theorem 1, the optimal

decision rule at stage k satisfies

goptk = arg min
gk∈Gk

E[|Ck(Lk)|I{gk(Lk) 6= Zk}], (4)

where Ck(Lk) = Qk(Lk, 1) − Qk(Lk, 0) is the contrast function at stage k. Therefore, if one

can estimate Ck(Lk) or equivalently Qk(Lk, ak), then we can proceed similarly as in stage

K. Recall that Qk(Lk, ak) = E{Vk+1(Lk+1)|Lk, ak}, and if Vk+1(Lk+1) is available, one can

estimate Qk(Lk, ak) by treating Vk+1(Lk+1) as the response. However, except for the last

stage, Vk+1(Lk+1) is not directly observable and has to be estimated. By Proposition 1,

Vk(Lki) can be estimated recursively by

Ṽki ≡ Ṽk(Lki) = Ṽ(k+1)i + {Q̂k(Lki, 1)− Q̂k(Lki, 0)}{ĝ
opt
C,k(Lki)− Aki}, (5)

for k = K,K−1, . . . , 2, and Ṽ(K+1)i ≡ Yi. Then one can estimate Qk(Lk, ak) and the contrast

function Ck(Lk) based on “optimal responses” Ṽ(k+1)i, as discussed below. This strategy is

similar in spirit to the contrast-based A-learning (Schulte, 2014). For example, after we

obtain ĝoptC,K , the value function VK(LKi), i = 1, . . . , n, can be estimated by

ṼKi ≡ ṼK(LKi) = Yi + {Q̂K(LKi, 1)− Q̂K(LKi, 0)}{ĝ
opt
C,K(LKi)− AKi},

which is Yi if the estimated optimal treatment at K is the same as the actual received

treatment AKi and is Yi plus the absolute difference in expected potential outcomes if AKi

is not the estimated optimal treatment option.

Page 9 of 27 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

9

Similar to stage K, recursively at stage k, k = K − 1, . . . , 1, treating (Ṽ(k+1)i, Lki, Aki), i =

1, . . . , n, as “data,” where Lki = (X̄ki, Ā(k−1)i) is regarded as the baseline covariate vector,

Ṽ(k+1)i as response, and Aki as treatment, we estimate Ck(Lki) by the AIPWE estimate

Ĉk(Lki) =
Aki

π̂k(Lki)
Ṽ(k+1)i −

Aki − π̂k(Lki)

π̂k(Lki)
Q̂k(Lki, 1)

− {
1− Aki

1− π̂k(Lki)
Ṽ(k+1)i +

Aki − π̂k(Lki)

1− π̂k(Lki)
Q̂k(Lki, 0)}, (6)

where π̂k(Lki) are estimated propensity score P (Aki = 1|Lki) based on, say, a logistic regres-

sion model, and Q̂k(Lki, ak), ak = 0, 1, are estimates of Qk(Lki, ak) = E{V(k+1)i|Lki, Aki = ak}

based on parametric or nonparametric models. The main difference from stage K is that here

the estimated value function Ṽ(k+1)i plays the role of Yi as in the Kth decision point. We

then obtain the corresponding Ẑki = I{Ĉk(Lki) > 0} and Ŵki = |Ĉk(Lki)| and, according to

(4), goptk (Lk) can be estimated by

ĝoptC,k = arg min
gk∈Gk

n∑

i=1

ŴkiI{Ẑki 6= gk(Lki)} (7)

using some classification or optimization technique. The final estimated optimal regime

is ĝoptC = (ĝoptC,1, . . . , ĝ
opt
C,K). The steps for implementing C-learning are summarized in Web

Supplementary Material E.

In Web Supplementary Material D, we discuss in detail the connection with existing

methods and clarify the theoretical advantages and differences of the proposed method.

Here we summarize the main points. As the method of Zhang et al. (2013), C-learning

is a doubly-robust AIPWE-based, direct optimization method and enjoys more protection

against model misspecification. This is in contrast with outcome regression based methods

(e.g., Q- and A-learning), where outcome regression models directly determine estimated

optimal treatment regimes and as a result their performance heavily depends on correct

specification of the model for Q-functions or contrast functions. Instead direct optimization

methods aim to directly optimize estimate of E{Y ∗(g)} (simultaneously or sequentially)

Page 10 of 27Biometrics
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across a class of regimes and are robust as long as E{Y ∗(g)} is consistently estimated. From

our proof for Theorem 1, it is clear that at each stage C-learning essentially optimizes AIPWE

estimate of expected potential outcomes across a class of regimes and AIPWE is known to

have the double robustness property, i.e., is robust when either propensity score models or

outcome regression models, but not necessarily both, are correctly specified. When treatment

is randomized as in a sequentially randomized study, the propensity score models are always

correct and AIPWE estimates of expectations of potential outcomes are consistent, leading to

robust estimate of treatment regimes even when outcome regression models are misspecified.

Outcome regression models, even misspecified, are useful for improving efficiency of estimates

and lead to improved performance of estimated regimes, especially when covariates are

strongly predictive of outcomes. See Zhang et al. (2012ab, 2013) for more discussion on

robustness under model misspecification.

C-learning shares similar robustness property as Zhang et al. (2013) and enjoys additional

appealing features. First, C-learning transforms the problem into a sequential classification

problem, which has several advantages. For example, modern powerful and flexible classifica-

tion algorithms can be used and optimization can be carried out among a much larger class

of regimes (e.g., decision trees), whereas in Zhang et al. (2013) the optimization of regimes

is carried out among a restricted class of regimes indexed by a finite number of parameters.

Second, unlike Zhang et al. (2013) that uses simultaneous optimization across stages, the

proposed method uses sequential optimization which leads to considerable improvement

in performance. The method of Zhang et al. (2013) is based on an AIPWE estimator of

E{Y ∗(g)} for monotone coarsened (missing) data. In the missing data perspective, the

potential outcome of a subject is observed only if the observed treatments at all stages

are consistent with a regime as regimes at all stages are estimated simultaneously. In C-

learning, however, at stage K, the potential outcome of a subject is observed as long as

Page 11 of 27 Biometrics
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the treatment at stage K is consistent with a regime, regardless of treatments received

prior to K since covariate and treatment histories at previous stages are treated as baseline

covariates. Once we estimate the optimal treatment regime at stage K we move backward

and, intuitively, in C-learning the best effort can be made to only estimate the optimal

regime at that stage. In addition, we note that one has to optimize across a large number of

parameters for parameterizing the whole dynamic treatment regime in the simultaneous

optimization, whereas in C-learning at each stage the optimization is among a smaller

number of parameters relevant only to that stage. This difference in handling multiple

stages leads to big improvement in performance for C-learning. Finally, as illustrated in our

second simulation scenario, C-learning accommodates variable selection targeting selection

of prescriptive variables, i.e., variables relevant for decision making.

Compared with BOWL, unlike the proposed method that uses AIPWE, BOWL is based

on IPWE which does not incorporate outcome regression model and is less efficient and less

robust (lack of the double-robustness property). Second, as discussed below Theorem 1, our

classification perspective is fundamentally different from BOWL and leads to considerable

improvement in performance. Lastly, to achieve sequential estimation, BOWL must reduce

sample size geometrically at later stages (see Figure s1). However, the proposed method is

able to use all subjects in estimation at all stages and leads to much better performance.

4. Simulation Studies

We report results on simulation studies under scenarios imitating a multi-stage randomized

trial with K = 3 for sample size n=200, 400 and 800 using 500 Monte Carlo replicates.

4.1 Data Generation and Methods Implementation

The first setting was adopted from Zhao et al. (2015). Treatments A1,A2 andA3 are randomly

generated from {1, 0} with equal probability. Baseline covariatesX1,1, X1,2, X1,3 are generated

Page 12 of 27Biometrics
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from N(45, 152), X2 is generated according to X2 ∼ N(1.5X1,1, 10
2) and X3 is generated

according to X3 ∼ N(0.5X2, 10
2). Outcomes are generated as Y = µ(Ā3, X̄3) + ǫ for ǫ

standard normal and µ(Ā3, X̄3) = 20−|0.6X1,1− 40|(A1− gopt1 )2−|0.8X2− 60|(A2− gopt2 )2−

|1.4X3 − 40|(A3 − gopt3 )2, where gopt1 = I(X1,1 − 30 > 0), gopt2 = I(X2 − 40 > 0), and gopt3 =

I(X3−40 > 0). The optimal treatment regime is gopt = (gopt1 , gopt2 , gopt3 ) and E{Y ∗(gopt)} = 20.

For Q-learning, we posited Q-functions

Q3(x̄3, ā3; β3) = β3,0 + β3,1x1,1 + β3,2x1,2 + β3,3x1,3 + a1(β3,4 + β3,5x1,1) + β3,6x2

+a2(β3,7 + β3,8x2) + β3,9x3 + a3(β3,10 + β3,11x3),

Q2(x̄2, ā2; β2) = β2,0 + β2,1x1,1 + β2,2x1,2 + β2,3x1,3 + a1(β2,4 + β2,5x1,1) + β2,6x2

+a2(β2,7 + β2,8x2),

Q1(x1, a1; β1) = β1,0 + β1,1x1,1 + β1,2x1,2 + β1,3x1,3 + a1(β1,4 + β1,5x1,1).

For the AIPWE-based method of Zhang et al. (2013), we took Gη to have elements gη =

(gη1 , gη2 , gη3), where gη3(x̄3, ā2) = I(η3,0 + η3,1x1,1 + η3,2x1,2 + η3,3x1,3 + η3,4x2 + η3,5x3 > 0),

gη2(x̄2, a1) = I(η2,0 + η2,1x1,1 + η2,2x1,2 + η2,3x1,3 + η2,4x2 > 0), gη1(x1) = I(η1,0 + η1,1x1,1 +

η1,2x1,2 + η1,3x1,3 > 0). Clearly, gopt ∈ Gη and all available covariates at each stage were

considered in parameterizing the treatment regime. In BOWL and C-learning, we estimated

πk(Lk) by π̂k(Lk) =
∑n

i=1 Aki/n, k = 1, 2, 3. For C-learning and method of Zhang et al.

(2013), one also needs to specify model for the outcome and we used the same Q-function

models as in Q-learning. To carry out minimization in C-learning, we used a genetic algorithm

discussed by Goldberg (1989), implemented in the rgenoud package in R (Mebane and

Sekhon, 2011).

In the second set of simulations, we increased the dimension of covariates to 50. At baseline,

40 covariates X1,1, ..., X1,40 are generated from N(45, 152). At stage 2, X2,j is generated

according to X2,j ∼ N(1.5X1,j, 10
2), j = 1, ..., 5. At stage 3, X3,j is generated according to

X3,j ∼ N(0.5X2,j, 10
2), j = 1, ..., 5. The outcome was generated as Y = µ(Ā3, X̄3) + ǫ for
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ǫ standard normal and µ(Ā3, X̄3) = 20 − |0.6X1,1 − 40|(A1 − gopt1 )2 − |0.8X2,1 − 60|(A2 −

gopt2 )2− |1.4X3,1− 40|(A3− gopt3 )2, where gopt1 = I(X1,1−X1,2 > 0), gopt2 = I(X2,1−X2,2 > 0),

gopt3 = I(X3,1 − X3,2 > 0). This scenario is similar to scenario 1, but we further made the

optimal decision rule at each stage depends on a linear combination of two covariates.

For Q-learning, we posited Q-functions

Q3(x̄3, ā3; β3) = β3,0 + β3,1x1,1 + β3,2x1,2 + a1(β3,3 + β3,4x1,1 + β3,5x1,2) + β3,6x2,1 + β3,7x2,2

+a2(β3,8 + β3,9x2,1 + β3,10x2,2) + β3,11x3,1 + β3,12x3,2 + a3(β3,13 + β3,14x3,1 + β3,15x3,2),

Q2(x̄2, ā2; β2) = β2,0 + β2,1x1,1 + β2,2x1,2 + a1(β2,3 + β2,4x1,1 + β2,5x1,2) + β2,6x2,1 + β2,7x2,2

+a2(β2,8 + β2,9x2,1 + β2,10x2,2),

Q1(x1, a1; β1) = β1,0 + β1,1x1,1 + β1,2x1,2 + a1(β1,3 + β1,4x1,1 + β1,5x1,2).

Note, these model specifications favor the Q-learning method in that they only include the

correct interaction of treatment and covariate and main effects of important covariates,

leaving out those unimportant interaction terms and main effect terms, although the Q-

functions are still misspecified. For the method of Zhang et al (2013), we took Gη to have

elements gη = (gη1 , gη2 , gη3), where gη3(x̄3, ā2) = I(η3,0 + η3,1x3,1 + η3,2x3,2 > 0), gη2(x̄2, a1) =

I(η2,0 + η2,1x2,1 + η2,2x2,2 > 0), gη1(x1) = I(η1,0 + η1,1x1,1 + η1,2x1,2 > 0). Clearly, gopt ∈

Gη. Similarly for BOWL, in one implementation we considered only important variables in

searching for the optimal regimes and considered all variables in the other implementation.

Of course, in real application, it is difficult to pre-specify the right variables and forms for

the true optimal regime and the results on these methods (marked by † in tables 2-3) in the

presence of high-dimensional covariates are too optimistic. We intend to illustrate their ideal

performance in the presence of high dimensional covariates for the purpose of comparing

with the proposed method.

Unlike the other methods, in the implementation of the C-learning, we did not pre-specify
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the correct variables in the form of the treatment regime, but instead we use a data-driven

way to choose the important covariates from the high dimensional set of covariates. Therefore,

the C-learning considers all linear decision rules constructed by the high dimensional set of

covariates, which is a much larger class than Gη. Specifically, in the minimization step for

each time point k, we used a forward selection algorithm to sequentially choose important

covariates in forming the treatment regime, where the forward selection is on the basis of the

proportion of reduction in the weighted misclassification error. Hence, the variable selection

algorithm for the optimization step directly targets the goal of finding the optimal treatment

regimes, in contrast to the model selection in the Q-learning method, where the selection

targets the optimal model for the Q-functions. The details of the forward selection algorithm

are given in this technical report (Zhang and Zhang, 2016). We implemented C-learning

using two different ways that differ in how AIPWE is constructed: in C-learning-Q, we used

parametric model for the Q-functions and the parametric forms are the same as in the Q-

learning method, and in C-learning-RF, we used random forest to nonparametrically model

the Q-functions using the R function randomForest with default settings. In both ways, all

linear decision rules constructed by the high dimensional set of covariates are considered, as

opposed to Q-learning, the method of Zhang et al. (2013) and BOWL in one implementation.

In the third set of simulations, the data generating scenario is the same as the second

one except that gopt1 = I(X1,1 > 40)I(X1,2 < 60), gopt2 = I(X2,1 > 60)I(X2,2 < 90), and

gopt3 = I(X3,1 > 30)I(X3,2 < 50) in µ(Ā3, X̄3). Here the optimal decision rule at each stage

is of the form of a tree. For the method in Zhang et al. (2013), we took Gη to have elements

gη = (gη1 , gη2 , gη3), where gηk(x̄k, āk−1) = I(Xk,1 > ηk,1)I(Xk,2 < ηk,2), k = 1, 2, 3. For C-

learning, once we get the classification data set (Ẑki, Lki, Ŵki), we input this new data set

into the CART algorithm to find the estimated optimal treatment regime among all tree

decision rules constructed by the high dimensional set of covariates. We used the R function
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rpart with default settings, except that we set the weights as the estimated weight Ŵ . Other

methods are implemented as in the second set of simulations.

4.2 Results and Discussion

Results from scenarios 1-3 are shown in Tables 1-3 respectively. Table 1 shows that C-

learning out-performs all other methods in this scenario. C-learning performs considerably

better than Q-learning even though it used the same (misspecified) models for Q-functions

in augmentation terms. This illustrates the advantage of AIPWE-based direct optimization

methods over outcome regression based methods as discussed in Section 3. It is also inter-

esting to note that, although C-learning and the method of Zhang et al. (2013) are based on

AIPWEs with the same propensity and augmentation term models and consider optimization

across the same class of regimes, the performance of C-learning is still much better than that

of Zhang et al. (2013). This is due to the difference in estimation across stages and the

amount of information used in estimation; i.e., Zhang et al. (2013) simultaneously estimates

regimes at all stages and C-learning backward sequentially estimates the regime at each

stage. C-learning has better performance than BOWL due to several reasons. For example,

C-learning uses outcome regression models to improve efficiency whereas BOWL is not able

to incorporate outcome regression models. Also C-learning and BOWL differ in their way

to handle multiple stages. C-learning is able to use information on all subjects at all stages.

However, to sequentially estimate the regimes BOWL has to lose sample size geometrically

with stages. For one simulation data set (n=200), Figure s1 in Supplementary Material

F plots the classification data points used for estimation in each stage for C-learning and

BOWL. It provides some further insight on how the weighted classification in C-learning can

facilitate estimation and on the difference between C-learning and BOWL. Note, in BOWL,

the number of data points used for estimation decreases with stages.

Table 2 shows the performance of various methods when the dimension of covariates is
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relatively high. We comment that, in Table 2 as well as Table 3, performances of Q-learning†,

BOWL†, and the method of Zhang et al. (2013)† are too optimistic due to the implementation

and we should take this into account when comparing their performance with other methods

and with results in Table 1. C-learning (both implementations) as well as BOWL consider all

regimes constructed by linear combinations of the high dimensional set of covariates, whereas

mehtods marked with † only consider regimes constructed by relevant covariates, which is

a much smaller class. This is because we try to give the best advantage to our comparison

methods in implementation since their performances are dependent on the chosen parametric

models or the class of regimes indexed by a finite number of parameters. Although our

implementation unrealistically favors other methods by eliminating the burden for dealing

with the high dimensional set covariates, the performance of C-learning, combined with

suitable variable selection algorithm in the optimization step, is still considerably better than

BOWL† and Q-learning† and is comparable to the method of Zhang et al. (2013)† when n=200

and slightly better when n=400, 800. BOWL, however, cannot handle high dimensionality

well and has dramatically worse performance in this case. The C-learning framework can

naturally accommodate variable selection methods targeted for optimal treatment regimes

instead of prediction to improve performance in the presence of high dimensional covariates.

This (in addition to those discussed for Table 1) explains the dramatically better performance

of C-learning than BOWL when they both consider the same class of regimes.

Table 3 shows the results when the true treatment regime is of the form of a decision tree

and the dimension of covariates is relatively high. The pattern of relative performance is

similar to that in Table 2. C-learning-RF, with both outcome regression models and impor-

tant variables in the regimes chosen data-adaptively using existing off-the-shelf algorithms

and softwares (Random Forest and CART), has superior performance and is comparable to

C-learning-Q, where the Q-functions are modeled parametrically but important variables in

Page 17 of 27 Biometrics



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

17

the regimes are still chosen data-adaptively. The performance of C-learning is much better

than BOWL and even the unrealistic BOWL† because, in addition to reasons explained

above for Table 2, BOWL cannot handle regimes of the form of decision trees. For the same

reasons explained for Table 1, when n=400 and 800, C-learning performs even better than

the overly optimistic benchmark, the method of Zhang et al. (2013)†, and the performance

is close to that of the true optimal treatment regime.

Our simulation scenarios are either adopted from scenario 3 of Zhao et al. (2015) or further

built upon it, and in this scenario, BOWL has overall better performance than two other

OWL-based methods. In our additional simulations using scenarios 1 and 2 of Zhao et al.

(2015), we see the same pattern of relative performances. Finally, we point out that OWL-

based methods may be ill-behaved when Y can be negative, which is also noted by Chen

et al. (2017). In our implementation we have modified BOWL using a connection between

OWL and IPWE as discussed in Zhang et al. (2012b) to overcome this difficulty, which is

similar to a remedy proposed by Chen et al. (2017). See Supplementary Material Section F

for more details, performance of the original BOWL and additional simulation studies.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

5. Application:

We applied the method to the data from the Sequential Treatment Alternatives to Relieve

Depression (STAR*D) clinical trial. STAR*D was a multi-site, multi-step randomized clinical

trial on 4041 patients with nonpsychotic major depressive disorder. To goal is to compare

treatment options on the basis of severity of depression, assessed using the Quick Inventory

of Depressive Symptomatology (QIDS) score (Rush et al., 2004), with higher values corre-
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sponding to higher severity. The trial involved four levels, each with a 12-week follow-up

phase, and severity of depression was assessed at scheduled clinic visits at weeks 0, 2, 4, 6,

9, 12 during each level. At the end of each level, patients with adequate clinical response to

that level’s treatment did not move to future levels and patients without adequate response

continued to future levels. During level 1, all patients received citalogram, at levels 2 and

3 patients were randomized to either “augment” previous treatments or “switch” to new

treatments, and at level 4 patients were randomized to one of two switch options. The actual

design is fairly complicated. See Rush et al. (2004) for more details and Schulte et al. (2014)

for a schematic of the study design.

Following Schulte et al. (2014) and Zhang et al. (2013), we only consider level 2 and 3

and simplified the decision options at each stage. We consider the 1260 patients who entered

level 2, redefining levels 2 and 3 as decision point 1 and 2 (K = 2). At decision points 1 and

2, we consider two treatment options, Ak = 0 or 1, where 0 (augment) means augmenting

citalogram with one of other treatments and 1 (switch) means switching to one of other

treatments. As for patients information used in decision making, we define X1 = (X11, X12)
T ,

where X11 is QIDS score at decision k = 1 and X12 is the slope of QIDS score based on QIDS

score at baseline, X10, and decision 1, and X1 denotes the information available immediately

prior to the first decision. Similarly, X2 = (X21, X22)
T is the information available between

decision points 1 and 2, where X21 denotes QIDS score at decision k = 2 and X22 is the

QIDS score slope based on X11 and X21. The outcome is the cumulative average negative

QIDS score defined as Y = −I(X21 6 L0)X21 − I(X21 > L0)(X21 + T )/2, where T is QIDS

score at the end of decision point 2 and L0 = max(5, X10/2).

To implement C-learning, one needs to specify models for treatment assignment at each

stage. Since in this study the treatment assignment (switch or augment) is not randomized

and might depend on information available by that stage, we specified π2(x̄2, a1; γ2) =
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expit(γ20+γ21x21+γ22x22+γ23a1) and π1(x1; γ1) = expit(γ10+γ11x11+γ12x12). Random forest

was used to estimate Q2(L2i, a) and Q1(L1i, a), a = 0, 1. After obtaining the classification

data set, we considered regimes of linear form and regimes of the form of a decision tree. For

the former, a genetic algorithm was used and for the latter CART was used for optimization.

Both implementations lead to the same estimated optimal treatment regime, which suggests

that, for both stages, for patients who proceeded to that stage patients should switch. This

result is consistent with that from BOWL. The estimated expected potential outcome under

this regime is -7.91 (95% CI: -8.42, -7.39) using the AIPWE method, as described in Zhang et

al. (2013). As in Figure s1, we also plotted the classification data set used for classification

in C-learning in Supplementary Material F (Figure s2), which suggests that the optimal

treatment decision does not depend on patient characteristics that we have.

In Zhang et al. (2013), it restricted consideration to the class of regimes Gη with elements

gη = (gη1 , gη2), where gη1(x1) = (x12 > η1) and gη2(x̄2, a1) = I(x22 > η2). The optimal

treatment regimes identified was to switch at decision point 1 if the decision 1 QIDS slope,

x12, is greater than -1.78 and switch at decision point 2 for all patients who proceeded to

stage 2. The estimated expected potential outcome under this regime is -7.85( -8.36, -7.33).

Actually, in our data set only 48 patients among 1260 patients had QIDS slope x12 6 −1.78

at stage 1 and under this estimated treatment regimes, most of the patients would switch

at stage 1. For this particular data set, all methods lead to similar estimated regimes, which

basically suggest that for patients who proceeded to that stage they should switch treatment.

6. Discussion

We show a general result that identifying the optimal dynamic treatment regime can be recast

as a sequential classification problem that aims to minimize a weighted misclassification error

at each stage; i.e., at stage k, each subject can be viewed as belonging to one of two classes for

whom the optimal decision at stage k given available patient characteristics and treatment
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history is 0 or 1. Based on this result, we proposed a powerful and flexible learning algorithm

to learn the optimal treatment regime and the classification perspective allows us to exploit

the wealth of existing/new powerful classification algorithms. As discussed in Section 3.1 and

Supplementary Material D, this classification perspective is fundamentally different from

that of Zhao et al. (2015) and offers considerable advantage in performance as illustrated by

simulation studies, especially when the dimensionality of covariates is high. Moreover, this

dramatically better performance is not due to modeling assumptions since in C-learning-RF

the implementation is completely data-adaptive without any parametric model assumptions.

It is a direct optimization method that enjoys more robustness against model misspeci-

fication and it is also able to exploit outcome regression models (Q-functions) to improve

efficiency. As discussed in Section 1, there is a mismatch between outcome regression based

approaches (Q- and A-learning) and the goal of optimizing decision rules. Nevertheless,

intuitively and theoretically the optimal treatment decision should depend on how outcomes

are related to patient characteristics and treatments and information from outcome regres-

sion models (even if incorrect or only approximately true) should be exploited to estimate

the optimal treatment regime. Being a direct optimization approach, C-learning is able to

alleviate the mismatch problem and exploit outcome models simultaneously and the two

goals are achieved in C-learning by decoupling the optimization steps from the modeling

steps.

C-learning is a flexible methodology. Within this framework, first, data analysts have the

freedom to use all existing model building/selection techniques to best model Q-functions

to improve efficiency. For example, one can model Q-functions using parametric regression

models or nonparametric regression models (e.g., random forest), and all available model

selection techniques (e.g., forward selection, Lasso, etc.) that target predictions can be readily

incorporated. Second, existing powerful off-the-shelf optimization/classification tools (e.g.,
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CART and genetic algorithm) can easily be accommodated in this framework to carry out

the optimization to learn the optimal decision rules. In addition, as illustrated by our second

simulation study, new and sophisticated variable selection techniques, targeting optimizing

decision rules as opposed to predictions, can be developed within this framework to best

select the important sets (and combination) of covariates and treatment history from among

a high dimensional set of covariates to form the optimal decision rules. Furthermore, this

framework allows decision rules of different forms. In our simulations we illustrated this

flexibility by considering both linear and tree decision rules. Other forms of decision rules

can also be accommodated in this framework, making C-learning a flexible and general

approach. Finally, we comment that the proposed method can be used to learn the optimal

decision rule using data obtained from both clinical trials and observational studies.

7. Supplementary Materials

Web Appendices referenced in Sections 2-5 and R code implementing the method are avail-

able with this paper at the Biometrics website on Wiley Online Library.
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Table 1

Results for the first simulation scenario using 500 Monte Carlo data sets . E{Y ∗(gopt)} = 20. E(ĝopt) shows the
Monte Carlo average and standard deviation of values E{Y ∗(ĝopt)} obtained using 106 Monte Carlo simulations for

each data set.
n=200 n=400 n=800

Estimator E(ĝopt) E(ĝopt) E(ĝopt)

BOWL 10.84(1.85) 12.13(1.54) 13.02(1.36)
Q-learning 12.49(1.83) 12.76(1.46) 13.05(1.14)
Zhang et al.(2013) 13.25(2.12) 15.08(1.46) 16.28(1.01)
C-learning 17.27(0.97) 18.52(0.74) 19.37(0.41)
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Table 2

Second simulation scenario (500 Monte Carlo data sets, E{Y ∗(gopt)} = 20). Superscript“†” indicates that only
relevant variables among the high dimensional set of covariates are used to construct the optimal treatment regime.

Methods without “†” are searching the optimal treatment regimes without any a priori information on which
variables are important.

n=200 n=400 n=800
Estimator E(ĝopt) E(ĝopt) E(ĝopt)
BOWL 3.38(1.62) 5.93(1.37) 7.79(1.10)
BOWL† 14.76(1.74) 15.43(1.38) 15.74(1.12)
Q-learning† 14.01(1.05) 13.94(0.78) 13.78(0.56)
Zhang et al.(2013)† 17.98(1.42) 18.83(0.87) 19.35(0.45)
C-learning-Q 17.70(1.75) 19.45(0.61) 19.78(0.22)
C-learning-RF 16.59(2.14) 19.21(0.80) 19.75(0.14)
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Table 3

Third simulation scenario (500 Monte Carlo data sets, E{Y ∗(gopt)} = 20). Superscript“†” indicates that only
relevant variables among the high dimensional set of covariates are used to construct the optimal treatment regime.

Methods without “†” are searching the optimal treatment regimes without any a priori information on which
variables are important.

n=200 n=400 n=800
Estimator E(ĝopt) E(ĝopt) E(ĝopt)
BOWL 3.01(1.63) 5.02(1.42) 6.73(1.15)
BOWL† 12.55(1.28) 12.91(0.95) 13.12(0.72)
Q-learning† 13.12(0.45) 13.08(0.35) 13.07(0.23)
Zhang et al.(2013)† 17.02(1.25) 18.02(0.90) 18.71(0.63)
C-learning-Q 17.44(1.29) 18.91(0.73) 19.52(0.32)
C-learning-RF 16.94(1.48) 18.92(0.63) 19.61(0.24)
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